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ABSTRACT 41 

The analysis of human whole-genome sequencing data presents significant computational 42 

challenges. The sheer size of datasets places an enormous burden on computational, disk array, 43 

and network resources. Here we present an integrated computational package, 44 

PEMapper/PECaller, that was designed specifically to minimize the burden on networks and disk 45 

arrays, create output files that are minimal in size, and run in a highly computationally efficient way, 46 

with the single goal of enabling whole-genome sequencing at scale. In addition to improved 47 

computational efficiency, we implement a novel statistical framework that allows for a base-by-base 48 

error model, allowing this package to perform as well or better than the widely used Genome 49 

Analysis Toolkit (GATK) in all key measures of performance on human whole-genome sequences. 50 

51 
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INTRODUCTION 52 

 Whole-genome sequencing (WGS) using short reads on the Illumina platform is an 53 

increasingly cost effective approach for identifying genetic variation, with growing potential for both 54 

research and clinical applications1,2,3,4. A critical challenge lies in the development of efficient 55 

algorithms capable of rapidly and accurately identifying variable sites from among the enormous 56 

collection of sequence reads5. Given the large size of eukaryotic genomes, even modest false-57 

positive or false-negative error rates can act as barriers to the success of genetic studies, and 58 

would inhibit the utility of such studies for both research and clinical applications.  59 

 The de facto standard methodology for mapping and calling variants is the so-called 60 

BWA/GATK Best Practices pipeline6, which was devised and validated for whole exome 61 

experiments and has greatly facilitated whole-exome studies for identification of disease causing 62 

variants7-9. While this pipeline can be used successfully at whole-genome scales, there are barriers 63 

to its use, particularly as the number of samples increases. BWA10, Bowtie11, and most other 64 

commonly used read mapping software packages are designed to run in low-memory footprints (i.e. 65 

less than 8 or 16 GB of RAM). Since whole-genome datasets are large (necessarily greater than 66 

100 GB uncompressed for 30x coverage), these read mappers must continuously read and write 67 

large quantities of data to and from the disk. Sorting reads, in particular, is highly disk input/output 68 

(I/O) intensive. While a high-performance disk array can provide the needed I/O performance for a 69 

single instance of BWA/GATK processing6, no disk array can possibly accommodate the I/O 70 

performance required to run multiple GATK instances simultaneously on parallel processors. 71 

Moreover, even if the disk array itself could meet the demand, the network/fiber interconnects 72 

between the array and the computational nodes quickly become saturated. Simply put, while 73 

BWA/GATK Best Practices does an excellent job in a non-clustered environment, the “network 74 

cost” in a clustered environment significantly limits its performance for large whole-genome 75 

sequencing datasets.  76 
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GATK Best Practices has additional limitations.  First, output files can be quite large. BAM 77 

files, required to store sequence alignment data, are almost always larger than the initial fastq files 78 

of nucleotide sequences, and Haplotype Caller output can be nearly half the size of the BAM files. 79 

Thus, total storage requirements to run the pipeline can approach 300GB, compressed, per sample 80 

for WGS data. Second, variant calling begins with individual samples (not collections of samples, 81 

i.e. joint calling), and as a result the distinction between sites called as homozygous reference 82 

genotypes and those called as missing (insufficient evidence to make a call), is not always 83 

maintained. Third, the GATK Best Practices joint genotyping caller, required to generate the highest 84 

quality genotype calls, does not scale well to whole-genome data. As currently implemented, the 85 

joint caller simply will not run on whole genome size files in sample collections larger than 10-20 86 

human genomes, even on computers with 512GB of RAM. This seriously limits the utility of GATK 87 

for large-scale sequencing. Finally, the entire GATK Best Practices pipeline relies upon and uses 88 

enormous quantities of “previous knowledge” about the position and frequency of SNPs (Single 89 

Nucleotide Polymorphism) and indels (Insertion/Deletion Variants). This is both a strength, in that it 90 

leverages outside knowledge to improve performance, and a weakness, in the sense that it makes 91 

its application to non-human systems difficult, and may create biases in variant calling. 92 

Here we describe two software programs intended to overcome the limitations of GATK Best 93 

Practices, called PEMapper and PECaller. PEMapper solves the inherent limitations of the 94 

BWA/GATK pipeline by performing all the necessary read sorting, storing, and mapping procedures 95 

in RAM. Human genome indices are preloaded, and final output is written only once (never 96 

reloaded, resorted, etc.). These technical changes lead to substantial performance gains as 97 

detailed below. PEMapper requires a large RAM allocation (typically nearly 200GB for the 98 

sequence of a whole human genome), but in exchange, does not over burden the network or disk 99 

subsystems. Modern computational clusters, such as those found at many universities or available 100 

from cloud providers (i.e. Amazon Web Services), are well equipped to run many simultaneous 101 

instances of PEMapper in parallel to expedite experiments. Additionally, output from 102 
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PEMapper/PECaller comes in much smaller files, decreasing the long-term storage requirements 103 

for WGS data. (Table 1) 104 

Unlike PEMapper, whose innovations are strictly in implementation, PECaller represents an 105 

intellectual departure from several other genotype-calling models6,12 First, variant detection occurs 106 

simultaneously (joint-calling in the initial stage) in all samples from the same experiment. This is 107 

important because it ensures that the distinction between missing data (data with insufficient 108 

evidence for any genotype), and homozygous reference data are recognized from the inception. In 109 

addition, it allows the imposition of a population genetics-inspired prior on the data and the ability to 110 

fit sophisticated models of read error to help distinguish bases with high error rates from those that 111 

actually harbor variants. The population genetics prior accounts for the fact that most sites are 112 

expected to be invariant, but conditional on the site containing a variant, the variant is expected to 113 

be in Hardy-Weinberg equilibrium. The second innovation of the PECaller method involves the 114 

underlying statistical model used to describe the data. Formally, we assume read depths are drawn 115 

from a Pólya-Eggenberger (Dirichlet-multinomial) distribution, not the more conventional 116 

multinomial assumption. Using a Pólya-Eggenberger distribution allows us to model a nucleotide 117 

base both as having a relatively high “error rate,” but also, importantly, a large variance in that rate. 118 

This helps us reduce false-positive variant calling, while at the same time enabling us to call true 119 

heterozygotes, even when the relative fraction of the two alleles is highly uneven (another common 120 

occurrence).  We show that PEMapper/PECaller, despite not using any information about “known” 121 

SNPs/Indels performs as well or better than GATK Best Practices in all aspects of variant discovery 122 

and calling. 123 

MATERIALS AND METHODS 124 

 The PEMapper/PECaller assumes that a reference target sequence is available, but no other 125 

information is needed. All mapping and genotype calling occurs relative to this reference sequence. 126 

The PEMapper pipeline is composed of a series of three interconnected programs. The first of the 127 

three prepares a hashed index of the target sequence. The remaining two programs form a 128 
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pipeline, with the output of PEMapper forming the input of PECaller. PEMapper is computationally 129 

intensive, but extremely gentle on disk and network subsystem. To make this possible, the 130 

underlying philosophy behind the PEMapper is that memory usage should be sacrificed for speed 131 

and limited I/O. As a result, PEMapper uses approximately 45 bytes of memory per base in the 132 

reference sequence, plus approximately one GB of memory per computational core.   Therefore, a 133 

whole human genome sequence on a 64-core workstation typically uses approximately 200GB of 134 

RAM. The source code is freely available at: https://github.com/wingolab-org/pecaller. 135 

 The first of the three programs in the PEMapper/PECaller is called index_target. Following 136 

BLAT13, Maq, and several other published algorithms, the target region is decomposed into 16 137 

nucleotide reads. The positions of all overlapping 16-mers in the target are stored. This program 138 

needs to be run only once for each target region examined. Unlike GATK Best Practices, this is all 139 

that is needed. No information on “known SNPs” or “indels” or training sets is required or used.  140 

 The next stage, called PEMapper, which also builds on approaches similar to BWA, contains 141 

a small innovation to help enable indel mapping. Reminiscent of several other algorithms, the 16-142 

mers are allowed to have up to one sequence mismatch from the target. Thus, when mapping a 143 

100-base read with a 16-base index, an individual read could have up to six errors and still be 144 

properly mapped, as long as those errors are evenly distributed along the read. However, the 145 

algorithm also allows the 16-mers some “wobble” room, so that relative to each other they can map 146 

a few bases away from their expected location (up to eight bases for a 16-mer). Finally, only half of 147 

the 16-mers need to map in the correct order, orientation, and distance apart from one another. 148 

Positions that satisfy these requirements are taken as “potential mapping” positions. 149 

 PEMapper takes this list of putative mapping locations for each read and performs a Smith-150 

Waterman alignment in each potential location to determine the optimal position and alignment 151 

score. At this stage, reads are rejected if the final Smith-Waterman alignment score is less than a 152 

user-defined percentage of the maximum score possible for the given read length14. For results 153 

described below, we required 90% of the maximum alignment score and used the following 154 
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alignment penalties: match = 1, mismatch = -1/3, gap open = -2, and gap extend = -1/36. The 155 

primary output of PEMapper is the “pileup” statistic for each base in the target. PEMapper pileup 156 

output files include the number of reads where an A, C, G, or T nucleotide was seen, together with 157 

the number of times that base appeared deleted, or there was an insertion immediately following 158 

the base. Thus, each base appears to have six “channels” of data: the number of A, C, G, T, 159 

deletion, and insertion reads. 160 

  161 

The Pólya-Eggenberger distribution  162 

The Pólya-Eggenberger (PE) distribution is a multidimensional extension of the beta-163 

binomial distribution. Although it arises in numerous contexts and was initially described in 164 

connection with an urn sampling model15, for our purposes we view the PE distribution as the result 165 

of multinomial sampling when the underlying multinomial coefficients are themselves drawn from a 166 

Dirichlet distribution16, in the same way the one-dimensional analog, the beta-binomial distribution, 167 

can be thought of as binomial sampling with beta-distributed probability of success. Intuitively, we 168 

envision the six channels of data (number of A, C, G, T, deletion, and insertion reads) as being 169 

multinomially sampled with some probability of drawing a read from each of the channels, but that 170 

the probability varies from experiment to experiment and is itself drawn from a Dirichlet distribution. 171 

The coupling of the Dirchlet distribution with the multinomial distribution is common in Bayesian 172 

inference, as the former distribution is often used as a conjugate prior for parameters modeled in 173 

the latter distribution16. Here, our purpose is subtly different. In Bayesian estimation, the assumption 174 

is that the observations are fundamentally multinomial, but the parameters of that multinomial are 175 

unknown, and the Dirichlet is used to measure the degree of that uncertainty in the parameter 176 

estimates. In the Bayesian estimation case, as the data size gets sufficiently large, convergence to 177 

a multinomial occurs. Here, on the other hand, we assume that the observations are fundamentally 178 

over-dispersed relative to a multinomial, and there is not necessarily a multinomial convergence. 179 
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 At any given base, a diploid sample could be one of 21 possible genotypes (a homozygote of 180 

A, C, G, T, deletion, or insertion, and all 15 possible heterozygotes). We assume that the number of 181 

reads seen in each of the six possible channels (A, C, G, T, Deletion, Insertion) of data for an 182 

individual with genotype j is drawn from a PE distribution in six dimensions. We further assume that 183 

each of the 21 possible genotypes is characterized by its own PE distribution, and that these 21 184 

distributions vary from base to base, but are shared by all samples at a given base. A six-185 

dimensional PE distribution is characterized by six parameters, so let aj be a six-dimensional vector 186 

corresponding to the parameters for genotype j. If ni is a six-dimensional vector containing the six 187 

channels of data observed in individual i at a given base, and if individual i has genotype j, then the 188 

probability of those observations is 189 

𝑃𝐸 𝑛!;𝑎! =
𝑁!

𝑛!,!,𝑛!,!,𝑛!,!,𝑛!,!,𝑛!,!,𝑛!,!
Γ 𝐴!

Γ 𝐴! + 𝑁!

Γ 𝑎!,! + 𝑛!,!
Γ 𝑎!,!

!

!!!

 

 190 

where Ni is the total number of reads observed (Ni = ni,1+ni,2+ni,3+ni,4+ni,5+ni,6) for individual i, Aj is 191 

the corresponding sum of the parameters for genotype j (Aj = aj,1+aj,2+ai,3+aj.4+aj,5+aj,6), and Γ  is the 192 

usual gamma function17. Note that the expected proportion of reads coming from channel k is given 193 

simply by aj,k /Aj. 194 

Genotype calling overview  195 

Genotype calling occurs across all samples simultaneously in a fundamentally Bayesian, but 196 

iterative, manner. First, the PE parameters for all 21 genotypes are set to “default values” and 197 

assumed to be known. Second, the genotypes of all the samples are called in a Bayesian manner, 198 

conditional on the “known” PE parameters. Finally, the PE parameters are estimated, conditional on 199 

the genotypes called in step two. The process then iterates, with the genotypes re-called, and 200 

parameters re-estimated. The iteration continues until either calls no longer change, or a maximum 201 

number of iterations is reached. For all the results described here, the maximum was set at five 202 

iterations, which was seldom reached. 203 
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PE parameter initialization  204 

For all 21 genotype models, Aj is set to either the average read depth across samples or 205 

100, whichever is larger. For homozygote base calls (A, C, G, T, but not indels), the expected 206 

proportion of reads coming from channels different from the channel associated with the 207 

homozygote allele (i.e., the expected proportion of error reads) is set at 1/Aj or 0.3%, whichever is 208 

larger for each channel; thus, at initialization we assume between 0.3% and 1% “error” reads in 209 

every channel. The remainder of the reads are expected to come from the “correct” channel. For 210 

heterozygote genotype calls, the error channels are set similarly, except for the “deletion” channel, 211 

which is expected to have 5% of the reads, indicating a prior assumption that approximately 5% of 212 

true heterozygous reads will map incorrectly as deletions. If the heterozygote genotype does not 213 

involve the reference allele, the remaining reads are expected to come equally to both of the 214 

appropriate channels. On the other hand, if the heterozygote includes the reference allele, we 215 

assume that 52% of the remaining reads map to the reference allele, and 48% to the non-216 

reference. This incorporates our notion that some portion of the time non-reference alleles will not 217 

map, or map incorrectly as indels. 218 

 To meet the challenge of mapping indel variation, we made the following assumptions: for 219 

deletion homozygotes, we again assume a 0.3%-1% read proportion in all the channels that do not 220 

involve the reference allele or the deletion; however, we expect the remaining reads to divide 80% 221 

deletion and 20% reference, indicating our assumption that a substantial fraction of deletion reads 222 

mis-map as reference, even when the deletion is homozygous. When the deletion is heterozygous, 223 

we assume the non-error channels to divide 60%-40% between the reference channel and the 224 

deletion channel. Insertions after the current base are again assumed to have 0.3%-1% reads in 225 

the error channels. For homozygotes, 80% of the remaining reads are expected to include the 226 

reference base and have an insertion afterwards, whereas 20% of the reads will only include the 227 

reference allele. For heterozygous insertions, 40% of the remaining reads are expected to include 228 

both the reference allele and an insertion, and 60% only the reference allele. 229 
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Bayesian genotype calling with a population genetics prior  230 

We assume that m samples have been sequenced. Each of those m samples can be any of 231 

21 possible genotypes. Thus, there are a total of (21)m possible genotype configurations of those m 232 

samples. Let ck be one such configuration. ck is an m-dimensional vector, where element ck,i is an 233 

integer between 1 and 21, and indicates the genotype of sample i. Genotypes of all the samples are 234 

assumed to be independent, and therefore the likelihood of configuration ck is 235 

𝑳 𝒄𝒌,𝒏𝟏,𝒏𝟐,… ,𝒏𝒎 = 𝑷𝑬 𝒏𝒊;𝒂𝒄𝒌,𝒊

𝒎

𝒊!𝟏

 

 Most sites will not be segregating, and all m samples will be identical to the reference allele. 236 

Let c0 be the configuration where all samples are the reference allele. By assumption, the prior 237 

probability that this configuration is 238 

𝑃𝑟𝑖𝑜𝑟 𝑐! = 1− 𝜃
1
𝑖

!!!!

!!!

 

where θ is a user-supplied parameter corresponding to 4Neµ, Ne is the effective size of the 239 

population from which the samples were drawn, and µ is the per-site per-generation mutation 240 

rate18. For humans it is generally assumed to be ~0.00119. All other configurations have at least one 241 

sample with at least one allele different from the reference allele. Let f(ck,r) be the number of non-242 

reference alleles of type r, 0 < r < 6, found in configuration ck. The prior probability of configuration 243 

ck is assumed to be 244 

𝑃𝑟𝑖𝑜𝑟 𝑐! = 1− 𝑃𝑟𝑖𝑜𝑟 𝑐!
𝐻𝑊 𝑐! !

! !!,!! !!,! !!

𝐻𝑊 𝑐!
𝜃

𝑓 𝑐!, 𝑟! !!,! !!!

 

where HW(ck) is the Hardy-Weinberg exact p-value20 associated with configuration ck, and the sum 245 

in the denominator is taken over all (21)m - 1 genotype configurations (but see computational 246 

efficiencies section below). 247 

 Overall, this prior can be summarized as follows. The population from which these samples 248 

are drawn is assumed to be of constant size and neutral, and the reference allele is assumed to be 249 
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the ancestral allele at every site. The prior probability that a site is segregating is the one derived by 250 

Watterson for an infinite-site neutral model18. Conditional on the site segregating, the assumption is 251 

that the site is in Hardy-Weinberg equilibrium, and the derived allele frequency was drawn from an 252 

infinite-site neutral model. Thus, the prior probability is a combination of two terms, one of which 253 

derives from the Hardy-Weinberg p-value, and the other from the number of different alleles seen to 254 

be segregating. Finally, we should note that we have tacitly assumed that all the sequenced 255 

samples are randomly drawn from the underlying population, i.e., not intentionally picked to be 256 

relatives of one another. Alternatively, the user may provide a standard linkage/ped (PLINK 257 

pedigree format)21 to specify the relationship between samples. When this option is invoked, Hardy-258 

Weinberg is calculated only among unrelated individuals (i.e. founders), and for every configuration, 259 

ck, the minimum number of de novo mutations, Dn(ck), is calculated for the configuration. Each de 260 

novo mutation is assumed to occur with user specified probability µ, and the prior probability of the 261 

configuration is modified to  262 

𝑃𝑟𝑖𝑜𝑟 𝑐! = 1− 𝑃𝑟𝑖𝑜𝑟 𝑐!
𝐻𝑊 𝑐! 𝜇!"(!!) !

! !!,!! !!,! !!

𝐻𝑊 𝑐! 𝜇!"(!!)
𝜃

𝑓 𝑐!, 𝑟! !!,! !!!

 

 263 

The posterior probability of configuration ck is 264 

𝑃𝑜𝑠𝑡 𝑐! ,𝑛!,𝑛!,… ,𝑛! =
𝑃𝑟𝑖𝑜𝑟 𝑐! 𝐿 𝑐! ,𝑛!,𝑛!,… ,𝑛!
𝑃𝑟𝑖𝑜𝑟 𝑐! 𝐿 𝑐!,𝑛!,𝑛!,… ,𝑛!!

 

where the sum is taken over all possible genotype configurations (but see below). If 0 < gi < 22 is 265 

the genotype of individual i, then 266 

Pr 𝑔! = 𝑗 = 𝐼 𝑐!,! = 𝑗 𝑃𝑜𝑠𝑡 𝑐! ,𝑛!,𝑛!,… ,𝑛!
!

 

where I(cs,i = j) is an indicator function that equals 1 whenever element i of configuration cs is equal 267 

to j, and is 0 otherwise. Thus, we take the probability that the genotype of individual i is j to be the 268 

sum of the posterior probabilities of the genotype configurations in which we call sample i genotype 269 

j. The PECaller calls sample i genotype j whenever Pr(gi=j) is greater than some user-defined 270 
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threshold, and otherwise the genotype is called “N” for undetermined. For all the results presented 271 

here, the threshold was set at 0.95. 272 

Estimating PE parameters and repeating  273 

Because of local sequence context, the repetitive nature of many organisms’ sequence, and 274 

specific issues with sequencing chemistry as a function of base composition, not all bases have the 275 

same “error” characteristics. Some bases may appear to have a very high fraction of reads 276 

containing “errors,” while other bases have almost none. Some heterozygotes may exhibit nearly 277 

50-50 ratios of the two alleles; others can be highly asymmetrical. To account for this, we wish to 278 

estimate the PE parameters independently at every base. There are three technical challenges to 279 

this. First, and most importantly, the genotypes of the samples are not known with certainty, hence 280 

we do not know with certainty which observations are associated with which underlying PE 281 

distribution. Second, for technical reasons (one lane “worked better” than another, etc.) some 282 

samples may have many more reads than other samples, and we do not want these high-read 283 

samples to dominate our estimates disproportionately. Finally, because it is necessary to estimate 284 

parameters repeatedly, the algorithm must be computationally efficient. With this in mind, we chose 285 

moment-based estimators of our parameters22. 286 

 In principle, we would like to estimate the PE coefficients for genotype j, aj, by averaging 287 

over the observed number of reads seen in every sample that has genotype j; however, we do not 288 

know this with certainty. So, let fi be a six-dimensional vector, where element fi,k = ni,k/Ni contains 289 

the fraction of individual i’s reads that were observed in channel k. Let 290 

𝑊! = Pr 𝑔! = 𝑗
!

!!!

 

𝑀!,! =
Pr{𝑔! = 𝑗}!

!!!

𝑊!
 

𝑉!,! =
𝑓!,!! Pr{𝑔! = 𝑗}!

!!!

𝑊!
−𝑀!,!!  
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Thus, Mj,k and Vj,k are the “weighted” mean and variance in read fraction from channel k among 291 

individuals with genotype j, where both moments are “weighted” by our confidence that the 292 

individual truly is genotype j. Usually, most genotypes will have little weight (i.e., few if any samples 293 

are called that genotype), and even when samples are called that genotype, sometimes there is 294 

little to no variation seen in read fractions (i.e., 100% of the reads come from one channel in all the 295 

samples called that genotype). Let Yj be the number of channels for genotype j that have non-zero 296 

observed variance in read fraction. Thus, 297 

𝑌! = 𝐼(𝑉!,! > 0)
!

!!!

 

where I(Vj,k > 0) is an indicator that genotype j has non-zero variance in channel k. For any 298 

genotype with Wj < 1.5 (i.e., less than two samples called that genotype), or with Yj < 2 (i.e., less 299 

than two channels with variance in read fraction), all PE parameters are returned to their 300 

initialization values. Otherwise, let channel z be the channel with non-zero variance (Vj,z >0), but 301 

minimal mean (Mj,z < Mj,k, for all other k with non-zero variance) estimate 302 

𝑆! =
𝑀!,! 1−𝑀!,!

𝑉!,!
− 1

!,!!,!!!,!!!

!
!!!!

 

𝑎!,! = max  (𝑀!,! , 𝑆! , 1) 

Sj can be thought of as a “leave one out” moment estimate of the “precision” of the PE distribution, 303 

and Mj,k is a first-moment estimate of the mean read fraction in each channel22. Notice that all 304 

channels with a small expected read fraction are rounded up to one (see below). Once the PE 305 

parameters for all the genotype models are estimated, the process repeats, and genotypes are re-306 

called, until genotype calls no longer change, or a maximum of five iterations is reached. 307 

Computational efficiencies 308 

The sample space of configurations is impossibly large. For anything other than a trivially 309 

small number of samples, the sums over the configuration sample space cannot be done. 310 

Nevertheless, the prior distribution is remarkably “flat,” and this can be used to great advantage. If 311 
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two configurations, cu and cv, differ by only a single sample’s genotype, then we know that the ratio 312 

of their prior probabilities is bounded by 313 

𝑃𝑟𝑖𝑜𝑟(𝑐!)
𝑃𝑟𝑖𝑜𝑟(𝑐!)

>
𝜃
4𝑚 

To see this note that the largest difference in prior probabilities occurs when configuration cu has a 314 

single homozygote of an allele not seen in configuration cv. The difference in Hardy-Weinberg p-315 

values associated with this is less than 1/2m20, and the difference due to the number of alleles 316 

segregating is θ/2. Thus, if 317 

𝐿 𝑐! ,𝑛!,𝑛!,… ,𝑛! ≪
𝜃𝐿(𝑐!,𝑛!,𝑛!,… ,𝑛!)

4𝑚  

then 318 

𝑃𝑜𝑠𝑡 𝑐! ,𝑛!,𝑛!,… ,𝑛! ≪ 𝑃𝑜𝑠𝑡(𝑐!,𝑛!,𝑛!,… ,𝑛!) 

The immediate implication of this is that dropping configuration cv from the sum will have little effect 319 

on the posterior probabilities of any of the likely configurations of the genotypes, and a simple, 320 

nearly linear time algorithm to enumerate all the likely configurations and ignore the unlikely ones is 321 

suggested. 322 

 We build the list of likely configurations by moving through the samples one at time. Initially, 323 

we start with a set of 21 configurations that correspond to all the possible genotypes for sample 1. 324 

We calculate the likelihood of all 21 one-sample configurations, and then remove any configuration 325 

with likelihood less than 10-6 times the largest likelihood. Additionally, we always save the 326 

configuration associated with all samples being homozygote reference, because a priori this is the 327 

most likely configuration of samples. Next, to each of the remaining configurations we add all 21 328 

possible genotypes for the second sample, thereby increasing the number of sample configurations 329 

by a factor of 21. However, we again immediately remove all configurations with likelihood less than 330 

10-6 times the largest likelihood. We repeat until we have gone through all m samples. In principle 331 

each step could increase the number of likely configurations by a factor of 21, but in practice it 332 

almost never increases the number by more than a factor of two (i.e., there are almost never more 333 
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than two likely genotypes for one sample), and most of the time it does not increase the number of 334 

configurations at all (i.e., most of the time there is only one likely genotype for a sample). Even 335 

when m is in the hundreds, most bases have only a handful of likely configurations, and seldom is 336 

the total number of likely configurations more than a few thousand. 337 

 PECaller takes advantage of two other computational efficiency tricks. First, HW exact 338 

probabilities are fundamentally discrete and a simple function of the number of heterozygous and 339 

homozygous genotypes. Those values can be calculated ahead of time and stored in lookup tables, 340 

greatly aiding that computation. Second, Pólya-Eggenberger distributions contain several gamma 341 

functions, and although gamma functions can be computationally expensive to calculate, in a 342 

special case, they are cheap. If x is an integer, Γ(x) is equal to (x-1) factorial, so we round all PE 343 

coefficients to their nearest integer greater than or equal to one. PE distributions can be calculated 344 

strictly in terms of factorials, and it is easy to precalculate and store all factorial values less than, 345 

say, 10,000. It should be noted, as well, that all likelihood calculations occur computationally as 346 

natural logs and are raised to an exponential only when necessary for posterior probability 347 

determinations. Thus, as a practical matter, the natural log of factorials is computed and stored. 348 

 Finally, both PEMapper and PECaller can be set to disregard highly repetitive sequences. By 349 

default, during the initial placement of reads, PEMapper ignores any 16-mer that maps to over 100 350 

different locations in the genome. Thus, in order to even attempt Smith-Waterman alignment, at 351 

least half of the 16-mers in a read must map to less than 100 places in the genome. Any read more 352 

repetitive than this is dropped. Similarly PECaller can be given a file in bed format that constitutes 353 

the “target” region to be called. This can be used, for example, to specify the exome-only, for 354 

exome studies, or the non-repeat masked regions of the human genome for WGS studies. Since 355 

variation in repeat-masked regions is both extremely difficult to interpret, and highly prone to 356 

error/mismapping, all the results describe will be for the unique portion of the genome (i.e. non-357 

repeat-masked).   358 

Bisulfite sequencing and other user options  359 
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A possible application of next-generation sequencing is to determine the pattern of 360 

methylation in a given region sequenced. One way of doing this is to first treat the DNA with 361 

bisulfite, which converts C’s to T’s, unless the C has been methylated. Bisulfite treatment can pose 362 

unique challenges for mapping short sequence reads. The PEMapper/PECaller contains a user 363 

option to gracefully handle bisulfite-treated DNA. When the user selects this option, all mapping is 364 

initially done in a “three-base genome,” where C’s and T’s are treated as if they are the same 365 

nucleotide. Indexing of the genome is done in this three-base system, as is initial mapping. Final 366 

placement of reads with Smith-Waterman alignment is done in a four-base system, but C-T 367 

mismatches are scored as if they are perfect matches. The methylation status of any C allele can 368 

then be immediately calculated from the “pileup” files, which gives the number of C and T alleles 369 

mapping at any base. 370 

 Many second-generation sequencing technologies can create both single-ended and pair-371 

ended reads, with either single files per sample, or multiple files per sample. The PEMapper can 372 

take all these forms of data, and for pair-ended data, the user specifies the minimum and maximum 373 

expected distance between the mate-pair reads. For mate-pair data, the PEMapper will first attempt 374 

to place the reads in a manner consistent with the library construction rules, but if no such 375 

placement can be made, it will place one or both reads if they individually map uniquely with 376 

sufficiently high score. 377 

 Throughout the genotype calling section, we assumed that every sample was diploid, and 378 

therefore that there were 21 possible genotypes for any sample at a given base. If the user 379 

specifies that this is haploid data, only six possible genotypes are assumed (homozygotes for any 380 

of the six alleles), and the Hardy-Weinberg p-value is removed from the prior. 381 

WGS  382 

We tested the performance of GATK and PEMapper on 97 WGS samples, sequenced as 383 

part of the International Consortium on Brain and Behavior in 22q11.2 Deletion Syndrome (IBBC; 384 

www.22q11-ibbc.org). The collaboration, an initiative supported by the National Institute of Mental 385 
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Health, combines genomic with neuropsychiatric and neurobehavioral paradigms to advance the 386 

understanding of the pathogenesis of schizophrenia (SZ) and related disorders, given the high risk 387 

for these conditions (> 1 in 4), in individuals with the 22q11.2 deletion23. Rigorous approaches are 388 

applied across the IBBC to characterize the phenotypes, the 22q11.2 deletion and the remaining 389 

genome. DNA samples from 97 participants 24,25 each with a typical 2.5 Mb hemizygous 22q11.2 390 

deletion. Eight of these participants have previously published WGS data using different methods25. 391 

All samples were sequenced at the Hudson-Alpha Institute of Biotechnology (HAIB, 392 

Birmingham, AL) on Illumina HiSeq-2500 machines, using their published protocols. Briefly, the 393 

concentration of each DNA sample was measured by fluorometric means (typically PicoGreen 394 

reagent from Invitrogen), followed by agarose gel electrophoresis to verify the integrity of DNA. 395 

Following sample quality control, all samples with passing metrics were processed to create a 396 

sequencing library. For each sample, 2 µg of blood-extracted genomic DNA was sheared with a 397 

Covaris sonicator, the fragmented DNA was purified, and paired-end libraries were generated using 398 

standard reagents. Yields were monitored following sonication, ligation, and at the complete library 399 

stage with additional PicoGreen quantitation steps. Every library in the project was tagged with a 400 

two-dimensional barcode that leverages the Illumina sequencer’s ability to perform four sequencing 401 

reads per run (two data reads and two index reads). Two types of quality control were performed on 402 

each library prior to sequencing. First, the size distribution of the library was determined with a 403 

Perkin-Elmer/Caliper LabChip GX to verify a correctly formed and appropriately sized library. To 404 

avoid overlapping reads, a physical size of 500-600 bp was verified on the Caliper or Agilent 405 

instrument. This observed physical size corresponds to an alignment-based insert size of slightly 406 

over 300 bp. The second step in the quality-control process was a real-time, quantitative PCR 407 

assay with universal primers to precisely quantity the fragments that are able to be sequenced in 408 

the library. The real-time PCR results, in combination with the size data, were used to normalize all 409 

libraries to a 10-nM final concentration. Following quality control, each plate of 96 libraries was 410 

pooled into a single, complex pool. The final library pool was sequenced on a test run using the 411 
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Illumina MiSeq instrument and a paired-end 150-nt sequencing condition with indexing reads. The 412 

data from the MiSeq served as a final quality control step for both samples and the libraries. 413 

Libraries that passed QC were subjected to full sequencing on the Illumina HiSeq 2500 instruments 414 

according to current Illumina protocols, essentially as described in Bentley, 200826. The unique 415 

barcoding features of the described library construction allow up to 96 samples to be pooled and 416 

sequenced simultaneously. Of these samples, 93 were also run on Illumina Omni 2.5 genotyping 417 

arrays (http://www.illumina.com/techniques/popular-applications/genotyping.html) which served as 418 

an additional sequencing quality control. 419 

PEMapper/PECaller methods 420 

PEMapper was run on Amazon Web Services r3.8xlarge instances with 32 CPUs with 421 

244GB of RAM for each sample. Globus Genomics (www.globus.org) was contracted to facilitate 422 

the running of PEMapper on AWS. A PEMapper workflow is available through Globus, which 423 

leverages batch submission, such that multiple samples can be submitted for mapping 424 

simultaneously. The sequencing files (fastq format) were uploaded to AWS via Globus, and the 425 

PEMapper output is subsequently returned to the user’s local machine. PEMapper was run with all 426 

default parameters, and a 90% threshold for Smith-Waterman alignment. PECaller was run with a 427 

default theta value of 0.001 (See results), and a 95% posterior probability for a genotype to be 428 

considered called (less than 95% is reported as “missing” or “N”).   Sites with less than 90% 429 

complete data were dropped.  All mapping and genotyping occurred relative to the human HG38 430 

reference, as reported by the UCSC Genome Browser on July 1, 2015.  We report results only for 431 

the non-repeat-masked portion of the genome.  432 

End user instructions 433 

Running the PEMapper/PECaller pipeline is very straightforward for an end user. One begins 434 

with fastq files from whole-genome sequencing (the number doesn’t matter, how ever many 435 

represent the complete sequencing of the sample of interest). If the end user has opted to use the 436 

Globus Genomics pipeline on AWS, the fastq files are uploaded to the PEMapper workflow and the 437 
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user receives three important files in return: a pileup file, a summary file, and an indel file. If the end 438 

user is running PEMapper locally, he or she must have a copy of the reference genome and load 439 

that into memory before running PEMapper with the map_directory_array.pl script. In either case, 440 

the user will run PECaller locally. To do so, one gathers the pileup and indel files for each sample to 441 

be processed in a single folder. The script call_directory.pl is used to launch PECaller. That 442 

generates a .snp file (containing all SNPs, but no indels, in an unsorted list) as output. Then 443 

merge_indel_snp.pl is run to merge the indels into the list of SNPs. This produces a merged snp file 444 

(containing SNPs and indels in a sorted list). This file can be converted simply to a PLINK pedigree 445 

format, and represents the primary output of the pipeline. Several additional scripts permit easy 446 

quality control assessments of the data. The first script, snp_tran_counter.pl generates a file with 447 

transition-to-transversion (Ts/Tv) information about the samples. At this point, the web-based 448 

annotation program, Seqant (http://seqant.genetics.emory.edu/)27 can be used to annotate the 449 

merged .snp file. Finally, a second script, snp_tran_silent_rep.pl takes the output from SeqAnt and 450 

generates a file with silent/replacement information about the samples. 451 

GATK methods 452 

The initial steps of GATK, BWA and Haplotype Caller, were similarly run on Amazon Web 453 

Services r3.8xlarge instances with 32 CPUs with 244GB of RAM for each sample. Globus 454 

Genomics (www.globus.org) was also contracted to facilitate the running of GATK. A GATK 455 

workflow is available through them that runs, in order, BWA v0.7.12-r1039, sambaba v0.5.4, and 456 

GATK v3.5-0-g36282e4. The reference genome utilized was hg38, downloaded from the Broad 457 

Institute. This workflow leverages batch submission, such that multiple samples can be submitted 458 

for mapping simultaneously. The sequencing files (fastq format) were uploaded to AWS through 459 

Globus and the GATK output (BAM and VCF files) was subsequently returned to the user’s local 460 

machine. 461 

Joint genotyping and variant recalibration were done in GATK v3.6 locally, in batches of 10 462 

samples due to the intensive computational load. The joint genotyping and variant recalibration 463 
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tools were run on nodes with 64 cores and 512GB of RAM. All mapping and genotype calling was 464 

relative to same reference hg38 genome in PEMapper/PECaller, with SNP sets, etc taken from the 465 

hg38 resource bundle provided by GATK. All repeat-masked regions of the genome were dropped. 466 

The Unified caller would not run on the entire 97 sample dataset even on compute nodes with 467 

512GB of RAM free (it always eventually reported an “out of heap space” error whether run on the 468 

whole genome or each chromosome separately). We attempted to run the unified caller on 469 

subsequently smaller batches of data: it would complete in a batch size of 10 genomes, but failed at 470 

a batch size of 20. Results below are from nine batches of 10 samples each, and one batch of 471 

seven. 472 

RESULTS 473 

Performance of PEMapper/PECaller  474 

The simplest measure of variation, named theta18, counts the number of heterozygotes 475 

called per sample per base. Theta is estimated to be somewhere between 0.0008 in 0.001 in 476 

humans19,28. Figure 1 shows theta for each of the 97 sequenced human genome samples that 477 

passed QC (see Methods). Most remarkable is the extremely consistent levels of variation called 478 

between samples, with individuals ranging from .0007899 to .0008204. The overall variation levels 479 

are consistent with previous estimates. 480 

False-positive calling  481 

Our analysis provides ample evidence that this called variation contains very few false positive 482 

findings (non-variant sites called variant in error). Sequence changes from A->G, G->A, C->T, and 483 

T->C are called “transitions.” All other changes are called “transversions.” There are twice as many 484 

transversions possible as transitions. Many mutational mechanisms favor transitions over 485 

transversions (oxidative deamination, etc.). Selection also likely favors transitions over 486 

transversions (much more likely to be silent in exons, more similar binding for transcription factors, 487 

e.g. wobble binding). On the other hand, random genotype calling error likely results in increased 488 

transversions (because there are twice as many ways to get a transversion as a transition when 489 
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you make an error). Thus, real data ought to be enriched for transitions over transversions, and 490 

false data ought to be enriched for transversions. Picking nucleotides at random would give a 0.5:1 491 

transition-to-transversion ratio. It is widely believed that the overall transition-to-transversion ratio is 492 

approximately 2.0 in humans (http://genome.sph.umich.edu/wiki/SNP_Call_Set_Properties). For 493 

every sample in this study, the transition-to-transversion ratio was between 2.042:1 and 2.051:1 494 

(Figure 2). Looking at the entire collection of variants, the ratio was 2.073:1. This overall ratio can 495 

be used to estimate the fraction of false-positive variant calls. If we assume the “true” ratio is 2.12:1, 496 

a value determined from all variants called both by PEMapper/PECaller and GATK (see below), 497 

and we assume that false-positive variant calls have a ratio of 0.5:1 (as expected by chance), then 498 

an observed ratio of 2.073:1 implies that, over the entire 97 samples, approximately 3% of the 499 

variants were false positives. On a per-sample basis, less than 1 in 3000-5000 called variants per 500 

sample were false positives. The data quality from PEMapper/PECaller compares favorably to other 501 

NGS analytical tools29. 502 

Exonic variation  503 

In general there ought to be far less variation in exons than in the genome as a whole. In 504 

these samples, we saw Theta in exons to be between 0.0004284–0.0004550 per sample (Figure 505 

3), i.e. slightly more than half its value for the genome as a whole. We also found a much higher 506 

transition-to-transversion ratio (2.963:1 to 3.130:1) (Figure 4), consistent with selection for 507 

transitions in exons. Of the variants in exons, one expects approximately half to be “silent” (making 508 

no change to the amino acid sequence) and half to be replacement (changing the amino acid 509 

sequence). The average silent-to-replacement ratio27 per sample was 1.101:1, with a range from 510 

1.074:1 to 1.127:1 (Figure 5). On average, there were approximately ~20,000 variants in the 511 

CCDS-defined (Consensus Coding Sequence Project, 512 

https://www.ncbi.nlm.nih.gov/projects/CCDS/CcdsBrowse.cgi) exome of each individual. Over the 513 

entire collection of sites, 44.54% of all exonic variants were silent. This number is remarkably 514 
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similar to published estimates from 100x whole-exome sequencing30. Of note, Tennessen et al. 515 

restricted themselves to ~16,000 well-covered genes, where here we use the whole CCDS exome. 516 

Calling Rare Variation 517 

 Naively we might imagine most false positives to be in the “singleton” category, i.e. variants 518 

seen only once in our sample set.  Here, singletons have a Ts/Tv ratio of 2.105 to 1, better than the 519 

PEMapper/PECaller average of 2.073 to 1, and very close to Ts/Tv ratio of the overlap set between 520 

GATK and PEMapper/PECaller. So singletons, despite the additional potential for false positive 521 

calls, actually appear to be as reliable or more reliable than the set of all sites.  522 

dbSNP 146 contains all variants currently reported in the ExAC7 dataset, as well as all 523 

variants discovered by 1000 Genomes31.  An exonic variant not found in dbSNP 146 is almost 524 

surely either a false positive call, or a variant that is exceedingly rare in the general population.  525 

Exonic sites that change the amino acid (replacement sites) and are not found in dbSNP should be 526 

the category of variation most enriched for false positive calls. For the entire set of replacement 527 

SNPs, the Ts/Tv ratio is 2.173. Replacement SNPs in dbSNP are 2.254, while those not in dbSNP 528 

are 1.762. For singleton replacement SNPs, the Ts/Tv ratio is 2.328. Singleton, replacement SNPs 529 

in dbSNP are 2.562, while those not in dbSNP are 1.846.  This set of singleton replacement sites 530 

that are not found in dbSNP is the set that ought to be most enriched for false positives. In spite of 531 

this, replacement sites that are not in dbSNP have a TS/TV ratio only ~10% lower than SNPs 532 

overall, suggestive that while this set may be the most enriched for false positives of any possible 533 

set, it is still comprised largely of true positive calls. 534 

Completeness and accuracy  535 

Overall, more than 98.4% of the non-repeat-masked genome had high-quality calls. As 536 

expected, more than 99% of these sites were called homozygous reference in all 97 samples. At 537 

sites called variant in at least one sample, our overall data completeness was 99%. Most of these 538 

samples (93) were also genotyped on Illumina 2.5M arrays. These arrays provide over 140 million 539 

genotypes that can be compared to the sequence-called genotype. Over these 140 million 540 
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genotype calls, PECaller data were 99.85% complete, and agreed with array call 99.76% of the 541 

time. Partitioning these numbers by array-called genotype, we note that if the genotyping array 542 

called “homozygote reference,” the sequencing call was 99.95% complete and agreed 99.94% of 543 

the time. If the array called a “heterozygote,” the sequencing was 99.81% complete and agreed 544 

99.23% of the time. Finally, if the array called a “homozygote non-reference,” the sequencing was 545 

99.88% complete and agreed with the array 99.56% of the time.  546 

Lack of agreement between sequencing- and array-based calls can be due to errors in either 547 

the array or the sequencing call. One can show that, if the arrays are 99.8% accurate regardless of 548 

true genotype, the agreement level above is consistent with sequencing being 99.9% accurate 549 

overall, i.e. if arrays are only 99.8% accurate, most of the disagreements between array and 550 

sequencing are due to array errors. 551 

Rare variant false negatives  552 

While the overall completeness and accuracy at high-frequency sites is excellent (99.85% 553 

complete and more than 99.76% accurate), it is possible that data completeness and accuracy at 554 

low-frequency variants might be considerably worse. This could occur because joint calling of 555 

samples can increase one’s confidence for high-frequency variants, while providing comparatively 556 

little benefit for rare variant calling. To assess the probability of “missing” rare variants, we look at 557 

variants called by the Illumina 2.5M array where the variant allele was observed in only one of our 558 

samples. In this collection of ~40,000 “singleton” variants, we do not see evidence for increased 559 

missing data rates in singleton variants, with only 0.24% missing data. We also do not find any 560 

substantial genotyping error in these variants, assuming the array is less than 99.991% accurate at 561 

sites where all samples are homozygote.  562 

Performance of GATK  563 

We have run the complete “Best Practices” pipeline, including the latest version (3.6) of the 564 

“Haplotype Caller” (HC) and complete joint-calling with variant recalibration and filtering on the 97 565 

samples6,12. PEMapper appears to perform as well or better than GATK in all measurable ways. 566 
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GATK tends to conflate missing data with error. VCF files do not report sites that do not have high 567 

quality variant sites in at least one sample. Thus, if a site is not in the VCF file, it is not immediately 568 

clear whether the site is “missing” (insufficient evidence) or “error” (falsely believed to be high 569 

quality and reference). To try to disentangle the two in a way that displays GATK in the best 570 

possible light, we imposed the following rules. If a site was not in the VCF file, and the array called 571 

homozygous reference at the site in the sample, those sites were scored as “complete” and “agree” 572 

with the array. If a site was called variant by the array in at least one sample, but missing from the 573 

VCF file, this site was called “missing” in individuals who are not homozygous reference.  574 

GATK calls two classes of SNPs: PASS (their highest quality calls) and Tranche99.9to100 575 

(their second highest quality, called Tranche99.9 hereafter). Using this paradigm, GATK find theta 576 

in these samples to be .000829 (.000792 coming from PASS and .0000371 coming from 577 

Tranche99.9). GATK finds the transition-to-transversion (Ts/Tv) ratio to be 2.09 for PASS, and 578 

1.439 for Tranche99.9, indicating that variants in Tranche99.9 are not especially trustworthy and 579 

are quite likely to be false positives.  580 

GATK exonic variation 581 

GATK finds the value of theta in the exomes of these samples to be between .00041 and 582 

.00043, averaging .00423 in PASS variants. Using both PASS and Tranche99.9, theta in exomes 583 

averages .000458. The Ts/Tv ratio in exons averages 3.086 in PASS variants and 1.88 in 584 

Tranche99.9 variants. The silent-to-replacement site ratio averages 1.131 in PASS sites and 0.613 585 

in Tranche99.9 sites, again suggesting that Tranche99.9 variants are not high quality. The 586 

individual samples averaged ~19,000 exonic variants identified by GATK PASS. 587 

GATK vs PEMapper/PECaller    588 

To a great extent, PEMapper/PECaller and GATK generally make the same genotype calls 589 

at variant sites in the same samples. This is a remarkable achievement for PEMapper/PECaller, 590 

given the impressive accuracy and extensive use of training set data for GATK32,33. Over all 97 591 

samples, PEMapper called 6,588,872 SNPs (single nucleotide polymorphisms with exactly two 592 
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alleles) (Figure 1) with an overall transition to transversion ratio of 2.07 to 1. In category PASS 593 

there are 6,338,222 SNPs with at Ts/Tv ratio of 2.09 to 1, of these 6,241,660 (98.4%) were also 594 

called by PECaller. In Tranche99.9 there were 424,564 SNPs with a TS/TV ratio of 1.25 to 1. Of 595 

those “only” 145,373 variants were called in common with PECaller, and those SNPs had a much 596 

better Ts/Tv ratio than Tranche99.9 overall (1.72 to 1). The PASS GATK calls not made by 597 

PECaller (96,562) had a Ts/Tv ratio of 1.25 to 1. The Tranche99.9 GATK calls not made by 598 

PECaller had a Ts/Tv (266,521) ratio of 1.06 to 1. Finally PECaller SNPs not called by GATK 599 

(197,660) had a Ts/Tv ratio of 1.31 to 1. (Table 2, Figure 2) Overall, this means that 600 

PEMapper/PECaller calls slightly more variants that GATK PASS, and slightly fewer than GATK 601 

TOTAL (PASS+Tranche99.9). SNPs called by GATK, but not PEMapper/PECaller look to be of 602 

worse quality than SNPs called by PEMapper/PECaller but not GATK. The performance of 603 

Tranche99.9 SNPs in all ways suggests that they should probably not be used for analysis, as they 604 

are likely to have significant numbers of false positives. 605 

Using the Illumina 2.5M Array as the gold standard, we were able to compare the 606 

completeness and accuracy of both PEMapper/PECaller and the GATK pipeline. Across the board, 607 

PEMapper/PECaller outperformed GATK, albeit only slightly (Table 3). If the array called 608 

homozygous reference, PEMapper/PECaller was 99.95% complete and 99.94% agreed with the 609 

array, compared to GATK with 98.98% complete and 99.83% agreed. If the array called 610 

heterozygous, PEMapper/PECaller was 99.81% complete and 99.23% agreed with the array, 611 

compared to GATK with 99.31% complete and 99.78% agreed. If the array called homozygous non-612 

reference, PEMapper/PECaller was 99.88% complete and 99.56% agreed with the array, compared 613 

to GATK with 99.68% complete and 99.15% agreed. Overall, PEMapper/PECaller was 99.85% 614 

complete and 99.76% agreed with the array, compared to GATK with 99.82% complete and 615 

99.74% agreement with array. 616 

Essentially, both callers are primarily “limited” by microarray based errors. This means it may 617 

be that both callers are nearly always getting the right answer, when the array is correct, and when 618 
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the array is in error, they differ, in differing ways. To a first approximation the difference between 619 

the two can be summarized, as GATK is slightly more likely than PEMapper to fail to report a site 620 

called variant by the array. The sites that GATK excludes, but PEMapper calls, are slightly more 621 

likely than average to disagree between PEMapper and the array. There is certainly no evidence 622 

that GATK is doing a substantially better job than PEMapper. We also point out that all of this is 623 

despite the fact that GATK is using knowledge about the position of high-frequency variants to help 624 

align sequences and set thresholds for calling. PEMapper/PECaller uses none of this information, 625 

and is mapping and calling variants “naively,” and yet achieves the same overall results. 626 

In a slightly different comparison experiment, we know that with the Illumina arrays, GATK 627 

and PECaller we have three separate sets of calls.  Dropping any call that is “missing” in either the 628 

array, GATK or PECaller, there are approximately 140 million genotypes called in common between 629 

the arrays and either GATK and PECaller, and over 633 million variant calls that can be compared 630 

between GATK and PECaller.   For each of the three we can assume that one of the three is the 631 

“gold standard” for accuracy and ask what the error rate is at variant sites, relative to this gold 632 

standard.  These results are shown in Table 4. Several conclusions can be drawn. First, all three 633 

are excellent, and in close agreement. Second, GATK looks to be a slight outlier. If GATK is set as 634 

the “gold standard,” both the array and PECaller appear to have approximately a 1% error rate at 635 

heterozygous sites, and incredibly low error rates at homozygous sites. Conversely, when 636 

comparing GATK to the array gold standard, heterozygotes appear to have an excellent error rate, 637 

but homozygous non-reference calls have an abnormally high error rate. The simplest explanation 638 

of both these observations is that GATK is slightly “over-calling” heterozygotes at the expense of 639 

homozygous calls, but only very slightly, as overall calling is truly excellent. 640 

Insertion and deletion comparisons 641 

Calling of insertions and deletions was not as identical as calling SNPs between the 642 

pipelines, but was still quite consistent. Overall, PECaller called 406,015 small deletions of which 643 

84% (342,094) were called in exactly the same position by GATK.   PECaller also called 212,272 644 
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insertions, of which 84% (178,478) were called by GATK.  In the other direction, GATK called many 645 

more indels than PECaller. A total of 37% of deletions called by GATK, and 57% of its insertions, 646 

were not called by PECaller.  This is primarily due to the fact that the Smith-Waterman mapping 647 

parameters in PEMapper were set to largely drop any read with a large (larger than ~10bp) indel. It 648 

should also be noted, that the comparison required the indel to be called in exactly the same 649 

position i.e. not even one base different from one another. In even slightly repetitive sequence, 650 

precise indel position is often unknowable, and it is hardly surprising that indels called by one 651 

algorithm are sometimes given slightly different positions by another. Looking at the comparison of 652 

indel genotype calls between the two pipelines, at sites called heterozygous deletions by PECaller, 653 

98% were also called heterozygous deletions by GATK. Homozygous deletions identified by 654 

PECaller were called homozygous deletions by GATK 97% of the time. Insertions were slightly less 655 

consistent with 93% of heterozygous insertions and 94% of homozygous insertions called in 656 

common. Calling at indel sites was somewhat worse than SNPs, but still remarkably consistent, and 657 

indicative of excellent results from PEMapper/PECaller34. 658 

Exome comparison 659 

 Given that Tranche99.9 variants are of poor quality, we look at only the comparison between 660 

PEMapper/PECaller and GATK PASS variants in the exome. Overall, PEMapper/PECaller calls 661 

~1000 more variants per exome than GATK PASS (Figure 3). The statistics for these variants are 662 

nearly identical, with PEMapper/PECaller producing a Ts/Tv ratio of 3.06 compared to 3.09 for 663 

GATK. (Figure 4) PEMapper/PECaller produced a silent/replacement ratio of 1.11 compared to 664 

1.13 for GATK (Figure 5). Essentially, GATK appears to use its prior knowledge of variant locations 665 

to find slightly more silent sites, but may call slightly fewer potentially novel exonic replacement 666 

variants because it is limited by the existing variant lists. 667 

Computational time 668 

 The PEMapper and PECaller pipeline is dramatically faster than the GATK pipeline. In both 669 

cases, the first half of the pipeline was run off-site, using AWS (Amazon Web Services) resources, 670 
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because the best practices requires read sorting that cannot be run in parallel on our local cluster 671 

because our cluster (like many others) uses a shared disk array environment. Total CPU time will 672 

scale similarly since all AWS instances use the same number of processors. Likewise, in both 673 

cases, the second half of the pipeline was run locally using the Emory Libraries and Information 674 

Technology’s “Tardis” resource. This computing cluster offers 12 nodes, each with 64 cores and 675 

512GB of RAM. We report wall clock time for these tasks as well. This results in a fair comparison 676 

wherein the time to map and call 97 genomes is ~1.2 days using the PEMapper/PECaller pipeline 677 

and ~3 days using the GATK BWA/Haplotype Caller pipeline per genome analyzed (Table 5). Thus, 678 

PEMapper/PECaller is more than twice as fast even when all disk operations occured in an isolated 679 

disk environment.  In a shared disk environment we could only run PEMapper. It should further be 680 

noted that PECaller jointly called the entire batch of 97 samples, something the GATK Unified 681 

Caller was incapable of doing, even on a node with 512gb of RAM. Some of the time saved using 682 

AWS is due to the fact that the GATK output is significantly larger than the output from PEMapper 683 

(approximately 150GB per sample), so the data transfer time is longer, but given that it averaged 684 

approximately over 30MB per second of transfer, this additional download time added only 685 

approximately 1.5 hours per genome. Additionally, PECaller output requires less than one tenth the 686 

data storage space as GATK. (Table 1) Including the raw sequencing data, PEMapper/PECaller 687 

requires only 40% of the storage space that GATK requires for the same sample. Finally it should 688 

be noted that since PECaller called all samples in a single batch, which allowed missing data 689 

versus homozygous reference allele calls to be distinct for all samples. 690 

 All of this means that it is both faster and easier to run PEMapper/PECaller than the GATK 691 

pipeline for studies with more than even a handful of samples. It is also less expensive, due to the 692 

reduced usage of computational resources. Taken together, this enables more genomes to be 693 

analyzed, allowing for larger study sizes. 694 

Discussion 695 
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 The future of genomics is WGS on 1000s+ of genomes. Analyzing that many genomes at 696 

once, both efficiently and accurately, is a tremendous computational challenge. The GATK Best 697 

Practices pipeline is the de facto standard for analysis of sequencing data. This is because it does 698 

an excellent job, and has proven its utility in vast numbers of exome studies. While a user may be 699 

well-advised to continue using the GATK pipeline for exome analysis, or small numbers of whole 700 

genomes35, we show here that PEMapper/PECaller is the decidedly better option for large-scale 701 

mapping and calling of genomes36. PEMapper/PECaller is significantly more efficient than GATK, 702 

requiring fewer computational resources and storage space, and thus costing less5. 703 

PEMapper/PECaller manages to do this while providing nearly identical (or better) calling quality 704 

than GATK. PEMapper/PECaller also doesn’t rely on any more outside information than a reference 705 

genome, making it applicable to both human and non-human sequencing studies. 706 

 PEMapper/PECaller completely overcomes the technical challenges of GATK Best 707 

Practices. It runs well in a shared disk environment. Batch calling can occur in batches of hundreds 708 

to thousands of whole genomes easily (although computation time scales as Nlog(N) of batch size). 709 

All sites are output, together with a confidence score, so that the missing versus homozygous 710 

reference distinction is always maintained trivially. This distinction is important as it allows 711 

straightforward implementation of GWAS style QC procedures – e.g. sites can be filtered on call-712 

rate and Hardy-Weinberg. The most natural way to handle these data is simply to convert them to 713 

PLINK format, QC and analyze them like any other GWAS, except that these data just happens to 714 

include all the rare and common sites from the onset. 715 

 Overall, GATK Best Practices and PEMapper/PECaller make identical calls at almost every 716 

site. When they differ from one another there is evidence that neither is very reliable. GATK Best 717 

Practices achieves its excellent results in large part by incorporating pre-existing knowledge into the 718 

pipeline. Reads are re-aligned based on preexisting knowledge of SNPs and Indels. Variants are 719 

classified, filtered, or dropped based on extensive training sets of known human variants. 720 

PEMapper/PECaller achieves essentially the same result based on no specific prior knowledge, but 721 
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an intelligent genotyping model that uses nothing more than the observed data at hand. In principle, 722 

the PECaller variants could be similarly filtered/tranched/etc., but we show there is no obvious 723 

need. By not using any preexisting knowledge, PEMapper/PECaller is far easier to use in non-724 

human systems. 725 

 PEMapper/PECaller is not only much simpler to use than GATK Best Practices, but it 726 

produces data that are of the same or very slightly higher quality. It is clear that either calling 727 

platform is more than adequate to support modern genetic studies37, but PEMapper/PECaller is far 728 

easier to run, uses less computational time and storage, and behaves far better in a shared disk 729 

environment. This will enable researchers to analyze large numbers of whole genomes sequences 730 

both faster and more efficiently. Using PEMapper/PECaller to map and call large-scale genome 731 

sequencing will also further precision medicine efforts38. Large studies utilizing whole-genome 732 

sequences are now much easier to complete computationally using PEMapper/PECaller by 733 

reducing the currently most challenging bottleneck from experiments of this type.  734 

  735 

     736 

737 
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Table 1 758 

GATK   
 FASTQ files 78.9 GB 
 BAM file 115 GB 
 Individual VCF file 53 GB 
 Combined VCF file (per sample) 0.561 GB 
 TOTAL ~247.5 GB 
   
PEMapper/PECaller   
 FASTQ files 78.9 GB 
 Pileup file 7.8 GB 
 Mapping files 4 GB 
 SNP file (per sample) 0.035 GB 
 Indel file 0.0001 GB 
 TOTAL ~91 GB 
 759 

Table 1: Data storage requirements for a single sample using each pipeline 760 

 761 

 762 

Table 2 763 

Category Number of Variants Called Ts/Tv Ratio 
PEMapper/PECaller 6,588,872 2.07:1 
GATK PASS 6,338,222 2.09:1 
GATK 99.9 424,564 1.21:1 
PEMapper/PECaller and GATK 99.9 145,373 1.72:1 
GATK PASS but not PEMapper/PECaller 96,562 1.25:1 
GATK 99.9 but not PEMapper/PECaller 266,521 1.06:1 
PEMapper/PECaller but not GATK 197,660 1.31:1 
 764 

 765 

Table 2: Comparison of number of variants called, and the Ts/Tv ratio for those variants, between 766 

PEMapper/PECaller and GATK. Variants not called by PEMapper/PECaller (but called by GATK) 767 

are of worse quality than those not called by GATK (but called by PEMapper/PECaller). 768 

 769 

 770 

 771 

 772 
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Table 3 773 

 PEMapper/PECaller GATK 
Variant Call Type Completeness Accuracy Completeness Accuracy 
Homozygous Reference 99.95% 99.94% 99.98% 99.83% 
Heterozygote 99.81% 99.23% 99.31% 99.78% 
Homozygous Non-reference 99.88% 99.56% 99.68% 99.15% 
Overall 99.85% 99.76% 99.82% 99.74% 
 774 

Table 3: Comparison of calling completeness and accuracy compared to the Illumina 2.5M array 775 

gold standard for PEMapper/PECaller and GATK. PEMapper/PECaller performs slightly better than 776 

GATK. 777 

 778 

 779 

Table 4 780 

 781 

 Illumina Array as Gold Standard 
(130+ million) 

PECaller as Gold Standard GATK as Gold Standard 

 PECaller 
(140 million) 

GATK 
(140 million) 

Array 
(140 million) 

GATK 
(630 million) 

Array 
(140 million) 

PECaller 
(630 million) 

Homozygote Ref 0.00061 0.00174 0.00224 0.00157 0.00080 0.00136 
Heterozygote 0.00766 0.00217 0.00351 0.00712 0.01032 0.01132 
Non-ref Homozygote 0.00439 0.00849 0.00123 0.00739 0.00107 0.00240 
All Genotypes 0.00235 0.00261 0.00235 0.00300 0.00261 0.00300 
 782 

Table 4: Comparison of error rates using three possible gold standards (Illumina array, PECaller 783 

calls, GATK calls). When Illumina array calls are the gold standard, PECaller has much less error in 784 

homozygous reference and homozygous alternate calls, while having more in heterozygous calls. 785 

Overall, PECaller has slightly less error. Using all three it is possible to discern that GATK is over-786 

calling heterozygotes at the expense of homozygous calls. 787 

 788 

 789 

 790 

 791 

 792 
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 793 

Table 5 794 

 795 

Time to run mapping and calling 

GATK (BWA and Haplotype Caller in parallel on 
AWS) 

70.6 +/- 9 hours per genome 

GATK Unified Caller (batches of 10 genomes) 0.21 hours per genome 
GATK Recalibration Tool (batches of 10 genomes) 0.11 hours per genome 

GATK Total ~72 hours (3 days) per genome 

  
PEMapper (in parallel on AWS) 29 +/- 5.8 hours per genome 
PECaller (batch of 97 genomes) 0.34 hours per genome 

PEMapper/PECaller Total ~29.34 hours (1.2 days) per genome 

 796 

Table 5: Comparison of time to run PEMapper/PECaller and GATK Best Practices. PEMapper is 797 

much faster than BWA/HaplotypeCaller, while PECaller and the GATK Unified Caller and 798 

Recalibration Tool take about the same time to run. Overall, this leads to pipeline comparisons 799 

where PEMapper/PECaller is nearly twice as fast as GATK for 97 samples. 800 

 801 

  802 
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 819 
 820 
 821 
Figure 1: Theta across all samples 822 
 823 

 824 
Figure 1: Theta across all 97 samples based on the calls from PEMapper/PECaller, GATK PASS 825 

and GATK Tranche99.9. PEMapper/PECaller and GATK PASS samples sit between .00075 and 826 

.0009 variants per base, as expected. Tranche99.9 calls are much lower. 827 
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 836 
Figure 2: Comparison of Ts/Tv ratio across all calling results 837 

 838 
 839 
Figure 2: Comparison of transition-to-transversion ratios for PEMapper/Caller, GATK PASS and 840 

GATK Tranche99.9 called variants. PEMapper/PECaller and GATK PASS are virtually identical at 841 

near 2.04 and 2.05 per sample, indicating excellent quality calls. GATK Tranche99.9 is much lower, 842 

between 1.3 and 1.5 per sample, indicating much lower quality calls. 843 
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 848 
Figure 3: Exomic theta 849 
 850 

 851 
 852 
Figure 3: Theta in all sample exomes based on PEMapper/PECaller, GATK PASS and 853 

Tranche99.9 calls. GATK PASS and PEMapper/PECaller samples are near .00045, as expected, 854 

with PEMapper/PECaller calling slightly more variants. 855 
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 859 
 860 
Figure 4: Exomic transition-to-transversion ratio 861 
 862 

 863 
 864 
Figure 4: Transition-to-transversion ratio across all sample exomes based on PEMapper/PECaller, 865 

GATK PASS and Tranche99.9 calls. All samples called by PEMapper/PECaller and GATK PASS 866 

are near 3, as expected. Tranche99.9 calls are much lower, again. 867 
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 873 
Figure 5: Exomic silent-to-replacement ratio 874 
 875 

 876 
Figure 5: Silent-to-replacement ratio across all sample exomes based on PEMapper/PECaller, 877 

GATK PASS and Tranche99.9 calls. All samples called by PEMapper/PECaller and GATK PASS 878 

are between 1.05 and 1.15, as expected. Again, Tranche99.9 calls are significantly lower. 879 
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