
Reading positional codes with fMRI: Problems and
solutions

Kristjan Kalm,∗ Dennis Norris

Cognition and Brain Sciences Unit, Medical Research Council

15 Chaucer Road, Cambridge, CB2 7EF, UK

∗ E-mail: kristjan.kalm@mrc-cbu.cam.ac.uk.

October 18, 2016

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 18, 2016. ; https://doi.org/10.1101/076554doi: bioRxiv preprint 

https://doi.org/10.1101/076554
http://creativecommons.org/licenses/by-nc-nd/4.0/


Neural mechanisms which bind items into sequences have been investigated in a large

body of research in animal neurophysiology and human neuroimaging. However, a

major problem in interpreting this data arises from a fact that several unrelated

processes, such as memory load, sensory adaptation, and reward expectation, also

change in a consistent manner as the sequence unfolds. In this paper we show that

the problem of extracting neural data about the structure of a sequence is especially

acute for fMRI, which is almost exclusively the modality used in human experiments.

We show that such fMRI results must be treated with caution and in many cases the

assumed neural representation might actually reflect unrelated processes.

1 Introduction

One of the most important features of human cognition is the ability to bind individual events

into a sequence. Almost any complex task requires us to remember not only the individual

elements but also the order in which they occurred. For example, two tasks such as starting

a car and stopping it might share the same events but in different order. All computational

models of sequence processing acknowledge this distinction between the representations of items

in memory and the representation of the order in which they occur (Henson & Burgess, 1997;

Page & Norris, 1998). The view that item’s position in the sequence is encoded separately

and independently of their identity has been also suggested by decades of research in human

behaviour and animal neurophysiology.

Neurons in the monkey prefrontal cortex (PFC) have been found to be selective for each

position in a learned sequence (Nakajima, Hosaka, Mushiake, & Tanji, 2009; Averbeck, Crowe,

Chafee, & Georgopoulos, 2003; Inoue & Mikami, 2006; Naya & Suzuki, 2011). Figure 1C gives

an example of a simple positional code showing the responses of position-sensitive neurons from

monkey supplementary motor area as observed by Berdyyeva and Olson (2010). Other research

on animal neurophysiology has suggested that the hippocampus encodes the position of items

in a sequence (Mankin et al., 2012; Manns, Howard, & Eichenbaum, 2007a; Naya & Suzuki,
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2011; Pastalkova, Itskov, Amarasingham, & Buzsáki, 2008), with some authors proposing the

existence of ’time cells’ tracking the temporal position of items in a sequence (MacDonald,

Lepage, Eden, & Eichenbaum, 2011; MacDonald, Carrow, Place, & Eichenbaum, 2013). From

hereon we refer to such neural representation of the item’s position in the sequence as positional

code. The extensive literature on the neural representation of the positional code is summarised

in Table 1.

However, interpreting a neural signal tracking the positional code suffers from a major

methodological problem: items in different positions necessarily differ along other dimensions

too. For example, in a memory task, memory load will be greater at position three than

position two. Changes in neural activity that are sensitive to memory load might therefore

give the appearance of coding position. An item in position n will always be associated with a

load of n items. Any neural index of load will therefore consistently be in a different state for

items in different positions. An item in position n also occurs at a later time than item n− 1.

Sensory adaptation might change the neural response to items as the sequence progresses. Such

a signal could also masquerade as a positional code. Any or all of these factors might therefore

lead to a differential neural response which would correlate with the position of an item in a

sequence, but which might play no role in determining how the brain codes temporal position.

In their analysis of how we can measure information in the brain, De-Wit, Alexander, Ekroll,

and Wagemans (2016) made a contrast between ”cortex as receiver” and ”experimenter as

receiver”. There may be ways in which we as experimenters can decode neural states to recover

information about temporal position, but what we would like to do is to identify specifically

those neural representations that the cortex uses to represent temporal position and to drive

behaviour.
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Figure 1: Sequence representation and temporal position

(A) Representation of two sequences as map-
pings between item codes and temporal posi-
tion codes.

CAT  PIG  DOG DOG  CAT  PIG
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(B) Left: representation of temporal position
in a 7-item sequence. The variance around po-
sitional signal is coded in terms of the dark-
ness of the circle. Right: the order position is
retrieved by reinstating each positional code
which then cues the associated item.

1
2
3

?

(C) Examples of temporal position selective neurons from Berdyyeva and Olson (2010). From
left to right: pre-supplementary motor area neuron selective for 1st position, supplementary eye
field neuron selective for 2nd position, and supplementary motor area neuron selective for the
3rd position in the serial object task.

In this paper we show that dissociating positional ’read-out’ from a neural positional code is

an especially difficult problem for fMRI data. We show that fMRI data acquired from sequen-

tially presented stimuli suffer from several confounds. First, we show that with any sequence

processing task there are experimental variables which are collinear with the positional signal

(e.g. memory load, sensory adaptation, etc.) and which can serve as a positional code. Second,

we show how interference between stimulus representations, task phases, and measurement

modalities can also lead to a similar positional read-outs indistinguishable from a dedicated po-

sitional code. Importantly these correlated effects do not simply result in a univariate change

in signal that varies across sequence position but also change the pattern of information that

can be read out by multivariate methods.

The problem of interpreting a positional signal is especially relevant since neural data on

human sequence processing comes almost exclusively from fMRI studies (Table 1). Our simula-

tions and experimental data show that results from fMRI experiments studying the positional

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 18, 2016. ; https://doi.org/10.1101/076554doi: bioRxiv preprint 

https://doi.org/10.1101/076554
http://creativecommons.org/licenses/by-nc-nd/4.0/


code must be treated with caution. Specifically, in many cases the assumed positional code

might actually reflect processes which are correlated with position in the sequence instead.

2 Positional code from collinear processes

Any signal tracking the position of an item in a sequence will be collinear with a number of

cognitive processes:

• Memory load – signal for position n will always co-occur with a memory load of n items

when storing a sequence. Any neural index of load will therefore always reflect the

progression of sequence.

• Sensory adaptation – neural responses in the human sensory cortex have been shown to

monotonically decrease as a response to sequentially presented stimuli (Henson & Rugg,

2003; Summerfield, Trittschuh, Monti, Mesulam, & Egner, 2008; Larsson & Smith, 2012).

Any signal that monotonically changes over sequence positions can be used to read out

position-like code.

• Reward – in most animal studies the subject is rewarded after successfully attending or

recalling a sequence. This means that the next item in a sequence is always closer to the

reward. Neurons tracking the temporal proximity of reward have been described in both

monkey and rodent studies (Berdyyeva & Olson, 2011; MacDonald et al., 2011; Naya &

Suzuki, 2011).

• Passage of time – signal for position n always occurs after the signal for position n− 1.

All these processes represent a change in the cognitive state of the participant throughout

the processed sequence, and hence will necessarily be collinear with any positional code. It

follows that in the analysis of experiments on temporal order it is necessary to distinguish

between a dedicated positional code and a positional read-out from collinear processes.

Next, we provide two examples of positional read-out based on human fMRI data. In the

first example we show how sensory adaptation in the sensory cortices can be interpreted as
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a positional signal. In the second example we show how differences in retinotopic activation

over the course of the sequence can similarly provide positional read-out. In the final part of

the section we provide simulations which explore whether it is possible to develop methods to

subtract the effects of such collinear processes from sequentially obtained data.

2.1 Sensory adaptation

Sensory adaptation across sequence positions has been observed in a number of fMRI studies of

sequence processing as a decreasing univariate signal over positions (Summerfield et al., 2008;

Larsson & Smith, 2012; Henson & Rugg, 2003). Note that an inverse trend, where the uni-

variate signal increases over sequence positions, has also been observed (Kalm & Norris, 2016).

The latter most likely reflects the attenuation of the BOLD signal in response to sequentially

presented stimuli as reported in other fMRI studies on human STM (Rottschy et al., 2012;

Wager & Smith, 2003). However, the direction of the univariate change is unimportant as any

consistent change over sequence positions will permit position decoding.

Here we used two human fMRI datasets obtained with a sequence processing task (Kalm

& Norris, 2014, 2016) to carry out a classification analysis of item position in a sequence. In

both cases we chose the sensory cortex of the presented stimuli as a region of interest (ROI):

in the first experiment the sequences were presented auditorily (Kalm & Norris, 2014) and in

the second visually (Kalm & Norris, 2016). Since in both experiments sensory areas responded

differentially to sequence positions (Figure 2A) linear classification analysis can be used to

predict the position of the items significantly above chance (Figure 2B). However, in both

cases the signal changes were uniform across all voxels in the anatomical region suggesting not

a dedicated positional code, but sensory adaptation or change in measurement noise. Sensory

adaptation thus serves as a clear example how a monotonically changing signal can be read out

by an experimenter as a positional code.
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Figure 2: Sensory adaptation in the sensory cortex and decoding order position.

(A) Uniform signal change over 3-item sequences in sensory brain areas averaged across par-
ticipants. Data from visual regions V1, V2, pericalcarine, and lateraloccipital regions is from
Kalm and Norris (2016). Data from auditory areas Heschl’s gyrus (HG) and superior temporal
sulcus (STS) is from Kalm and Norris (2014).
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(B) Distribution of average linear classification accuracy values of item position in V1 region
across participant’s from Kalm and Norris (2016). Bar charts display the average classification
accuracy across participants by comparing the known positions (labels) to the predictions made
by the classification algorithm. Bars show the proportion of predicted values for each position.
Correct classifications are represented with a darker bar. Error bars show the standard error of
the mean. The red line depicts the chance level classification accuracy 1/3.
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2.2 Retinotopic activation

In the example above (Sensory adaptation) the population of neural units (sensory cortex)

responded uniformly to sequentially presented stimuli. Next we present a case where neural

units within the population respond differentially across the sequence. We use fMRI data from

a visual sequence processing task to show that the response in the primary visual cortex can be

used to predict the position of the item in the sequence. However, this is possible not because

of any positional code but because of task-selective voxels in the visual cortex.

In Kalm and Norris (2016) participants had to attend a sequence of visually presented images
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followed by a manual response indicating the order of the items (Figure 16). Importantly, all

images were controlled for luminance and cropped to ensure that each image appeared in a

similar retinal area: all stimuli subtended a 6◦ visual angle around the fixation point in order

to elicit an approximately foveal retinotopic representation. As a result, all sequence items

elicited approximately similar retinotopic response in the foveal area of the primary visual

cortex.

The authors observed that the activation of the retinotopically driven voxels was correlated

with the relative suppression of the voxels outside of the retinotopically activated areas (Figure

3A). Such suppression has been observed as a function of stimulus location in the visual

field (Maier et al., 2008) and attention (Gouws et al., 2014; Smith, Singh, & Greenlee, 2000).

Importantly, the amount of activation and suppression changed across sequence positions. Since

the sequence items were presented in immediate succession, the extent of retinotopic suppression

and activation varied as a function of item’s position in the sequence. Figure 3B shows data

from a single participant’s V1, where voxels are split into two groups: retinotopically activated

(red-yellow on Figure 3A) and suppressed (blue-cyan on Figure 3A) represented by red and blue

lines. As the activation and suppression of two different sets of voxels changes across positions,

a linear classification algorithm can use the difference between activated and suppressed voxels,

or the difference between the red and blue lines on Figure 3B, to reliably predict the item’s

position.

This can be further illustrated when linear discriminant analysis (LDA) class boundaries

based on item position are plotted with following sets of voxels from V1:

1. All voxels (including both retinotopically activated and suppressed voxels)

2. Only activated voxels (p < 0.01)

3. Only suppressed voxels (p < 0.01)

LDA shows that the linear classifier is only able to reliably predict the position of the item

when both activated and suppressed voxels in the brain region are included (Figure 4, top row).

The classification is at chance level if only one set of voxels are used (Figure 4, row 2-3).
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Figure 3: Interference between task phases: retinotopic suppression.

(A) Activation and suppression in V1 averaged across all stimuli for a single participant. The
activated voxels (yellow, p < 0.001) mark the foveal part of the visual cortex driven by the
stimuli (presented at 6◦ visual angle).

(B) Peristimulus time histogram of sequence presentation of two groups of voxels from a single
participant’s V1. The black line denotes the average of the voxels activated by the stimuli and
the red line denotes the average of the voxels suppressed by the stimuli. Dashed vertical lines
indicate the time bins where sequence items were presented.
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Next we carry out a simulation of sequentially generated fMRI data to explore whether both

uniformly and differentially proceeding collinear processes could be controlled for when trying

to extract a positional code.
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Figure 4: LDA of item position in V1 using different subsets of voxels. Top row : all voxels from V1;
middle row : only retinotopically activated voxels from V1; bottom row : only retinotopically suppressed
voxels from V1. Left column: Bar charts display the average classification accuracy across participants
by comparing the known positions (labels) to the predictions made by the classification algorithm.
Bars show the proportion of predicted values for each position. Correct classifications are represented
with a darker bar. Error bars show the standard error of the mean. The red line depicts the chance
level classification accuracy 1/3. Right column: LDA between-class boundaries based on two voxels
from the set. Data from Kalm and Norris (2016).

(A) V1: all voxels. LDA classifica-
tion accuracy.
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(B) V1: all voxels. LDA between-
class boundaries.
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(C) V1: only activated voxels. LDA
classification accuracy.
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(D) V1: only activated voxels. LDA
between-class boundaries.
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(E) V1: only suppressed voxels.
LDA classification accuracy.
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(F) V1: only suppressed voxels.
LDA between-class boundaries.
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3 Simulation of collinear processes

Here we simulate two types of position-collinear processes which can serve as a positional read-

out. In the first case the brain area responds uniformly along the sequence (e.g. sensory

adaptation) and in the second case units within the population respond differentially. We show

that in the first case we can make reasonable a priori assumptions about the nature of the

positional code and hence remove a uniform signal. However, when the population responds

differentially to sequence positions there are no prior criteria to distinguish positional read-out

from a positional code.

The MATLAB/Octave code for the simulated data and plots is freely available at

http://imaging.mrc-cbu.cam.ac.uk/imaging/KristjanKalm/poscode/.

3.1 Uniformly changing signal across sequence positions

Here we model sensory adaptation in a simple sequence processing task as an example of a

uniformly changing position-collinear process. We show how human fMRI data obtained with

the same task fits the simulation results. We also propose a data pre-processing step – de-

meaning of neural responses – as a tool to eliminate univariate signal collinear to the positional

code.

Throughout the simulations we use the term ’brain region’ for a population of neural units

and the term ’voxels’ for units themselves. This makes the terminology compatible with the

experimental data presented from human fMRI experiments.

3.1.1 Representation of sequence items in a brain region

As a baseline condition we simulate the case where the only information stored in a brain

region is item information (without any positional code) and where there is no position-collinear

information such as decay or interference. We simulate a sensory brain region of n = 20 voxels

which encodes identities for three different items i as independent samples from the uniform

distribution (Figure 5A):
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ri ∼ U(0, 1)

A brain region’s responseY to the item i will be the item pattern ri plus some noise sampled

from n-dimensional Gaussian distribution with a zero mean.

yi = ri +N (0, σ)

To model a noisy average of these patterns we simulate an experiment where those three

items are presented in different order as sequences for 6 times. The simulated response matrix

Y depicts those 6 sequences with item and position values labelled on the x-axis (Figure 5B).

Figure 5: Simulated responses to items

(A) Item patterns over 20 voxels.
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(B) Six sequences as permutations of three items. Item codes
are displayed on the top of x-axis, position codes at the bot-
tom.
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As a result, the brain region’s response matrix Y contains noisy representations of item

identity but no information about position in the sequence. This can be visualised by plotting

the scatter of the data Y and LDA class borders according to item and position labels (Figure

6). It is obvious that patterns Y are only linearly separable in terms of item identity (Figure

6A) but not position (Figure 6B).
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Figure 6: The scatter of item patterns and LDA between-class boundaries based on the two most
informative voxels.

(A) Item
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3.1.2 Sensory adaptation

So far we have assumed that item representations are completely independent of sequence

position. Next we consider the case where there is a degree of sensory adaptation across

the sequence. We simulate sensory adaptation for a brain region as a fixed vector across

voxels multiplied by a decreasing function of sequence position, plus a Gaussian noise of fixed

magnitude. This means that sensory adaptation will influence all voxels in the brain region

similarly. In other words, in terms of a neural response of a brain region, sensory adaptation is

a univariate signal decreasing monotonically over sequence positions.

We simulate sensory adaptation for all voxels i.e. voxels respond to stimulus positions

{1, 2, 3} by a decreasing vector a = [1, 0.7, 0.4]. The average responses of the voxels can be

shown as column-wise means of the response matrix (Figure 7B). As a result, the response of

the brain region allows us to linearly separate both item identities and their positions in the

sequence (Figure 7C). Re-running this simulation 250 times yields a distribution of average

LDA accuracy values (Figure 7D).

In sum, simulating sensory adaptation on top of independent item codes allows us to ’decode’

items in terms of their positions since it is predicted by the amount of sensory adaptation. The

same effect would result from any cognitive process collinear to the item position such as
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increasing memory load or passing time.

Figure 7: Simulation of sensory adaptation

(A) Voxels’ responses with sensory
adaptation.
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(B) Average responses of voxels as
column-wise means of the response ma-
trix.
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(C) LDA between-class boundaries
based on the two most informative vox-
els.
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(D) Distribution of average LDA accu-
racy values (based on 250 simulations).
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3.1.3 Eliminating uniform signal by de-meaning

If we assume that any collinear process to sequence position affects all voxels in the brain region

uniformly then simple de-meaning of the response matrix will eliminate any univariate signal

from the data.

Here we z-score the response matrix before classification so that column-wise averages equal

zero and values of the matrix correspond to z-scores based on the column mean (Figure 8).

Carrying out LDA as before shows that the resulting average classification accuracy is at chance

level as z-scoring the response matrix removes effects common to all voxels. Similarly, when
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z-scoring was applied to the fMRI data above (see Sensory adaptation), positional effects were

no longer significant.

Figure 8: Simulation of sensory adaptation, z-scoring

(A) Voxels’ responses with sensory
adaptation.; z-scored.
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(B) Average responses of voxels as
column-wise means of the response ma-
trix.
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However, is is also possible that the sensory brain region actually contains a positional code.

It is clear that in order to survive a de-meaning process a dedicated positional code must not be

uniform across voxels. De-meaning process cannot affect a multivariate positional signal which

affects voxels differentially. We can model each voxel’s position preference T as a Gaussian

likelihood function over the position values of the stimuli: i.e. each voxel responds most to

a single position and less to adjacent positions: T ∼ N (Position, σ), (note that alternative

tuning distributions are also feasible, see the simulation code for examples). Next, we add

sensory adaptation (Figure 9B), Gaussian noise (Figure 9C), z-score the data (Figure 9D), and

carry out LDA, as above. The resulting average classification accuracy will be close to 100%:

since z-scoring does not affect voxel pattern similarity, the positional code is used by the linear

classifier to successfully distinguish between order positions.
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Figure 9: Simulation of sensory adaptation

(A) Voxel response matrix based on po-
sitional preferences.
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(B) Voxel response matrix: positional
preferences + sensory adaptation.
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(C) Voxel response matrix: positional
preferences + sensory adaptation +
Gaussian noise.
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(D) Voxel response matrix z-scored.
Column-wise means are zero.
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However, any differential response within the brain region to sequence positions – such as

the retinotopic activation example above – will similarly remain unaffected by z-scoring. As a

result we can use de-meaning only to remove uniform effects from the brain region’s response.

3.2 Summary of position-collinear effects

A number of cognitive processes take place while stimuli are processed in a sequence. Impor-

tantly, several of them – time, memory load, sensory adaptation – will be collinear to any signal

tracking the position of items in a sequence.

We showed that uniform position-collinear processes – such as sensory adaptation– can be

subtracted from neural responses by a de-meaning technique such as z-scoring. Importantly,

15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 18, 2016. ; https://doi.org/10.1101/076554doi: bioRxiv preprint 

https://doi.org/10.1101/076554
http://creativecommons.org/licenses/by-nc-nd/4.0/


this relies on an assumption that such processes will influence all units uniformly in a neural

population. However, if individual voxels within a brain region respond differentially – such

as in the case of retinotopic activation – the neural response becomes indistinguishable from a

dedicated positional code.

4 Positional code from interference

A positional ’read-out’ without a dedicated positional code can also arise from interference

between sequentially presented stimulus representations. Here we use a simulation to show that

a model of sequence representation which only includes item codes and no dedicated positional

code can elicit positional effects given some interference between item codes. To illustrate

this, imagine a brain region where the representations of successive items are overlayed on

top of each other. Each successive item elicits a neural pattern that is a mixture of its own

representation and a decaying representation of the preceding items. Such superimposed items

could be linearly separable in terms of their positions alone without the need of any explicit

representation of position.

Here we look at two cases of interference between item codes – additive and proportional

interference– and how both can lead to position-like codes. The item representations are mod-

elled exactly as above in Representation of sequence items in a brain region .

4.1 Additive interference

Interference between representations can occur when the state of the memory is not completely

wiped clean every time a new stimulus arrives. Instead, the new state of the memory might be

a mixture of the new stimulus and the previous state of the memory. Here we assume that at

sequence position p the response of the brain region Y equals to the item pattern ri plus some

residual activity from the previous state of the brain region:

yp = ri + πyp−1 (1)
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where p is the position of the item in the sequence and π is the mixing coefficient which

determines the proportion of the residual activity. Here π declines with a constant rate over

previous states of Y so that:

πp = π0β
p−1 (2)

where β is the rate parameter of the decreasing mixing coefficient π, and the initial value

of π0 = 1. Setting the initial value of π to 1 ensures that the current item pattern is always

represented in full. To illustrate this mechanism consider two different β values and how they

affect interference in a 3-item sequence ’CBA’:

β = 0.2 yp=1 = rC

yp=2 = rB + 0.2rC

yp=3 = rA + 0.2rB + 0.04rC

β = 0.6 yp=1 = rC

yp=2 = rB + 0.6rC

yp=3 = rA + 0.6rB + 0.36rC

It is clear that the value of the β parameter determines the amount of interference from

previous items: when β = 0 there is no interference, and when β > 1 the activity from previous

items contributes more to the current activity pattern yp than the current item pattern ri.

Importantly, with each arriving item the overall activity of the brain region, as defined

by the vector sum of yp, increases, since some of the previous response is added to the new

response. In other words, additive interference as defined above (Eq. 1) guarantees that:

∑
yp+1 >

∑
yp

Similar increase in brain activity as a function of the number of sequentially presented items

has been observed in several neuroimaging studies of short-term memory (Rottschy et al., 2012;

Wager & Smith, 2003).
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4.1.1 Additive interference enables position decoding

If we simulate additive interference as described above then despite the brain region only

encoding item identity information we can linearly separate patternsY in terms of their position

because the total activity increases as a function of position. The effect of additive residual

activity on sequence positions can be shown by plotting the positional means before and after

interference transform (Figure 10).

Figure 10: The transformation of response values for two voxels as a result of interference (β = 0.5).
Small circular markers depict response patterns, larger circular markers depict pattern means. Empty
markers depict the original patterns and means, filled markers depict the data after simulating the
interference process. Solid lines depict the movement of class means as a result of interference.
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Note that patterns pertaining to the first positions in the sequence (black markers on Figure

10B) have not moved since there is no interference for the first items in the sequence from

previous items. The position-wise transformation of the response patterns allows to separate

them linearly using both item and position labels (Figure 11).
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Figure 11: LDA between-class boundaries for two voxels, interference β = 0.5
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We can now decode the position of the items significantly above chance because item position

correlates with the amount of response in the simulated brain region. Plotting the classification

accuracy of both item and position as a function of interference (β parameter value, Eq. 2)

we can see that even with relatively small β values positional decoding becomes significantly

greater than chance whilst it is always possible to decode item identity above chance (Figure

12).

Figure 12: Linear classification accuracy of item identity (black) and position (red) as a function of
additive interference (as represented by the β parameter, Eq. 2). The red dotted line shows chance
level classification accuracy. Error bars depict SEM based on 1,000 simulations of the interference
process with fixed parameter values.
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4.1.2 Positional pattern similarity decreases as a function of lag

Interference between item representations results in a change in pattern similarity across se-

quence positions. Specifically, between-position pattern similarity decreases as the distance

between positions (lag) increases. In other words, pattern similarity is significantly higher

across items that shared the same temporal position information than between items that are 1

or more positions apart (Figure 13). For the purposes of creating more positions the following

plot (Figure 13) displays data generated exactly as above but with 5-item sequences instead of

three.

Figure 13: Similarity matrix on the left shows average positional pattern similarity, as measured by
Pearson’s ρ, based on additive interference with β = 0.8. Plot on the right visualises this similarity as a
function of positional lag. The red line depicts a statistically significant negative slope over positional
lag (p < 0.05).

Pattern similarity

1 2 3 4 5

1

2

3

4

5

0

0.1

0.2

0.3

0.4

0.5

0.6

Same 1 2 3 4

0.47

0.61

Lag similarity

Such an effect of positional pattern similarity has be observed in a number of animal and

human studies (Devito & Eichenbaum, 2011; Fortin, Agster, & Eichenbaum, 2002; Hsieh,

Gruber, Jenkins, & Ranganath, 2014; Hsieh & Ranganath, 2015) and interpreted as a signature

of positional code. The size of the lag effect can be measured as the magnitude of the negative

slope over lag values as depicted on Figure 13 (right). Since positional effects are here solely

caused by the interference mechanism it follows that the size of the lag effect correlates with the

β parameter, which determines the extent of residual activity from the previous item. Figure

14 shows how the change in the lag effect as a function of additive interference.
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Figure 14: The size of the positional lag effect as a function of additive interference (β). Error bars
depict SEM based on 1,000 simulations of the interference process with fixed parameter values.

Beta

0 0.2 0.4 0.6 0.8 1 1.2

L
a
g
 s

lo
p
e

-0.05

0

0.05

4.2 Proportional interference

Pure additive interference is implausible since it presumes unlimited growth of the response in

the brain region. We can cap the total response in the brain region (
∑

yp) by normalising the

response pattern every time a new item is presented. The easiest way to do this is to change the

role β from the amount of residual activity to the proportion of residual activity. This requires

a single change to the interference mechanism (Eq. 1) so that now we also weigh the current

item representation ri, but with 1− π:

yp = (1− π)ri + πyp−1 (3)

Although the mixing coefficient π is here calculated exactly as before (Eq. 2: πp = π0β
p−1)

its meaning has changed. Whereas previously β represented the amount of interference from the

previously presented item, now β determines the proportion of the previous item pattern yp−1

in the current item pattern yp. If we set β = 0.2, the representation of a four-item sequence

A,B,C,D would evolve as follows:

yp=1 = rA

yp=2 = 0.8rB + 0.2rA
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yp=3 = 0.8rC + 0.16rB + 0.04rA

yp=4 = 0.8rD + 0.16rC + 0.032rB + 0.008rA

Though the mechanism of interference here is the same as in the previous simulation, we

no longer allow the response of the brain region (
∑

yp) to grow as the sequence proceeds. In

other words, we have eliminated any univariate signal correlated with position. Consequently,

linear decoding of response patterns based on position is not significantly different from chance

any more (Figure 15A, red line). However, the positional lag effect remains since it is based

on pattern similarity (as measured by Pearson’s ρ) which is insensitive to class means (Figure

15B).

Figure 15: Classification accuracy and positional similarity as simulated by the proportional inter-
ference mechanism. Error bars depict SEM based on 1,000 simulations of the interference process.
Notice that β values on the x-axis have been approximately halved since the parameter now indicated
the proportion of residual activity.

(A) Linear classification accuracy of
item identity (black) and position (red)
as a function of proportional interference
(β). The red dotted line shows chance
level classification accuracy.
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(B) The size of the positional lag effect
as a function of proportional interference
(β).
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In sum, de-meaning the neural response patterns only subtracts univariate effects of between-

item interference. Pattern similarity effects of interference, such as the positional lag effect,

still remain. It follows therefore that the positional lag effect alone is not a sufficient evidence

for a neural positional code and additional statistical tests, such as classification analysis, are

required.
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4.3 Summary of item interference effects

Even in the absence of any true positional code, if the encoding of item information is based

on overlaying item representations in a non-additive fashion this can potentially masquerade

as a positional code. Depending on the magnitude of interference both position decoding and

positional lag effects can be successfully simulated. Positional decoding is possible when residual

activity from previous items is not capped and the brain region’s mean response grows with

sequence position. When the activity patterns are normalised so that the mean response stays

the same then only the positional lag effect remains.

5 Other sources of interference

The mechanism of interference, as described above in the context of item codes, can be similarly

applied to other variables of the experimental design. In fact, as outlined in the Introduction,

any fixed parameter of the experimental design is collinear with positional effects. Next we

briefly discuss how position-like codes emerge as a result of interference between task phases

and as a result of temporally convolved measurement.

5.1 Interference between task phases

One of the most common tasks used in studying sequence representation is the serial recall task

(Figure 16). In the serial recall task presentation of a sequence of items is usually followed by a

response phase requiring the participant to recall the sequence. Importantly, the temporal order

between task phases themselves is always fixed: recall must necessarily follow presentation,

rest always occurs between the trials etc. As a result, the positional structure of the presented

sequence in the task is collinear with the structure of the task itself. For example, in the serial

recall task the last item in the sequence is always followed by the recall phase. Similarly, the

first item in the sequence is always preceded by recall on the previous trial. As a result we can

reliably predict the position of an item in the sequence based on its adjacency to different task

phases.
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Figure 16: A serial recall task based on Kalm and Norris (2016).

Sequence of three pictures

Start of trial End of trial

+

Position of this picture?Cue

+ +
+ +

Presentation Recall

We can model interference between task phases by simulating a response of 20 voxels as

above, but during a single trial of a serial recall task. The task has two phases occurring in

fixed order: presentation and recall (Figure 16). We assume that some voxels in the brain

region are selective for the presentation and some for the recall phase. This selectivity can

be described as voxels’ likelihood to respond given a task phase. If there is no interference

between task phases the response of phase-selective voxels is independent at any stage of the

task: the previous phase of the task does not alter the voxels’ activity at current stage (Figure

17A). However, if we implement additive interference as described above then the extent of

the response of phase-selective voxels becomes collinear with item position in the sequence

(Figure 17B). Importantly, no item codes are necessary here, just sensitivity to task phases

suffices. Due to interference we can now linearly separate the response patterns in terms of

their sequence position because the total response changes as a function of task phase (Figure

17B). In every other aspect the mechanism is the same as described in Positional code from

interference above.
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Figure 17: The average simulated activity of two sets of voxels, each sensitive either to the presen-
tation or recall phase of the task. In this hypothetical task a presentation of three items in a sequence
is followed by recall of three items.
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Neurons’ or voxels’ sensitivity to a specific task phase is common, since in most experiments

perceptual information is impossible to balance across task phases. For example, the presenta-

tion phase in serial recall task commonly uses a different stimulus modality (visual or auditory)

than the following recall phase (manual or verbal recall, see Table 1). As a result, large patches

of the cortex are only engaged during a specific phase of the task creating conditions described

above.

5.2 Interference from measurement: functional MRI

So far we have described interference mechanisms arising between neural representations. How-

ever, equally importantly, interference between representations can result from noisy measure-

ment. Similarly to representational interference, this can lead to positional effects which are

spurious.

Functional MRI measures neural activity by detecting changes in the concentration of oxy-

hemoglobin and deoxyhemoglobin in neural tissue (BOLD signal). The relationship between a

neural event and the corresponding BOLD signal can be described by a haemodynamic response

function (HRF). Importantly, the HRF is non-linear and spread out over several seconds (Fig-

ure 18A), meaning that the BOLD signal corresponding to temporally adjacent events, such as

items in a sequence or task phases, will always contain a response elicited by events preceding

the event of interest (Figure 18B). This creates conditions similar to between-item and task
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phase interference described above – only this time there is no need for cognitive or representa-

tional interference. The temporal overlap in the BOLD signal will result in interference between

measured item or phase representations even if the neural representations are independent of

each other.

Figure 18: Temporal interference in fMRI

(A) The haemodynamic response function
(HRF) with the vertical line representing the
corresponding neural event.
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(B) Temporal interference between two adja-
cent events: black and red lines.
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6 Discussion

A major methodological barrier to studying the neural representation of positional code is that

in any sequence processing task items in different position necessarily differ on other dimensions

too. In this paper we used simulations and experimental data to show how both position-

collinear experimental variables, noisy measurement, and interference between sequence items

can lead to positional read-out in the absence of a dedicated positional code. This raises two

important questions: (1) is it important to distinguish between a positional read-out and a

’true’ positional code; and (2) what steps can be taken to delineate those in experimental data.

6.1 Positional read-out vs. dedicated positional code

Most models of neural sequence representation assume the existence of a dedicated positional

code in the brain (Howard & Kahana, 2002; Henson & Burgess, 1997; Burgess & Hitch, 2006;

Brown, Preece, & Hulme, 2000). However, since several cognitive processes (e.g. memory load,
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sensory adaptation) are collinear with any positional signal, a question arises whether those

collinear processes could be used as a positional signal not just by the experimenter but also by

the brain. We argue that a positional read-out from either simple position-collinear processes

or between-item interference is not sufficient to support the storage and recall of a sequence.

6.1.1 Positional read-out from collinear processes is not sufficient for recalling a

sequence

Recalling items in a sequence requires reinstating their order during recall. This problem is

solved by positional models of sequence processing by associating each sequence item with its

position during encoding and retrieving the order of items during recall by reinstating each

positional code, which then cues the associated item (Figure 1B, e.g.: Burgess & Hitch, 2006;

Howard & Kahana, 2002; Brown et al., 2000; Lee & Estes, 1981). However, it is hard to see

how processes such as memory load or sensory adaptation could be used to cue associated

items. Although experimenters can decode item position in a sequence based on memory load

or sensory adaptation it is hard to see how ”cortex as receiver” can use those neural signals

to represent position and guide behaviour. For example, in case of using memory load (or

any monotonically changing signal) as a positional code to cue associated items would require

first to reinstate such ’load’ to cue the corresponding item. However, such interpretation of

’memory load’, which can be reinstated independently of the amount of items in memory, loses

its original meaning and becomes a clumsy re-interpretation of a dedicated positional code.

For this reason any effect of sequence processing, such as memory load or sensory adaptation,

cannot be inverted into cause that would enable to associate items into sequence.

6.1.2 Positional read-out from between-item interference is not sufficient for re-

calling a sequence

We showed that interference between item representations can potentially masquerade as a po-

sitional code. This is because noisiness of the item representations changes monotonically over

sequence positions as a result of interference. The change in the noise profile can therefore be
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used by the experimenter to reliably predict the position of the item in the sequence. However,

as with simple position-collinear processes, it is hard to see how changes in the signal-to-noise

ratio can be used by the brain to guide sequence recall. The main consequence of interference

via overlaying item representations is that the later items in the sequence are noisier than the

early ones. This contradicts the well-established recency effect in sequence recall, where last

items in the sequence are more accurately recalled than the ones in the middle (see Hurlstone,

Hitch, & Baddeley, 2014, for a review). Secondly, using the noisiness of item representations as

a positional code to cue associated items conflates the cause and effect relationship in sequence

processing, as discussed above. The noisiness of the items would need to be reinstated indepen-

dently of items themselves, thus necessitating the recoding of the noise levels into a dedicated

positional signal.

6.2 Methods to dissociate between positional read-out and dedi-

cated positional code

It is not possible to devise a task where the positional signal is orthogonal to other experimental

variables since cognitive processes collinear to the positional code will always arise whenever

stimuli are presented in sequence. However, the vast majority of previous studies on the posi-

tional code (Table 1) do not acknowledge the possibility of the ’contamination’ of the positional

code or take any measures to control for it.

Two assumptions are required to distinguish between a positional read-out and a ’true’

positional code. First, position-collinear processes like memory load or sensory adaptation will

uniformly affect all neural units engaged in encoding the item representations. This assumption

is relatively uncontroversial if we presume that such processes are the result (and not source)

of sequence processing. Second, we need to assume that a dedicated positional code is reflected

in the position-sensitivity within a population of neural units. In other words, units respond

selectively to sequence positions based on some tuning function. Under such conditions simple

de-meaning (e.g z-scoring) of the neural data with respect to experimental condition (item
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position) will eliminate any univariate signal from the data including any univariate positional

read-outs (see Eliminating uniform signal by de-meaning).

However, we also showed that between-item interference can result in pattern similarity

effects which masquerade as positional signal in the form of the lag effect (see Positional pattern

similarity decreases as a function of lag and Proportional interference ). Effects of pattern

similarity are independent of signal amplitude and hence invariant to de-meaning. As a result,

the effect of positional lag which has been used in several previous studies of positional code

(Devito & Eichenbaum, 2011; Fortin et al., 2002; Hsieh et al., 2014; Hsieh & Ranganath,

2015) cannot be taken as a proof of neural positional code without ruling out between-item

interference first. We show that this can be achieved by using linear classification analyses on

the de-meaned neural responses.

Besides cognitive interference– such as based on overlaying item representations – positional

read-out can result in noisy measurement, such as the temporal interference inherent in fMRI. In

other words, any fMRI signal pertaining to successively presented sequence items will include

a positional signal based on measurement error, even if we assume no interference between

the neural representations of items themselves. As a result, the positional lag effect alone

should never be used in fMRI studies as an indicator of neural positional representation. In

fMRI studies sequentially presented stimuli will always be collinearly dependent on each other

because of the inherent temporal lag in the BOLD signal. As a solution, whole-sequence data

can be used to extract positional information using the representational similarity analysis

(Kriegeskorte, Mur, & Bandettini, 2008; Kalm & Norris, 2014).

6.3 Conclusions

In this paper we have explored two types of processes that could enable an experimenter to

read out a positional ’code’ in the absence of a dedicated positional code. First, we show that

with any sequence processing task there are experimental variables collinear with the positional

signal (e.g. time, memory load, etc.) which can serve as a positional code. Second, we show

how interference between item representations, task phases, and measurement modalities can
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also lead to a similar positional read-outs.

We argue that it is important to distinguish between a positional read-out and a dedicated

positional code, since only the latter has been shown to be compatible with experimental data.

Furthermore, we argue that such collinear processes which enable positional read-out are the

result of sequence representation not cause, and hence would not be able to even theoretically

support sequence retrieval. Finally, we suggest practical steps in data analysis to distinguish

between a positional read-out and a code. Furthermore, this paper shows that many results

from behavioural and neural experiments studying the positional code must be treated with

caution.
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The MATLAB/Octave code for the simulated data and plots is freely available at

http://imaging.mrc-cbu.cam.ac.uk/imaging/KristjanKalm/ovs/.

Table 1: Studies of neural representation of positional code

First author Year Stimuli Task Subject Measurement
Amiez 2007 visual manual human fMRI
Averbeck 2003 motor motor monkey electrophysiology
Averbeck 2006 visual saccade monkey electrophysiology
Averbeck 2007 visual saccade monkey electrophysiology
Barone 1989 visual manual monkey electrophysiology
Berdyyeva 2010 visual saccade monkey electrophysiology
Berdyyeva 2011 visual motor monkey electrophysiology
Carpenter 1999 visual motor monkey electrophysiology
Crowe 2014 manual manual monkey electrophysiology
DuBrow 2014 visual manual human fMRI
DuBrow 2016 visual manual human fMRI
Fujii 2005 visual saccade monkey electrophysiology
Gelfand 2003 auditory manual human fMRI
Nieder 2006 visual manual monkey electrophysiology
Ginther 2011 odour motor rodent electrophysiology
Heusser 2016 visual manual human MEG
Hsieh 2014 visual manual human fMRI
Hsieh 2015 visual manual human fMRI
Hyde 2012 in vitro rodent electrophysiology
Inoue 2006 visual manual monkey electrophysiology
Isoda 2004 visual saccade monkey electrophysiology
Kalm 2014 auditory auditory human fMRI
Kalm 2016 auditory visual human fMRI
Kraus 2013 motor motor rodent electrophysiology
Lehn 2009 visual manual human fMRI
MacDonald 2013 odour motor rodent electrophysiology
MacDonald 2011 odour motor rodent electrophysiology
Mankin 2012 spatial motor rodent electrophysiology
Manns 2007 odour motor rodent electrophysiology
Manns 2007 odour motor rodent electrophysiology
Merchant 2013 auditory manual monkey electrophysiology
Nakajima 2009 manual manual monkey electrophysiology
Naya 2011 visual manual monkey electrophysiology
Nieder 2012 visual manual monkey electrophysiology
Ninokura 2004 visual manual monkey electrophysiology
Pastalkova 2008 motor motor rodent electrophysiology
Petrides 1991 visual manual monkey lesion
Rangel 2014 motor motor rodent electrophysiology
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ated cell assembly sequences in the rat hippocampus. Science, 321 (5894), 1322–7. doi:

10.1126/science.1159775

Petrides, M. (1991, dec). Functional Specialization within the Dorsolateral Frontal Cortex for

Serial Order Memory. Proceedings of the Royal Society B: Biological Sciences , 246 (1317),

299–306. doi: 10.1098/rspb.1991.0158

Rangel, L., Alexander, S., Aimone, J., Wiles, J., Gage, F., Chiba, A., & Quinn, L. (2014).

Temporally selective contextual encoding in the dentate gyrus of the hippocampus. Nature

communications , 5 , 3181. doi: 10.1038/ncomms4181

Rottschy, C., Langner, R., Dogan, I., Reetz, K., Laird, A., Schulz, J., . . . Eickhoff, S. (2012).

Modelling neural correlates of working memory: A coordinate-based meta-analysis. Neu-

roImage, 60 (1), 830–846. doi: 10.1016/j.neuroimage.2011.11.050

Smith, T., Singh, K., & Greenlee, M. (2000). Attentional suppression of activity in the human

visual cortex. Neuroreport , 11 (2), 271–277. doi: 10.1097/00001756-200002070-00010

Summerfield, C., Trittschuh, E., Monti, J., Mesulam, M., & Egner, T. (2008, sep). Neural

repetition suppression reflects fulfilled perceptual expectations. Nature Neuroscience,

11 (9), 1004–1006. doi: 10.1038/nn.2163

Wager, T., & Smith, E. (2003). Neuroimaging studies of working memory: A meta-analysis.

Behavioral Neuroscience, 3 (4), 255–274.

37

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 18, 2016. ; https://doi.org/10.1101/076554doi: bioRxiv preprint 

https://doi.org/10.1101/076554
http://creativecommons.org/licenses/by-nc-nd/4.0/

