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Summary 

Alternative splicing changes are frequently observed in cancer and are starting to be recognized 

as important signatures for tumor progression and therapy. However, their functional impact and 

relevance to tumorigenesis remains mostly unknown. We carried out a systematic analysis to 

characterize the potential functional consequences of alternative splicing changes in thousands 

of tumor samples. This analysis revealed that a subset of alternative splicing changes affect 

protein domain families that are frequently mutated in tumors, potentially disrupt protein–protein 

interactions in cancer-related pathways, and are mutually exclusive with mutations in multiple 

cancer drivers. Moreover, there is a negative correlation between the number of these 

alternative splicing changes in a sample and the number of somatic mutations in drivers. We 

propose that a subset of the alternative splicing changes observed in tumors represents 

independent oncogenic processes and could potentially be considered alternative splicing 

drivers (AS-drivers).  

Introduction 
Alternative splicing provides the potential to generate diversity at RNA and protein levels from 

an apparently limited number of genes in the genome (Yang et al., 2016). Besides being a 

critical mechanism during development, cell differentiation, and regulation of cell-type-specific 

functions (Norris and Calarco, 2012), alternative splicing is also involved in multiple pathologies, 
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including cancer (Chabot and Shkreta, 2016). Many alternative splicing changes can essentially 

recapitulate cancer-associated phenotypes, for instance, by promoting angiogenesis (Vorlova et 

al, 2011), inducing cell proliferation (Yanagisawa et al., 2008), or avoiding apoptosis (Karni et 

al., 2007). Alternative splicing in tumors can appear as a consequence of somatic mutations that 

disrupt splicing regulatory motifs in exons and introns (Jung et al., 2015; Supek et al., 2014), as 

well as through mutations or expression changes in core and auxiliary splicing factors, which 

impact the splicing of cancer-related genes (Alsafadi et al., 2016; Bechara et al., 2013; Darman 

et al., 2015; Madan et al., 2015; Sebestyén et al., 2016; Zong et al., 2014).  

 

Alterations in alternative splicing are also emerging as relevant targets of therapy. This is the 

case with an exon-skipping event in MET observed in a number of lung cancer patients, 

resulting in a deletion of the protein region that inhibits its kinase catalytic activity (Kong-Beltran 

et al., 2006; Ma et al., 2003). Tumors that show an exon skipping in the proto-oncogene MET 

respond to MET-targeted therapies despite not having any other activating alteration in this 

gene (Frampton et al., 2015; Paik et al., 2015). Furthermore, alternative splicing is important in 

drug resistance. For instance, although an effective targeted treatment exists for patients with 

mutations in the kinase domain of BRAF (Davies et al., 2002), a considerable number of non-

responders express a BRAF isoform lacking exons 4–8, which encompass the RAS binding 

domain (Poulikakos et al., 2011). Small-molecule modulators of pre-mRNA splicing are capable 

of restoring the original BRAF splicing and reduce growth of therapy-resistant cells (Salton et al, 

2015). Similarly, alternative splicing also impacts immunotherapy in cancer in relation to the 

aberrant activity of the splicing factor SRSF3 (Sotillo et al., 2015). Thus, specific alterations in 

pre-mRNA splicing may provide a selective advantage to tumor cells and could represent direct 

targets of therapy. This also raises the question of whether splicing changes may act as cancer 

driver events.  

 

Multiple studies have shown frequent splicing changes in tumors compared with normal tissues 

or during tumor progression and metastasis (Danan-Gotthold et al., 2015; Lu et al., 2015; 

Sebestyén et al., 2016, 2015; Trincado et al., 2016). However, the functional impact of most of 

these splicing changes and their possible role as drivers of cancer is not known yet. Alternative 

splicing changes can have diverse effects on the structure of the resulting protein and hence 

confer radical functional changes (Wang et al., 2005), remodel the network of protein–protein 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 19, 2017. ; https://doi.org/10.1101/076653doi: bioRxiv preprint 

https://doi.org/10.1101/076653
http://creativecommons.org/licenses/by-nc/4.0/


 

 

interactions in a tissue-specific manner (Buljan et al., 2012; Ellis et al., 2012), and expand the 

protein interaction capabilities of genes (Yang et al., 2016). We hypothesized that a subset of 

splicing changes in tumors may trigger oncogenic mechanisms through the disruption of specific 

protein domains and protein–protein interactions. 

 

Here we present a systematic evaluation of the potential functional impact of recurrent 

alternative splicing changes observed in cancer samples. We described splicing changes in 

terms of transcript isoform switches in each tumor sample and determined the protein features 

and protein–protein interactions affected by them, and their relation to cancer drivers. Our 

analysis revealed a set of isoform switches that affect protein domains from families frequently 

mutated in tumors, remodel the protein interaction network of cancer drivers, and tend to occur 

in patients with no mutations in known cancer drivers. We propose that these isoform switches 

with driver-like properties, AS-drivers, play an important role in the neoplastic process 

independently of or in conjunction with existing mutations in cancer drivers.  

Results 

Isoform switches in cancer tend to reduce the protein coding potential 

With the aim of defining potential alternative splicing drivers (AS-drivers) of cancer, we analyzed 

the expression of human transcript isoforms in 4,542 samples from 11 cancer types from TCGA 

(STAR Methods). We used transcript isoforms to describe splicing changes, as they represent 

the endpoint of transcription and splicing and they ultimately determine the functional capacity of 

cells. For each gene and each patient sample we determined whether there was an isoform 

switch, defined as a differential transcript isoform usage between a tumor sample and the 

normal samples. Each isoform switch was thus defined per patient as a pair of transcripts, which 

we named the tumor and the normal isoforms, such that the change in relative abundance of the 

tumor isoform between the normal samples and the tumor sample was higher than expected by 

the variability in normal samples, and such that the gene showed no differential expression 

between tumor and normal samples. Additionally, we did not consider switches with a significant 

association with stromal or immune cell content, as we could not be sure whether they were 

actually present in tumor cells (STAR Methods). 
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In all patients we found a total of 8,122 different isoform switches in 6,442 genes that described 

consistent changes in the transcriptome of the tumor samples and that would not be observable 

by simply measuring gene expression (Figure 1A and Table S1). Using SUPPA (Alamancos et 

al., 2015) we calculated the relation of the calculated switches with local alternative splicing 

(AS) events (STAR Methods). From the 8122 switches, 5667 (69.7%) were mapped to one or 

more local alternative splicing events. Comparing to the expected proportion of event types, we 

observed an enrichment of events of type alternative 5’ss (A5), alternative first exon (AF) and 

retained intron (RI), and a depletion of events of type alternative 3’ss (A3), alternative last exon 

(AL), mutually exclusive exons (MX) and exon-cassette (SE) (Figure S1A). We further 

calculated which of the two forms of the event corresponded to the tumor isoform (STAR 

Methods). RI events were enriched towards the retention of the intron, in agreement with 

previous observations (Dvinge and Bradley, 2015), whereas SE events were enriched for the 

skipping of the cassette exon (Figure S1B). Interestingly, 30,3% of the switches were not 

mapped to any local alternative splicing event, indicating that our description in terms of 

transcripts provides a wider spectrum of RNA variations than that described by local alternative 

splicing events.  

 

Isoform switches in cancer are frequently associated with protein feature 

losses 

We next studied the proteins encoded by the transcripts involved in the switches. Interestingly, 

tumor protein isoforms tended to be shorter than protein isoforms in normal tissues (Figure 

S1C). Moreover, while for most switches — 6,937 (85,41%) — both transcript isoforms coded 

for protein, the rest of them had a significantly higher proportion of cases for which only the 

normal transcript isoform was protein-coding (9.01% vs. 2.8%, binomial test p-value < 2.2e-16) 

(Table S1), suggesting that isoform switches in tumors are associated with the loss of protein 

coding capacity. To determine the potential functional impact of the calculated isoform switches, 

we determined the protein features they affected (STAR Methods). Out of the 6,937 switches 

where both transcript isoforms coded for proteins, 5,047 (72.75%) involved a change in at least 

one of the following functional features: Pfam domains, Prosite patterns, general disordered 

regions, disordered regions with potential to mediate protein–protein interactions, and protein 
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loops (Figure S1D). Interestingly, protein features are more frequently lost than gained (Figure 

1B) and a large number of switches only affected disordered regions, with more than a half of 

them being related to protein-protein interactions (Figure S1D). We compared the switches that 

affect protein features with 100 sets of simulated switches, controlling for normal and tumor 

isoform expression (STAR Methods). Remarkably, isoform switches in tumors had more protein 

feature losses than expected by chance (Fisher’s exact test p-value < 1.45e-08, odds-ratio > 

1.29), despite the fact that for the simulated switches the normal protein isoform also tended to 

be longer than the tumor protein isoform (Figure S1E). This indicates that isoform switches in 

cancer are strongly associated with the loss of protein function capabilities.  

We focused on isoform switches that showed a gain or loss in at least one protein feature, 

which we called functional switches, as they were likely to impact gene activity. There were 

6004 (73,9%) functional switches (Table S1). These functional switches included 729 (8,9%) 

and 228 (2,8%) cases for which only the normal or the tumor isoform, respectively, coded for a 

protein with one or more predicted protein features. Interestingly, functional switches were 

enriched in cancer drivers (Fisher’s exact test p-value = 2.034e-05, OR = 1.965) (Figure S1F). 

Among the top cancer driver genes with switches we identified a recurrent switch in RAC1 

(Figure 1C), which was linked before to tumor initiation and progression (Zhou et al., 2012) and 

which we predicted to gain an extra Ras family domain. We also found a recurrent switch in 

TP53 that changed to a non-coding isoform and a switch in ERBB2 that removed one of the 

receptor domains and does not coincided with splicing changes previously described for this 

gene in tumors (Jackson et al., 2013).  

To characterize how functional switches affect protein function, we calculated the enrichment of 

gains or losses of specific domain families (STAR Methods). To ensure that this was attributed 

to a switch and not to the co-occurrence of two domains, for a domain to be considered for 

enrichment we imposed a minimum of two switches in different genes affecting the domain. We 

detected 220 and 41 domain families exclusively lost or gained, respectively, and 13 that were 

both gained and lost, more frequently than expected by chance and in at least two different 

switches (Table S2). Functional categories of domain families with significant losses in switches 

included the regulation of protein activity (Figure 1D), suggesting effects on protein-protein 

interactions. To further characterize these functional switches, we calculated the proportion of 

cancer drivers annotated as oncogenes or tumor suppressors that contained domain families 
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enriched in gains or losses using the reference proteome. From the 69 cancer drivers that 

contained domains enriched in gains, 58 (84%) correspond to oncogenes (Fisher’s exact test p-

value = 0.0066, odds-ratio 0.40). Although we did not find an enrichment of domain losses in 

tumor suppressors, domain families significantly gained in switches occur more frequently in 

oncogenes than in tumor suppressors (Wilcoxon test p-value = 0.0009) (STAR Methods). These 

results suggest a similarity between our functional isoform switches and oncogenic mechanisms 

in cancer.  

Isoform switches and somatic mutations affect similar domain families 

Isoform switches and somatic mutations are part of an intertwined continuum of alterations in 

cells that may be connected by a multitude of relationships. We conducted various comparisons 

using our switches and cis-occurring mutations from whole exome (WES) and whole genome 

(WGS) sequencing data (STAR Methods). The frequencies of genes or samples with functional 

switches were generally similar to those for protein-affecting mutations (PAMs) and smaller than 

the frequencies for all mutations from WGS data (Figures S2A and S2B), indicating a similar 

prevalence of switches and PAMs but not for switches and WGS mutations Since in our 

approach we calculated switches per patient, we were able to study how these distribute across 

patients in relation to mutations. We thus tested the co-occurrence of somatic mutations and 

switches across patients (STAR Methods) (Figures S2C-F). The largest associations with WGS 

mutations included a switch in the cancer gene driver CUX1, although involving a low number of 

patients (Figure S2D). When we considered the top cases according to the number of patients 

with both mutations and switches, the cancer gene drivers TP53 and NTRK2 and the cadherin 

gene FAT3 appeared among the top ones (Figures S2E and S2F), as well as FAM19A5, which 

we already described as a switch before between lung adenocarcinoma and paired normal 

samples (Sebestyén et al., 2015). 

Overall we observed a low association of mutations and switches (Figure S2G). On the other 

hand, tumor samples that had with few genes with protein-affecting mutations (PAMs) tended to 

have many genes with functional switches, and vice versa, tumor samples with a low number of 

functional switches tended to have many genes with PAMs (Figure 2A). This suggested a 

complementarity between protein affecting mutations and switches affecting protein domains. 

To investigate this, we calculated domain families enriched in PAMs (STAR Methods). We 
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found that 76 domain families across 11 tumor types were enriched in mutations (Table S2). 

These domains enriched in mutations occur more frequently in cancer drivers compared to non-

drivers (Wilcoxon test p-value < 2.2e-16), in agreement with recent analyses (Miller et al., 2015; 

Yang et al., 2015). When we compared the domain families enriched in somatic mutations with 

those enriched in gains or losses through switches, we found an overlap of 15 domain families, 

which is higher than expected by chance given the 5,307 domain families observed in a 

reference proteome (Fisher’s test p-value = 5.637e-06, odds ratio = 4.71) (STAR Methods). 

From the domain families enriched in mutations, 7 showed only enrichment in losses, 6 showed 

only enrichment in gains, and 2 showed enrichment in both (Figure 2B) (Tables S2). Among the 

gains, we found Cadherin domains related to switches in CHD8, CDH26, FAT1, FAT2 and 

FAT3; whereas among the losses, we found the Calcium-binding EGF domain, which is affected 

by various switches, including one in NOTCH4. A notable case involved the loss of the TP53 

DNA-binding domain and the TP53 tetramerization motif. Although it only occurs in a single 

switch in TP53, its high recurrence in patients highlights the relevance of the alternative splicing 

of TP53 (Bourdon, 2007). 

To further explore the similarity between the changes in functionality introduced by mutations 

and switches, we performed an enrichment analysis of Gene Ontologies (GO) on the domains 

enriched in mutations and switches separately (STAR Methods). We then calculated the overlap 

between both set and compared it to the overlap obtained by randomly sampling the reference 

proteome and the complete list of functional switches. Notably, the observed overlap is higher 

than expected at the different ontologies and GO slim levels (Figure 2C). In particular, among 

the shared molecular functional categories, several are related to receptor activity and protein 

binding. This result supports the notion that switches and mutations affecting protein domains 

may impact similar functions in tumors. This also suggests that switches that affect domains 

frequently mutated in tumors could be considered to have a relevant impact in cell function. A 

total of 754 functional switches in 634 genes (47 of them in 37 cancer drivers) affected domains 

that are enriched in mutations (Table S1) and thus they represented potential AS-drivers.  
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Functional switches show mutual exclusion with driver mutations in cancer 

pathways 

Another unmistakable sign that an alteration provides a selective advantage to the tumor is the 

mutual exclusion with other recurrent alterations in genes within the same pathway (Babur et al., 

2015). We identified 292 functional switches that were mutually exclusive with somatic PAMs in 

three or more cancer drivers (Fisher’s test p-value < 0.05) (Table S3) (STAR Methods). 

Moreover, 16 of them showed mutual exclusion with at least one driver with which it shared a 

pathway. These 16 switches included one in COL9A3, which showed mutual exclusion with 

MET mutations in kidney renal papillary cell carcinoma (kirp), and one in PRDM1, which showed 

mutual exclusion with mutations in TP53 in lung adenocarcinoma (LUAD) (Figure 2D). In lung 

squamous cell carcinoma (lusc), the same switch in PRDM1 showed mutual exclusion with 

PTEN, which is in the same pathway, although this was the only mutual exclusion in this tumor 

type (Table S3). As these switches tended to occur in patients that do not harbor mutations in 

known cancer drivers (Figure S2D), they could be indicative of alternative oncogenic processes 

and potentially explain pan-negative tumors (Saito et al., 2015); hence we considered them 

potential AS-drivers.  

Isoform switches affect protein interactions with cancer drivers  

Many of the frequently lost and gained domain families in functional switches were involved in 

protein binding activities, indicating a potential impact on protein–protein interactions (PPIs) in 

cancer. To analyze how our switches may affect the PPIs, we used data from five different 

sources to build a consensus PPI network with 8,142 nodes, each node representing a gene 

(Figure S3) (STAR Methods). To determine the effect of switches on the PPI network, we 

mapped PPIs from this consensus PPI network to domain–domain interactions (DDIs), which 

we then mapped to the transcript isoforms involved in the switches (Figure S4). From the 8,142 

genes in the PPI network, 3,243 had at least one isoform switch, and for 1,688 isoform switches 

(in 1,355 genes) we were able to map at least one of the PPIs to a specific DDI. A total of 162 of 

these switches were located in 123 cancer drivers, with the remaining 1,526 in non-driver 

genes.  
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For each isoform switch, using the DDI information, we evaluated whether it would affect a PPI 

from the consensus network by matching the domains affected by the switch to the domains 

mediating the interaction, controlling for the expression of the isoforms predicted to be 

interaction partners. We found that 477 switches (28.3%) in 423 different genes affected 

domains that mediated protein interactions and thus likely impacted such interactions. Most of 

these interaction-altering switches (n = 414, 86.8%) caused the loss of the domain that 

mediates the interaction, while a minority (n = 64, 13.2%) led to a gain of the interacting domain. 

There is only one switch that led to gains and losses of interactions with different partners. This 

is in TAF9, which lost a TIFIID domain and gained an AAA domain (Table S4).  

Notably, switches in driver genes tended to alter PPIs more frequently than those in non-drivers, 

and they more frequently lost interactions (Chi-squared test p-value = 1.87e-15) (Figure 3A). 

From the 162 switches in drivers, 41 (25.3%) of them altered at least one interaction, either 

causing loss (33 switches) or gain (8 switches). Interestingly, switches that affected domains 

from families enriched in mutations or that showed frequent mutual exclusion with mutational 

drivers also affected PPIs significantly more frequently than other functional switches (Chi-

square test p-value < 2.2e-16 and p-value = 6.8e-08, respectively) (Figure S5). Notably, 

functional switches in genes annotated as direct interactors of drivers affected PPIs more 

frequently than the rest of functional switches (Fisher’s exact test p-value<1.81e-03 OR>3.57 for 

all tests) (Figure 3B). Additionally, all functional pathways found enriched in PPI-affecting 

switches (Fisher’s exact test corrected p-value < 0.05 and odds-ratio > 2) are related to cancer 

(Table S5), reinforcing the potential impact of isoform switches in cancer. We thus considered 

these 477 PPI-affecting switches as candidate AS-drivers. 

Isoform switches remodel protein interaction networks in cancer 

To further characterize the role of switches in remodeling the protein interaction network in 

cancer, we calculated modules in the PPI network (Blondel et al., 2008) using only interaction 

edges affected by switches (STAR Methods). This produced 179 modules involving 1405 genes 

(Table S6). These modules were tested for the enrichment of genes belonging to specific 

protein complexes (Ruepp et al., 2009), complexes related to RNA-processing and splicing 

(Akerman et al., 2015) and cancer-related pathways (Liberzon et al., 2015) (Table S6). Further, 

we inspected the modules to identify those that included cancer drivers, had at least one switch 
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for which both isoforms are protein coding, and involved both PPI gains and losses. Among 

these cases, we found one module enriched in splicing factor (SF) and RNA binding protein 

(RBP) genes (Module 11 in Table S6) that included the cancer drivers SF3B1, FUS, SYNCRIP, 

EEF1A1 and YBX1 (Figure 3C). The module contained a switch in RBMX involving the skipping 

of two exons and the elimination of an RNA recognition motif (RRM) that would impact 

interactions with SF3B1, EEF1A1 and multiple RBP genes (Figure 3C); and a switch in TRA2B 

that yielded a non-coding transcript and would eliminate an interaction with SF3B1 and multiple 

SFs. We also found a switch in HNRNPC, TRA2A, NXF1 and RBMS2 that lost interactions with 

various SR protein coding genes. Consistent with a potential functional impact, the PPI-affecting 

switches showed mutual exclusion with the mutational cancer drivers (Figure 3D). Interestingly, 

this module also contained switches in the Importin genes IPO11 and IPO13, which would affect 

interactions with the ubiquitin conjugating enzymes UBE2E1, UBE2E3 and UBE2I, (Figure 3C), 

and showed mutual exclusion across different tumor types (Figure 3D). These results indicate 

that the activity of RNA-processing factors may be altered in cancer through the disruption of 

their PPIs by alternative splicing.  

We also found a module including multiple regulators of translation (module 28 in Table S6), 

with switches in EIF4B, EIF3B and EIF4E that affected interactions with the drivers EIF4G1, 

EIF4A2 and PABPC1 (Figure 3E). The switch in EIF4B caused the skipping of one exon, which 

we predicted to eliminate an RRM domain and lose interactions with drivers EIF4G1 and 

PABPC1. The switch in EIF3B yielded a non-coding transcript that would lose multiple 

interactions. Although we did not predict any PPI change for EIF4E, this switch lost eight 

predicted ANCHOR regions, suggesting a possible effect on yet to be described interactions. 

Besides frequent PAMs, PABPC1 also presented a functional switch that affects 2 disordered 

regions but does not affect any of the RRMs. In this case we did not predict any change in PPI 

and the possible functional impact remains to be discovered. These results, and the observed 

mutual exclusion between PAMs in EIF4G1 and PABPC1 and the identified PPI-affecting 

switches (Figure 3F) suggest that alternative splicing switches may impact translational in 

tumors through the alteration of protein–protein interactions of the translational regulators.  
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Isoform switches as drivers of cancer  

Our results provide evidence that a subset of the alternative splicing switches show similar 

properties to mutational drivers. We hypothesized that these switches may be relevant for 

tumorigenesis, and defined them as alternative splicing drivers, or AS-drivers, if they either (I) 

induced a gain or a loss of a protein domain from a family frequently mutated in cancer, (II) 

affected one or more PPIs, (III) displayed mutual exclusion with drivers, or (IV) displayed 

recurrence in cancer genomes beyond what is expected by chance. This definition yielded 1662 

AS-drivers (Figure 4A) (Table S1), with a large fraction of those affecting mutated domain 

families and/or PPIs (cases I and II from the list above, see Figure 4B). Genes relevant to a 

given tumor type usually participate in the same pathways and therefore lie close to each other 

in the PPI network, and tend to show high centrality in the network (Jonsson and Bates, 2006; 

Taylor et al., 2009; Wachi et al., 2005). To validate our AS-drivers, we thus calculated their 

centrality and their distance to mutational drivers (STAR Methods). In our consensus PPI 

network, AS-drivers showed greater centrality (Mann-Whitney test p-value < 2.2e-16, W = 

90999000) (Figure S6A) and closer distances to tumor-specific drivers (Fisher’s exact test p-

value < 2.2e-16, odds-ratio = 1.55) (Figure S6B) compared to the rest of switches.  

The possible relevance of these AS-drivers varied across samples and tumor types. 

Considering tumor specific mutational drivers (Mut-drivers) and our set of AS-drivers, we 

labeled each patient as AS-driver–enriched or Mut-driver–enriched according to whether the 

proportion of switched AS-drivers or mutated Mut-drivers was higher, respectively. This partition 

of the samples indicated that, although Mut-drivers are predominant in patients for most tumor 

types, AS-drivers seemed relevant for a considerable number of patients across most tumor 

types, and particularly for kidney and prostate tumors (Figure 4C). Additionally, regardless of the 

tumor type, patients with many mutations in Mut-drivers tended to show a low number of 

switched AS-drivers, and vice versa (Figure 4D). Interestingly, copy number alteration (CNA) 

drivers show a similar anti-correlation (Figure S6C), bearing resemblance with the proposed 

cancer genome hyperbola between mutations and CNAs (Figure S6D) (Ciriello et al., 2013). 

This supports the notion that AS-drivers represent alternative, yet-unexplored oncogenic 

mechanisms that could provide a complementary route to induce similar effects as genetic 

mutations.  
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Discussion 

We have identified consistent and recurrent transcript isoform switches, which we call AS-

drivers, that impact the function of affected proteins by adding or removing protein domains that 

are frequently mutated in cancer or by disrupting or gaining protein–protein interactions –  

possibly also altering the formation of protein complexes – with cancer drivers or in cancer 

related pathways. Moreover, we observed that patients with AS-drivers tended not to harbor 

mutations in cancer drivers and the other way around. We proposed a model by which 

pathways often altered in cancer through somatic mutations may be affected in a similar way by 

AS-drivers in some patients, and in particular, in pan-negative patients. Recently, an alternative 

splicing change in NFE2L2 has been described to lead to the loss of a protein domain and the 

interaction with its negative regulator KEAP1, thereby providing an alternative mechanism for 

the activation of an oncogenic pathway (Goldstein et al., 2016). This example provides further 

support for a definition of AS-drivers as complementary alterations with similar impacts to 

mutations, expression or epigenetic changes in cancer drivers. Importantly, AS-drivers could 

occur without gene expression changes in the host gene and thus provide an independent set of 

functional alterations not considered previously in cancer expression studies. As our estimates 

of the number of potential AS-drivers and their impact have been very conservative, it is 

possible that many more remain to be described.  

Functional domains and interactions might not always be entirely lost through a switch, as 

normal isoforms generally retain some expression in tumors. This could be partly due to the 

uncertainty in the estimate of transcript abundance from RNA sequencing or to the 

heterogeneity in the transcriptomes of tumor cells. Still, a relatively small change in transcript 

abundance could be enough to trigger an oncogenic effect (Bechara et al., 2013; Sebestyén et 

al., 2016). Additionally, a number of the AS-drivers define a switch from a protein-coding 

transcript to a non-coding one, possibly undergoing non-sense mediated decay. These can be 

considered a form of alternative splicing mediated gene expression regulation (Hansen et al., 

2009), and will alter function in a similar way. The predicted impact on domains and interactions 

could therefore be indicative of alterations on regulatory networks with variable functional 

effects.   
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Our description in terms of transcript isoform switches, rather than using local alternative 

splicing events, allowed a better analysis of the possible transcriptome variations and the 

protein features potentially gained or lost through splicing changes. However, this approach 

may have some limitations. Accurate determination of differential transcript usage in genes with 

many isoforms requires high coverage and sufficient samples per condition (Sebestyén et al., 

2015). In our approach, we used information of the variability across normal samples to 

determine the significance of an isoform change per patient. On the other hand, since we used 

annotated transcript isoforms we may have missed unannotated transcripts that are specific to 

the tumor or transcripts that are not yet correctly annotated. Another limitation of our approach 

is that we only recovered a small fraction of the entire set of protein-protein interactions taking 

place in the cell. For instance, we did not characterize those interactions mediated through low 

complexity regions (Buljan et al., 2012; Ellis et al., 2012), hence we expect that many more 

interactions will be affected in tumors.  

The origin of the observed splicing changes remains to be elucidated. We did not find a general 

association with somatic mutations in cis. It is possible that the genetic alterations affecting 

splicing involve small copy-number alterations or indels. For instance, a recurrent small deletion 

in TP73 was found recently in association to exon skipping in small cell lung cancer patients 

using WGS data (George et al., 2015). However, these alterations are still hard to detect with 

WES and WGS data and more targeted searches or deeper sequencing may be necessary to 

fully uncover such cases at genome-scale in other tumors. An alternative possibility is that the 

majority of the switches described occur through trans acting alterations, such as the expression 

change in splicing factors (Sebestyén et al., 2016). For instance, the oncogenic switch in RAC1 

(Zhou et al., 2012) is regulated by expression changes of various splicing factors (Gonçalves et 

al., 2009; Pelisch et al., 2012), which are controlled by pathways often altered in tumors (Fu and 

Ares, 2014).  

Alterations in different splicing factors may trigger the same or similar splicing changes. For 

instance, mutations in RBM10 or downregulation of QKI lead to the same splicing change in 

NUMB that promotes cell proliferation (Bechara et al., 2013; Zong et al., 2014). The intra-tumor 

heterogeneity may thus allow recapitulating similar transcriptome phenotypes. It has been 

proposed that a large faction of the somatic mutations in tumors are subclonal (Sottoriva et al., 

2015). This would provide enough heterogeneity to allow the persistence of AS-drivers in a 
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fraction of the dividing cell population. Additionally, tumor cells also display non-genetic 

variability (Brock et al., 2009), which could define multiple stable states and determine the 

fitness of cells and the progression of tumors independently of somatic mutations. Since natural 

selection acts on the phenotype rather than on the genotype, an interesting possibility is that 

AS-drivers define specific tumor phenotypes that might be closely related to those determined 

by the somatic mutations in drivers, thereby defining an advantageous phenotype such that the 

selective pressure to develop equivalent adaI1ptations is relaxed. Accordingly, AS-drivers may 

play an important role in the neoplastic process independently of or in conjunction with the 

already characterized genetic alterations.  

 

Author contributions 

EE proposed the study. HCG performed the calculation of transcript isoform switches, their 

analyses, the calculation of AS-drivers and the study of their properties. EPP built the 

consensus protein-protein interaction network, did the mapping to domain-domain interactions 

and performed the stromal and immune cell content analysis per sample. EE and AG 

supervised the analyses. EE and HCG wrote the manuscript with essential inputs from EPP and 

AG. 

Acknowledgements 

HCG and EE were supported by the MINECO and FEDER (BIO2014-52566-R), Consolider 

RNAREG (CSD2009-00080), AGAUR (SGR2014-1121), and the Sandra Ibarra Foundation for 

Cancer (FSI2013). EPP and AG were supported by the SBP CC grant (P30 CA030199). All 

authors thank The Cancer Genome Atlas project for making their results publicly available for 

further analysis. 

References 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 19, 2017. ; https://doi.org/10.1101/076653doi: bioRxiv preprint 

https://doi.org/10.1101/076653
http://creativecommons.org/licenses/by-nc/4.0/


 

 

Akerman, M., Fregoso, O.I., Das, S., Ruse, C., Jensen, M. a, Pappin, D.J., Zhang, M.Q., 

Krainer, A.R., 2015. Differential connectivity of splicing activators and repressors to the 

human spliceosome. Genome Biol. 16, 119. doi:10.1186/s13059-015-0682-5 

Alamancos, G.P., Pagés, A., Trincado, J.L., Eyras, E., Pages, A., Trincado, J.L., Bellora, N., 

Eyras, E., 2015. Leveraging transcript quantification for fast computation of alternative 

splicing profiles. RNA 21, 1521–1531. doi:10.1261/rna.051557.115 

Alsafadi, S., Houy, A., Battistella, A., Popova, T., Wassef, M., Henry, E., Tirode, F., 

Constantinou, A., Piperno-Neumann, S., Roman-Roman, S., Dutertre, M., Stern, M.-H., 

2016. Cancer-associated SF3B1 mutations affect alternative splicing by promoting 

alternative branchpoint usage. Nat. Commun. 7, 10615. doi:10.1038/ncomms10615 

Babur, Ö., Gönen, M., Aksoy, B.A., Schultz, N., Ciriello, G., Sander, C., Demir, E., 2015. 

Systematic identification of cancer driving signaling pathways based on mutual exclusivity 

of genomic alterations. Genome Biol. 16, 45. doi:10.1186/s13059-015-0612-6 

Bechara, E.G., Sebestyén, E., Bernardis, I., Eyras, E., Valcárcel, J., 2013. RBM5, 6, and 10 

differentially regulate NUMB alternative splicing to control cancer cell proliferation. Mol. Cell 

52, 720–33. doi:10.1016/j.molcel.2013.11.010 

Birzele, F., Csaba, G., Zimmer, R., 2008. Alternative splicing and protein structure evolution. 

Nucleic Acids Res. 36, 550–558. doi:10.1093/nar/gkm1054 

Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E., 2008. Fast unfolding of communities 

in large networks. J. Stat. Mech. Theory Exp. 10008, 6. doi:10.1088/1742-

5468/2008/10/P10008 

Bonet, J., Planas-Iglesias, J., Garcia-Garcia, J., Marín-López, M.A., Fernandez-Fuentes, N., 

Oliva, B., 2014. ArchDB 2014: Structural classification of loops in proteins. Nucleic Acids 

Res. 42. doi:10.1093/nar/gkt1189 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 19, 2017. ; https://doi.org/10.1101/076653doi: bioRxiv preprint 

https://doi.org/10.1101/076653
http://creativecommons.org/licenses/by-nc/4.0/


 

 

Bourdon, J.-C., 2007. P53 and Its Isoforms in Cancer. Br. J. Cancer 97, 277–82. 

doi:10.1038/sj.bjc.6603886 

Brock, A., Chang, H., Huang, S., 2009. Non-genetic heterogeneity--a mutation-independent 

driving force for the somatic evolution of tumours. Nat. Rev. Genet. 10, 336–42. 

doi:10.1038/nrg2556 

Buljan, M., Chalancon, G., Eustermann, S., Wagner, G.P., Fuxreiter, M., Bateman, A., Babu, 

M.M., 2012. Tissue-Specific Splicing of Disordered Segments that Embed Binding Motifs 

Rewires Protein Interaction Networks. Mol. Cell 46, 871–883. 

doi:10.1016/j.molcel.2012.05.039 

Butts, C.T., 2008. network  : A Package for Managing Relational Data in R. J. Stat. Softw. 24, 1–

36. doi:10.18637/jss.v024.i02 

Chabot, B., Shkreta, L., 2016. Defective control of pre-messenger RNA splicing in human 

disease. J. Cell Biol. 212, 13–27. doi:10.1083/jcb.201510032 

Chatr-Aryamontri, A., Breitkreutz, B.J., Oughtred, R., Boucher, L., Heinicke, S., Chen, D., Stark, 

C., Breitkreutz, A., Kolas, N., O’Donnell, L., Reguly, T., Nixon, J., Ramage, L., Winter, A., 

Sellam, A., Chang, C., Hirschman, J., Theesfeld, C., Rust, J., Livstone, M.S., Dolinski, K., 

Tyers, M., 2015. The BioGRID interaction database: 2015 update. Nucleic Acids Res. 43, 

D470–D478. doi:10.1093/nar/gku1204 

Ciriello, G., Miller, M.L., Aksoy, B.A., Senbabaoglu, Y., Schultz, N., Sander, C., 2013. Emerging 

landscape of oncogenic signatures across human cancers. Nat. Genet. 45, 1127–1133. 

doi:10.1038/ng.2762 

Conway, J.R., Lex, A., Gehlenborg, N., 2017. UpSetR: An R Package for the Visualization of 

Intersecting Sets and their Properties 2–5. doi:10.1101/120600 

Danan-Gotthold, M., Golan-Gerstl, R., Eisenberg, E., Meir, K., Karni, R., Levanon, E.Y., 2015. 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 19, 2017. ; https://doi.org/10.1101/076653doi: bioRxiv preprint 

https://doi.org/10.1101/076653
http://creativecommons.org/licenses/by-nc/4.0/


 

 

Identification of recurrent regulated alternative splicing events across human solid tumors. 

Nucleic Acids Res. 43, 1–15. doi:10.1093/nar/gkv210 

Darman, R.B., Seiler, M., Agrawal, A.A., Lim, K.H., Peng, S., Aird, D., Bailey, S.L., Bhavsar, 

E.B., Chan, B., Colla, S., Corson, L., Feala, J., Fekkes, P., Ichikawa, K., Keaney, G.F., 

Lee, L., Kumar, P., Kunii, K., MacKenzie, C., Matijevic, M., Mizui, Y., Myint, K., Park, E.S., 

Puyang, X., Selvaraj, A., Thomas, M.P., Tsai, J., Wang, J.Y., Warmuth, M., Yang, H., Zhu, 

P., Garcia-Manero, G., Furman, R.R., Yu, L., Smith, P.G., Buonamici, S., 2015. Cancer-

Associated SF3B1 Hotspot Mutations Induce Cryptic 3’ Splice Site Selection through Use 

of a Different Branch Point. Cell Rep. 13, 1033–45. doi:10.1016/j.celrep.2015.09.053 

David, C.J., Manley, J.L., 2010. Alternative pre-mRNA splicing regulation in cancer: Pathways 

and programs unhinged. Genes Dev. doi:10.1101/gad.1973010 

Davies, H., Bignell, G.R., Cox, C., Stephens, P., Edkins, S., Clegg, S., Teague, J., Woffendin, 

H., Garnett, M.J., Bottomley, W., Davis, N., Dicks, E., Ewing, R., Floyd, Y., Gray, K., Hall, 

S., Hawes, R., Hughes, J., Kosmidou, V., Menzies, A., Mould, C., Parker, A., Stevens, C., 

Watt, S., Hooper, S., Wilson, R., Jayatilake, H., Gusterson, B. a, Cooper, C., Shipley, J., 

Hargrave, D., Pritchard-Jones, K., Maitland, N., Chenevix-Trench, G., Riggins, G.J., 

Bigner, D.D., Palmieri, G., Cossu, A., Flanagan, A., Nicholson, A., Ho, J.W.C., Leung, S.Y., 

Yuen, S.T., Weber, B.L., Seigler, H.F., Darrow, T.L., Paterson, H., Marais, R., Marshall, 

C.J., Wooster, R., Stratton, M.R., Futreal, P.A., 2002. Mutations of the BRAF gene in 

human cancer. Nature 417, 949–954. doi:10.1038/nature00766 

Davis, C.F., Ricketts, C.J., Wang, M., Yang, L., Cherniack, A.D., Shen, H., Buhay, C., Kang, H., 

Kim, S., Fahey, C.C., Hacker, K.E., Bhanot, G., Gordenin, D.A., Chu, A., Gunaratne, P.H., 

Biehl, M., Seth, S., Kaipparettu, B.A., Bristow, C.A., Donehower, L.A., Wallen, E.M., Smith, 

A.B., Tickoo, S.K., Tamboli, P., Reuter, V., Schmidt, L.S., Hsieh, J.J., Choueiri, T.K., 

Hakimi, A.A., Chin, L., Meyerson, M., Kucherlapati, R., Park, W.Y., Robertson, A.G., Laird, 

P.W., Henske, E.P., Kwiatkowski, D.J., Park, P.J., Morgan, M., Shuch, B., Muzny, D., 

Wheeler, D.A., Linehan, W.M., Gibbs, R.A., Rathmell, W.K., Creighton, C.J., 2014. The 

Somatic Genomic Landscape of Chromophobe Renal Cell Carcinoma. Cancer Cell 26, 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 19, 2017. ; https://doi.org/10.1101/076653doi: bioRxiv preprint 

https://doi.org/10.1101/076653
http://creativecommons.org/licenses/by-nc/4.0/


 

 

319–330. doi:10.1016/j.ccr.2014.07.014 

del-Toro, N., Dumousseau, M., Orchard, S., Jimenez, R.C., Galeota, E., Launay, G., Goll, J., 

Breuer, K., Ono, K., Salwinski, L., Hermjakob, H., 2013. A new reference implementation of 

the PSICQUIC web service. Nucleic Acids Res. 41, W601-6. doi:10.1093/nar/gkt392 

Dosztányi, Z., Csizmok, V., Tompa, P., Simon, I., 2005. IUPred: web server for the prediction of 

intrinsically unstructured regions of proteins based on estimated energy content. 

Bioinformatics 21, 3433–4. doi:10.1093/bioinformatics/bti541 

Dosztányi, Z., Mészáros, B., Simon, I., 2009. ANCHOR: web server for predicting protein 

binding regions in disordered proteins. Bioinformatics 25, 2745–6. 

doi:10.1093/bioinformatics/btp518 

Dvinge, H., Bradley, R.K., 2015. Widespread intron retention diversifies most cancer 

transcriptomes. Genome Med. 7, 45. doi:10.1186/s13073-015-0168-9 

Ellis, J.D., Barrios-Rodiles, M., ??olak, R., Irimia, M., Kim, T., Calarco, J.A., Wang, X., Pan, Q., 

O’Hanlon, D., Kim, P.M., Wrana, J.L., Blencowe, B.J., 2012. Tissue-Specific Alternative 

Splicing Remodels Protein-Protein Interaction Networks. Mol. Cell 46, 884–892. 

doi:10.1016/j.molcel.2012.05.037 

Fang, H., Gough, J., 2013. DcGO: Database of domain-centric ontologies on functions, 

phenotypes, diseases and more. Nucleic Acids Res. 41. doi:10.1093/nar/gks1080 

Finn, R.D., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Mistry, J., Mitchell, A.L., Potter, S.C., Punta, 

M., Qureshi, M., Sangrador-Vegas, A., Salazar, G.A., Tate, J., Bateman, A., 2016. The 

Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, 

D279-85. doi:10.1093/nar/gkv1344 

Finn, R.D., Miller, B.L., Clements, J., Bateman, A., 2014. IPfam: A database of protein family 

and domain interactions found in the Protein Data Bank. Nucleic Acids Res. 42. 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 19, 2017. ; https://doi.org/10.1101/076653doi: bioRxiv preprint 

https://doi.org/10.1101/076653
http://creativecommons.org/licenses/by-nc/4.0/


 

 

doi:10.1093/nar/gkt1210 

Forbes, S.A., Beare, D., Gunasekaran, P., Leung, K., Bindal, N., Boutselakis, H., Ding, M., 

Bamford, S., Cole, C., Ward, S., Kok, C.Y., Jia, M., De, T., Teague, J.W., Stratton, M.R., 

McDermott, U., Campbell, P.J., 2015. COSMIC: Exploring the world’s knowledge of 

somatic mutations in human cancer. Nucleic Acids Res. 43, D805–D811. 

doi:10.1093/nar/gku1075 

Frampton, G.M., Ali, S.M., Rosenzweig, M., Chmielecki, J., Lu, X., Bauer, T.M., Akimov, M., 

Bufill, J.A., Lee, C., Jentz, D., Hoover, R., Ignatius Ou, S.H., Salgia, R., Brennan, T., 

Chalmers, Z.R., Jaeger, S., Huang, A., Elvin, J.A., Erlich, R., Fichtenholtz, A., Gowen, K.A., 

Greenbowe, J., Johnson, A., Khaira, D., McMahon, C., Sanford, E.M., Roels, S., White, J., 

Greshock, J., Schlegel, R., Lipson, D., Yelensky, R., Morosini, D., Ross, J.S., Collisson, E., 

Peters, M., Stephens, P.J., Miller, V.A., 2015. Activation of MET via diverse exon 14 

splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET 

inhibitors. Cancer Discov. 5, 850–860. doi:10.1158/2159-8290.CD-15-0285 

Fredriksson, N.J., Ny, L., Nilsson, J.A., Larsson, E., 2014. Systematic analysis of noncoding 

somatic mutations and gene expression alterations across 14 tumor types. Nat. Genet. 46, 

1–7. doi:10.1038/ng.3141 

Fu, X.-D., Ares, M., 2014. Context-dependent control of alternative splicing by RNA-binding 

proteins. Nat. Rev. Genet. 15, 689–701. doi:10.1038/nrg3778 

Gattiker, A., Gasteiger, E., Bairoch, A., 2002. ScanProsite: a reference implementation of a 

PROSITE scanning tool. Appl. Bioinformatics 1, 107–8. 

George, J., Lim, J.S., Jang, S.J., Cun, Y., Ozretic, L., Kong, G., Leenders, F., Lu, X., 

Fernandez-Cuesta, L., Bosco, G., Muller, C., Dahmen, I., Jahchan, N.S., Park, K.-S., Yang, 

D., Karnezis, A.N., Vaka, D., Torres, A., Wang, M.S., Korbel, J.O., Menon, R., Chun, S.-M., 

Kim, D., Wilkerson, M., Hayes, N., Engelmann, D., Putzer, B., Bos, M., Michels, S., Vlasic, 

I., Seidel, D., Pinther, B., Schaub, P., Becker, C., Altmuller, J., Yokota, J., Kohno, T., 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 19, 2017. ; https://doi.org/10.1101/076653doi: bioRxiv preprint 

https://doi.org/10.1101/076653
http://creativecommons.org/licenses/by-nc/4.0/


 

 

Iwakawa, R., Tsuta, K., Noguchi, M., Muley, T., Hoffmann, H., Schnabel, P.A., Petersen, I., 

Chen, Y., Soltermann, A., Tischler, V., Choi, C., Kim, Y.-H., Massion, P.P., Zou, Y., 

Jovanovic, D., Kontic, M., Wright, G.M., Russell, P.A., Solomon, B., Koch, I., Lindner, M., 

Muscarella, L.A., la Torre, A., Field, J.K., Jakopovic, M., Knezevic, J., Castanos-Velez, E., 

Roz, L., Pastorino, U., Brustugun, O.-T., Lund-Iversen, M., Thunnissen, E., Kohler, J., 

Schuler, M., Botling, J., Sandelin, M., Sanchez-Cespedes, M., Salvesen, H.B., Achter, V., 

Lang, U., Bogus, M., Schneider, P.M., Zander, T., Ansen, S., Hallek, M., Wolf, J., Vingron, 

M., Yatabe, Y., Travis, W.D., Nurnberg, P., Reinhardt, C., Perner, S., Heukamp, L., 

Buttner, R., Haas, S.A., Brambilla, E., Peifer, M., Sage, J., Thomas, R.K., 2015. 

Comprehensive genomic profiles of small cell lung cancer. Nature 524, 47–53. 

doi:10.1038/nature14664 

Goldstein, L.D., Lee, J., Gnad, F., Klijn, C., Schaub, A., Reeder, J., Daemen, A., Bakalarski, 

C.E., Holcomb, T., Shames, D.S., Hartmaier, R.J., Chmielecki, J., Seshagiri, S., 

Gentleman, R., Stokoe, D., 2016. Recurrent Loss of NFE2L2 Exon 2 Is a Mechanism for 

Nrf2 Pathway Activation in Human Cancers. Cell Rep. doi:10.1016/j.celrep.2016.08.010 

Gonçalves, V., Matos, P., Jordan, P., 2009. Antagonistic SR proteins regulate alternative 

splicing of tumor-related Rac1b downstream of the PI3-kinase and Wnt pathways. Hum. 

Mol. Genet. 18, 3696–3707. doi:10.1093/hmg/ddp317 

Gundem, G., Perez-Llamas, C., Jene-Sanz, A., Kedzierska, A., Islam, A., Deu-Pons, J., Furney, 

S.J., Lopez-Bigas, N., 2010. IntOGen: integration and data mining of multidimensional 

oncogenomic data. Nat. Methods 7, 92–93. doi:10.1038/nmeth0210-92 

Hagberg, A.A., Schult, D.A., Swart, P.J., 2008. Exploring network structure, dynamics, and 

function using NetworkX. Proc. 7th Python Sci. Conf. (SciPy 2008) 11–15. 

Hansen, K.D., Lareau, L.F., Blanchette, M., Green, R.E., Meng, Q., Rehwinkel, J., Gallusser, 

F.L., Izaurralde, E., Rio, D.C., Dudoit, S., Brenner, S.E., 2009. Genome-wide identification 

of alternative splice forms down-regulated by nonsense-mediated mRNA decay in 

Drosophila. PLoS Genet. 5. doi:10.1371/journal.pgen.1000525 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 19, 2017. ; https://doi.org/10.1101/076653doi: bioRxiv preprint 

https://doi.org/10.1101/076653
http://creativecommons.org/licenses/by-nc/4.0/


 

 

Jackson, C., Browell, D., Gautrey, H., Tyson-Capper, A., 2013. Clinical significance of HER-2 

splice variants in breast cancer progression and drug resistance. Int. J. Cell Biol. 

doi:10.1155/2013/973584 

Jones, P., Binns, D., Chang, H.Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., 

Mitchell, A., Nuka, G., Pesseat, S., Quinn, A.F., Sangrador-Vegas, A., Scheremetjew, M., 

Yong, S.Y., Lopez, R., Hunter, S., 2014. InterProScan 5: Genome-scale protein function 

classification. Bioinformatics 30, 1236–1240. doi:10.1093/bioinformatics/btu031 

Jonsson, P.F., Bates, P.A., 2006. Global topological features of cancer proteins in the human 

interactome. Bioinformatics 22, 2291–7. doi:10.1093/bioinformatics/btl390 

Jung, H., Lee, D., Lee, J., Park, D., Kim, Y.J., Park, W.-Y., Hong, D., Park, P.J., Lee, E., 2015. 

Intron retention is a widespread mechanism of tumor-suppressor inactivation. Nat. Genet. 

47, 1242–1248. doi:10.1038/ng.3414 

Karni, R., de Stanchina, E., Lowe, S.W., Sinha, R., Mu, D., Krainer, A.R., 2007. The gene 

encoding the splicing factor SF2/ASF is a proto-oncogene. Nat. Struct. Mol. Biol. 14, 185–

93. doi:10.1038/nsmb1209 

Kong-Beltran, M., Seshagiri, S., Zha, J., Zhu, W., Bhawe, K., Mendoza, N., Holcomb, T., Pujara, 

K., Stinson, J., Fu, L., Severin, C., Rangell, L., Schwall, R., Amier, L., Wickramasinghe, D., 

Yauch, R., 2006. Somatic mutations lead to an oncogenic deletion of Met in lung cancer. 

Cancer Res. 66, 283–289. doi:10.1158/0008-5472.CAN-05-2749 

Lee, I., Blom, U.M., Wang, P.I., Shim, J.E., Marcotte, E.M., 2011. Prioritizing candidate disease 

genes by network-based boosting of genome-wide association data. Genome Res. 21, 

1109–1121. doi:10.1101/gr.118992.110 

Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J.P., Tamayo, P., 2015. The 

Molecular Signatures Database Hallmark Gene Set Collection. Cell Syst. 1, 417–425. 

doi:10.1016/j.cels.2015.12.004 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 19, 2017. ; https://doi.org/10.1101/076653doi: bioRxiv preprint 

https://doi.org/10.1101/076653
http://creativecommons.org/licenses/by-nc/4.0/


 

 

Lu, Z., Huang, Q., Park, J.W., Shen, S., Lin, L., Tokheim, C.J., Henry, M.D., Xing, Y., 2015. 

Transcriptome-wide landscape of pre-mRNA alternative splicing associated with metastatic 

colonization. Mol. Cancer Res. 13, 305–18. doi:10.1158/1541-7786.MCR-14-0366 

Ma, P.C., Kijima, T., Maulik, G., Fox, E.A., Sattler, M., Griffin, J.D., Johnson, B.E., Salgia, R., 

2003. c-MET mutational analysis in small cell lung cancer: Novel juxtamembrane domain 

mutations regulating cytoskeletal functions. Cancer Res. 63, 6272–6281. 

Madan, V., Kanojia, D., Li, J., Okamoto, R., Sato-Otsubo, A., Kohlmann, A., Sanada, M., 

Grossmann, V., Sundaresan, J., Shiraishi, Y., Miyano, S., Thol, F., Ganser, A., Yang, H., 

Haferlach, T., Ogawa, S., Koeffler, H.P., 2015. Aberrant splicing of U12-type introns is the 

hallmark of ZRSR2 mutant myelodysplastic syndrome. Nat. Commun. 6, 6042. 

doi:10.1038/ncomms7042 

Miller, M.L., Reznik, E., Gauthier, N.P., Aksoy, B.A., Korkut, A., Gao, J., Ciriello, G., Schultz, N., 

Sander, C., 2015. Pan-Cancer Analysis of Mutation Hotspots in Protein Domains. Cell 

Syst. 1, 197–209. doi:10.1016/j.cels.2015.08.014 

Mosca, R., Céol, A., Stein, A., Olivella, R., Aloy, P., 2014. 3did: A catalog of domain-based 

interactions of known three-dimensional structure. Nucleic Acids Res. 42. 

doi:10.1093/nar/gkt887 

Norris, A.D., Calarco, J.A., 2012. Emerging roles of alternative pre-mRNA splicing regulation in 

neuronal development and function. Front. Neurosci. doi:10.3389/fnins.2012.00122 

Paik, P.K., Drilon, A., Fan, P.-D., Yu, H., Rekhtman, N., Ginsberg, M.S., Borsu, L., Schultz, N., 

Berger, M.F., Rudin, C.M., Ladanyi, M., 2015. Response to MET Inhibitors in Patients with 

Stage IV Lung Adenocarcinomas Harboring MET Mutations Causing Exon 14 Skipping. 

Cancer Discov. 5, 842–849. doi:10.1158/2159-8290.CD-14-1467 

Pelisch, F., Khauv, D., Risso, G., Stallings-Mann, M., Blaustein, M., Quadrana, L., Radisky, 

D.C., Srebrow, A., 2012. Involvement of hnRNP A1 in the matrix metalloprotease-3-

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 19, 2017. ; https://doi.org/10.1101/076653doi: bioRxiv preprint 

https://doi.org/10.1101/076653
http://creativecommons.org/licenses/by-nc/4.0/


 

 

dependent regulation of Rac1 pre-mRNA splicing. J. Cell. Biochem. 113, 2319–2329. 

doi:10.1002/jcb.24103 

Poulikakos, P.I., Persaud, Y., Janakiraman, M., Kong, X., Ng, C., Moriceau, G., Shi, H., Atefi, 

M., Titz, B., Gabay, M.T., Salton, M., Dahlman, K.B., Tadi, M., Wargo, J.A., Flaherty, K.T., 

Kelley, M.C., Misteli, T., Chapman, P.B., Sosman, J.A., Graeber, T.G., Ribas, A., Lo, R.S., 

Rosen, N., Solit, D.B., 2011. RAF inhibitor resistance is mediated by dimerization of 

aberrantly spliced BRAF(V600E). Nature 480, 387–90. doi:10.1038/nature10662 

Raghavachari, B., Tasneem, A., Przytycka, T.M., Jothi, R., 2008. DOMINE: A database of 

protein domain interactions. Nucleic Acids Res. 36. doi:10.1093/nar/gkm761 

Rolland, T., Taşan, M., Charloteaux, B., Pevzner, S.J., Zhong, Q., Sahni, N., Yi, S., Lemmens, 

I., Fontanillo, C., Mosca, R., Kamburov, A., Ghiassian, S.D., Yang, X., Ghamsari, L., 

Balcha, D., Begg, B.E., Braun, P., Brehme, M., Broly, M.P., Carvunis, A.R., Convery-

Zupan, D., Corominas, R., Coulombe-Huntington, J., Dann, E., Dreze, M., Dricot, A., Fan, 

C., Franzosa, E., Gebreab, F., Gutierrez, B.J., Hardy, M.F., Jin, M., Kang, S., Kiros, R., Lin, 

G.N., Luck, K., Macwilliams, A., Menche, J., Murray, R.R., Palagi, A., Poulin, M.M., 

Rambout, X., Rasla, J., Reichert, P., Romero, V., Ruyssinck, E., Sahalie, J.M., Scholz, A., 

Shah, A.A., Sharma, A., Shen, Y., Spirohn, K., Tam, S., Tejeda, A.O., Trigg, S.A., Twizere, 

J.C., Vega, K., Walsh, J., Cusick, M.E., Xia, Y., Barabási, A.L., Iakoucheva, L.M., Aloy, P., 

De Las Rivas, J., Tavernier, J., Calderwood, M.A., Hill, D.E., Hao, T., Roth, F.P., Vidal, M., 

2014. A proteome-scale map of the human interactome network. Cell 159, 1212–1226. 

doi:10.1016/j.cell.2014.10.050 

Ruepp, A., Waegele, B., Lechner, M., Brauner, B., Dunger-Kaltenbach, I., Fobo, G., Frishman, 

G., Montrone, C., Mewes, H.W., 2009. CORUM: The comprehensive resource of 

mammalian protein complexes-2009. Nucleic Acids Res. 38. doi:10.1093/nar/gkp914 

Saito, M., Shimada, Y., Shiraishi, K., Sakamoto, H., Tsuta, K., Totsuka, H., Chiku, S., Ichikawa, 

H., Kato, M., Watanabe, S.I., Yoshida, T., Yokota, J., Kohno, T., 2015. Development of 

lung adenocarcinomas with exclusive dependence on oncogene fusions. Cancer Res. 75, 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 19, 2017. ; https://doi.org/10.1101/076653doi: bioRxiv preprint 

https://doi.org/10.1101/076653
http://creativecommons.org/licenses/by-nc/4.0/


 

 

2264–2271. doi:10.1158/0008-5472.CAN-14-3282 

Salton, M., Kasprzak, W.K., Voss, T., Shapiro, B.A., Poulikakos, P.I., Misteli, T., 2015. Inhibition 

of vemurafenib-resistant melanoma by interference with pre-mRNA splicing. Nat. Commun. 

6, 7103. doi:10.1038/ncomms8103 

Schroeder, M.P., Rubio-Perez, C., Tamborero, D., Gonzalez-Perez, A., Lopez-Bigas, N., 2014. 

OncodriveROLE classifies cancer driver genes in loss of function and activating mode of 

action, in: Bioinformatics. doi:10.1093/bioinformatics/btu467 

Sebestyén, E., Singh, B., Miñana, B., Pagès, A., Mateo, F., Pujana, M.A., Valcárcel, J., Eyras, 

E., 2016. Large-scale analysis of genome and transcriptome alterations in multiple tumors 

unveils novel cancer-relevant splicing networks. Genome Res. 26. 

doi:10.1101/gr.199935.115 

Sebestyén, E., Zawisza, M., Eyras, E., 2015. Detection of recurrent alternative splicing switches 

in tumor samples reveals novel signatures of cancer. Nucleic Acids Res. 43, 1345–1356. 

doi:10.1093/nar/gku1392 

Sotillo, E., Barrett, D.M., Black, K.L., Bagashev, A., Oldridge, D., Wu, G., Sussman, R., 

Lanauze, C., Ruella, M., Gazzara, M.R., Martinez, N.M., Harrington, C.T., Chung, E.Y., 

Perazzelli, J., Hofmann, T.J., Maude, S.L., Raman, P., Barrera, A., Gill, S., Lacey, S.F., 

Melenhorst, J.J., Allman, D., Jacoby, E., Fry, T., Mackall, C., Barash, Y., Lynch, K.W., 

Maris, J.M., Grupp, S.A., Thomas-Tikhonenko, A., 2015. Convergence of acquired 

mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. 

Cancer Discov. 5, 1282–1295. doi:10.1158/2159-8290.CD-15-1020 

Sottoriva, A., Kang, H., Ma, Z., Graham, T.A., Salomon, M.P., Zhao, J., Marjoram, P., 

Siegmund, K., Press, M.F., Shibata, D., Curtis, C., 2015. A Big Bang model of human 

colorectal tumor growth. Nat. Genet. 47, 209–216. doi:10.1038/ng.3214 

Supek, F., Miñana, B., Valcárcel, J., Gabaldón, T., Lehner, B., 2014. Synonymous mutations 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 19, 2017. ; https://doi.org/10.1101/076653doi: bioRxiv preprint 

https://doi.org/10.1101/076653
http://creativecommons.org/licenses/by-nc/4.0/


 

 

frequently act as driver mutations in human cancers. Cell 156, 1324–35. 

doi:10.1016/j.cell.2014.01.051 

Szklarczyk, D., Franceschini, A., Kuhn, M., Simonovic, M., Roth, A., Minguez, P., Doerks, T., 

Stark, M., Muller, J., Bork, P., Jensen, L.J., Von Mering, C., 2011. The STRING database 

in 2011: Functional interaction networks of proteins, globally integrated and scored. Nucleic 

Acids Res. 39. doi:10.1093/nar/gkq973 

Taylor, I.W., Linding, R., Warde-Farley, D., Liu, Y., Pesquita, C., Faria, D., Bull, S., Pawson, T., 

Morris, Q., Wrana, J.L., 2009. Dynamic modularity in protein interaction networks predicts 

breast cancer outcome. Nat. Biotechnol. 27, 199–204. doi:10.1038/nbt.1522 

The Cancer Genome Atlas Research Network, 2016. Comprehensive Molecular 

Characterization of Papillary Renal-Cell Carcinoma. N. Engl. J. Med. 374, 135–45. 

doi:10.1056/NEJMoa1505917 

Trincado, J.L., Sebestyen, E., Pages, A., Eyras, E., Sebestyén, E., Pagés, A., Eyras, E., 2016. 

The prognostic potential of alternative transcript isoforms across human tumors. Genome 

Med. 8, 85. doi:10.1186/s13073-016-0339-3 

Vogelstein, B., Papadopoulos, N., Velculescu, V.E., Zhou, S., Diaz  Jr., L.A., Kinzler, K.W., 

2013. Cancer Genome Landscapes. Science (80-. ). 339, 1546–1558. 

doi:10.1126/science.1235122 

Vorlová, S., Rocco, G., Lefave, C. V, Jodelka, F.M., Hess, K., Hastings, M.L., Henke, E., 

Cartegni, L., 2011. Induction of antagonistic soluble decoy receptor tyrosine kinases by 

intronic polyA activation. Mol. Cell 43, 927–39. doi:10.1016/j.molcel.2011.08.009 

Wachi, S., Yoneda, K., Wu, R., 2005. Interactome-transcriptome analysis reveals the high 

centrality of genes differentially expressed in lung cancer tissues. Bioinformatics 21, 4205–

8. doi:10.1093/bioinformatics/bti688 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 19, 2017. ; https://doi.org/10.1101/076653doi: bioRxiv preprint 

https://doi.org/10.1101/076653
http://creativecommons.org/licenses/by-nc/4.0/


 

 

Wang, P., Yan, B., Guo, J.-T., Hicks, C., Xu, Y., 2005. Structural genomics analysis of 

alternative splicing and application to isoform structure modeling. Proc. Natl. Acad. Sci. U. 

S. A. 102, 18920–5. doi:10.1073/pnas.0506770102 

Yanagisawa, M., Huveldt, D., Kreinest, P., Lohse, C.M., Cheville, J.C., Parker, A.S., Copland, 

J.A., Anastasiadis, P.Z., 2008. A p120 catenin isoform switch affects rho activity, induces 

tumor cell invasion, and predicts metastatic disease. J. Biol. Chem. 283, 18344–18354. 

doi:10.1074/jbc.M801192200 

Yang, F., Petsalaki, E., Rolland, T., Hill, D.E., Vidal, M., Roth, F.P., 2015. Protein Domain-Level 

Landscape of Cancer-Type-Specific Somatic Mutations. PLoS Comput. Biol. 11. 

doi:10.1371/journal.pcbi.1004147 

Yang, X., Coulombe-Huntington, J., Kang, S., Sheynkman, G.M., Hao, T., Richardson, A., Sun, 

S., Yang, F., Shen, Y.A., Murray, R.R., Spirohn, K., Begg, B.E., Duran-Frigola, M., 

MacWilliams, A., Pevzner, S.J., Zhong, Q., Trigg, S.A., Tam, S., Ghamsari, L., Sahni, N., 

Yi, S., Rodriguez, M.D., Balcha, D., Tan, G., Costanzo, M., Andrews, B., Boone, C., Zhou, 

X.J., Salehi-Ashtiani, K., Charloteaux, B., Chen, A.A., Calderwood, M.A., Aloy, P., Roth, 

F.P., Hill, D.E., Iakoucheva, L.M., Xia, Y., Vidal, M., 2016. Widespread Expansion of 

Protein Interaction Capabilities by Alternative Splicing. Cell 164, 805–817. 

doi:10.1016/j.cell.2016.01.029 

Yoshihara, K., Shahmoradgoli, M., Martínez, E., Vegesna, R., Kim, H., Torres-Garcia, W., 

Treviño, V., Shen, H., Laird, P.W., Levine, D. a, Carter, S.L., Getz, G., Stemke-Hale, K., 

Mills, G.B., Verhaak, R.G.W., 2013. Inferring tumour purity and stromal and immune cell 

admixture from expression data. Nat. Commun. 4, 2612. doi:10.1038/ncomms3612 

Zhao, M., Kim, P., Mitra, R., Zhao, J., Zhao, Z., 2015. TSGene 2.0: an updated literature-based 

knowledgebase for tumor suppressor genes. Nucleic Acids Res. 1–9. 

doi:10.1093/nar/gkv1268 

Zhou, C., Licciulli, S., Avila, J.L., Cho, M., Troutman, S., Jiang, P., Kossenkov,  a V, Showe, 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 19, 2017. ; https://doi.org/10.1101/076653doi: bioRxiv preprint 

https://doi.org/10.1101/076653
http://creativecommons.org/licenses/by-nc/4.0/


 

 

L.C., Liu, Q., Vachani,  a, Albelda, S.M., Kissil, J.L., 2012. The Rac1 splice form Rac1b 

promotes K-ras-induced lung tumorigenesis. Oncogene 32, 903–909. 

doi:10.1038/onc.2012.99 

Zong, F.Y., Fu, X., Wei, W.J., Luo, Y.G., Heiner, M., Cao, L.J., Fang, Z., Fang, R., Lu, D., Ji, H., 

Hui, J., 2014. The RNA-Binding Protein QKI Suppresses Cancer-Associated Aberrant 

Splicing. PLoS Genet. 10. doi:10.1371/journal.pgen.1004289 

  

  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 19, 2017. ; https://doi.org/10.1101/076653doi: bioRxiv preprint 

https://doi.org/10.1101/076653
http://creativecommons.org/licenses/by-nc/4.0/


 

 

Figures 

  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 19, 2017. ; https://doi.org/10.1101/076653doi: bioRxiv preprint 

https://doi.org/10.1101/076653
http://creativecommons.org/licenses/by-nc/4.0/


 

 

 

Figure 1. (A) Number of isoform switches (y axis) calculated in each tumor type, separated 

according to whether the switches affect an annotated protein feature (Functional) or not (Non-

functional) and whether they occur in cancer gene drivers (Driver) or not (Non-driver). (B) 

Number of different protein feature gains and losses in functional switches for each of the 

protein annotations considered. (C) Top 20 functional switches in cancer drivers according to 

the total number of patients in which they occur. Tumor types are indicated by color: breast 

carcinoma (brca), colon adenocarcinoma (coad), head and neck squamous cell carcinoma 

(hnsc), kidney chromophobe (kich), kidney renal clear-cell carcinoma (kirc), kidney papillary cell 

carcinoma (kirp), liver hepatocellular carcinoma (lihc), lung adenocarcinoma (luad), lung 

squamous cell carcinoma (lusc), prostate adenocarcinoma (prad), and thyroid carcinoma (thca). 

(D) Cellular component (red) and Molecular function (green) ontologies associated with protein 

domain families that are significantly lost in functional isoform switches (Binomial test - 
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Benjamini-Hochberg adjusted p-value < 0.05). For each functional category, we give the 

number of isoform switches in which a protein domain family related to this category is lost. The 

color shade relates to this number. 
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Figure 2. (A) For each patient sample, color-coded according to the tumor type, we indicate the 

proportion of all genes with protein-affecting mutations (PAMs) (y axis) and the proportion of 

genes with multiple transcript isoforms that present a functional isoform switch in the same 

sample (x axis). (B) Domain families that are significantly lost or gained in functional isoform 

switches that are also significantly enriched in protein-affecting mutations in tumors. For each 

domain class, we indicate the number of different switches in which they occur. We include here 

the loss of the P53 DNA-binding and P53 tetramerization domains, which only occur in the 

switch in TP53. (C) Agreement between protein-affecting mutations and functional switches (y 

axis) measured in terms of the functional categories of the protein domains they affect (x axis), 

using two gene ontologies (GOs) at three different GO Slim levels, from most specific (+++) to 

least specific (+). Random occurrences (plotted in light color) were calculated by sampling 100 

times the same number of domain families affected by functional switches and the same 

number of domains affected by protein-affecting mutations. Agreement is calculated as the 
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percentage of the union of functional categories that are common to both sets. (D) Pairs formed 

by a cancer driver (in parentheses) and a functional switch that belong to the same pathway and 

show mutual exclusion between PAMs and switches across patients in at least one tumor type –

color-coded by tumor type. The y-axis indicates the percentage of samples where the switch 

occurs and x-axis indicates the percentage of samples where the driver is mutated in the same 

tumor type.  

  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 19, 2017. ; https://doi.org/10.1101/076653doi: bioRxiv preprint 

https://doi.org/10.1101/076653
http://creativecommons.org/licenses/by-nc/4.0/


 

 

Figure 3. (A) Functional switches are divided according to whether they occur in tumor-specific 

drivers (yes) or not (no). For each tumor type we plot the proportion of protein-protein 

interactions (PPIs) (y axis) that are gained (green), lost (red), or remain unaffected (gray). Chi-

squared test of all the PPIs affected by switches in drivers and non-drivers separating gains and 

losses: p-value = 1.87e-15. Individual Chi-square tests for each tumor type: brca p-val = 1.012e-
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3, coad p-val = 1.34e-17, kich p-val = 6.414e-33, lusc p-val = 1.176e-7, prad p-val = 1.515e-12. 

The types kirc, luad and thca show no significance. Samples from kidney renal papillary cell 

carcinoma (kirp) and liver hepatocellular carcinoma (lihc) do not show PPI-affecting switches in 

drivers. (B) Functional switches are divided according to whether they affect a PPI (yes) or not 

(no). For each tumor type we plot the proportion of functional switches (y axis) that occur in 

cancer drivers (black), in interactors of drivers (dark gray), or in other genes (light gray). Fisher’s 

exact test of the PPIs affected by switches in driver-interactors and in other genes (non-drivers 

and non-driver-interactors): brca p-val=4.70e-58, OR= 6.39; coad p-val=1.84e-28, OR=5.59; hnsc 

p-val=4.40e-53, OR=5.12; kich pval=6.73e-16, OR=7.11, kirc p-val=4.35e-41, OR=4.68; kirp p-val= 

5.69e-16, OR=6.15; lihc p-val=6.93e-17, OR=5.77; luad p-val=9.18e-61, OR=6.35; lusc p-

val=4.76e-59, OR=6.47; prad, p-val= 1.00e-31, OR=5.18; thca, p-val=2.69e-19, OR=6.02. (C) A 

network module with PPIs predicted to be lost (red). Cancer drivers are indicated in black or 

gray if they have a functional switch or not, respectively. Other genes are indicated in dark blue 

or light blue if they have a functional switch or not, respectively. We do not show unaffected 

interactions. (D) OncoPrint for the samples that present protein-affecting mutations (PAMs) in 

drivers or switches from (C). Mutations are indicated in black and PPI-affecting switches are 

indicated in red (loss in this case). Other switches with no predicted effect on the PPI are 

depicted in gray. The top panel indicates the tumor type of each sample by color (same color 

code as in previous figures). The second top panel indicates whether the sample harbors a 

PAM in a tumor-specific driver (black) or not (gray), or whether no mutation data is available for 

that sample (white). (E) A network module containing genes from the translation initiation 

complex with PPIs predicted to be lost (red) by isoform switches. Cancer drivers are indicated in 

black or gray if they have a functional switch or not, respectively. Other genes are indicated in 

dark blue or light blue if they have a functional switch or not, respectively. We do not show 

unaffected interactions. (F) OncoPrint for the switches and drivers from (E). Colors are as in (D).  
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Figure 4. (A) Number of functional switches and AS-drivers detected in each tumor type (see 

text for definitions). (B) Candidate AS-drivers grouped according to their properties: disruption of 

protein–protein interactions (PPIs), significant recurrence across patients (Recurrence), gain or 

loss of a protein feature that is frequently mutated in tumors (Affects M_feature), mutual 

exclusion and sharing pathway with cancer drivers (Pannegative). The horizontal bars indicate 

the number of switches for each property. The vertical bars indicate the number of switches in 

each of the intersections indicated by connected bullet points (Conway et al., 2017). (C) 

Classification of samples according to the relevance of AS-drivers or Mut-drivers in each tumor 

type. For each tumor type (x axis), the positive y axis shows the percentage of samples that 

have a proportion of switched AS-drivers higher than the proportion of mutated Mut-drivers. The 

negative y axis shows the percentage of samples in which the proportion of mutated Mut-drivers 

is higher than the proportion of switched AS-drivers. Only patients with mutation and 
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transcriptome data are shown. (D) Each of the patients from (C) is represented according to the 

percentage of mutated Mut-drivers (y axis) and the percentage of switched AS-drivers (x axis). 
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METHODS 
 

Datasets and databases Source Identifier 

Datasets analysed (observed 
switches, functional implications, 
links to mutational data, etc.)  

This paper DOI: 10.5281/zenodo.439846 
(https://zenodo.org/record/439846) 
 

Human reference genome hg19 
assembly 

Genome Reference 
Consortium  

http://hgdownload.cse.ucsc.edu/goldenpath/ 
hg19/chromosomes/  

TCGA level 3 data for RNA-seq 
(read counts for isoforms), 
mutation and copy number 
variation (CNV) data for brca, 
coad, hnsc, kich, kirc, kirp, lihc, 
luad, lusc, prad, thca 

TCGA data portal https://gdc-portal.nci.nih.gov/ 

Mutations from whole genome 
sequencing for 306 
samples from brca, coad, hnsc, 
kich, kirc, luad, lusc, prad, thca 

(Fredriksson et al., 
2014) 

https://www.synapse.org/#!Synapse:syn2882
200 

List of cancer drivers per tumor 
type for brca, coad, hnsc, kirc, 
lihc, luad, lusc, prad, thca 

(Gundem et al., 
2010)  

https://www.intogen.org/ 

Cancer drivers for papillary renal-
cell carcinoma (kirp) 

(The Cancer 
Genome Atlas 
Research Network, 
2016) 

DOI:10.1056/NEJMoa1505917 

Cancer drivers for chromophobe 
renal-cell carcinoma (kich) 

(Davis et al., 2014) DOI:10.1016/j.ccr.2014.07.014 

COSMIC: list of oncogenes and 
tumor suppressors per tumor type 

(Forbes et al., 2015), http://cancer.sanger.ac.uk/cosmic 

TSGene: database of tumor 
suppressors  

(Zhao et al., 2015) https://bioinfo.uth.edu/TSGene/ 

Pfam: protein domain families (Finn et al., 2016) https://www.ebi.ac.uk/services/teams/pfam 

ProSite: protein domain patterns (Gattiker et al., 2002) http://prosite.expasy.org/ 

ArchDB: database of protein 
loops 

(Bonet et al., 2014). http://sbi.imim.es/archdb/ 
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PSICQUIC: database of protein-
protein interactions 

(del-Toro et al., 2013) https://www.ucl.ac.uk/functional-gene-
annotation/psicquic 

BIOGRID: database of protein-
protein interactions 

(Chatr-Aryamontri et 
al., 2015) 

https://thebiogrid.org/ 

HumNet: database of protein-
protein interactions 

(Lee et al., 2011) http://www.functionalnet.org/humannet/about
.html 

STRING: database of protein-
protein interactions 

(Szklarczyk et al., 
2011) 

http://string-db.org/ 

Dataset of protein-protein 
interactions 

(Rolland et al., 2014) DOI: http://dx.doi.org/10.1016/j.cell.2014.10.
050 

iPfam: database of domain-
domain interactions 

(Finn et al., 2014) http://ipfam.org/ 

DOMINE: database of domain-
domain interactions 

(Raghavachari et al., 
2008) 

http://domine.utdallas.edu/cgi-bin/Domine 

3did: database of domain-domain 
interactions 

(Mosca et al., 2014) http://3did.irbbarcelona.org/ 

Software and algorithms Source Identifier 

Software to calculate isoform 
switches and AS-drivers  

This paper https://bitbucket.org/regulatorygenomicsupf/s
martas/ 

The software to reproduce the 
analyses of switches and AS-
drivers.  

This paper https://github.com/hclimente/smartas  

SUPPA: software for the 
calculation of alternative splicing 
events 

(Alamancos et al., 
2015) 

https://github.com/comprna/SUPPA 

Domain-centric analysis of Gene 
Ontologies  

(Fang and Gough, 
2013) 

http://supfam.org/SUPERFAMILY/dcGO/  

OncodriveROLE: method to 
predict whether a cancer gene 
driver is an oncogene or a tumor 
suppressor 

(Schroeder et al., 
2014)  

http://bg.upf.edu/oncodrive-role 

ESTIMATE: method to measure 
the stromal and immune cell 
content in a sample  

(Yoshihara et al., 
2013)  

https://sourceforge.net/projects/estimateproje
ct / 

IUPred: prediction of protein 
disordered regions 

(Dosztanyi et al., 
2005)  

http://iupred.enzim.hu/  
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ANCHOR: prediction of 
disordered regions with potential 
for protein-protein interactions  

(Dosztanyi et al., 
2009)  

http://anchor.enzim.hu/  

R 3.3 The R project https://www.r-project.org/ 

intergraph 2.0-2 - R library for 
network analysis 

Integraph https://cran.r-
project.org/web/packages/intergraph/index.ht
ml 

igraph 1.0.1 
-R library for network analysis 

(Blondel et al., 2008)  http://igraph.org/r/ 

network 1.13.0 - R library for 
network analysis 

(Butts, 2008) 
 

https://cran.r-
project.org/web/packages/network/index.html 

ggnetwork 0.5.1 
- R library for network plotting 

Ggnetwork https://github.com/briatte/ggnetwork 

cowplot 0.7.0 - R library for 
plotting 

Cowplot https://github.com/wilkelab/cowplot 

ggplot2 2.2.1- R library for plotting ggplot2 http://ggplot2.org/ 

UpSetR - R library for plotting (Conway et al., 
2017). 

https://cran.r-project.org/package=UpSetR 

tidyverse 1.0.0 - R library for data 
manipulation 

Tidyverse http://tidyverse.org/ 

magrittr 1.5 - R library for code 
development 

Magrittr https://cran.r-
project.org/package=magrittr/vignettes/magri
ttr.html 

R scripts from wisdom repository This paper https://github.com/hclimente/wisdom 

find.me - R library for plotting This paper https://github.com/hclimente/find.me 

ggstars – R library for plotting This paper https://github.com/hclimente/ggstars 

Anaconda 4.3.1 - Python libraries 
for large-scale data processing 

Continuum Analytics 
 

https://www.continuum.io/why-anaconda 

NetworkX: Python software 
package for the study of 
networks.  

(Hagberg et al., 
2008) 

https://networkx.github.io 
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Data 

Estimated RNA sequencing (RNA-seq) read counts per transcript isoform were obtained from 

the TCGA data portal  (https://gdc.nci.nih.gov/) for a total of 4442 samples for 11 tumor types: 

breast carcinoma (brca), colon adenocarcinoma (coad), head and neck squamous cell 

carcinoma (hnsc), kidney chromophobe (kich), kidney renal clear-cell carcinoma (kirc), kidney 

papillary cell carcinoma (kirp), liver hepatocellular carcinoma (lihc), lung adenocarcinoma (luad), 

lung squamous cell carcinoma (lusc), prostate adenocarcinoma (prad) and thyroid carcinoma 

(thca). Only transcripts with expression TPM > 0.1 were considered. Tumor specific mutational 

and copy-number alteration drivers were collected from Intogen (Gundem et al., 2010) and from 

the TCGA papers for kidney chromophobe (kich) (Davis et al., 2014) and kidney renal papillary 

carcinoma (kirp) (The Cancer Genome Atlas Research Network, 2016). This list included a total 

of 460 unique cancer driver genes, each one defined as a tumor-specific driver for one or more 

tumor types. These genes were annotated as oncogenes or tumor suppressors using the 

annotations provided by COSMIC (Forbes et al., 2015), Vogelstein et al. (Vogelstein et al., 

2013), and by the TSGene database (Zhao et al., 2015). Unlabeled cases were predicted with 

OncodriveROLE (Schroeder et al., 2014) using cutoffs 0.3 (loss-of-function class) and 0.7 

(activating class).  

 

Calculation of significant isoform switches per patient 

We modeled splicing alterations in a gene as a switch between two transcript isoforms, one 

normal and one tumoral. For each transcript, the relative abundance per sample was calculated 

by normalizing its abundance in TPM units by the sum of abundances of all transcripts in the 

same gene, which we called PSI. Then, for each transcript and sample we calculated the 

change in relative abundance as ΔPSI = PSItumor - PSIref, where PSItumor is the PSI value of the 

transcript in a tumor sample and PSIref is the normal reference value, which corresponds to the 

value in the paired normal sample when available or to the median of the PSI distribution in the 

normal samples of the same tissue type, otherwise. We considered significant those changes 

with |ΔPSI| > 0.05 in the comparison between normal and tumor samples and with empirical p < 

0.01 in the comparison of the observed |ΔPSI| value with the distribution of |ΔPSI| values 

obtained by comparing the normal samples pairwise without repetition. We only kept those 
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cases for which the tumor isoform PSI was higher than the normal isoform in the tumor sample, 

and the normal isoform PSI in the normal sample was higher than the value for the tumor 

isoform. Moreover, we discarded genes that either had an outlier expression in the tumor 

sample compared to normal tissues – had expression below the bottom 2.5% or above the 

97.5% of the values of normal expression – or showed differential expression between the 

tumor samples with the switch and the normal samples (Wilcoxon test p-value < 0.01 using the 

gene TPM values).  

Candidate switches were defined per patient and per gene. In some samples, different switches 

could appear in the same gene. We discarded those switches that contradicted a more frequent 

switch in the same gene in the same tumor type. Moreover, we discarded any switch that 

affected a number of patients below the top 99% of the distribution of patient frequency of these 

contradictory switches. Additionally, we filtered out switches that were significantly lowly 

recurrent, i.e. they occurred in fewer patients than expected by chance  (adjusted p-value < 0.05 

binomial test using all tumor types). This imposed extra restrictions in the switches and none of 

the reported switches occured in less than 5 samples. Thus, a switch in a patient sample is 

defined as a pair of transcripts in a gene with no expression change and with significant 

changes in opposite directions that show consistency across a minimum number of patients. We 

aggregated the calculated switches from the different tumor types to get the final list (Table S1). 

For the pan-cancer analyses, if a switch did not pass the frequency threshold in one tumor type 

but was significant in a different tumor type, that switch was also considered.  

 

 

Comparison with stromal and immune signatures 

To determine whether the observed switches merely reflected the cellular content of the 

samples, we measured the significant association with stromal and immune cell content using 

ESTIMATE (Yoshihara et al., 2013). For each switch we performed a Wilcoxon test to compare 

the ESTIMATE scores between patients with and without the switch. After correcting for multiple 

testing (Benjamini-Hochberg method), we found 1108 and 473 exclusively associated (FDR < 

0.05) with stromal and immune cell content, respectively; and 306 associated with both. These 

were eliminated from the final set of isoform switches (Table S1).  
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Relation between transcript isoform switches and local alternative splicing events 

We calculated from the annotation the possible local alternative splicing events of type 

alternative 3’ (A3) and 5’ (A5) splice-site, intron retention (RI), exon skipping (SE), mutually 

exclusive exons (MX), alternative first exon (AF) and alternative last exon (AL) using SUPPA 

(Alamancos et al., 2015). SUPPA provides for each alternative splicing event the set of 

transcript isoforms that contribute to either form of the event. We thus were able to determine 

whether each pair of isoforms describing a switch corresponded to one or more local alternative 

splicing events, and which of the two forms of the event corresponded to the tumor and the 

normal isoform. For instance, we calculated whether an isoform switch describing an exon 

cassette (SE) event corresponded to an increase or decrease of exon inclusion in the tumor 

sample. Accordingly, if the tumor isoform contained the alternative exon and the normal isoform 

did not contain it, the event would correspond to inclusion in tumor. Similarly, if the tumor 

isoform did not have the exon but the normal isoform did, the event would indicate skipping in 

the tumor sample. 

 

Recurrence 

We defined the total number of unique different switches as S and the number of patients with 

switches as P, and the total number of switches occurring in patients as N. Thus, the expected 

frequency of a switch is f = N/(S·P). For a given switch, we then tested the significance of its 

recurrence across patients in each tumor type using a binomial test with the observed patient 

count and the expected frequency f. Switches were considered significantly recurrent for 

adjusted binomial test p-value < 0.05.  

Simulated switches 

We simulated switches between normal and tumor tissues by using genes with more than one 

expressed isoform. For each gene, we selected the isoform with the highest median expression 

across the normal samples as the normal isoform and an arbitrary different transcript expressed 
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in the tumor samples as the tumor isoform. For each gene, we generated a maximum of five 

such simulated switches.  

Functional switches 

A switch was defined as functional if both isoforms overlap in genomic extent and there was a 

change in the encoded protein, including cases where only one of the isoforms has a coding 

DNA sequence (CDS), and moreover there was a gain or loss of a protein feature: Pfam 

domains (Finn et al., 2016) mapped with InterProScan (Jones et al., 2014), ProSite patterns 

(Gattiker et al., 2002); disordered regions from IUPred (Dosztanyi et al., 2005); disordered 

regions potentially involved in protein–protein interactions from ANCHOR (Dosztanyi et al., 

2009); and protein loops (Bonet et al., 2014). Switches between a protein-coding isoform and 

non-coding isoform or between two protein-coding isoform for which we could not map any 

protein feature on the proteins were not be labelled as functional.  

Domain families enriched in switches or mutations 

To determine which protein domain families were significantly affected by switches, we first 

calculated a reference proteome for each tumor type. We selected genes that had an isoform 

with at least 0.1 TPM, and from each of these genes we only kept the isoform with the highest 

median expression across the normal samples of the same tissue type. The proteins encoded 

by these isoforms were considered the reference proteome in each tumor type. We then 

aggregated the reference proteomes from all tumor types to form a pan-cancer reference 

proteome using only genes annotated with multiple transcripts. The expected frequency f(a) of a 

protein feature a that appears m(a) times was then measured as the proportion of this feature in 

the pan-cancer representative proteome: 

f (a) = m(a)
m(b)

b
∑

 

where b runs over all protein features in the reference proteome. We then calculated the 

expected probability of a protein feature to be affected by a switch using the binomial test: 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 19, 2017. ; https://doi.org/10.1101/076653doi: bioRxiv preprint 

https://doi.org/10.1101/076653
http://creativecommons.org/licenses/by-nc/4.0/


 

 

P(a) = n!
k!(n− k)!

f (a)k (1− f (a))n−k  

where k is the number of observations of the domain a being gained or lost and n is the total 

number of gains or losses due to switches. We selected cases with Benjamini-Hochberg  (BH) 

adjusted p-value < 0.05. Additionally, to ensure the specificity of the enrichment for each 

domain class, we considered only domain families affected in at least two switches.  

To calculate domain families enriched in mutations, we considered the reference proteome in 

each tumor type as before. The expected mutation rate of a domain family was considered to be 

the proportion of the proteome length it covered. We aggregated all observed mutations falling 

within each family and calculated the expected probability of the observed mutations using a 

binomial test as before. After correcting for multiple testing, we kept those cases with a BH 

adjusted p-value < 0.05. GO enrichment analysis was performed using DcGO (Fang and 

Gough, 2013). We considered significant those cases with FDR < 0.01 (hypergeometric test).  

 

Protein interaction analysis 

We created a consensus protein–protein interaction (PPI) network using data from PSICQUIC 

(del Toro et al. 2013), BIOGRID (Chatr-Aryamontri et al., 2015), HumNet (Lee et al., 2011), 

STRING (Szklarczyk et al., 2011), and a human interactome derived from the literature and 

experimental data (Rolland et al., 2014). The consensus network consisted of 8,142 nodes with 

29,991 interactions, each found in at least four of these five sources. To find PPIs likely altered 

due to an isoform switch, we first mapped each PPI in a gene to a specific domain–domain 

interaction (DDI). We used information on domain–domain interactions from iPfam (Finn et al., 

2014), DOMINE (Raghavachari et al., 2008), and 3did (Mosca et al., 2014). Domains involved in 

DDIs were then mapped to specific protein isoforms. For the genes with switches, we then 

considered those PPIs that could be mapped to DDIs involving domains mapped in either the 

normal or the tumor isoforms. 3,242 genes with 4,219 switches mapped to one or more 

interactions in the consensus network, and 1,688 isoform switches (in 1,355 genes) were 

mapped to at least one specific DDI. We defined a PPI as lost if it is mapped to one or more 

DDIs in the isoform expressed in the normal tissue but not in the isoform expressed in the tumor 

sample. If multiple domains mediated the same interaction, it was considered lost if at least one 
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of these domains was lost in the switch. On the other hand, we defined a PPI as gained if it was 

mapped to a DDI only in the tumor isoform but not in the normal isoform. For each switch from 

Table S1 in each tumor type we calculated its centrality in the consensus PPI network and the 

distance to the closest tumor-specific cancer gene driver using NetworkX (Hagberg et al., 2008).  

 

Analysis of the interaction network affected by switches 

We considered gene sets consisting of functional and cancer-related pathways (Liberzon et al., 

2015), protein complexes (Ruepp et al., 2009) and complexes related to RNA metabolism 

(Akerman et al., 2015). We calculated the enrichment of PPI-affecting switches in each gene set 

using a Fisher’s exact test based on the separation of switches into being in the gene set or not, 

and affecting PPIs or not (Table S5). Additionally, considering the network formed by the PPIs 

between genes that are either gained or lost through an isoform switch, i.e. we only used the 

connections that are lost or gained, we calculated modules using the multi-level modularity 

optimization algorithm for finding community structures (Blondel et al., 2008) implemented in the 

iGraph R package (http://igraph.org/r/doc/cluster_louvain.html). For each of the gene sets used 

before, we calculated whether it was significantly included in any of the modules using a 

binomial test to estimate the probability of finding by chance the observed number of genes with 

affected PPIs in an arbitrary list of genes of the same size as the gene set (Table S6).  

 

Mutation and copy number analysis 

Mutation information was downloaded from the TCGA data portal for all tumor samples in the 

form of MAF files containing Level 2 somatic mutation calls from whole exome data. 

Additionally, we used somatic mutations from whole genome sequence (WGS) data 

(Fredriksson et al., 2014) for 306 of the samples studied. For copy number alterations (CNAs), 

as done before (Sebestyén et al., 2016), we used CNA regions overlapping at least the full gene 

locus. We considered a CNA loss if the score was smaller than log2(1/2), which means at least 1 

copy is lost; and a CNA gain, if the score was larger than log2(3/2), which means at least 1 copy 

is gained.  
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To measure the association between switches and mutations we measured a Jaccard score. 

For each gene with a switch, given the number of patients with only switches (S), only mutations 

(M) or both (MS), the Jaccard score was defined as MS/(M+S+MS). The Jaccard score 

calculation was carried out using protein-affecting mutations (PAMs) for WES datasets, for all 

mutation types for WGS datasets. In each case we only used patients that had RNA-seq and 

mutation data and we compared the splicing pattern of the patient with its own mutation 

information. For WGS, 306 patients from 8 of the 11 tumor types considered had mutation and 

RNA-seq data, whereas for WES data, 3755 patient samples from all 11 tumor types analysed 

had mutation and RNA-seq data. 

To identify switches significantly associated with pan-negative tumors, we considered the top 10 

drivers according to their frequency of protein-affecting mutations (PAMs) in each tumor type. 

We tested the mutual exclusion between the patients affected by the switch and the patients 

with a PAM in at least the top three drivers using a one-tailed Fisher’s test (Babur et al., 2015). 

From this set, we further considered functional switches that shared functional pathway with a 

driver with which they were also mutually exclusive according to the same test.  
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