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Abstract 15 

Genome-wide association studies (GWAS) have considerably advanced our 16 

understanding of human traits and diseases. With the increasing availability of whole genome 17 

sequences (WGS) for pathogens, it is important to establish whether GWAS of viral genomes 18 

could reveal important biological insights. Here we perform the first proof of concept viral 19 

GWAS examining drug resistance (DR), a phenotype with well understood genetics. 20 

We performed a GWAS of DR in a sample of 343 HIV subtype C patients failing 1st 21 

line antiretroviral treatment in rural KwaZulu-Natal, South Africa. The majority and minority 22 

variants within each sequence were called using PILON, and GWAS was performed within 23 

PLINK.  HIV WGS from patients failing on different antiretroviral treatments were compared 24 

to sequences derived from individuals naive to the respective treatment.  25 

GWAS methodology was validated by identifying five associations on a genetic level 26 

that led to amino acid changes known to cause DR. Further, we highlighted the ability of 27 

GWAS to identify epistatic effects, identifying two replicable variants within amino acid 68 28 

of the reverse transcriptase protein previously described as potential fitness compensatory 29 

mutations. A possible additional DR variant within amino acid 91 of the matrix region of the 30 

Gag protein was associated with tenofovir failure, highlighting the ability of GWAS to 31 

identify variants outside classical candidate genes. Our results also suggest a polygenic 32 

component to DR. 33 

These results validate the applicability of GWAS to HIV WGS data even in relative 34 

small samples, and emphasise how high throughput sequencing can provide novel and 35 

clinically relevant insights. Further they suggested that for viruses like HIV, population 36 

structure was only minor concern compared to that seen in bacteria or parasite GWAS. Given 37 
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the small genome length and reduced burden for multiple testing, this makes HIV an ideal 38 

candidate for GWAS. 39 

 40 

Introduction 41 

Genome-wide association studies (GWAS) have led to significant advances in the 42 

understanding of complex human traits and diseases. They involve the analysis of hundreds 43 

of thousands or millions of common genetic variants, usually single nucleotide 44 

polymorphisms (SNPs), testing for an association between each variant and a phenotype (see 45 

[1]). This allows for the analysis of many variants across the genome, blind to their location 46 

or functionality.  This approach has identified hundreds of causal risk variants for dozens of 47 

diseases in the last decade (e.g. [2-4]), each a potential drug target for novel treatments. 48 

These advances were made possible due to the availability of cost effective SNP genotyping 49 

technology which capture known common genetic variants. The limitation of this approach is 50 

that it misses variants absent from the chip, especially rare or de novo mutations. For this 51 

reason, genetic research is increasingly moving towards whole genome sequencing 52 

approaches to capture the full range of genetic variants in a population. 53 

In this respect, the field of pathogen genomics is quickly catching up with human 54 

genomics, with international collaborations currently generating thousands of whole genome 55 

sequences (WGS) for pathogens such as HIV and malaria (e.g. the PANGEA Consortium[5] 56 

and the MalariaGen Consortium[6]). These WGS allow for the application of GWAS-style 57 

identification of novel genetic risk variants without the need for SNP genotyping chips.  58 

A GWAS approach has previously been successfully applied to other non-virus 59 

pathogen, almost always using treatment resistance or failure as the phenotype[7]. These 60 
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studies have included Plasmodium falciparum[8], Mycobacterium tuberculosis[9], 61 

Staphylococcus aureus[10] and Streptococcus pneumoniae[11]. Sample sizes have ranged 62 

from 75 to 3,701 sequences, and in even smaller samples have identified both novel and 63 

known variants that capture almost all the variation in treatment outcome.  64 

 65 

However it is still unclear how well suited the viral genome is to a GWAS approach. 66 

The only viral GWAS to date combined GWAS of human SNP and HIV amino acid data, and 67 

identified multiple host genetic variants in the HLA region associated with HIV amino acid 68 

diversity[12]. However they found no associations between the HIV genome and their 69 

outcome of interest, viral load. The high percentage of coding sequence in viral genomes and 70 

overlapping reading frames may constrain the polygenic architecture for which GWAS was 71 

conceived: with many variants each of individually small effect. Another limitation of 72 

previous studies was that they did not allow for heterozygosity. Heterozygosity at a locus can 73 

arise due to mixed infections or within-host pathogen genetic diversification. Although this is 74 

rare in most pathogens studied with GWAS to date, it is highly relevant to many viral 75 

infections. Lastly, parasite and bacterial GWAS have observed a large level of population 76 

structure presumably due in part to homologous recombination and recent selection[13]. 77 

Given the challenges faced by previous analyses, more work is needed to properly define the 78 

genomic architecture of viruses and whether it is suitable to a GWAS style approach.  79 

To validate the effectiveness of a viral GWAS we aimed to replicate the success of 80 

bacterial GWAS and focus on a phenotype known to be under strong selection pressure, 81 

specifically antiretroviral therapy (ART) resistance in HIV. The provision of ART to over 6.2 82 

million people living with HIV in sub-Saharan Africa has been one of the most successful 83 

public health interventions ever undertaken[14], improving life expectancy[15], and reducing 84 

transmission[16, 17]. As a result, ART has been one of the most potent selection pressures on 85 
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HIV. Given its importance to global health, resistance to ART has been well studied in HIV 86 

with many amino acid changes known to lead to DR [18].  Thus, DR is a useful phenotype 87 

for validating GWAS in HIV as findings can be compared to the existing literature as well as 88 

to large publically available databases of genes involved in HIV DR. In this study, we aim to 89 

identify known variants and validate the applicability of GWAS methods to the HIV genome. 90 

Results 91 

Genomic architecture of HIV SNPs 92 

343 samples with phenotype and genotype data remained after variant calling and quality 93 

control (Table 1). A total of the 5379 SNPs with a minor allele frequency>= 1% were 94 

identified. An excess of rare variants was observed with a mean allele frequency of 11.3% 95 

and median of 6.0% (see Supplementary Figure 1).  Additionally 2502 variants were 96 

identified with a frequency less than 1% though not included in the analyses.  Variants were 97 

evenly distributed across the genome, despite missingness differing by region (see 98 

Supplementary Figure 2). The permuted threshold for genome-wide significance was p=7E-5, 99 

less stringent than that derived by Bonferroni correction for the number of variants (p=9.3E-100 

6) and suggesting that there was substantial correlation between SNPs. This correlation is 101 

expected, due to the close proximity of SNPs in WGS data which leads to linkage 102 

disequilibrium and the non-independence of tests.  As such, genome-wide significance was 103 

determined using the permutation adjusted p- permutation adjusted p-value threshold. SNPs 104 

were labelled by their base pair position plus reference allele, e.g. 1A. SNPs were also linked 105 

to their corresponding amino acid position in the different HIV proteins using reference 106 

sequence AF411967.  107 

Validating GWAS with known DR variants 108 
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GWAS was performed to identify variants associated with drug resistance. The drug 109 

resistance phenotype was binary for each drug and defined as any history, or not, of failure 110 

while treated with the given drug. Failure was defined as at least one measure of viral load 111 

>1000 copies/ml after 12 months of treatment. GWAS identified eight independent 112 

associations at permutation adjusted genome-wide significance. Five of the associations were 113 

known loci involved in DR and all but one were in the reverse transcriptase region (RT), the 114 

functional target of these drugs (see Table 2). Failure on tenofovir was associated with three 115 

known SNPs (2730G, 2852A and 2880T, see Figure 1) in the RT region, at amino acid 116 

positions 65, 106, and 115, of which position 65 and 115  were known tenofovir DR variants 117 

and position 106 was previously associated with DR with the most common drugs used in 118 

combination with tenofovir. Treatment with zidovudine was associated with SNP 2745G, a 119 

known drug variant in RT amino acid 70 (Supplementary Figure 3). Nevirapine treatment 120 

was associated with a SNP (3078G) at RT 181, again a previously known DR variant 121 

(Supplementary Figure 4). No associations were seen with known resistance variants for 122 

lopinavir, efavirenz and stavudine (Supplementary Figure 5, 6 and 7). These results remained 123 

significant after correction for confounding from population structure and length of treatment 124 

(Supplementary Table 1) 125 

While our analyses identified several known variants for DR, not all were identified. 126 

However, it is well known in GWAS studies that sample size is a critical limitation, with 127 

additional SNPs identified when larger samples are available. We observed a weak positive 128 

correlation in our analyses between the number of significant associations per drug and 129 

sample size (R2=22%). Looking at known DR mutations[18] with data available showed an 130 

excess of significant associations compared to expectation by chance, with 12% containing a 131 

variant at genome-wide significance and a further 41% containing at least one at nominal 132 
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significance, despite incomplete coverage (p<0.001; see Supplementary Table 2). This trend 133 

was especially clear within the primary resistance mutations. 134 

Identification of novel variants 135 

As well as known drug resistance variants, additional associations were observed. The 136 

first was two associations within RT amino acid 68. The first was between tenofovir failure 137 

and SNP 2738G resulting in a change from serine to glycine. Replication was performed 138 

using the Stanford University HIV Drug Resistance Database[19, 20]. Subtype C sequences 139 

within the Stanford database from individuals failing to tenofovir or other NRTIs (n=9,357) 140 

all had the reference (serine) amino acid. For sequences showing resistance to tenofovir, 141 

however, 5.5% had glycine at this position (n=488, p<0.0001 compared to non exposed 142 

distribution). Stavudine resistance was showed associations with a different SNP (2739A) 143 

from serine to asparagine (Supplementary Figure 3). However further investigation showed 144 

this to be an association with the negatively correlated drug tenofovir which had a p-value 145 

just below genome-wide significance for this SNP (p=7.1E-4). This was clear both from the 146 

fact the reference sequence allele was associated with stavudine DR, and from the results of 147 

the replication. For sequences failing on tenofovir 4.7% had asparagine at position 68 148 

(p<0.0001), while for sequences failing on stavudine (n=2,800) no asparagine variants were 149 

observed. While not known drug resistance variants, amino acid 68 (specifically the change 150 

to glycine) has been suggested as a compensatory mutation for reduced fitness due to the 151 

drug resistance variant in amino acid 65[21, 22]. Indeed epistasis was observed between the 152 

significant SNPs in amino acid 68 and those in amino acids 65 and 106 (Supplementary 153 

Table 3). 154 

For tenofovir failure an association was also seen with SNP 1063A in amino acid 91 155 

of the matrix region, an entirely novel association (see Figure 2). Whilst not available in the 156 
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Stanford database, we compared our results to the Los Alamos HIV Sequence Database drug 157 

naïve WGS at the amino acid 91 of the matrix region. Interestingly, for the amino acid 91 we 158 

observed a high level of genetic variation, with coding for nine amino acids. Focusing on the 159 

associated genetic change, we observed significantly different (p<0.0001) frequencies in the 160 

drug naïve sample (37% G vs. 61% A) compared to the tenofovir-exposed sequences in our 161 

sample (65% G vs. 35% A). Our WGS tenofovir naïve cases had a same frequency as the 162 

publically available sequences (37% G). While not an independent replication, this lends 163 

some support to our finding.   164 

Population stratification and cryptic relatedness 165 

 A concern in GWAS is the possibility of confounding by population stratification, 166 

which can lead to a systematic inflation in the number of false positives. QQ plots are a 167 

standard tool for testing for inflation in GWAS, plotting observed p-values across the genome 168 

compared to expected p-value distribution. These suggested a systematic deflation in p-values 169 

in this study, with genomic lambdas between 0.66-0.80. The lambda value is derived from the 170 

median observed chi squared statistic divided by the median expected chi squared statistic 171 

(for p=0.5). Under the null distribution, a lambda of 1 is expected, with a value above 1.05-172 

1.10 usually taken as evidence of inflation. However, the excess of very rare variants (see 173 

Supplementary Figure 1) prevented a normal distribution of p-values, with a reduced number 174 

of significant SNPs compared to expected under the null. Restricting the analysis to SNPs 175 

where minor allele frequency was at least 10% supported this hypothesis, with an increase in 176 

genomic lambdas (0.81-1.00). To account for this, we compared our distribution of p-values 177 

to those when the phenotype was permuted within our data. This removed the systematic 178 

deflation in our expected vs. observed p-value distributions (lambdas 0.99-1.36, median 179 

1.076), now showing a distribution close to null for the majority of SNPs (see Supplementary 180 

Figures 8-13). An inflation of p-values compared to permuted phenotypes was observed only 181 
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within the tail end of highly significant SNPs. This is a characteristic not of population 182 

stratification but of a trait being polygenic, i.e. with many truly causal SNPs each explaining 183 

only a small proportion of variance. This distribution is common among human GWAS QQ 184 

plots and suggests larger studies of DR will yield additional causal SNPs, albeit with smaller 185 

effect sizes.   186 

Usually population stratification is addressed by correcting for ancestry informative 187 

principal components. These principal components are based on SNP correlations across the 188 

genome, and have been shown to accurately capture population structure[23].  However their 189 

construction proved difficult in our total sample due to much higher missingness than is 190 

typical in GWAS data from genotyping chips. As such we performed a sensitivity analysis in 191 

a smaller sample with near complete sequencing (n=178) to test the effect of our genome-192 

wide significant SNPs after correcting for principal components. No large attenuation of 193 

effect was observed, with half of the genome-wide significant SNPs showing an increased 194 

effect size when the first five principal components were included as covariates 195 

(Supplementary Table 1). Predictably we observed higher p-values in the sensitivity test due 196 

to the much smaller sample size. The partial availability of GPS data for individual’s 197 

household allowed for comparison of geographic proximity to genetic similarity (n=34). We 198 

did not observe clear genetic clustering overlapping with geographic (see Figure 3), though a 199 

pairwise comparison of genetic distance based on coordinates of first 2 principal components 200 

and geographic position did show a weak association between the two (R2=1.4%, p<0.005). 201 

Another potential confounder within GWAS is relatedness between samples. 202 

Traditional measures of human relatedness were not appropriate for the analysis of pathogen 203 

genomics data. We performed a sensitivity test to remove samples closely linked within 204 

phylogenetic clusters (N=6). The results did not differ greatly, suggesting our top findings 205 
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were not driven by population stratification or cryptic relatedness (see Supplementary Table 206 

1). 207 

Discussion 208 

In this study, we performed a proof of concept analysis that shows how a GWAS 209 

approach can identify many known variants and replicable novel associations using HIV 210 

WGS.  We identified five variants at loci which corresponded with amino acid changes 211 

previously associated with DR. While not all previously known DR variants were identified 212 

at genome-wide significance in our analyses, we observed an excess of nominally significant 213 

associations at these loci (p<0.001, Supplementary Table 2). This is reminiscent of the 214 

polygenicity observed in human GWAS. Often an excess of sub-genome-wide significant 215 

variants was identified prior to identifying those specific SNPs truly associated with a 216 

trait[24]. We can expect many of those previously known variants to become genome-wide 217 

significant once sample sizes increase. 218 

As well as validating known variants, our results highlight two ways in which GWAS 219 

can identify potential novel variants. The first is by identifying variants of smaller or indirect 220 

effects, such as via epistasis. We identified two nonsynonymous variants changing the RT 221 

amino acid 68 from a serine to asparagines or glycine. Both associations remained after 222 

correction for other treatments and potential confounders and the amino acid changes were 223 

replicated in independent samples. The 68 glycine variant has been described previously as 224 

correlating with drug resistance variant at position 65[21]. This change does not confer drug 225 

resistance itself but rather compensates for the reduced fitness from a change at position 226 

65[22]. In agreement with this we observed significant interactions between the changes at 227 

position 68 and both 65 and 106 (Supplementary Table 3).    228 
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The second benefit of a GWAS approach was the ability to identify novel associations 229 

outside of candidate regions of the genome. Here we observed a novely associated SNP 230 

outside of the RT region of the Pol gene traditionally assumed to contain all genetic variants 231 

that provide resistance to NNRTIs. This association with failure on tenofovir (an NNRTI) 232 

was instead within amino acid 91 of the matrix protein of the Gag polyprotein. The effect 233 

remained after correction for effects of other drugs, population stratification and relatedness 234 

(Supplementary Table 4). This variant leads to a change in amino acid from the reference 235 

arginine to glycine, an uncommon change though the region is highly polymorphic.  In 236 

comparison to the other variants (mean odds ratio of 3.70, range 1.72-11.91), the effect size 237 

was slightly smaller at 1.78 suggesting why it previously may have been unobserved. 238 

While the current results validate the applicability of GWAS to the HIV genome, 239 

there are some limitations. As previously mentioned, not all known DR variants were 240 

identified at genome-wide significance, though given many were nominally significant, this 241 

is likely to reflect small sample size. Related to this is a bias in which types of variants were 242 

more likely to be identified in our study design. These would have related to two groups of 243 

variants. First, we would have had greater power to detect drug resistance variants that also 244 

reduce viral fitness, meaning they would only exist at high frequencies when directly under 245 

selection from treatment. Second, our study design would favour identifying variants that had 246 

effects specific to one drug rather than a class of drugs, due to most samples having been 247 

exposed to at least one drug from each class. This was a result of the now widespread usage 248 

of ART by infected individuals and subsequent focus of sequencing efforts on treatment 249 

resistance. Lastly, we note that unlike bacterial GWAS[7], we did not observe dramatic 250 

genome-wide inflation in test statistics. Our comparison of lambda values using permuted 251 

and unadjusted p-values suggested that Bonferroni adjustment for multiple corrections is 252 

likely over conservative, while permutation adjustment may not correct for all inflation. 253 
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However, analysis of principle components suggested the genome-wide associations were not 254 

confounded by geographic and genetic population structure. 255 

Overall, our results provide a clear proof of concept on the use of GWAS within HIV 256 

and other viruses whole genome sequence data. The smaller genome size, compared to 257 

humans, means that substantially smaller samples were needed to identify associated variants. 258 

Power is also greater because sequencing allows one to test the association with the causal 259 

variant, rather than the proxy SNPs often used in human GWAS to capture several nearby 260 

correlated SNPs. With a larger percentage of the genome transcribed there should also be a 261 

larger proportion of functionally relevant variants. Additionally, viruses can themselves be 262 

used as model organisms and can be genetically modified, allowing for functional validation 263 

of identified variants in a way that cannot be performed in humans. However, these benefits 264 

of performing GWAS within viruses should not ignore the valuable lessons from human 265 

genomics, especially the need to quickly establish large sample sizes through internationally 266 

collaborative research (see [25, 26]). A focus on setting up standardised quality control 267 

pipelines, making GWAS results publically available in the form of SNP summary statistics, 268 

and pooling samples into mega-analyses (rather than meta-analysing separate studies) should 269 

be the aim of those groups generating HIV and other virus genomes.  270 

 271 

Methods 272 

Sample description 273 

The study sampled 319 HIV-infected adults and 24 children on ART with virological 274 

failure in the Hlabisa HIV Treatment and Care Programme in South Africa for which a whole 275 

genome of HIV-1 was produced. The inclusion criteria were: ART regimen for at least 12 276 
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months followed by virological failure, defined as one viral load >1000 copies/ml. Exclusion 277 

criteria were: prior use of nucleoside reverse transcriptase inhibitor (NRTI) monotherapy or 278 

dual therapy (not including regimens for the prevention of mother-to-child transmission 279 

(pMTCT)). All individuals were seen by a physician, who performed a clinical evaluation 280 

and obtained written informed consent for the study. A 5 ml EDTA whole blood sample for 281 

HIV DR genotyping was collected during the clinical evaluation. Basic clinical and 282 

demographic data, including GPS data on household location, were collected on a clinical 283 

form and clinical and treatment information was compared with the records in the Africa 284 

Centre’s ART Evaluation and Monitoring System (ARTemis), an operational database 285 

holding treatment and laboratory monitoring information from the national ART programme 286 

in South Africa. The clinical information was entered in anonymised form into a relational 287 

sequence database, the SATuRN REGA database[27]. Further details of the study have been 288 

described previously[28, 29].   289 

Ethics Statement 290 

The study was approved by the Biomedical Research Ethics Committee of the 291 

University of KwaZulu-Natal (ref. BF052/10) and the Health Research Committee of the 292 

KwaZulu-Natal Department of Health (ref. HRKM 176/10). South African legal guidelines 293 

define a person able to give informed from consent from age 17. Written informed consent 294 

was obtained from all the study participants and their parent or legal guardian in the case of 295 

paediatric patients (≤16 years). 296 

Drug exposure data 297 

The median duration of ART among patients in this cohort was 42 months (IQR 32–298 

53). The most common first line ART regimens were: tenofovir/stavudine/zidovudine 299 

+Lamivudine +efavirenz/nevirapine. The most common second line ART regimen were: 300 
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Lopinavir (+ Ritonavir), Lamivudine, zidovudine/tenofovir. The median duration of 301 

antiretroviral failure was 27 months (IQR 17– 40 months). Details on drug exposure data and 302 

DR results have been described previously [28, 29]. Drug exposure was defined by exposure 303 

at any time point prior to sequencing. Table 1 provides a basic description of the 304 

characteristics of the 343 individuals with viral WGS data included in the analysis.  305 

RNA extraction, PCR amplification and whole genome Sequencing 306 

RNA was extracted from samples using the manual QIAamp Viral RNA Mini Kit 307 

(Qiagen). The near complete HIV-1 genome was amplified by a previously described RT-308 

PCR strategy with primers modified to be more subtype C specific  (Danaviah et al. CROI 309 

2015; Abstract).  The amplification involved the production of four overlapping genetic 310 

fragments of lengths of 1.9kb, 3.6kb, 3.0kb and 3.5kb. This included all nine open reading 311 

frames and partial regions of the 5’- and 3’-LTR. The DNA concentration of individual 312 

amplicons was quantified using the Qubit sdDNA HS Assay Kit (Thermo Fischer Scientific-313 

Life Technologies). Pooled amplicons were prepared for sequencing using the Nextera XT 314 

DNA Sample Preparation kit (Illumina) and the Nextera XT DNA Sample Preparation Index 315 

Kit (Illumina), following the manufacture’s protocol. The runs comprised pools of 96 316 

samples that included three controls (one negative sample, one inter-run and one intra-run 317 

control).  All processes to generate WGS were undertaken locally at the Africa Centre 318 

laboratory, Nelson R Mandela Medical School, University of KwaZulu-Natal, South Africa. 319 

Bioinformatics pipeline: Whole genome quality control, assembly and phylogenetic 320 

analysis 321 

Fastq quality control was performed using FASTQC(0.11.3) and QUASR(3.1) 322 

software applications. Reads of less than 100bp in length and a quality score lower than 30 323 

were excluded. In addition, the reads were trimmed up to 10bp from 5’ and 30bp at the 3’ to 324 
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exclude poor quality sequence at the beginning and end of reads. We noticed that the second 325 

pair read of the Illumina Nextera XT was of lower quality and that excluding the last 30bp 326 

increased quality score to > 33. We imposed these exclusion criteria in order to decrease the 327 

probability of ambiguous read mapping, which occurs when shorter reads of lower accuracy 328 

are included in assemblies [30]. Following these quality control steps, we mapped reads 329 

against a subtype C reference sequence (AF411967) with five  assembly iterations using 330 

Geneious 8 (http://www.geneious.com)[31]. After assembly, we exported the data as BAM 331 

files and exported contigs as FASTA files. 332 

In order to determine if there was clustering of sequences (i.e. sequences that were 333 

very similar with low genetic diversity), we aligned all of the whole genomes with a 334 

reference dataset for HIV-1 subtype C. The tree was constructed with HKY+Gamma site rate 335 

variation in a MPI version of RaxML. Reliability of internal nodes was evaluated by 100 336 

bootstrap replicates. Phylogenies were analysed using Phylotype software application[32] in 337 

order to detect any clustering of sequences with high bootstrap values (>90%) and low 338 

sequence diversity (<3%). This was performed to identify pairs of closely related HIV 339 

sequences that might confound the analysis and test the sensitivity of the results to their 340 

inclusion. 341 

Variant calling and GWAS software adaptation 342 

The processing of WGS data to the performing of GWAS is outlined in Figure 1, with 343 

comparison to human GWAS steps. BAM files were converted to VCF format variant calls 344 

individually for each sequence in PILON [33]. A threshold of a depth of 50 reads per base 345 

was used for a variant to be called. 346 

As GWAS software was originally designed for diploid organisms (i.e. those with two 347 

chromosomes and so two copies of any given loci), each sample can be called either as 348 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 20, 2016. ; https://doi.org/10.1101/076216doi: bioRxiv preprint 

https://doi.org/10.1101/076216


16 

homozygous for an allele (e.g. AA or TT) or as heterozygous (e.g. AT). While heterozygosity 349 

is incorrect in the sense that HIV is haploid, it captures an important reality of viral infection: 350 

genetic differences within the host’s viral population. We wanted to retain the feature of 351 

diploidy to account for samples with diversity at a given DR loci. We expected heterozygous 352 

samples to have an intermediate effect size compared to samples where the DR variant was 353 

either entirely non-existent or fixed. The downside of this approach was that given numerous 354 

sequence reads for each loci, some variation is expected due to sequencing errors. To account 355 

for this, we allowed for diploid calling in the following manner. If the reference allele 356 

frequency was present in >85% of reads at a loci, the loci was called as homozygous for the 357 

reference allele. A heterozygous call with one copy of the reference variant and one of the 358 

non-reference variant was made if the reference allele frequency was between 85% and 15% 359 

of reads. Finally, a homozygous non-reference call was made if the reference allele frequency 360 

was found in less than 15% of reads. While these cut-offs are simply defaults of the software, 361 

this worked as a crude calling approach for whether an individual sample’s HIV population 362 

was fixed or mixed for any given loci. 363 

VCFs were then merged in GATK[34], then the combined VCF read into 364 

PLINK1.09[35] for GWAS analysis. Prior to analysis, several QC steps were performed. 365 

First, where multiple alleles occurred at the same loci, the reference variant and the most 366 

common non-reference variant were used to make the loci bi-allelic. Second, a minor allele 367 

frequency of greater than 1% was required for all variants. Lastly, we did not implement a 368 

restriction on missingness of data. In human GWAS, high missingness for a SNP or 369 

individual may reflect poor quality genotyping. However, in HIV WGS sequencing quality is 370 

not homogenous across the genome (see Supplementary Figure 2). As we had restricted 371 

analysis to calling variants at loci with a depth of 50 or greater, higher missingness was 372 

expected. Missingness for SNPs significantly associated with DR is reported in Table 2. 373 
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Statistical analysis 374 

A logistic regression was performed in PLINK1.09[35] with drug exposure as the 375 

binary outcome and each SNP as a predictor with an additive effect. All samples exposed to a 376 

given drug were compared to all that were not. To determine genome-wide significance we 377 

performed 10,000,000 permutations within PLINK1.09 both on a single SNP and genome-378 

wide level using the --mperm command.  This was performed to account for correlation 379 

between nearby SNPs which would have made Bonferroni correction for the raw number of 380 

statistical tests overly conservative. Given the smaller number of variants compared to a 381 

human GWAS, permutation using 10,000,000 for the empirical p-values was computationally 382 

feasible. As the negative correlations in the prescribing of these drugs existed, associations 383 

with the same SNP were seen in multiple analyses. However it was possible to identify when 384 

exposure was associated with the non-reference sequence (i.e. odds ratio>1) and so, 385 

presumably, which association identified the true drug resistant variant. Principal components 386 

were generated in GCTA[36].  387 

Replication  388 

Genome-wide significant SNPs within the Pol region were able to be taken forward 389 

for replication in a publically available independent sample. This was the Stanford University 390 

HIV Drug Resistance Database[19, 20], where information on amino acid frequencies were 391 

available for sequences exposed to different drugs. This analysis was restricted to the 13,676 392 

subtype C sequences. Additional analyses also made use of a subset of all publically available 393 

subtype C WGS (n=505) from the Los Alamos HIV Sequence Database 394 

(http://www.hiv.lanl.gov/). This was done to ensure our variant frequencies were in 395 

agreement with those observed elsewhere. 396 

 Data access 397 
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Summary statistics for all SNPs of each GWAS are available online 398 

(https://figshare.com/articles/PLOSONE_DR_GWAS_HIV/3569766). Access to the full 399 

genomes of HIV can be done by application of a proposal to PANGEA_HIV 400 

(http://www.pangea-hiv.org/). 401 
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Tables and Figures 

Table 1: Number of WGS treated with each drug, and correlations between drugs within samples 

Drug Treated Untreated Correlation with: 
Zidovudine Stavudine Tenofovir Efavirenz Nevirapine Lopinavir 

Zidovudine 32 311 1 - - - - - 
Stavudine 291 52 -0.058 1 - - - - 
Tenofovir 101 242 -0.117 -0.507 1 - - - 
Efavirenz 259 84 0.011 -0.023 0.128 1 - - 

Nevirapine 113 230 -0.017 0.127 -0.057 -0.623 1 - 
Lopinavir 26 317 0.213 -0.033 0.053 -0.151 -0.115 1 
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Table 2: Results for genome-wide significant SNPs and their corresponding amino acid positions. Note that the effect of SNP 2739A is 
protective against stavudine resistance (i.e. odds ratio [OR] <1) and the association is actually with tenofovir, that has a negatively correlated 
prescription regime. Ref.=Reference;  BP= base position; A1 = effect allele; Cis=proximal to known DR variant; Conv.=convergent, i.e. known 
DR variant for another drug; OR=Odds ratio; SE=standard error. 

 

 

 

 

  

Drug SNP 
Missing
-ness  A1 Ref. Gene 

Amino 
acid N 

Ref. Amino 
Acid 

A1 Amino 
Acid Known OR SE 

Unadjust
ed p-
value 

Permutatio
n adjusted 
p-value 

Nevirapine 3078G 14% G A RT 181 Y C Yes 5.20 0.26 4.77E-10 1.00E-07 
Stavudine 2739A 14% A G RT 68 S N Cis  0.08 0.54 5.38E-06 0.0081 
Tenofovir 1063A 18% G A MA (p17)  91 R G No 1.79 0.14 2.42E-05 0.016 

2730G 13% G A RT 65 K R Yes 6.44 0.24 1.67E-14 1.00E-07 
2738G 14% G A RT 68 S G Cis  2.89 0.24 1.45E-05 0.0088 
2852A 14% A G RT 106 V M Conv. 1.72 0.14 6.19E-05 0.047 
2880T 13% T A RT 115 Y F Conv. 5.77 0.41 1.80E-05 0.011 

Zidovudine 2745G 16% G A RT 70 K R Yes 3.11 0.22 2.94E-07 0.0006 
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Figure 1: Analysis pipeline for HIV whole genome sequence (WGS) genome-wide 
association study (GWAS) compared to a human study using a SNP chip. Step 1) Diploidy 
defined for both human and pathogen, to reflect ‘real’ heterozygosity and heterozygosity 
from within host viral diversity. 2) While missingness and Hardy-Weinberg Equilibrium are 
used to assess genotyping quality in human GWAS, in viral GWAS we used depth of 
sequencing to assess variant calls. As such, higher calling confidence is associated with 
higher missingness in viral SNPs, while the reverse is true in humans. Low minor allele 
frequency (MAF) is always used to remove variants that have low power to detect effects and 
may reflect errors. 3&4) Correction for ancestry and relatedness are key to human GWAS, 
however due to both more homogenous sampling and difficulty in applying conventional 
corrections in human data to viral, this was done as a sensitivity test in a smaller sample for 
top SNPs in HIV GWAS. 
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Figure 2: Manhattan plot comparing HIV sequences that were exposed to tenofovir to those 
that were not. The reference line at p=7E-5 is the line for permutation adjusted genome wide 
significance. Dashed grey lines on genomic locations refer to borders of genes (black dashed 
refer to GAG, Pol and ENV). Each marker is a SNP, weighted by it’s –log(p-value) to 
highlight the most significant SNPs. 
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Figure 3: Plot of standardised values for the ancestry informative principle components 1 & 2 
(red) and latitude & longitude (gold) for HIV sequences, with values for each sequence 
linked by a line. No correlation between geographic position and genetic position was 
observed. 
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