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Abstract

Variational Bayes (VB), variational maximum likelihood (VML), re-
stricted maximum likelihood (ReML), and maximum likelihood (ML) are
cornerstone parametric statistical estimation techniques in the analysis of
functional neuroimaging data. However, the theoretical underpinnings of
these model parameter estimation techniques are rarely covered in intro-
ductory statistical texts. Because of the widespread practical use of VB,
VML, ReML, and ML in the neuroimaging community, we reasoned that
a theoretical treatment of their relationships and their application in a ba-
sic modelling scenario may be helpful for both neuroimaging novices and
practitioners alike. In this technical study, we thus revisit the conceptual
and formal underpinnings of VB, VML, ReML, and ML and provide a de-
tailed account of their mathematical relationships and implementational
details. We further apply VB, VML, ReML, and ML to the GLM with
non-spherical error covariance as commonly encountered in the �rst-level
analysis of fMRI data. To this end, we explicitly derive the corresponding
free energy objective functions and ensuing iterative algorithms. Finally,
in the applied part of our study, we evaluate the parameter and model
recovery properties of VB, VML, ReML, and ML, �rst in an exemplary
setting and then in the analysis of experimental fMRI data acquired from
a single participant under visual stimulation.

1 Introduction

Variational Bayes (VB), variational maximum likelihood (VML) (also known as
expectation-maximization), restricted maximum likelihood (ReML), and max-
imum likelihood (ML) are cornerstone parametric statistical estimation tech-
niques in the analysis of functional neuroimaging data. In the SPM software
environment (http://www.fil.ion.ucl.ac.uk/spm/), one of the most com-
monly used software packages in the neuroimaging community, variants of these
estimation techniques have been implemented for a wide range of data models
(Ashburner, 2012; Penny et al., 2011). For fMRI data, these models vary from
mass-univariate general linear and auto-regressive models (e.g., Friston et al.,
1994, 2002a,b; Penny et al., 2003), over multivariate decoding models (e.g., Fris-
ton et al., 2008a), to dynamic causal models (e.g., Friston et al., 2003; Stephan
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et al., 2008; Marreiros et al., 2008). For M/EEG data, these models range from
channel-space general linear models (e.g., Kiebel and Friston, 2004a,b), over
dipole and distributed source reconstruction models (e.g., Kiebel et al., 2008;
Friston et al., 2008b; Litvak and Friston, 2008), to a large family of dynamic
causal models (e.g., David et al., 2006; Chen et al., 2008; Moran et al., 2009;
Pinotsis et al., 2012; Ostwald and Starke, 2016).

Because VB, VML, ReML, and ML determine the scienti�c inferences drawn
from empirical data in any of the above mentioned modelling frameworks, they
are of immense importance for the neuroimaging practitioner. However, the
theoretical underpinnings of these estimation techniques are rarely covered in
introductory statistical texts and the technical literature relating to these tech-
niques is rather evolved. Because of their widespread use within the neuroimag-
ing community, we reasoned that a theoretical treatment of these techniques in
a familiar model scenario may be helpful for both neuroimaging novices, who
would like to learn about some of the standard statistical estimation techniques
employed in the �eld, and for neuroimaging practitioners, who would like to
further explore the foundations of these and alternative model estimation ap-
proaches.

In this technical study, we thus revisit the conceptual underpinnings of the
aforementioned techniques and provide a detailed account of their mathemat-
ical relations and implementational details. Our exposition is guided by the
fundamental insight, that VML, ReML, and ML can be understood as special
cases of VB (Friston et al., 2002a, 2007; Friston, 2008). In the current note,
we reiterate and consolidate this conceptualization by paying particular atten-
tion to the respective technique's formal treatment of a model's parameter set.
Speci�cally, across the estimation techniques of interests, model parameters are
either treated as random variables, in which case they are endowed with prior
and posterior uncertainty modelled by parametric probability density functions,
or as non-random quantities. In the latter case, prior and posterior uncertain-
ties about the respective parameters' values are left unspeci�ed. Because the
focus of the current account is on statistical estimation techniques, we restrict
the model of application to a very basic scenario that every neuroimaging prac-
titioner is familiar with: the analysis of a single-participant, single-session EPI
time-series in the framework of the general linear model (GLM) (Monti, 2011;
Poline and Brett, 2012). Importantly, in line with the standard practice in fMRI
data analysis, we do not assume spherical covariance matrices (e.g., Mumford
and Nichols, 2008; Zarahn et al., 1997; Purdon and Weissko�, 1998; Woolrich
et al., 2001; Friston et al., 2002b).

We proceed as follows. After some preliminary notational remarks, we begin
the theoretical exposition by �rst introducing the model of application in Section
2.1. We next brie�y discuss two standard estimation techniques (conjugate
Bayes and ML for spherical covariance matrices) that e�ectively span the space
of VB, VML, ReML, and ML and serve as useful reference points in Section
2.2. After this prelude, we are then concerned with the central estimation
techniques of interest herein. In a hierarchical fashion, we subsequently discuss
the theoretical background and the practical algorithmic application of VB,
VML, ReML, and ML to the GLM in Sections 2.3 - 2.6. We focus on the
central aspects and conceptual relationships of the techniques and present all
mathematical derivations as Supplementary Material. In the applied part of
our study (Section 3), we then �rstly evaluate VB, VML, ReML, and ML from
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an objective Bayesian viewpoint (Bernardo, 2009) in simulations; and secondly,
apply them to real fMRI data acquired from a single participant under visual
stimulation (Ostwald et al., 2010). We close by discussing the relevance and
relation of our exposition with respect to previous treatments of the topic matter
in Section 4.

In summary, we make the following novel contributions in the current tech-
nical study. Firstly, we provide a comprehensive mathematical documentation
and derivation of the conceptual relationships between VB, VML, ReML, and
ML. Secondly, we derive a collection of explicit algorithms for the application of
these estimation techniques to the GLM with non-spherical linearized covariance
matrix. Finally, we explore the validity of the ensuing algorithms in simulations
and in the application to real experimental fMRI data. We complement our the-
oretical documentation by the practical implementation of the algorithms and
simulations in a collection of Matlab .m �les (MATLAB and Optimization Tool-
box Release 2014b, The MathWorks, Inc., Natick, MA, United States), which
is available from the Open Science Framework (https://osf.io/c4ux7/). On
occasion, we make explicit reference to these functions, which share the stub
vbg_*.m.

Notation and preliminary remarks

A few remarks on our mathematical notation are in order. We formulate VB,
VML, ReML, and ML against the background of probabilistic models (e.g.,
Bishop, 2006; Barber, 2012; Murphy, 2012). By probabilistic models we un-
derstand (joint) probability distributions over sets of observed and unobserved
random variables. Notationally, we do not distinguish between probability dis-
tributions and their associated probability density functions and write, for ex-
ample, p(y, θ) for both. We do, however, distinguish between the conditioning of
a probability distribution of a random variable y on a (commonly unobserved)
random variable θ, which we denote by p(y|θ), and the parameterization of a
probability distribution of a random variable y by a (non-random) parameter θ,
which we denote by pθ(y). Importantly, in the former case, θ is conceived of as
random variable, while in the latter case, it is not. Equivalently, if θ∗ denotes a
value that the random variable θ may take on, we set p(y|θ = θ∗)⇔ pθ∗(y).

Otherwise, we use standard applied mathematical notation. For example,
real vectors and matrices are denoted as elements of Rn and Rm×n for n,m ∈ N,
In ∈ Rn×n denotes the n-dimensional identity matrix, | · | denotes a matrix
determinant, tr(·) denotes the trace operator, and p.d. denotes a positive-de�nite
matrix. Hf (a) denotes the Hessian matrix of some real-valued function f (x)
evaluated at x = a. Finally, because of the rather applied character of this
note, we formulate functions primarily by means of the de�nition of the values
they take on and eschew formal de�nitions of their domains and ranges. Further
notational conventions that apply in the context of the mathematical derivations
provided in the Supplementary Material are provided in Supplementary Material
S1.
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2 Theory

2.1 Model of interest

Throughout this study, we are interested in estimating the parameters of the
model

y = Xβ + ε, (1)

where y ∈ Rn denotes the data, X ∈ Rn×p denotes a design matrix of full
column rank p, and β ∈ Rp denotes a parameter vector. We make the following
fundamental assumption about the error term ε ∈ Rn

ε ∼ N(ε; 0, Vλ) with Vλ :=
k∑
i=1

exp(λi)Qi ∈ Rn×n p.d. (2)

In words, we assume that the error term is distributed according to a Gaussian
distribution with expectation parameter 0 ∈ Rn and positive-de�nite covariance
matrix Vλ ∈ Rn×n. Importantly, we do not assume that Vλ is necessarily of the
form σ2In with σ2 > 0, i.e. we allow for non-sphericity of the error terms. In (2),
λ1, . . . , λk, is a set of covariance component parameters and Q1, . . . , Qk ∈ Rn×n
is a set of covariance basis matrices. We assume throughout, that the true, but
unknown, values of λ1, . . . , λk are such that Vλ is positive-de�nite. In line with
the common denotation in the neuroimaging literature, we refer to (1) and (2)
as the general linear model (GLM) and its formulation by means of equations
(1) and (2) as its structural form.

Models of the form (1) and (2) are widely used in the analysis of neuroimag-
ing data, and, in fact, throughout the empirical sciences (e.g., Rutherford, 2001;
Draper and Smith, 2014; Gelman et al., 2014). In the neuroimaging commu-
nity, models of the form (1) and (2) are used, for example, in the analysis of
fMRI voxel time-series at the session and participant-level (Monti, 2011; Poline
and Brett, 2012), for the analysis of group e�ects (Mumford and Nichols, 2006,
2009), or in the context of voxel-based morphometry (Ashburner and Friston,
2000; Ashburner, 2009).

In the following, we discuss the application of VB, VML, ReML, and ML to
the general forms of (1) and (2). In our examples, however, we limit ourselves
to the application of the GLM in the analysis of a single voxel's time-series in a
single fMRI recording (run). In this case, y ∈ Rn corresponds to the voxel's MR
values over EPI volume acquisitions and n ∈ N represents the total number of
volumes acquired during the session. The design matrix X ∈ Rn×p commonly
constitutes a constant regressor and the onset stick functions of di�erent ex-
perimental conditions convolved with a haemodynamic response function and a
constant o�set. This renders the parameter entries βj (j ∈ Np) to correspond
to the average session MR signal and condition-speci�c e�ects. Importantly, in
the context of fMRI time-series analyses, the most commonly used form of the
covariance matrix Vλ employs k = 2 covariance component parameters λ1 and
λ2 and corresponding covariance basis matrices

Q1 := In and Q2 := (Q2)ij :=

{
exp

(
− 1
τ |i− j|

)
, if i 6= j

0, if i = j
. (3)

This speci�c form of the error covariance matrix encodes exponentially decaying
correlations between neighbouring data points, and, with τ := 0.2, corresponds
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Figure 1: (A)Example design and covariance basis matrices. The upper panels
depict the design matrix X ∈ R400×2 and the covariance basis matrices Q1 ∈ R400×400

used in the example applications of the current section. The design matrix encodes
the onset functions of two hypothetical experimental conditions which were convolved
with the canonical haemodynamic response function. Events of each condition are
presented approximately every 6 seconds, and n = 400 data points with a TR of 2
seconds are modelled. The covariance basis matrices are speci�ed in eq.(3) and shown
here for n = 400. (B) The left panel depicts a magni�cation of the �rst 20 entries
of Q2. The right panel depicts the the entries of the �rst row of Q2 for 12 columns.
For τ = 0.2 the entries model exponentially decaying error correlations. (C) A data
realization of the ensuing GLM model with true, but unknown, values of β = (2,−1)T

and λ = (−0.5,−2)T . Note that we do not model a signal o�set, or equivalently, set
the beta parameter for the signal o�set to zero. For implementational details, please
see vbg_1.m.

to the widely used approximation to the AR(1) + white noise model in the
analysis of fMRI data (Purdon and Weissko�, 1998; Friston et al., 2002b). In
Figure 1, we visualize the exemplary design matrix and covariance basis matrix
set that will be employed in the example applications throughout the current
section. In the example, we assume two experimental conditions, which have
been presented with an expected inter-trial interval of 6 seconds (standard de-
viation 1 second) during an fMRI recording session comprising n = 400 volumes
and with a TR of 2 seconds. The design matrix was created using the micro-
time resolution convolution and downsampling approach discussed in Henson
and Friston (2007).

2.2 Conjugate Bayes and ML under error sphericity

We start by brie�y recalling the fundamental results of conjugate Bayesian and
classical point-estimation for the GLM with spherical error covariance matrix.
In fact, the introduction of ReML (Phillips et al., 2002; Friston et al., 2002a) and
later VB (Friston et al., 2007) to the neuroimaging literature were motivated
amongst other things by the need to account for non-sphericity of the error dis-
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tributions in fMRI time-series analysis (Purdon and Weissko�, 1998; Woolrich
et al., 2001). Further, while not a common approach in fMRI, recalling the con-
jugate Bayes scenario helps to contrast the probabilistic model of interest in VB
from its mathematically more tractable, but perhaps less intuitively plausible,
analytical counterpart. Together, the two estimation techniques discussed in
the current section may thus be conceived as forming the respective endpoints
of the continuum of estimation techniques discussed in the remainder.

With spherical covariance matrix, the GLM of eqs. (1) and (2) simpli�es to

y = Xβ + ε, where ε ∼ N(ε; 0, σ2In). (4)

A conjugate Bayesian treatment of the GLM considers the structural form (4)
as a conditional probabilistic statement about the distribution of the observed
random variable y

p(y|β, σ2) = N(y;Xβ, σ2In), (5)

which is referred to as the likelihood and requires the speci�cation of the marginal
distribution p(β, σ2), referred to as the prior. Together, the likelihood and the
prior de�ne the probabilistic model of interest, which takes the form of a joint
distribution over the observed random variable y and the unobserved random
variables β and σ2:

p(y, β, σ2) = p(y|β, σ2)p(β, σ2). (6)

Based on the probabilistic model (6), the two fundamental aims of Bayesian
inference are, �rstly, to determine the conditional parameter distribution given
a value of the observed random variable p(β, σ2|y), often referred to as the
posterior, and secondly, to evaluate the marginal probability p(y) of a value
of the observed random variable, often referred to as marginal likelihood or
model evidence. The latter quantity forms an essential precursor for Bayesian
model comparison, as discussed for example in further detail in Stephan et al.
(2016a). Note that in our treatment of the Bayesian scenario the marginal
and conditional probability distributions of β and σ2 are meant to capture our
uncertainty about the values of these parameters and not distributions of true,
but unknown, parameter values. For the true, but unknown, values of β and
σ2 we postulate, as in the classical point-estimation scenario, that they assume
�xed values, which are never revealed (but can of course be chosen ad libitum
in simulations).

The VB treatment of (6) assumes proper prior distributions for β and σ2. In
this spirit, the closest conjugate Bayesian equivalent is hence the assumption of
proper prior distributions. For the case of the model (6), upon reparameteriza-
tion in terms of a precision parameter λ := 1/σ2, a natural conjugate approach
assumes a non-independent prior distribution of Gaussian-Gamma form,

p(β, λ) = p(β|λ)p(λ) = N(β;µβ ,Σβ)G(λ; aλ, bλ), (7)

where µβ ∈ Rp,Σβ := λ−1Vβ , aλ, bλ ∈ R are the prior distribution parameters
and Vβ ∈ Rp×p p.d. is the prior beta parameter covariance structure. For the
gamma distribution we use the shape and rate parameterization. Notably, the
Gaussian distribution of β is parameterized conditional on the value of λ in
terms of its covariance Σβ . Under this prior assumption, it can be shown, that
the posterior distribution is also of Gaussian-Gamma form,

p(β, λ|y) = N(β;µβ|y,Σβ|y)G(λ; aλ|y, bλ|y), (8)
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with posterior parameters

µβ|y = (XTX + V −1β )−1(XT y + V −1β µβ)

Σβ|y = λ−1Vβ|y = λ−1(XTX + V −1β )−1

aλ|y = (2aλ + n)/2

bλ|y = bλ +
1

2
yT y +

1

2
µTβ V

−1
β µβ −

1

2
µTβ|yV

−1
β|yµβ|y.

(9)

Furthermore, in this scenario the marginal likelihood evaluates to a multivariate
non-central T-distribution

p(y) = T (y;µy,Σy, νy) (10)

with expectation, covariance, and degrees of freedom parameters

µy = Xµβ , Σy =
2b

2a+ n− 1
(XVβX

T + In), and νy = 2a+ n− 1, (11)

respectively. For derivations of (8) - (11) see, for example, Lindley and Smith
(1972); Broemeling (1984), and Gelman et al. (2014).

Importantly, in contrast to the VB, VML, ReML, and ML estimation tech-
niques developed in the remainder, the assumption of the prior probabilistic de-
pendency of the e�ect size parameter on the covariance component parameter in
(7) eshews the need for iterative approaches and results in the fully analytical
solutions of eqs. (8) to (11). However, as there is no principled reason be-
yond mathematical convenience that motivates this prior dependency, the fully
conjugate framework seems to be rarely used in the analysis of neuroimaging
data. Moreover, the assumption of an uninformative improper prior distribution
(Frank et al., 1998) is likely more prevalent in the neuromaging community than
the natural conjugate form discussed above. This is due to the implementation
of a closely related procedure in FSL's FLAME software (Woolrich et al., 2004,
2009). However, because VB assumes proper prior distributions, we eschew the
details of this approach herein.

In contrast to the probabilistic model of the Bayesian scenario, the classical
ML approach for the GLM does not conceive of β and σ2 as unobserved ran-
dom variables, but as parameters, for which point-estimates are desired. The
probabilistic model of the classical ML approach for the structural model (4)
thus takes the form

pβ,σ2 (y) = N(y;Xβ, σ2In). (12)

The ML point-estimators for β and σ2 are well-known to evaluate to (e.g.,
Hocking, 2013)

β̂ = (XTX)−1XT y (13)

and
σ̂2 =

1

n
(y −Xβ̂)(y −Xβ̂)T . (14)

Note that (13) also corresponds to the ordinary-least squares estimator. It can
be readily generalized for non-spherical error covariance matrices by a "sand-
wiched" inclusion of the appropriate error covariance matrix, if this is (assumed)
to be known, resulting in the generalized least-squares estimator (e.g., Draper
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and Smith, 2014). Further note that (14) is a biased estimator for σ2 and hence
commonly replaced by its restricted maximum likelihood counterpart, which
replaces the factor n−1 by the factor (n− p)−1 (e.g., Foulley, 1993).

Having brie�y reviewed the conjugate Bayesian and classical point estima-
tion techniques for the GLM parameters under the assumption of a spherical
error covariance matrix, we next discuss VB, VML, ReML, and ML for the
scenario laid out in Section 2.1.

2.3 Variational Bayes (VB)

VB is a computational technique that allows for the evaluation of the primary
quantities of interest in the Bayesian paradigm as introduced above: the poste-
rior parameter distribution and the marginal likelihood. For the GLM, VB thus
rests on the same probabilistic model as standard conjugate Bayesian inference:
the structural form of the GLM (cf. equations (1) and (2)) is understood as the
parameter conditional likelihood distribution and both parameters are endowed
with marginal distributions. The probabilistic model of interest in VB thus
takes the form

p(y, β, λ) = p(y|β, λ)p(β, λ) (15)

with likelihood distribution

p(y|β, λ) = N(y;Xβ, Vλ). (16)

Above, we have seen that a conjugate prior distribution can be constructed
which allows for exact inference in models of the form (1) and (2) based on a
conditionally-dependent prior distribution and simple covariance form. In order
to motivate the application of the VB technique to the GLM, we here thus
assume that the marginal distribution p(β, λ) factorizes, i.e., that

p(β, λ) = p(β|λ)p(λ) := p(β)p(λ). (17)

Under this assumption, exact Bayesian inference for the GLM is no longer pos-
sible and approximate Bayesian inference is clearly motivated (Murphy, 2012).

To compute the marginal likelihood and obtain an approximation to the
posterior distribution over parameters p(β, λ|y), VB uses the following decom-
position of the log marginal likelihood into two information theoretic quantities
(Cover and Thomas, 2012), the free energy and a Kullback-Leibler (KL) diver-
gence

ln p(y) = FV B(q(β, λ)) +KL(q(β, λ)||p(β, λ|y)). (18)

We discuss the constituents of the right-hand side of (18) in turn. Firstly, q(β, λ)
denotes the so-called variational distribution, which will constitute the approxi-
mation to the posterior distribution and is of parameterized form, i.e. governed
by a probability density. We refer to the parameters of the variational distri-
bution as variational parameters. Secondly, the non-negative KL-divergence is
de�ned as the integral

KL(q(β, λ)||p(β, λ|y)) =

∫∫
q(β, λ) ln

(
q(β, λ)

p(β, λ|y)

)
dβ dλ . (19)

Note that, formally, the KL-divergence is a functional, i.e., a function of func-
tions, in this case the probability density functions q(β, λ) and p(β, λ|y), and
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returns a scalar number. Intuitively, it measures the dissimilarity between its
two input distributions: the more similar the variational distribution q(β, λ) is
to the posterior distribution p(β, λ|y), the smaller the divergence becomes. It is
of fundamental importance for the VB technique that the KL-divergence is al-
ways positive and zero if, and only if, q(β, λ) and p(β, λ|y) are equal. For a proof
of these properties, see Appendix A in Ostwald et al. (2014). Together with the
log marginal likelihood decomposition (18) the properties of the KL-divergence
equip the free energy with its central properties for the VB technique, as dis-
cussed below. A proof of (18) with ϑ := {β, λ} is provided in Appendix B in
Ostwald et al. (2014).

The free energy itself is de�ned by

FV B(q(β, λ)) =

∫∫
q(β, λ) ln

(
p(y, β, λ)

q(β, λ)

)
dβ dλ . (20)

Due to the non-negativity of the KL-divergence, the free energy is always smaller
than or equal to the log marginal likelihood - the free energy thus forms a lower
bound to the log marginal likelihood. Note that in (20), the data y is assumed
to be �xed, such that the free energy is a function of the variational distribution
only. Because, for a given data observation, the log marginal likelihood ln p(y)
is a �xed quantity, and because increasing the free energy contribution to the
right-hand side of (18) necessarily decreases the KL-divergence between the
variational and the true posterior distribution, maximization of the free energy
with respect to the variational distribution has two consequences: �rstly, it
renders the free energy an increasingly better approximation to the log marginal
likelihood; secondly, it renders the variational approximation an increasingly
better approximation to the posterior distribution.

In summary, VB rests on �nding a variational distribution that is as simi-
lar as possible to the posterior distribution, which is equivalent to maximizing
the free energy with regard to the variational distribution. The maximized free
energy then substitutes for the log marginal likelihood and the corresponding
variational distribution yields an approximation to the posterior parameter dis-
tribution, i.e.,

max
q(β,λ)

FV B(q(β, λ)) ≈ ln p(y) and arg max
q(β,λ)

FV B(q(β, λ)) ≈ p(β, λ|y). (21)

To facilitate the maximization process, the variational distribution is often as-
sumed to factorize over parameter sets, an assumption commonly referred to as
mean-�eld approximation (Friston et al., 2007)

q(β, λ) := q(β)q(λ). (22)

Of course, if the posterior does not factorize accordingly, i.e., if

p(β, λ|y) 6= p(β|y)p(λ|y), (23)

the mean-�eld approximation limits the exactness of the method.
In applications, maximization of the free energy is commonly achieved by ei-

ther free-form or �xed-form schemes. In brief, free-form maximization schemes
do not assume a speci�c form of the variational distribution, but employ a fun-
damental theorem of variational calculus to maximize the free energy and to
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analytically derive the functional form and parameters of the variational dis-
tribution. For more general features of the free-form approach, please see, for
example, Bishop (2006); Chappell et al. (2009) and Ostwald et al. (2014). Fixed-
form maximization schemes, on the other hand, assume a speci�c parametric
form for the variational distribution's probability density function from the out-
set. Under this assumption, the free energy integral (20) can be evaluated (or
at least approximated) analytically and rendered a function of the variational
parameters. This function can in turn be optimized using standard nonlinear
optimization algorithms. In the following section, we apply a �xed-form VB
approach to the current model of interest.

Application to the GLM

To demonstrate the �xed-form VB approach to the GLM of eqs. (1) and (2), we
need to specify the parametric forms of the prior distributions p(β) and p(λ),
as well as the parametric forms of the variational distribution factors q(β) and
q(λ). Here, we assume that all these marginal distributions are Gaussian, and
hence speci�ed in terms of their expectation and covariance parameters:

p(β) = N(β;µβ ,Σβ), where µβ ∈ Rp and Σβ ∈ Rp×p p.d. (24)

p(λ) = N(λ;µλ,Σλ), where µλ ∈ Rk and Σλ ∈ Rk×k p.d. (25)

q(β) = N(β;mβ , Sβ), where mβ ∈ Rp and Sβ ∈ Rp×p p.d. (26)

q(λ) = N(λ;mλ, Sλ), where mλ ∈ Rk and Sλ ∈ Rk×k p.d. (27)

Note that we denote parameters of the prior distributions with Greek and pa-
rameters of the variational distributions with Roman letters. Together with
eqs. (1) to (3), eqs. (24) to (27) specify all distributions necessary to evaluate
the free energy integral and render the free energy a function of the variational
parameters. We document this derivation in Supplementary Material S2 and
here limit ourselves to the presentation of the result: under the given assump-
tions about the prior, likelihood, and variational distributions, the variational
free energy is a function of the variational parameters mβ , Sβ ,mλ, and Sλ, and,
using mild approximations in its analytical derivation, evaluates to

FV B(mβ , Sβ ,mλ, Sλ) =− n

2
ln 2π − 1

2
ln |Vmλ | −

1

2
(y −Xmβ)TV −1

mλ (y −Xmβ)

− 1

2
tr(SβX

TV −1
mλX)− 1

4
tr(Bmλ,Sβ ,mλSλ)

− p

2
ln 2π − 1

2
ln |Σβ |

− 1

2
(mβ − µβ)TΣ−1

β (mβ − µβ)− 1

2
tr(Σ−1

β Sβ)

− k

2
ln 2π − 1

2
ln |Σλ|

− 1

2
(mλ − µλ)TΣ−1

λ (mλ − µλ)− 1

2
tr(Σ−1

λ Sλ)

+
k

2
ln(2πe) +

1

2
ln |Sβ |

+
p

2
ln(2πe) +

1

2
ln |Sλ|

(28)
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with

Bmβ ,Sβ ,mλ := Hln |Vλ| (mλ)

+H
tr(V−1

λ
XSβX

T ) (mλ)

+H
(y−Xmβ)T V

−1
λ

(y−Xmβ)
(mλ) .

(29)

In (28), the third term may be viewed as an accuracy term which measures
the deviation of the estimated model prediction from the data, the eighth and
twelfth terms may be viewed as complexity terms, that measure how far the
model can and has to deviate from its prior expectations to account for the
data, and the last four terms can be conceived as maximum entropy terms that
ensure that the posterior parameter uncertainty is as large as possible given the
available data (Jaynes, 2003).

In principle, any numerical routine for the maximization of nonlinear func-
tions could be applied to maximize the free energy function of eq. (28) with
respect to its parameters. Because of the relative simplicity of eq. (28), we
derived explicit update equations by evaluating the VB free energy gradient
with respect to each of the parameters and setting to zero as documented in
Supplementary Material S2. This analytical approach yields a set of four up-
date equations and, together with the iterative evaluation of the VB free energy
function (28), results in a VB algorithm for the current model as documented
in Algorithm 1.

Algorithm 1 VB Algorithm (for details, see vbg_est_vb.m)

Input: data y, prior parameters µβ ,Σβ , µλ,Σλ, model components X,Q1, Q2

Output: variational parameters m(i)
β , S

(i)
β ,m

(i)
λ , S

(i)
λ , free energy FV B

(i)

1: Initialization: i := 1, m(i)
β := µβ , S

(i)
β := Σβ , m

(i)
λ := µλ, S

(i)
λ := Σλ,

∆FV B
(i)

:=∞, FV B
(i)

:= FV B
(
m

(i)
β , S

(i)
β ,m

(i)
λ , S

(i)
λ

)
2: while ∆FV B

(i)

> δ do
3: i := i+ 1
4: evaluate B

m
(i−1)
β ,S

(i−1)
β ,m

(i−1)
λ

5: S
(i)
λ :=

(
1
2Bm(i−1)

β ,S
(i−1)
β ,m

(i−1)
λ

+ Σ−1λ

)−1
6: m

(i)
β :=

(
XTV −1mλ

X + Σ−1β

)−1 (
XTV −1mλ

Xy + Σ−1β µβ

)
7: S

(i)
β :=

(
XTV −1mλ

X + Σ−1β

)−1
8: solve ∂

∂mλj
fV B

(
m

(i)
λ

)
= 0 for m(i)

λ

9: evaluate FV B
(i)

= FV B
(
m

(i)
β , S

(i)
β ,m

(i)
λ , S

(i)
λ

)
10: ∆FV B

(i)

:= FV B
(i) − FV B(i−1)

11: end while

In Figure 2, we visualize the application of the VB algorithm to an example
fMRI time-series realization from the model described in Section 2.1 with true,
but unknown, parameter values β = (2,−1)T and λ = (−0.5,−2)T . We used
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imprecise priors for both β and λ by setting

p(β) := N

(
β;

(
0
0

)
,

(
10 0
0 10

))
and p(λ) := N

(
λ;

(
0
0

)
,

(
10 0
0 10

))
. (30)

Figure 2: VB estimation. (A) Prior distribution p(β) with expectation µβ :=
(0, 0)T and covariance Σβ := 10I2. Here, and in all subpanels, the black × marks the
true, but unknown, parameter value. (B) Variational approximation q(c)(β) to the
posterior distribution upon convergence (δ = 10−3). (C) Prior distribution p(λ) with
expectation µλ := (0, 0)T and covariance Σλ = 10I2. (D) Variational approximation
q(c)(λ) to the posterior distribution upon convergence. (E) Variational free energy de-
pendence on mβ . The blue × indicates the prior expectation parameter and the red +
marks the approximated posterior expectation parameter. (F) Variational free energy
dependence on mλ. The blue × indicates the prior expectation parameter and the red
+ marks the approximated posterior expectation parameter. For implementational
details, please see vbg_1.m.

Panel A of Figure 2 depicts the prior distribution over β, and the true, but
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unknown, value of β as black ×. Panel B depicts the variational distribution
over β after convergence for a VB free energy convergence criterion of δ = 10−3.
Given the imprecise prior distribution, this variational distribution falls close
to the true, but unknown, value. In general, convergence of the algorithm is
achieved within 4 to 6 iterations. Panels C and D depict the prior distribution
over λ and the variational distribution over λ upon convergence, respectively.
As for β, the approximation of the posterior distribution is close to the true,
but unknown, value of λ. Finally, Panels E and F depict the VB free energy
surface as a function of the variational parameters mβ and mλ, respectively.
For the chosen prior distributions, the VB free energy surfaces display clear
global maxima, which the VB algorithm can identify. Note, however, that the
maximum of the VB free energy as a function of mλ is located on an elongated
crest.

2.4 Variational Maximum Likelihood (VML)

Variational Maximum Likelihood (Beal, 2003), also referred to as (variational)
expectation-maximization (Barber, 2012; McLachlan and Krishnan, 2007), can
be considered a semi-Bayesian estimation approach. For a subset of model
parameters, VML determines a Bayesian posterior distribution, while for the
remaining parameters maximum-likelihood point estimates are evaluated. As
discussed below, VML can be derived as a special case of VB under speci�c
assumptions about the posterior distribution of the parameter set for which only
point estimates are desired. If for this parameter set additionally a constant,
improper prior is assumed, variational Bayesian inference directly yields VML
estimates. In its application to the GLM, we here choose to treat β as the
parameter for which a posterior distribution is derived, and λ as the parameter
for which a point-estimate is desired.

The current probabilistic model of interest thus takes the form

pλ(y, β) = pλ(y|β)p(β) (31)

with likelihood distribution

pλ(y|β) = N(y;Xβ, Vλ). (32)

Note that in contrast to the probabilistic model underlying VB estimation, λ
is not treated as a random variable and thus merely parameterizes the joint
distribution of β and y. Similar to VB, VML rests on a decomposition of the
log marginal likelihood

ln pλ(y) =

∫
pλ(y, β) dβ (33)

into a free energy and a KL-divergence term

ln pλ(y) = FVML(q(β), λ) +KL(q(β)||pλ(β|y)). (34)

In contrast to the VB free energy, the VML free energy is de�ned by

FVML(q(β), λ) =

∫
q(β) ln

(
pλ(y, β)

q(β)

)
dβ, (35)
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while the KL divergence term takes the form

KL(q(β)||pλ(β|y)) =

∫
q(β) ln

(
q(β)

pλ(β|y)

)
dβ. (36)

In Supplementary Material S3, we show how the VML framework can be derived
as a special case of VB by assuming a variational distribution that corresponds to
the Dirac delta distribution q(λ) := Dλ∗(λ), and how under the assumption of a
constant, improper prior over λmaximization of the VB free energy is equivalent
to maximization of the VML free energy. Importantly, it is the parameter value
λ∗ of the Dirac delta distribution that corresponds to the parameter λ in the
VML framework.

Application to the GLM

In the application of the VML approach to the GLM of eqs. (1) and (2) we
need to specify the parametric forms of the prior distribution p(β) and the
parametric form of the variational distribution q(β). As above, we assume that
these distributions are Gaussian, i.e.,

p(β) = N(β;µβ ,Σβ), where µβ ∈ Rp and Σβ ∈ Rp×p p.d. (37)

q(β) = N(β;mβ , Sβ), where mβ ∈ Rp and Sβ ∈ Rp×p p.d. (38)

Based on the speci�cations of eqs. (37) and (38), the integral de�nition of the
VML free energy can be analytically evaluated under mild approximations,
which yields the VML free energy function of the variational parameters mβ

and Sβ and the parameter λ

FVML(mβ , Sβ , λ) =− n

2
ln 2π − 1

2
ln |Vλ| −

1

2
(y −Xmβ)TV −1

λ (y −Xmβ)

− 1

2
tr(SβX

TV −1
λ X)

− p

2
ln 2π − 1

2
ln |Σβ |

− 1

2
(mβ − µβ)TΣ−1

β (mβ − µβ)− tr(Σ−1
β Sβ)

+
p

2
ln(2πe) +

1

2
ln |Sβ |.

(39)

We document the derivation of (39) in Supplementary Material S4. In con-
trast to the VB free energy (cf. eq. (28)), the VML free energy for the GLM
is characterized by the absence of terms relating to the prior and posterior un-
certainty about the covariance component parameter λ. To maximize the VML
free energy, we again derived a set of update equations as documented in Sup-
plementary Material S4. These update equations give rise to VML algorithm
for the current model, which we document in Algorithm 2.

In Figure 3, we visualize the application of the VML algorithm to an example
fMRI time-series realization of the model described in Section 2.1 with true, but
unknown, parameter values β = (2,−1)T and λ = (−0.5,−2)T . As above, we
used an imprecise prior for β by setting

p(β) := N

(
β;

(
0
0

)
,

(
10 0
0 10

))
. (40)
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Algorithm 2 VML Algorithm (for details, see vbg_est_vml.m)

Input: data y, prior parameters µβ ,Σβ , initial value λ(1), model X,Q1, Q2

Output: variational parameters m(i)
β , S

(i)
β , λ(i), free energy FVML(i)

1: Initialization: i := 1 and m(i)
β := µβ , S

(i)
β := Σβ , ∆FVML(i)

:= ∞, and

FVML(i)

:= FVML
(
m

(i)
β , S

(i)
β , λ(i)

)
.

2: while ∆FVML(i)

> δ do
3: i := i+ 1

4: m
(i)
β :=

(
XTV −1λ X + Σ−1β

)−1 (
XTV −1λ Xy + Σ−1β µβ

)
5: S

(i)
β :=

(
XTV −1λ X + Σ−1β

)−1
6: solve ∂

∂λj
fVML

(
λ(i)
)

= 0 for λ(i)

7: evaluate FVML(i)

:= FVML
(
m

(i)
β , S

(i)
β , λ(i)

)
8: ∆FVML(i)

:= FVML(i) − FVML(i−1)

9: end while

and set the initial covariance component estimate to λ(1) = (0, 0)T . Panel A of
Figure 3 depicts the prior distribution over β and the true, but unknown, value
of β. Panel B depicts the variational distribution over β after convergence with
a VML free energy convergence criterion of δ = 10−3. As in the VB scenario,
given the imprecise prior distribution, this variational distribution falls close to
the true, but unknown, value and convergence is usually achieved within 4 to
6 iterations. Panels C and D depict the VML free energy surface as a function
of the variational parameter mβ and the parameter λ, respectively. For the
chosen prior distributions, the VML free energy surfaces displays a clear global
maximum as a function of mβ , while the maximum location as a function of mλ

is located on an elongated crest.

2.5 Restricted Maximum Likelihood (ReML)

ReML is commonly viewed as a generalization of the maximum likelihood ap-
proach, which in the case of the GLM yields unbiased, rather than biased,
covariance component parameter estimates (Harville, 1977; Searle et al., 2009;
Phillips et al., 2002). In this context and using our denotations, the ReML
estimate λ̂ReML is de�ned as the maximizer of the ReML objective function

λ̂ReML := arg max
λ

`ReML(λ), (41)

where

`ReML(λ) := −1

2
ln |Vλ| −

1

2
ln |XTV −1

λ X| − 1

2
(y −Xβ̂GLS)TV −1

λ (y −Xβ̂GLS) (42)

denotes the ReML objective function and

β̂GLS := (XTVλX)−1XTV −1λ y (43)

denotes the generalized least-squares estimator for β. Because β̂GLS depends on
λ in terms of Vλ, maximizing the ReML objective function necessitates iterative
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Figure 3: VML estimation.(A) Prior distribution p(β) with expectation µβ :=
(0, 0)T and covariance Σβ := 10I2. Here, and in all subpanels, the black × marks
the true, but unknown, parameter value. (B) Variational approximation q(c)(β) to
the posterior distribution upon convergence of the algorithm. (C) VML free energy
dependence on mβ . The blue × indicates the prior expectation parameter and the red
+ marks the approximated posterior expectation parameter. (D) VML free energy
dependence on λ. The blue × indicates the parameter value at algorithm initial-
ization and the red + marks the parameter value upon algorithm convergence. For
implementational details, please see vbg_1.m.

numerical schemes. Traditional derivations of the ReML objective function, such
as provided by LaMotte (2007) and Hocking (2013), are based on mixed-e�ects
linear models and the introduction of a contrast matrix A with the property
that ATX = 0 and then consider the likelihood of AT y after cancelling out
the deterministic part of the model. In Supplementary Material S5 we show
that, up to an additive constant, the ReML objective function also corresponds
to the VML free energy under the assumption of an improper constant prior
distribution for β, and an exact update of the VML free energy with respect to
the variational distribution of β, i.e., setting q(β) = pλ(β|y). In other words,
for the probabilistic model

pλ(y, β) = pλ(y|β)p(β) with pλ(y|β) = N(y;Xβ, Vλ) and p(β) := 1 (44)

it holds that
FVML(pλ(β|y), λ) = `ReML(λ) + c, (45)

where
c := −n

2
ln 2π +

p

2
ln(2π), (46)
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and thus
λ̂ReML = arg max

λ
FVML(pλ(β|y), λ). (47)

ReML estimation of covariance components in the context of the general
linear model can thus be understood as the special case of VB, in which β is en-
dowed with an improper constant prior distribution, the posterior distribution
over λ is taken to be the Dirac delta density Dλ∗(λ), and the point estimate of
λ∗ maximizes the ensuing VML free energy under exact inference of the poste-
rior distribution of β. In this view, the additional term of the ReML objective
function with respect to the ML objective function obtains an intuitive mean-
ing: − 1

2 ln |XTV −1λ X| corresponds to the entropy of the posterior distribution
pλ(β|y) which is maximized by the ReML estimate λ̂ReML. The ReML objec-
tive function thus accounts for the uncertainty that stems from estimating of
the parameter β by assuming that is as large as possible under the constraints
of the data observed.

In line with the discussion of VB and VML, we may de�ne a ReML free
energy, by which we understand the VML free energy function evaluated at
pλ(β|y) for the probabilistic model (44). In Supplementary Material S5, we
show that this ReML free energy can be written as

FReML(mβ , Sβ , λ) = −n
2

ln 2π − 1

2
ln |Vλ| −

1

2
(y −Xmβ)TV −1

λ (y −Xmβ)

− 1

2
tr(SβX

TV −1
λ X)

+
p

2
ln(2πe) +

1

2
ln |Sβ |.

(48)

Note that the equivalence of eq. (48) to the constant-augmented ReML objective
function of eq. (45) derives from the fact that under the in�nitely imprecise
prior distribution for β the variational expectation and covariance parameters
evaluate to

mβ = β̂GLS and Sβ = (XTV 1−
λ X)−1, (49)

respectively. With respect to the general VML free energy, the ReML free
energy is characterized by the absence of a term that penalizes the deviation of
the variational parameter mβ from its prior expectation, because the in�nitely
imprecise prior distribution p(β) provides no constraints on the estimate of β.
To maximize the ReML free energy, we again derived a set of update equations
which we document in Algorithm 3.

In Figure 4, we visualize the application of the ReML algorithm to an exam-
ple fMRI time-series realization of the model described in Section 2.1 with true,
but unknown, parameter values β = (2,−1)T and λ = (−0.5,−2)T . Here, we
chose the β prior distribution parameters as the initial values for the variational
parameters by setting

m
(1)
β :=

(
0
0

)
and S(1)

β :=

(
10 0
0 10

)
, (50)

and as above, set the initial covariance component estimate to λ(1) = (0, 0)T .
Panel A of Figure 4 depicts the converged variational distribution over β

and the true, but unknown, value of β for a ReML free energy convergence
criterion of δ = 10−3. Panels C and D depict the ReML free energy surface as
a function of the variational parameter mβ and λ, respectively. Note that due
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Algorithm 3 ReML Algorithm (for details, see vbg_est_reml.m)

Input: data y, initial values m(1)
β , S

(1)
β , λ(1), model X,Q1, Q2

Output: variational parameters m(i)
β , S

(i)
β , λ(i), free energy FReML(i)

1: Initialization: i := 1, ∆FReML(i)

:= ∞, and FReML(i)

:=

FReML
(
m

(i)
β , S

(i)
β , λ(i)

)
.

2: while ∆FReML(i)

> δ do
3: m

(i)
β :=

(
XTV −1λ X)−1

)
XTV −1λ y

4: S
(i)
β :=

(
XTV −1λ X

)−1
5: solve ∂

∂λj
fReML

(
λ(i)
)

= 0 for λ(i)

6: evaluate FReML(i)

:= FReML
(
m

(i)
β , S

(i)
β , λ(i)

)
7: ∆FReML(i)

:= FReML(i) − FReML(i−1)

8: end while

to the imprecise prior distributions in the VB and VML scenarios, the resulting
free energy surfaces are almost identical to the ReML free energy surfaces.

Figure 4: ReML estimation. (A) Variational distribution q(c)(β) after convergence
based on the initial values mβ := (0, 0)T and Sβ := 10I2 (convergence criterion δ =
10−3). Here, and in all subpanels, the black ×marks the true, but unknown, parameter
value. (C) ReML free energy dependence on mβ . Here, and in Panel (C) the blue ×
indicates the parameter value at algorithm initialization and the red + marks the
parameter value upon algorithm convergence. (C) ReML free energy dependence on
λ. For implementational details, please see vbg_1.m.

2.6 Maximum Likelihood (ML)

Finally, also the ML objective function can be viewed as the special case of
the VB log marginal likelihood decomposition for variational distributions q(β)
and q(λ) both conforming to Dirac delta densities. Speci�cally, as shown in
Supplement S6 the ML estimate

(β̂ML, λ̂ML) := arg max
β,λ

`ML(β, λ) := arg max
β,λ

lnN(y;Xβ, Vλ) (51)

corresponds to the maximizer of the VML free energy for the probabilistic model

pλ(y, β) = pλ(y|β)p(β) with q(β) = Dβ∗(β) and p(β) = 1. (52)
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Formally, we thus have

(β̂ML, λ̂ML) := arg max
β,λ

FVML(Dβ∗(β), λ). (53)

To align the discussion of ML with the discussion of VB, VML, and ReML, we
may de�ne the thus evaluated VML free energy as the ML free energy, which is
just the standard log likelihood function of the GLM:

FML(β, λ) = −n
2

ln 2π − 1

2
ln |Vλ| −

1

2
(y −Xβ)TV −1λ (y −Xβ). (54)

Note that the posterior approximation q(β) does not encode any uncertainty
in this case, and thus the additional term corresponding to the entropy of this
distribution in the ReML free energy vanishes for the case of ML. Finally, to
maximize the ML free energy we again derived a set of update equations which
we document in Algorithm 4. In Figure 5, we visualize the application of this
ML algorithm to an example fMRI time-series realization of the model described
in Section 2.1 with true, but unknown, parameter values β = (2,−1)T and
λ = (−0.5,−2)T , initial parameter settings of β(1) = (0, 0)T and λ(1) = (0, 0)T ,
and ML free energy convergence criterion δ = 10−3 . Panel A depicts the ML
free energy maximization with respect to β(i) and Panel B depicts the ML free
energy maximization with respect to λ(i). Note the similarity to the equivalent
free energy surfaces in the VB, VML, and ReML scenarios.

Algorithm 4 ML Algorithm (for details, see vbg_est_ml.m)

Input: data y, initial values β(1), λ(1), model X,Q1, Q2

Output: parameter estimates β(i), λ(i), free energy FML(i)

1: Initialization: i := 1, ∆FML(i)

:=∞, FML(i)

:= FML(β(i), λ(i)).
2: while ∆FML(i)

> δ do
3: i := i+ 1
4: β(i) :=

(
XTV −1λ X)−1

)
XTV −1λ y

5: solve ∂
∂λj

fML
(
λ(i)
)

= 0 for λ(i)

6: FML(i)

:= FML
(
β(i), λ(i)

)
7: ∆FML(i)

:= FML(i) − FML(i−1)

8: end while

In summary, in this section we have shown how VML, ReML, and ML esti-
mation can be understood as special case of VB estimation. In the application to
the GLM, the hierarchical nature of these estimation techniques yields a nested
set of free energy objective functions, in which gradually terms that quantify
uncertainty about parameter subsets are eliminated (cf. eqs. (28), (39), (48)
and (54)). In turn, the iterative maximization of these objective functions yields
a nested set of numerical algorithms, which assume gradually less complex for-
mats (Algorithms 1 - 4). As shown by the numerical examples, under imprecise
prior distributions, the resulting free energy surfaces and variational (expecta-
tion) parameter estimates are highly consistent across the estimation techniques.
Finally, for all techniques, the relevant parameter estimates convergence to the
true, but unknown, parameter values after a few algorithm iterations.
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Figure 5: ML estimation. (A) ML free energy dependence on β. Here, and in
Panel (B), the black × marks the true, but unknown parameter value, the blue ×
indicates the parameter value at algorithm initialization and the red + marks the
parameter value upon algorithm convergence. (B) ML free energy dependence on λ.
For implementational details, please see vbg_1.m.

3 Applications

In Section 2 we have discussed the conceptual relationships and the algorith-
mic implementation of VB, VML, ReML, and ML in the context of the GLM
and demonstrated their validity for a single simulated data realization. In the
current section, we are concerned with their performance over a large number
of simulated data realizations (Section 3.1) and their exemplary application to
real experimental data (Section 3.2).

3.1 Simulations

Classical statistical theory has established a variety of criteria for the assess-
ment of an estimators quality (e.g., Lehmann and Casella, 2006). Commonly,
these criteria amount to the analytical evaluation of an estimators large sam-
ple behaviour. In the current section we adopt the spirit of this approach in
simulations. Firstly, we investigate the cumulative average and variance of the
β and λ VB, VML, ReML, and ML parameter estimates and secondly, we in-
vestigate the ability of each technique's (marginal) likelihood approximation to
distinguish between di�erent data generating models. To this end, we adopt
an objective Bayesian standpoint (Bernardo, 2003). This means that as in the
previous section, we use imprecise prior distributions to focus on the estimation
techniques ability to recover the true, but unknown, parameters of the data
generating model and the model structure itself.

Parameter Recovery

To study each estimation technique's ability to recover true, but unknown,
model parameters, we drew 100 realizations of the example model discussed in
Section 2.1 and focussed our evaluation on the cumulative averages and vari-
ances of the converged (variational) parameter estimates m(c)

β ∈ R2 (VB, VML,

ReML), β(c) ∈ R2 (ML), m(c)
λ ∈ R2 (VB), and λ(c) ∈ R2 (VML, ReML, ML).

The simulations are visualized in Figure 6. Each panel column of Figure 6 de-
picts the results for one of the estimation techniques, and each panel row depicts
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the results for one of the four parameter values of interest. Each panel displays
the cumulative average of the respective parameter estimate. Averages relat-
ing to estimates of β are depicted in blue, averages relating to estimates of λ
are depicted in green. In addition to the cumulative average, each panel shows
the cumulative variance of the parameter estimates as shaded area around the
cumulative average line, and the true, but unknown, values β = (2, 1)T and
λ = (−0.5,−2)T as grey line. Overall, parameter recovery as depicted here
is within acceptable bounds and the estimates variances are tolerable. While
there are no systematic di�erences in parameter recovery across the four es-
timation techniques, there are qualitative di�erences in the recovery of e�ect
size and covariance component parameters. For all techniques, the recovery of
the e�ect size parameters is unproblematic and highly reliable. The recovery
of covariance component recovery, however, fails in a signi�cant amount of ap-
proximately 15 - 20% of data realizations. In the panels relating to estimates
of λ in Figure 6, these cases have been removed using an automated outlier
detection approach (Grubbs, 1969). In the outlying cases, the algorithms con-
verged to vastly di�erent values, often deviating from the true, but unknown,
values by an order of magnitude. To assess whether this behaviour was spe-
ci�c to our implementation of the algorithms, we also evaluated the de-facto
neuroimaging community standard for covariance component estimation, the
spm_reml.m and spm_reml_sc.m functions of the SPM12 suite in the same
model scenario. We report these simulations as Supplementary Material S7. In
brief, we found a similar covariance component (mis)estimation behaviour as in
our implementation.

Further research revealed that the relative unreliability of algorithmic co-
variance component estimation is a well-known phenomenon in the statistical
literature (e.g., Groeneveld and Kovac, 1990; Boichard et al., 1992; Groeneveld,
1994; Foulley and van Dyk, 2000). We see at least two possible explanations
in the current case. Firstly, we did not systematically explore the behaviour
of the algorithmic implementation for di�erent initial values. It is likely, that
the number of estimation outliers can be reduced by optimizing, for each data
realization, the algorithm's starting conditions. However, also in this case, an
automated outlier detection approach would be necessary to optimize the respec-
tive initial values. Secondly, we noticed already in the demonstrative examples
in Section 2, that the free energy surface with respect to the covariance compo-
nents is not as well-behaved as for the e�ect sizes. Speci�cally, the maximum
is located on an elongated crest of the function, which is relatively �at (see e.g.
panel B of Figure 5) and hence impedes the straight-forward identi�cation of
the maximizing parameter value (see also Figure 4 of (Groeneveld and Kovac,
1990) for a very similar covariance component estimation objective function sur-
face). In the Discussion section, we suggest a number of potential remedies for
the observed outlier proneness of the covariance component estimation aspect
of the VB, VML, ReML, and ML estimation techniques.

Model Recovery

Having established overall reasonable parameter recovery properties for our
implementation of the VB, VML, ReML, and ML estimation techniques, we
next investigated the ability of the respective techniques' (marginal) log likeli-
hood approximations to recover true, but unknown, model structures. We here
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Figure 6: Parameter recovery. The panels along the �gure's columns depict the
cumulative averages (blue/green lines), cumulative variances (blue/green shaded ar-
eas), and true, but unknown, parameter values (grey lines) for VB, VML, ReML, and
ML estimation. Parameter estimates relating to the e�ect sizes β are visualized in
blue, parameter estimates relating to the covariance components λ are visualized in
green. The panels along the �gure's rows depict the parameter recovery performance
for the subcomponents of the e�ect size parameters (row 1 and 2) and covariance com-
ponent parameters (row 3 and 4), respectively. The covariance component parameter
estimates are corrected for outliers as discussed in the main text. For implementational
details, please see vbg_2.m.
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focussed on the comparison of two data generating models that di�er in the
design matrix structure and have identical error covariance structures. Model
MG1 corresponds to the �rst column of the example design matrix of Figure 1
and thus is parameterized by a single e�ect size parameter. Model MG2 cor-
responds to the model used in all previous applications comprising two design
matrix columns. To assess the model recovery properties of the di�erent estima-
tion techniques, we generated 100 data realizations based on each of these two
models with true, but unknown, e�ect size parameter values of β1 = 2 (MG1
and MG2) and β2 = −1 (MG2 only), and covariance component parameters
λ = (−0.5,−2)T (MG1 and MG2), as in the previous simulations. We then
analysed each model's data realizations with data analysis models that corre-
sponded to only the single data-generating design matrix regressor (MA1) or
both regressors (MA2) for each of the four estimation techniques.

The results of this simulation are visualized in Figure 7. For each estimation
technique (panels), the average free energies, after exclusion of outlier estimates
for the covariance component parameters, are visualized as bars. The data-
generating models MG1 and MG2 are grouped on the x-axis and the data-
analysis models are grouped by bar color (MA1 green, MA2 yellow). As evident
from Figure 7, the correct analysis model obtained the higher free energy, i.e.
log model evidence approximation, for both data-generating models across all
estimation techniques. This di�erence was more pronounced when analysing
data generated by model MG2 than when analysing data generated by model
MG1. In this case, the observed data pattern is clearly better described by
MA2. In the case of the data-generating model MG1, data analysis model
MA2 can naturally account for the observed data by estimating the second
e�ect size parameter to be approximately zero. Nevertheless, this additional
model �exibility is penalized correctly by all algorithms, such that the more
parsimonious data analysis model MA1 assumes the higher log model evidence
approximation also in this case. We can thus conclude that model recovery is
achieved satisfactorily by all estimation techniques.

In summary, in the reported simulations we tried to validate our implemen-
tation of VB, VML, ReML, and ML estimation techniques for a typical neu-
roimaging data analysis example. We observed generally satisfactory parameter
recovery, with the exception of covariance component parameter recovery on a
subset of data realizations, and equivalently satisfactory model recovery. Nat-
urally, the reported simulations are conditional on our chosen model structure,
the true, but unknown, parameter values, and the algorithm initial conditions
(prior distributions), and thus not easily generalizable. Furthermore, the as-
sessment of the estimator qualities reported here is limited in scope. In the
Discussion section, we elaborate on a number of further qualitative checks that
may be of interest in future research.

3.2 Application to real data

Having validated the VB, VML, ReML, and ML implementation in simulations,
we were interested in their application to real experimental data with the main
aim of demonstrating the possible parameter inferences that can (and cannot)
be made with each technique. To this end, we applied VB, VML, ReML, and
ML to a single participant fMRI data set acquired under visual checkerboard
stimulation as originally reported in (Ostwald et al., 2010). In brief, the partici-
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Figure 7: Model recovery. Each panel depicts the average free energies of the
indicated estimation technique over 100 data realizations. Two data generating models
(MG1 and MG2, panel x-axis) were used and analysed in a cross-over design with two
data analysis models (MA1 and MA2, bar color). MG1 and MA1 comprise the same
single column design matrix, and MG2 and MA2 comprise the same two column design
matrix. Models MG1 and MA1 are nested in MG2 and MA2. Across all estimation
techniques, the correct data generating model is identi�ed as indexed by the respective
higher free energy log model evidence approximation. For implementational details,
please see vbg_3.m.

pant was presented with a single reversing left hemi-�eld checkerboard stimulus
for 1 second every 16.5 to 21 seconds. These relatively long inter-stimulus in-
tervals were motivated by the fact that the data was acquired as part of an
EEG-fMRI study that investigated trial-by-trial correlations between EEG and
fMRI evoked responses. Stimuli were presented at two contrast levels and there
were 17 stimulus presentations per contrast level. 441 volumes of T2*-weighted
functional data were acquired from 20 slices with 2.5 x 2.5 x 3 mm resolution
and a TR of 1.5 seconds. The slices were oriented parallel to the AC-PC axis
and positioned to cover the entire visual cortex. Data preprocessing using SPM5
included anatomical realignment to correct for motion artefacts, slice scan time
correction, re-interpolation to 2 x 2 x 2 mm voxels, anatomical normalization,
and spatial smoothing with a 5 mm FWHM Gaussian kernel. For full method-
ological details, please see (Ostwald et al., 2010).

To demonstrate the application of VB, VML, ReML, and ML to this data
set, we used the SPM12 facilities to create a three-column design matrix for the
mass-univariate analysis of voxel time-course data. This design matrix included
HRF-convolved stimulus onset functions for both stimulus contrast levels and a
constant o�set. The design matrix is visualized in panel C of Figure 9. We then
selected one slice of the preprocessed fMRI data (MNI plane z = 2) and used our
implementation of the four estimation techniques to estimate the corresponding
three e�ect size parameters β ∈ R3 and the covariance component parameters
λ ∈ R2 of the two covariance basis matrices introduced in Section 2.1 for each
voxel. We focus our evaluation on the resulting variational parameter estimates
of the e�ect size parameter β1, corresponding to the high stimulus contrast, and
the �rst covariance component parameter λ1, corresponding to the isotropic
error component. The results are visualized in Figures 8 and 9.

Figure 8 visualizes the parameter estimates relating to the e�ect size pa-
rameter β1. The subpanels of Figure 8 A depict the resulting two-dimensional
map of converged variational parameter estimates, which di�ers only minimally
between the four estimation techniques as indicated on the left of each panel.
The variational parameter estimates are highest in the area of the right primary
visual cortex, and lowest in the area of the cisterna ambiens/lower lateral ventri-
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Figure 8: E�ect size estimation. The �gure panels depict the e�ect size parameter
β1 estimation results of the VB, VML, ReML, and ML algorithm application to the
analysis of a single-participant single-run fMRI data set. This e�ect size parameter
captures the e�ect of high contrast left visual hemi�eld checkerboard stimuli as encoded
by the �rst column of the design matrix shown in panel C of Figure 9. The �rst column
(panel A) displays the converged expectation parameter estimates, the second column
(panel B) the associated variance estimates, and the third column (C) the posterior
probability for the true, but unknown, e�ect size parameter to assume values larger
than 4. For visual comparison, panel D depicts the result of a standard GLM data
analysis of the same data set using SPM12. For implementational details, please see
vbg_4.m.
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Figure 9: Covariance component parameter estimation. The �gure panels
depict the covariance component parameter λ1 estimation results of the VB, VML,
ReML, and ML algorithm application to the analysis of a single-participant single-run
fMRI data set. This covariance component parameter captures the e�ect of indepen-
dently distributed errors. The �rst column (panel A) displays the converged (expec-
tation) parameter estimates. The second column (panel B) displays the associated
variance estimate and posterior probability for λ1 > 2, which is only quanti�able un-
der the VB estimation technique. Panel C depicts the GLM design matrix that was
used for the fMRI data analysis presented in Figures 8 and 9 (HC: high contrast stim-
uli regressor, LC: low contrast stimuli regressor, BL: baseline o�set regressor). For
implementational details, please see vbg_4.m.
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cles. Panel B depicts the associated variational covariance parameter S(c)
β1
, i.e.,

the �rst diagonal entry of the of the variational covariance matrix S(c)
β ∈ R3×3.

Here, the highest uncertainty is observed for ventricular locations and the right
medial cerebral artery. Overall, the uncertainty estimates are marginally more
pronounced for the VB and VML techniques compared to the ReML estimates.
Note that the ML technique does not quantify the uncertainty of the GLM ef-
fect size parameters. Based on the variational parameters m(c)

β1
and S(c)

β1
, Panel

C depicts the probability that the true, but unknown, e�ect size parameter is
larger than η = 4, i.e.

p(β1 > η) = 1−Ncdf (η;mβ1
, Sβ1

), (55)

where Ncdf denotes the univariate Gaussian cumulative density function. Here,
the stimulus-contralateral right hemispheric primary visual cortex displays the
highest values and the di�erences between VB, VML, and ReML are marginal.
For comparison, we depict the result of a classical GLM analysis with contrast
vector c = (1, 0, 0)T at an uncorrected cluster-de�ning threshold of p < 0.001
and voxel number threshold of k = 0 overlaid on the canonical single partic-
ipant T1 image in 8D. This analysis also identi�es the right lateral primary
visual cortex as area of strongest activation - but in contrast to the VB, VML,
and ReML results does not provide a visual account of the uncertainty associ-
ated with the parameter estimates and ensuing T-statistics. In summary, the
VB, VML, and ReML-based quanti�cation of e�ect sizes and their associated
uncertainty revealed biologically meaningful results.

Figure 9 visualizes the variational expectation parameters relating to the ef-
fect size parameter λ1. Here, the subpanels of Figure 9A visualize the variational
(expectation) parameters across the four estimation techniques. High values for
this covariance component are observed in the areas covering cerebrospinal �uid
(cisterna ambiens, lateral and third ventricles), lateral frontal areas, and the big
arteries and veins. Notably, also in right primary visual cortex, the covariance
component estimate is relatively large, indicating that the design matrix does
not capture all stimulus-induced variability. The only estimation technique that
also quanti�es the uncertainty about the covariance component parameters is
VB. The results of this quanti�cation are visualized in 9B. The �rst subpanel vi-
sualizes the variational covariance parameter S(c)

λ1
, i.e., the �rst diagonal entry of

the variational covariance matrix S(c)
λ ∈ R2×2. The second subpanel visualizes

the probability that the true, but unknown, covariance component parameter λ
is larger than η = 2, i.e.

p(λ1 > η) = 1−Ncdf (η;mλ1
, Sλ1

), (56)

which, due to the relatively low uncertainty estimates Sλ1
shows high similarity

with the variational expectation parameter map. In summary, our exemplary
application of VB, VML, ReML, and ML to real experimental data revealed
biologically sensible results for both e�ect size and covariance component pa-
rameter estimates.
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4 Discussion

In this technical study, we have reviewed the mathematical foundations of
four major parametric statistical parameter estimation techniques that are rou-
tinely employed in the analysis of neuroimaging data. We have detailed, how
VML (expectation-maximization), ReML, and ML parameter estimation can be
viewed as special cases of the VB paradigm. We summarize these relationship in
Figure 10. Further, we have provided a detailed documentation of the applica-
tion of these four estimation techniques to the GLM with non-spherical, linearly
decomposable error covariance, a fundamental modelling scenario in the anal-
ysis of fMRI data. Finally, we validated the ensuing iterative algorithms with
respect to both simulated and real experimental fMRI data. In the following,
we relate our exposition to previous treatments of similar topic matter, discuss
potential future work on the qualitative properties of VB parameter estimation
techniques, and �nally comment on the general relevance of the current study.

Estimation Technique Probabilistic Model Prior Distributions Variational Distributions

Variational Bayes

Variational

Maximum Likelihood

Restricted

Maximum Likelihood

Maximum Likelihood

𝑝 𝑦, 𝛽, 𝜆 = 𝑝 𝑦 𝛽, 𝜆 𝑝 𝛽 𝑝(𝜆)
𝑝 𝛽 = 𝑁 𝛽; 𝜇𝛽 , Σ𝛽

𝑝 𝜆 = 𝑁 𝜆; 𝜇𝜆, Σ𝜆

𝑞 𝛽 = 𝑁 𝛽;𝑚𝛽 , S𝛽

𝑞 𝜆 = 𝑁 𝜆;𝑚𝜆, S𝜆

𝑞 𝜆 ≔ 𝐷𝜆∗ 𝜆 , 𝜆∗ → 𝜆

𝑝𝜆 𝑦, 𝛽 = 𝑝𝜆 𝑦 𝛽 𝑝 𝛽 𝑝 𝛽 = 𝑁 𝛽; 𝜇𝛽 , Σ𝛽 𝑞 𝛽 = 𝑁 𝛽;𝑚𝛽 , S𝛽

𝑝𝜆 𝑦, 𝛽 = 𝑝𝜆 𝑦 𝛽 𝑝 𝛽

𝑝𝛽,𝜆(𝑦) 𝑁/𝐴 𝑁/𝐴

𝑞 𝛽 = 𝐷𝛽∗ 𝛽 , 𝛽∗ → 𝛽

𝑝 𝛽 ≔ 1, 𝑞 𝛽 ≔ 𝑝𝜆(𝑦|𝛽)

𝑝 𝛽 = 1 𝑞 𝛽 = 𝑝𝜆(𝑦|𝛽)

Figure 10: Summary of the relationships between VB, VML, ReML, and

ML. Note that the prior and variational distributions shown are formulated with
respect to the GLM application. N/A denotes non-applicable.

The relationships between VB, VML, ReML, and ML have been previously
pointed out in Friston et al. (2002a) and Friston et al. (2007). In contrast to the
current study, however, Friston et al. (2002a) and Friston et al. (2007) focus on
high-level general results and provide virtually no derivations. Moreover, when
introducing VB in Friston et al. (2007), the GLM with non-spherical, linearly
decomposable error covariance is treated as one of a number of model applica-
tions and is not studied in detail across all estimation techniques. From this
perspective, the current study can be understood as making many of the implicit
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results in Friston et al. (2002a) and Friston et al. (2007) explicit and �lling in
many of the detailed connections and consequences, which are implied by Friston
et al. (2002a) and Friston et al. (2007). The relationship between VB and VML
has been noted already from outset of the development of the VB paradigm
(Beal, 2003; Beal and Ghamarani, 2003). In fact, VB was originally motivated
as a generalization of the EM algorithm (Neal and Hinton, 1998; Attias, 2000).
However, these treatments do not provide an explicit derivation of VML from
VB based on the Dirac delta function and do not make the connection to ReML.
Furthermore, these studies do not focus on the GLM and its application in the
analysis of fMRI data. Finally, a number of treatises have considered the ap-
plication of VB to linear regression models (e.g., Bishop, 2006; Murphy, 2012;
Tzikas et al., 2008). However, these works do not consider non-spherical linearly
decomposable error covariance matrices and also do not make the connection to
classical statistical estimation using ReML for functional neuroimaging. Taken
together, the current study complements the existing literature with its em-
phasis on the mathematical traceability of the relationship between VB, VML,
ReML, and ML, its focus on the GLM application, and its motivation from a
functional neuroimaging background.

Estimator quality

Generally speaking, model estimation techniques yield estimators. Estima-
tors are functions of observed data that return estimates of true, but unknown,
model parameters, be it the point-estimates of classical frequentist statistics or
the posterior distributions of the Bayesian paradigm (e.g., Wasserman, 2010).
An important issue in the development of estimation techniques is hence the
quality of estimators to recover true, but unknown, model parameters and model
structure. While this issue re-appears in the functional neuroimaging literature
in various guises every couple of years (e.g., Vul et al., 2009a; Eklund et al.,
2016a), often accompanied by some �urry in the �eld (e.g., Nichols and Poline,
2009; Vul et al., 2009b; Abbott, 2009; Eklund et al., 2016b; Miller, 2016), it
is perhaps true to state that the systematic study of estimator properties for
functional neuroimaging data models is not the most matured research �eld.
From an analytical perspective, this is likely due to the relative complexity of
functional neuroimaging data models as compared to the fundamental scenarios
that are studied in mathematical statistics (e.g., Shao, 2003). In the current
study, we used simulations to study both parameter and model recovery, and
while obtaining overall satis�able results, we found that the estimation of covari-
ance component parameters can be de�cient for a subset of data realizations. As
pointed out in Section 3, this �nding is not an unfamiliar result in the statistical
literature (e.g., Groeneveld and Kovac, 1990; Boichard et al., 1992; Groeneveld,
1994; Harville, 1977). We see two potential avenues for improving on this issue
in future research. Firstly, there exist a variety of covariance component estima-
tion algorithm variants in the literature (e.g., Gilmour et al., 1995; Witkovsk�y,
1996; Thompson and Mäntysaari, 1999; Foulley and van Dyk, 2000; Misztal,
2008) and research could be devoted to applying insights from this literature
in the neuroimaging context. Secondly, as the de�cient estimation primarily
concerns the covariance component parameter that scales the AR(1) + WN
model covariance basis matrix, it remains to be seen, whether the inclusion of
a variety of physiological regressors in the deterministic aspect of the GLM will
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eventually supersede the need for covariance component parameter estimation
in the analysis of �rst-level fMRI data altogether (e.g., Glover et al., 2000; Lund
et al., 2006).

Conclusion

Finally, we presented the application of VB, VML, ReML, and ML in the
context of fMRI time-series analysis. As pointed out in Section 1, the very same
statistical estimation techniques are of eminent importance for a wide range of
other functional neuroimaging data models. Moreover, together with the GLM,
they also form a fundamental building block of model-based behavioural data
analyses as recently proposed in the context of "computational psychiatry" (e.g.,
Montague et al., 2012; Stephan et al., 2016a,b,c; Schwartenbeck and Friston,
2016) and recent developments in the analysis of "big data" (e.g., Allenby et al.,
2014; Ghahramani, 2015). To conclude, we believe that the mathematization
and validation of model estimation techniques employed in the neuroimaging
�eld is an important endeavour as the �eld matures and we hope to have pro-
vided a small step in this direction with the current work.
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Abstract

In this Supplementary Material we collect the detailed derivations of
the results presented in Starke and Ostwald (2016) �Variational Bayesian
parameter estimation techniques for the general linear model�.

1 Preliminaries and notational conventions

1.1 Expectations

To ease the notation, we will often write the expectation of a function f of ran-
dom variable x under the probability distribution p(x) using the expectation
operator

〈f(x)〉p(x) =

∫
f(x)p(x) dx (1.1)

Furthermore, on numerous occasions, we require the following property of
expectations of multivariate random variables x ∈ Rd under normal distribu-
tions: for x,m, µ ∈ Rd,Σ ∈ Rd×d p.d. and A ∈ Rd×d it holds that

〈(x−m)TA(x−m)〉N(x;µ,Σ) = (µ−m)TA(µ−m) + tr(AΣ). (1.2)

(see e.g. Petersen and Pedersen (2012), eq. (380))

1.2 Gradient and Hessian

The gradient and Hessian of a real-valued function

f : Rn → R, x 7→ f(x) (1.3)

evaluated at a point a ∈ Rn will be denoted by

∇f(a) :=

(
∂

∂x1
f(a), ...,

∂

∂xn
f(a)

)T
∈ Rn (1.4)
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and

Hf (a) :=


∂2

∂x2
1
f(a) · · · ∂2

∂x1∂xn
f(a)

...
. . .

...
∂2

∂xn∂x1
f(a) · · · ∂2

∂x2
n
f(a)

 ∈ Rn×n. (1.5)

When it eases the notation, we also occasionally denote the partial derivative
of f with respect to xi evaluated at a ∈ Rn by ∂

∂xi
f |x=a.

1.3 The Dirac delta distribution

The Dirac delta distribution Dx∗ (x) is de�ned by the integral∫ x∗+ε

x∗−ε
f (x)Dx∗ (x) dx = f (x∗) , (1.6)

given that f (x) is a smooth function with compact support on [x∗ − ε, x∗ + ε]
and ε > 0. Importantly, for the constant function f(x) := 1, we have∫ ∞

−∞
Dx∗(x) dx = 1. (1.7)

1.4 Matrix di�erentiation

The following matrix di�erentiation rules are used in the subsequent deriva-
tions (Petersen and Pedersen, 2012). For a matrix A depending on a scalar
parameter x, we have

∂ |A|
∂x

= |A| tr
(
A−1 ∂A

∂x

)
(1.8)

∂ ln |A|
∂x

= tr

(
A−1 ∂A

∂x

)
(1.9)

∂A−1

∂x
= −A−1 ∂A

∂x
A−1 (1.10)

∂ tr (A)

∂x
= tr

(
∂A

∂x

)
. (1.11)

For a matrix A depending on a two-dimensional vector x = (x1, x2), the
second-order partial derivatives of its inverse are

∂2A−1

∂x2
1

= 2A−1 ∂A

∂x1
A−1 ∂A

∂x1
A−1 −A−1 ∂

2A

∂x2
1

A−1 (1.12)

∂2A−1

∂x2
2

= 2A−1 ∂A

∂x2
A−1 ∂A

∂x2
A−1 −A−1 ∂

2A

∂x2
2

A−1 (1.13)

and

∂2A−1

∂x1∂x2
=

∂2A−1

∂x2∂x1
= A−1 ∂A

∂x1
A−1 ∂A

∂x2
A−1 +A−1 ∂A

∂x2
A−2 ∂A

∂x1
A−1
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−A−1 ∂2A

∂x1∂x2
A−1 (1.14)

assuming thatA has continues second derivatives, such that the symmetry of of
second-order derivatives (Schwarz's theorem) holds. For the update equations
of the matrix parameters Sβ and Sλ, we also need to compute derivatives
regarding matrices. We have

∂ ln (|A|)
∂A

= A−1 (1.15)

and for matrices A and B of matching dimensions

∂ tr (AB)

∂A
= BT . (1.16)

2 The VB free energy and its update equations

To evaluate the VB free energy, we �rst rewrite it from its de�nition in eq.
(20) in the main text as follows

FV B(q(β)q(λ)) = 〈ln
(
p(y, β, λ)

q(β)q(λ)

)
〉q(β)q(λ)

= 〈ln p(y|β, λ)〉q(β)q(λ) + 〈ln p(β)〉q(β) + 〈ln p(λ)〉q(λ)
− 〈q(β)〉q(β) − 〈q(λ)〉q(λ).

(2.1)

Using (1.2), the second and third term on the right-hand side of (2.1) can be
evaluated exactly, yielding

〈ln p(β)〉q(β) = −p
2

ln 2π−1

2
ln |Σβ |−

1

2
(mβ−µβ)TΣ−1

β (mβ−µβ)−1

2
tr(Σ−1

β Sβ) (2.2)

and

〈ln p(λ)〉q(λ) = −k
2

ln 2π − 1

2
ln |Σλ| −

1

2
(mλ − µλ)TΣ−1

λ (mλ − µλ)− 1

2
tr(Σ−1

λ Sλ).

(2.3)

corresponding to terms 6 - 13 of eq. (28) in the main text. The fourth and
the �fth term on the right-hand side of (2.1) correspond to the entropies of
the variational distributions, which given their Gaussian form are given as
function of their respective covariance matrices (e.g., Bishop, 2006)

H(q(β)) = −〈ln q(β)〉q(β) =
p

2
ln(2πe) +

1

2
ln |Sβ |, (2.4)

H(q(λ)) = −〈ln q(λ)〉q(λ) =
k

2
ln(2πe) +

1

2
ln |Sλ|. (2.5)

Eqs. (2.4) and (2.5) correspond to terms 14 to 16 of eq. (28) in the main text.
Finally, we consider the �rst term of (2.1). Based on the de�nition of

p(y|β, λ), the expectation with respect to q(β) can be evaluated exactly, yield-
ing

〈ln p(y|β, λ)〉q(β)q(λ) =− n

2
ln 2π − 1

2
〈ln |Vλ|〉q(λ)

− 1

2
〈(y −Xmβ)TV −1

λ (y −Xmβ)〉q(λ)

− 1

2
〈tr(V −1

λ XSβX
T )〉q(λ)

(2.6)
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To make it possible to evaluate the remaining expectations, we use a second
order Taylor approximation. Let

f : Rk → R, λ 7→ f(λ) (2.7)

denote a real-valued function of λ. Then

f(λ) ≈ f(mλ) + (λ−mλ)T∇f(mλ) +
1

2
(λ−mλ)THf (mλ)(λ−mλ) (2.8)

in the vicinity of mλ. If q (λ) is su�ciently narrow, that is, if most of its mass
is concentrated close to mλ, we can thus approximate

〈f(λ)〉q(λ) ≈ f(mλ) + 〈(λ−mλ)T∇f(mλ)〉q(λ) +
1

2
〈(λ−mλ)THf (mλ)(λ−mλ)〉q(λ)

= f(mλ) +
1

2
tr (Hf (mλ)Sλ) . (2.9)

This approximation needs to be applied to all expectations in equation (2.6).
Thus, using the linearity of the trace to subsume all Hessian matrices into

Bmβ ,Sβ ,mλ = Hln |Vλ|(mλ) +H(y−Xmβ)TV −1
λ (y−Xmβ)(mλ)

+Htr(V −1
λ XSβXT )(mλ) ,

(2.10)

thereby pooling the second-order terms, we arrive at terms 1 - 5 of equation
(28) in the main text, and the derivation is complete.

Evaluation of Bmβ ,Sβ ,mλ

To estimate the VB free energy in practice, the Hessian matrices on the
right-hand side of (2.10) have to be evaluated. For the linear form of the error
covariance matrix

Vλ := exp(λ1)In + exp(λ2)Q2 (2.11)

the three Hessian matrices of (2.10) can be evaluated analytically:

Hln |Vλ|

Using (1.9), the �rst order partial derivatives are given by

∂ ln |Vλ|
∂λ1

= exp (λ1) tr
(
V −1
λ

)
(2.12)

and
∂ ln |Vλ|
∂λ2

= exp (λ2) tr
(
V −1
λ Q2

)
. (2.13)

Exploiting the linearity of the trace operator (1.11) and using (1.10) for
the derivative of the inverse yields the second order partial derivatives:

∂2 ln |Vλ|
∂λ2

1

= exp (λ1) tr
(
V −1
λ

)
− exp (2λ1) tr

(
V −2
λ

)
= exp (λ1) tr

(
V −1
λ

)
−
(
exp (λ1) tr

(
V −2
λ Vλ

)
− exp (λ1 + λ2) tr

(
V −2
λ Q2

))
= exp (λ1 + λ2) tr

(
V −2
λ Q2

)
,

(2.14)
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∂2 ln |Vλ|
∂λ2

2

= exp (λ2) tr
(
V −1
λ Q2

)
− exp (2λ2) tr

(
V −1
λ Q2V

−1
λ Q2

)
= exp (λ2) tr

(
V −1
λ Q2

)
−
(
exp (λ2) tr

(
V −1
λ VλV

−1
λ Q2

)
− exp (λ1 + λ2) tr

(
V −2
λ Q2

))
= exp (λ1 + λ2) tr

(
V −2
λ Q2

)
,

(2.15)

and

∂2 ln |Vλ|
∂λ1∂λ2

=
∂2 ln |Vλ|
∂λ2∂λ1

= − exp (λ1 + λ2) tr
(
V −2
λ Q2

)
, (2.16)

where in the last equation we used that the trace is invariant under cyclic
permutations, e.g. tr (ABC) = tr (CAB) = tr (BCA).

H(y−Xmβ)TV −1
λ (y−Xmβ)

The Hessian matrix of (y−Xmβ)TV −1
λ (y−Xmβ) only depends on the

second order partial derivatives of the inverse of Vλ

∂2

∂λi∂λj

(
(y −Xmβ)TV −1

λ (y −Xmβ)
)

= (y−Xmβ)T
∂2V −1

λ

∂λi∂λj
(y−Xmβ)

(2.17)
for i, j ∈ {1, 2}. Applying (1.12) to (1.14) yields

∂2V −1
λ

∂λ2
1

= exp (λ1)V −2
λ − 2 exp (2λ1)V −3

λ , (2.18)

∂2V −1
λ

∂λ2
2

= exp (λ2)V −1
λ Q2V

−1
λ − 2 exp (2λ2)V −1

λ Q2V
−1
λ Q2V

−1
λ , (2.19)

and

∂2V −1
λ

∂x1∂x2
=

∂2A−1

∂x2∂x1
= − exp (λ1 + λ2)

(
V −2
λ Q2V

−1
λ + V −1

λ Q2V
−2
λ

)
.

(2.20)

Htr(V −1
λ XSβXT )

Due to the linearity of the trace operator, we have

∂2 tr
(
V −1
λ XSβX

T
)

∂λi∂λj
= tr

(
∂2V −1

λ

∂λi∂λj
XSβX

T

)
(2.21)

for i, j ∈ {1, 2}. Thus we only have to use (2.18) to (2.20).

Notably, the evaluation of these Hessian matrices will necessitate the in-
version of Vλ on every iteration of the optimization algorithm. This inversion
can be performed e�ciently using the diagonalized form of Q2. As Q2 is a
real, symmetric matrix by design, there exists a diagonalized form given by
QD2 = PTQ2P , where P is a unitary transformation matrix (PT = P−1). The
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entries li, i ∈ {1, . . . , n} of QD2 are the eigenvalues of Q2. We thus have

V −1
λ = (exp (λ1) In + exp (λ2)Q2)

−1

=
(
exp (λ1)PInP

T + exp (λ2)PQD2 P
T
)−1

=
(
P
(
exp (λ1) In + exp (λ2)QD2

)
PT
)−1

= P
(
exp (λ1) In + exp (λ2)QD2

)−1
PT .

(2.22)

As exp (λ1) In+exp (λ2)QD2 is a diagonal matrix, its inverse is easily evaluated,
and the diagonalizing matrix P only needs to be computed once for any given
Q2.

The VB free energy update equations

In this section, we consider the iterative maximization of the VB free energy
function with respect to its vector and matrix parameters mβ , Sβ ,mλ and Sλ.
In each case, we identify the relevant subpart of the VB free energy function
depending on the respective parameter, evaluate its gradient with respect to
the parameter in question, set the gradient to zero, and, if possible, solve the
ensuing equation for a parameter update equation. To emphasize the iterative
character of this endeavour, we use the superscript (i) to denote the values of
parameters at a given algorithm iteration.

We consider the update with respect to Sλ �rst. The relevant subpart of

FV B
(
m

(i)
β , S

(i)
β ,m

(i)
λ , S

(i)
λ

)
depending on Sλ is given by

fV B(Sλ) = −1

4
tr
(
B
m

(i)
β ,S

(i)
β ,m

(i)
λ

Sλ

)
− 1

2
tr(Σ−1

λ Sλ) +
1

2
ln |Sλ|. (2.23)

Using the identities (1.15) and (1.16) considering that B
m

(i)
β ,S

(i)
β ,m

(i)
λ

and Σ−1
λ

are symmetric, evaluation of the gradient of fV B results in

∇fV B(Sλ) = −1

4
B
m

(i)
β ,S

(i)
β ,m

(i)
λ

− 1

2
Σ−1
λ +

1

2
S−1
λ . (2.24)

Setting the gradient to zero and solving for the parameter update S
(i+1)
λ then

yields

S
(i+1)
λ :=

(
1

2
B
m

(i)
β ,S

(i)
β ,m

(i)
λ

+ Σ−1
λ

)−1

. (2.25)

Note that with the linearity properties of the trace operator, this update
equation implies as a result, that the sum of the two trace terms involving
Sλ in the VB free energy (equation (28) of the main text) evaluates to −k2
and the term B

m
(i)
β ,S

(i)
β ,m

(i)
λ

does not need to be considered when deriving the

update equations for mβ , Sβ , and mλ.

Next, the relevant subpart of FV B
(
m

(i)
β , S

(i)
β ,m

(i)
λ , S

(i+1)
λ

)
depending on

mβ is given by

fV B(mβ) = −1

2
(y −Xmβ)TV −1

mλ
(y −Xmβ)− 1

2
(mβ − µβ)TS−1

β (mβ − µβ),

(2.26)
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where we omitted iteration superscripts for visual clarity. With (1.2), the
gradient of fV B(mβ) is given by

∇fV B(mβ) = (y −Xmβ)TV −1
mλ
X − (mβ − µβ)TΣ−1

β

= yTV −1
mλ
X −mT

βX
TV −1

mλ
X −mT

βΣ−1
β + µTβΣ−1

β

(2.27)

Setting the gradient to zero then yields the update equation

m
(i+1)
β :=

(
XTV −1

mλ
X + Σ−1

β

)−1 (
XTV −1

mλ
y + Σ−1

β µβ

)
(2.28)

Analogously, the relevant subpart of FV B
(
m

(i+1)
β , S

(i)
β ,m

(i)
λ , S

(i+1)
λ

)
de-

pending on Sβ is given by

fV B(Sβ) = −1

2
tr
(
XTV −1

mλ
XSβ

)
− 1

2
tr(Σ−1

β Sβ) +
1

2
ln |Sβ | (2.29)

with gradient

∇fV B(Sβ) = −1

2
XTV −1

mλ
X − 1

2
Σ−1
β +

1

2
S−1
β (2.30)

and the resulting update equation

S
(i+1)
β :=

(
XTV −1

mλ
X + Σ−1

β

)−1

. (2.31)

Note that the update equations (2.28) and (2.31) conform to the well-known
closed-form expressions for Bayesian inference in the conjugate Gaussian model
(cf. eq. (9) of the main text), with the di�erence of the parametric dependence

of the error covariance matrix on m
(i)
λ .

Finally, the relevant subpart of FV B
(
m

(i+1)
β , S

(i+1)
β ,m

(i)
λ , S

(i+1)
λ

)
depend-

ing on mλ is given by, again omitting iteration superscripts for visual clarity,

fV B(mλ) = −1

2
ln |Vmλ | −

1

2
(y −Xmβ)TV −1

mλ
(y −Xmβ)

− 1

2
tr(XTV −1

mλ
XSβ)− 1

2
(mλ − µλ)TΣ−1

λ (mλ − µλ).

(2.32)

Evaluation of entries ∂
∂mλj

fV B(mλ) of the gradient ∇fV B(mλ) yields

∂

∂mλj

fV B(mλ) =− 1

2
tr

(
V −1
mλ

(
∂Vmλ
∂mλj

))
− 1

2
(y −Xmβ)T

(
∂V −1

mλ

∂mλj

)
(y −Xmβ)

− 1

2
tr

((
∂V −1

mλ

∂mλj

)
XSβX

T

)
−
(

(mλ − µλ)TΣ−1
λ

)
j
.

(2.33)

The evaluation of these entries for the two-component linear error covariance
(2.11) then yields

∂

∂mλ1

fV B(mλ) = −1

2
exp(mλ1

)
(
tr(V −1

mλ
)− (y −Xmβ)TV −2

mλ
(y −Xmβ)

− tr
(
V −1
mλ
XSβX

TV −1
mλ

))
− 1

2

(
(mλ − µλ)Σ−1

λ

)
1
,

(2.34)
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and

∂

∂mλ2

fV B(mλ) = −1

2
exp(mλ2)

(
tr
(
V −1
mλ
Q2

)
− (y −Xmβ)TV −1

mλ
Q2V

−1
mλ

(y −Xmβ)

− tr
(
Q2V

−1
mλ
XSβX

TV −1
mλ

))
− 1

2

(
(mλ − µλ)Σ−1

λ

)
2
.

(2.35)

Lastly, to determine the value m
(i+1)
λ for which

∂

∂mλj

fV B
(
m

(i+1)
λ

)
= 0 (2.36)

for j = 1, 2, we employ the routine fsolve.m provided by Matlab (MATLAB
and Optimization Toolbox Release 2014b, The MathWorks, Inc., Natick, Mas-
sachusetts, United States). This function implements a trust-region dogleg
algorithm for the minimization of nonlinear real-valued functions of multiple
variables (Coleman and Li, 1996; Nocedal and Wright, 2006).

3 VML as special case of VB

Consider the VB decomposition of the log marginal likelihood

ln p(y) = FV B(q(β, λ)) +KL(q(β, λ)||p(β, λ|y)) (3.1)

and the factorized variational distribution

q(β, λ) = q(β)q(λ) with q(λ) := Dλ∗(λ). (3.2)

In the current section we show that the substitution of (3.2) in (3.1), i.e.,

ln p(y) = FV B(q(β)Dλ∗(λ)) +KL(q(β)Dλ∗(λ)||p(β, λ|y)) (3.3)

is equivalent to the VML decomposition of the log marginal likelihood as
de�ned in equations (35) and (36) of the main text. Furthermore, we show
that, if additionally a constant improper prior over λ is assumed, maximization
of the VB free energy yields VML estimates.

Some notational care is necessary with respect to the exchange of the
random variable λ in the VB context for a parameter value λ in the VML
context. To this end, we start out by denoting the random variable by λ and
a value that it can assume by λ∗. Towards the end of the derivation, we are
only concerned with the case that the random variable λ takes on the value
λ∗. We then identify the symbol λ with λ∗, which results in the notation of
the VML framework in the main text. Because the alternative would have
been to denote λ by di�erent symbols across the estimation frameworks, we
reasoned that this approach yields the most parsimonious notation.

To achieve our aim, we �rst reformulate the VB free energy term on the
right-hand side of eq. (3.3) as follows:

FV B(q(β)Dλ∗(λ)) =

∫∫
q(β)Dλ∗(λ) ln

(
p(y, β, λ)

q(β)Dλ∗(λ)

)
dβdλ

=

∫∫
q(β)Dλ∗(λ) ln p(y, β, λ)dβdλ

−
∫∫

q(β)Dλ∗(λ) ln (q(β)Dλ∗(λ)) dβdλ.

(3.4)
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Rearrangement of the double integral terms then yields

FV B(q(β)Dλ∗(λ)) =

∫
q(β)

(∫
Dλ∗(λ) ln p(y, β, λ) dλ

)
dβ

−
∫
q(β)

(∫
Dλ∗(λ) ln (q(β)Dλ∗(λ)) dλ

)
dβ

=

∫
q(β)

(∫
Dλ∗(λ) ln p(y, β, λ) dλ

)
dβ

−
∫
q(β)

(∫
Dλ∗(λ) ln q(β) dλ

)
dβ

−
∫
q(β)

(∫
Dλ∗(λ) lnDλ∗(λ) dλ

)
dβ

=

∫
q(β)

(∫
Dλ∗(λ) ln p(y, β, λ) dλ

)
dβ

−
∫
q(β) ln q(β) dβ

∫
Dλ∗(λ) dλ

−
∫
Dλ∗(λ) lnDλ∗(λ) dλ.

(3.5)

With the properties of the Dirac delta function, we then have

FV B(q(β)Dλ∗(λ)) =

∫
q(β) ln p(y, β, λ = λ∗)dβ

−
∫
q(β) ln q(β) dβ

−
∫
Dλ∗(λ) lnDλ∗(λ) dλ

=

∫
q(β) ln

(
p(y, β, λ = λ∗)

q(β)

)
dβ

−
∫
Dλ∗(λ) lnDλ∗(λ) dλ

=

∫
q(β) ln

(
p(y, β|λ = λ∗)p(λ = λ∗)

q(β)

)
dβ

−
∫
Dλ∗(λ) lnDλ∗(λ) dλ

=

∫
q(β) ln

(
pλ∗(y, β)

q(β)

)
dβ + ln p(λ = λ∗)

−
∫
Dλ∗(λ) lnDλ∗(λ) dλ.

(3.6)

With the de�nition of the VML free energy, we thus obtain

FV B(q(β)Dλ∗(λ)) = FVML(q(β), λ∗) + ln p(λ = λ∗)

−
∫
Dλ∗(λ) lnDλ∗(λ) dλ.

(3.7)

We next reformulate the KL divergence term on the right-hand side of
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eq. (3.3) as follows:

KL(q(β)Dλ∗(λ)||p(β, λ|y)) =

∫∫
q(β)Dλ∗(λ) ln

(
q(β)Dλ∗(λ)

p(β, λ|y)
)

)
dβ dλ

=

∫∫
q(β)Dλ∗(λ) ln (q(β)Dλ∗(λ)) dβ dλ

−
∫∫

q(β)Dλ∗(λ) ln p(β, λ|y) dβ dλ.

(3.8)

Rearrangement of the double integral terms then yields

KL(q(β)Dλ∗(λ)||p(β, λ|y)) =

∫
q(β)

(∫
Dλ∗(λ) ln (q(β)Dλ∗(λ)) dλ

)
dβ

−
∫
q(β)

(∫
Dλ∗(λ) ln p(β, λ|y) dλ

)
dβ

=

∫
q(β)

(∫
Dλ∗(λ) ln q(β) dλ

)
dβ

+

∫
q(β)

(∫
Dλ∗(λ) lnDλ∗(λ) dλ

)
dβ

−
∫
q(β)

(∫
Dλ∗(λ) ln p(β, λ|y) dλ

)
dβ.

(3.9)

With the properties of the Dirac delta function and re-arranging, we then
have

KL(q(β)Dλ∗(λ)||p(β, λ|y)) =

∫
q(β) ln q(β) dβ

−
∫
q(β) ln p(β, λ = λ∗|y) dβ

+

∫
Dλ∗(λ) lnDλ∗(λ) dλ

=

∫
q(β) ln

(
q(β)

p(β, λ = λ∗|y)

)
dβ

+

∫
Dλ∗(λ) lnDλ∗(λ) dλ

=

∫
q(β) ln

(
q(β)

p(β|λ = λ∗, y)

)
dβ − ln p(λ = λ∗|y)

+

∫
Dλ∗(λ) lnDλ∗(λ) dλ

=

∫
q(β) ln

(
q(β)

pλ∗(β|y)

)
dβ − ln p(λ = λ∗|y)

+

∫
Dλ∗(λ) lnDλ∗(λ) dλ.

(3.10)

With the de�nition of the KL divergence, we thus obtain

KL(q(β)Dλ∗(λ)||p(β, λ|y)) = KL(q(β)||pλ∗(β|y)− ln p(λ = λ∗|y)

+

∫
Dλ∗(λ) lnDλ∗(λ) dλ.

(3.11)
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Substitution of eq. (3.7) and eq. (3.11) on the right-hand side of eq. (3.3)
then yields

ln p(y) = FVML(q(β), λ∗) +KL(q(β)||pλ∗(β|y)) + ln

(
p(λ = λ∗)

p(λ = λ∗|y)

)
⇔ ln

(
p(y)p(λ = λ∗|y)

p(λ = λ∗)

)
= FVML(q(β), λ∗) +KL(q(β)||pλ∗(β|y))

⇔ ln p(y|λ = λ∗) = FVML(q(β), λ∗) +KL(q(β)||pλ∗(β|y))

⇔ ln pλ∗(y) = FVML(q(β), λ∗) +KL(q(β)||pλ∗(β|y))

(3.12)

Finally, setting λ := λ∗ as discussed above then yields the VML log
marginal likelihood decomposition of eqs. (35) and (36) in the main text.

Going back to equation (3.7), one sees that, under the additional assump-
tion of a constant improper prior over λ, the VB free energy is equal to the
VML free energy and an additive term C that is independent of either param-
eter:

FV B(q(β)Dλ∗(λ)) = FVML(q(β), λ∗) + C. (3.13)

Thus, in this case maximization of the VB free energy yields VML estimates.

4 The VML free energy and its update equations

The VML free energy is de�ned as

FVML(q(β), λ) =〈ln
(
pλ(y, β)

q(β)

)
〉q(β)

= 〈ln pλ(y|β)〉q(β) + 〈ln p(β)〉q(β) − 〈ln q(β)〉q(β).

(4.1)

The latter two terms on the right-hand side of (4.1) have been evaluated in
Section 2. The �rst term can be evaluated using (1.2), yielding

〈ln pλ(y|β)〉q(β) = −n
2

ln 2π − 1

2
ln |Vλ| −

1

2
(y −Xmβ)TV −1

λ (y −Xmβ)

− 1

2
tr(XTV −1

λ XSβ),

(4.2)

which completes the derivation of the VML free energy as eq. (39) of the
main text. To identify the update equations for the maximization of the VML
free energy, we proceed as in Section 2. Because the main di�erence between
the VB and VML framework is the parameterization of the error covariance
matrix Vλ in terms of λ rather than mλ and the vanishing of terms relating to
the prior and variational distributions of λ, we can keep the discussion very
concise.

The relevant subpart of FVML(m
(i)
β , S

(i)
β , λ(i)) depending on mβ is given

by

fVML(mβ) = −1

2
(y−Xmβ)TV −1

λ (y−Xmβ)− 1

2
(mβ − µβ)TS−1

β (mβ − µβ), (4.3)

with gradient

∇fVML(mβ) = yTV −1
λ X −mT

βX
TV −1

λ X −mT
βΣ−1

β + µTβΣ−1
β (4.4)
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and ensuing update equation

m
(i+1)
β :=

(
XTV −1

λ X + Σ−1
β

)−1 (
XTV −1

λ Xy + Σ−1
β µβ

)
. (4.5)

Likewise, the relevant subpart of FVML(m
(i+1)
β , S

(i)
β , λ(i)) depending on Sβ is

given by

fVML(Sβ) = −1

2
tr
(
V −1
λ XSβX

T
)
− 1

2
tr(Σ−1

β Sβ) +
1

2
ln |Sβ | (4.6)

with gradient

∇fVML(Sβ) = −1

2
XTV −1

λ X − 1

2
Σ−1
β +

1

2
S−1
β (4.7)

and the resulting update equation

S
(i+1)
β :=

(
XTV −1

λ X + Σ−1
β

)−1

. (4.8)

Finally, the relevant subpart of FVML
(
m

(i+1)
β , S

(i+1)
β , λ(i)

)
depending on

λ is given by

fVML(λ) = −1

2
ln |Vλ| −

1

2
(y −Xmβ)TV −1

λ (y −Xmβ)− 1

2
tr
(
V −1
λ XSβX

T
)
.

(4.9)

Here, in analogy to eqs. (2.34) and (2.35), the entries of ∇fVML(λ) for the
case of the two-component error covariance matrix of interest (eq. (2.11))
evaluate to

∂

∂λ1
fVML(λ) = −1

2
exp(λ1)

(
tr(V −1

λ )− (y −Xmβ)TV −2
λ (y −Xmβ)

)
+

1

2
exp(λ1) tr

(
V −2
λ XSβX

T
)
.

(4.10)

and

∂

∂λ2
fVML(λ) = −1

2
exp(λ2)

(
tr(V −1

λ Q2)− (y −Xmβ)TV −1
λ Q2V

−1
λ (y −Xmβ)

)
+

1

2
exp(λ2) tr

(
V −1
λ Q2V

−1
λ XSβX

T
)

(4.11)
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5 The ReML free energy and its update equations

The ReML objective function as VML free energy

We �rst show that for the probabilistic model

pλ(y, β) = pλ(y|β)p(β) with pλ(y|β) = N(y;Xβ, Vλ) and p(β) := 1 (5.1)

it holds that the VML free energy with variational distribution

q(β) := pλ(β|y) (5.2)

evaluates to the ReML objective function

`ReML(λ) := −1

2
ln |Vλ|−

1

2
ln |XTV −1

λ X|− 1

2
(y−Xβ̂GLS)TV −1

λ (y−Xβ̂GLS) (5.3)

up to an additive constant, i.e.

FVML(pλ(β|y), λ) = `ReML(λ) + c (5.4)

with
c := −n

2
ln(2π) +

p

2
ln(2π) (5.5)

To this end, we �rst note that for the probabilistic model (5.1) and with the
de�nition of the GLS estimator

β̂GLS :=
(
XTV −1

λ X
)−1

XTV −1
λ y (5.6)

it holds that

pλ(β|y) = N(β;mβ , Sβ) = N
(
β; β̂GLS ,

(
XTV −1

λ X
)−1
)
. (5.7)

In brief, (5.7) follows as a limiting case of the conditional properties of Gaus-
sian distributions for the case of zero prior precision, i.e. the case of an im-
proper prior p(β) = 1 (see e.g. (Murphy, 2012) for a more detailed discussion).

Evaluation of the VML free energy in the current scenario then yields

FVML(pλ(β|y), λ) =
〈

ln

(
pλ(y, β)

pλ(β|y)

)〉
pλ(β|y)

= 〈ln (pλ(y|β)p(β))〉pλ(β|y) − 〈ln pλ(β|y)〉pλ(β|y)

= 〈ln pλ(y|β)〉pλ(β|y) − 〈ln pλ(β|y)〉pλ(β|y).

(5.8)
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Evaluation of the �rst term on the right-hand side (5.8) yields

〈ln pλ(y|β)〉pλ(β|y) =− n

2
ln 2π − 1

2
ln |Vλ| −

1

2
〈(y −Xβ)TV −1

λ (y −Xβ)〉p(λ)(β|y)

=− n

2
ln 2π − 1

2
ln |Vλ| −

1

2
(y −Xβ̂GLS)TV −1

λ (y −Xβ̂GLS)

− 1

2
tr
(
V −1
λ X(XTV −1

λ X)−1XT
)

=− n

2
ln 2π − 1

2
ln |Vλ| −

1

2
(y −Xβ̂GLS)TV −1

λ (y −Xβ̂GLS)

− 1

2
tr
(
XTV −1

λ X(XTV −1
λ X)−1

)
=− n

2
ln 2π − 1

2
ln |Vλ| −

1

2
(y −Xβ̂GLS)TV −1

λ (y −Xβ̂GLS)

− p

2
,

(5.9)

where the second equality follows with (1.2). The third equality uses the
invariance of the trace under cyclic permutations. The second term on the
right hand of (5.8) corresponds to the entropy of the distribution pλ(β|y) and
thus evaluates to

H(pλ(β|y)) = −〈pλ(β|y)〉pλ(β|y) =
p

2
ln(2πe) + ln |Sβ | =

p

2
ln(2πe)− 1

2
ln |XTV −1

λ X|
(5.10)

We thus have shown that

FVML(pλ(β|y), λ) = `ReML(λ)− n

2
ln 2π +

p

2
ln(2πe)− p

2
, (5.11)

which concludes the derivation.

The ReML free energy and its update equations

To align the discussion of ReML with the previous discussions of VB and
VML, we next de�ne the ReML free energy function as the VML free energy
evaluated for the probabilistic model (5.1) at the exact posterior distribution
pλ(β|y), i.e.,

FReML(mβ , Sβ , λ) := FVML(pλ(β|y), λ) = `ReML(λ) + c. (5.12)

By noting that with (5.7) the variational parameters are given by

mβ = β̂GLS and Sβ = (XTV −1
λ X)−1, (5.13)
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we can then rewrite the ReML free energy as in the main text:

FReML(mβ , Sβ , λ) = −1

2
ln |Vλ| −

1

2
ln |XTV −1

λ X|

− 1

2
(y −Xβ̂GLS)TV −1

λ (y −Xβ̂GLS)

− n

2
ln 2π +

p

2
ln(2πe)− p

2

= −1

2
ln |Vλ|+

1

2
ln |(XTV −1

λ X)−1|

− 1

2
(y −Xmβ)TV −1

λ (y −Xmβ)

− n

2
ln 2π +

p

2
ln(2πe)− 1

2
tr
(

(XTV −1
λ X)(XTV −1

λ X)−1
)

= −1

2
ln |Vλ|+

1

2
ln |Sβ |

− 1

2
(y −Xmβ)TV −1

λ (y −Xmβ)

− n

2
ln 2π +

p

2
ln(2πe)− 1

2
tr(SβX

TV −1
λ X)

= −n
2

ln 2π − 1

2
ln |Vλ| −

1

2
(y −Xmβ)TV −1

λ (y −Xmβ)

− 1

2
tr(SβX

TV −1
λ X)

+
p

2
ln(2πe) +

1

2
ln |Sβ |.

(5.14)

Finally, we derive the update equations for the parameters mβ , Sβ , and λ
of the ReML free energy. Note that because the ReML objective function is
identical to the ReML free energy up to an additive constant which is inde-
pendent of these parameters, the resulting iterative algorithm also maximizes
the ReML objective function.

The relevant subpart of FReML(m
(i)
β , S

(i)
β , λ(i)) that depends onmβ is given

by, omitting iteration superscripts for ease of notation,

fReML(mβ) = −1

2
(y −Xmβ)TV −1

λ (y −Xmβ) (5.15)

with gradient

∇fReML(mβ) = yTV −1
λ X −mT

βX
TV −1

λ X (5.16)

and ensuing update equation

m
(i+1)
β := (XTV −1

λ X)−1XTV −1
λ y. (5.17)

Unsurprisingly, this is the GLS estimator. Further, the relevant subpart of

FReML(m
(i+1)
β , S

(i)
β , λ(i)) depending on Sβ is given by, again omitting iteration

superscripts for ease of notation,

fReML(Sβ) = −1

2
tr(SβX

TV −1
λ X) +

1

2
ln |Sβ | (5.18)
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with gradient

∇fReML(Sβ) = −1

2
XTV −1

λ X +
1

2
S−1
β (5.19)

and ensuing update equation

S
(i+1)
β := (XTV −1

λ X)−1. (5.20)

Finally, because the subpart of FReML depending on λ is identical to the
subpart of FVML depending on λ, the update procedure for FReML with
respect to λ is identical to that of FVML.

6 The ML free energy and its update equations

In this section, we show how the ML objective function can be conceived as a
special case of the VML free energy by evaluating FVML for the probabilistic
model

pλ(y, β) = pλ(y|β)p(β) (6.1)

and variational distribution

qβ := Dβ∗(β). (6.2)

As in the discussion of VML as a special case of VB, notational care is nec-
essary with respect to the exchange of the random variable β in the VML
context with the parameter value β in the ML context. Again, we start out
by denoting the random variable by β and a value it can assume by β∗. When
led to only consider the case that β takes on the value β∗ and its associated
probability density, we identify the symbol β with β∗, resulting in the notation
of the ML framework in the main text.

Substitution of (6.1) and (6.2) in the VML free energy de�nition yields

FVML(Dβ∗(β), λ) =

∫
Dβ∗(β) ln

(
pλ(y, β)

Dβ∗(β)

)
dβ

=

∫
Dβ∗(β) ln pλ(y, β)dβ −

∫
Dβ∗(β) lnDβ∗(β)dβ

= ln pλ (y, β = β∗)−
∫
Dβ∗(β) lnDβ∗(β)dβ

= ln pλ(y|β = β∗) + ln p(β = β∗)−
∫
Dβ∗(β) lnDβ∗(β)dβ

= ln pβ∗,λ(y) + ln p(β = β∗)−
∫
Dβ∗(β) lnDβ∗(β)dβ.

(6.3)

In analogy to (3.12), this leads us to de�ne the ML free energy

FML (β∗, λ) = ln pβ∗,λ (y) (6.4)

which is just the log likelihood, the objective function of ML estimation. Using
this de�nition, we obtain

FVML(Dβ∗(β), λ) = FML (β∗, λ) + ln p(β = β∗)−
∫
Dβ∗(β) lnDβ∗(β)dβ.

(6.5)
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If additionally a constant improper prior p (β) = 1 is used and the constant
terms are discarded, maximization of the VML free energy is thus equiv-
alent to ML estimation. Finally, we evaluate a consistency check on this
result.Substitution of (6.1) and (6.2) in the Kl divergence de�nition yields

KL(Dβ∗(β)||pλ(β|y)) =

∫
Dβ∗(β) lnDβ∗(β)dβ −

∫
Dβ∗(β) ln pλ(β|y) dβ

=

∫
Dβ∗(β) lnDβ∗(β)dβ − ln pλ(β = β∗|y)

(6.6)

Substitution of (6.4) and (6.6) into the VML log marginal likelihood decom-
position (eq. (34) in the main text) and receive

ln pλ (y) = FVML (Dβ∗(β), λ) +KL (Dβ∗(β)||pλ(β|y))

= FML (β∗, λ) + ln p(β = β∗)−
∫
Dβ∗(β) lnDβ∗(β)dβ

+

∫
Dβ∗(β) lnDβ∗(β)dβ − ln pλ(β = β∗|y)

= ln pβ∗,λ(y) + ln p(β = β∗)− ln pλ(β∗|y)

= ln pλ(y|β = β∗) + ln p(β = β∗)− ln pλ(β = β∗|y)

(6.7)

which is equivalent with

pλ(β = β∗|y) =
p(y|β = β∗)p(β = β∗)

pλ(y)
(6.8)

This shows, together with section 3, that �xing the variational distributions
of the VB log evidence decomposition to be Dirac delta distributions leads to
a result consistent with the de�nition of conditional probabilities, and Bayes'
theorem in particular.

For the GLM, we have

FML(β, λ) = −n
2

ln(2π)− 1

2
ln |Vλ| −

1

2
(y −Xβ)TV −1

λ (y −Xβ) (6.9)

To derive parameter update equations, we consider the dependency of FML

on β(i) and λ(i) in turn. The relevant subpart of FML(β(i), λ(i)) that depends
on β is then given by, omitting iteration superscripts for ease of notation,

fML(β) = −1

2
(y −Xβ)TV −1

λ (y −Xβ) (6.10)

with gradient
∇fML(β) = yTV −1

λ X − βTXTV −1
λ X (6.11)

and ensuing update equation

β(i+1) := (XTV −1
λ X)−1XTV −1

λ y, (6.12)

corresponding to the GLS estimator as in the case of ReML. The relevant
subpart of FML(β(i+1), λ(i)) that depends on λ di�ers from the VML and
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ReML scenarios and is given by, again omitting iteration superscripts for ease
of notation,

fML(λ) = −1

2
ln |Vλ| −

1

2
(y −Xβ)TV −1

λ (y −Xβ) (6.13)

Here, in analogy to eqs. (2.33), (2.34), and (2.35), the entries of ∇fML(λ)
for the case of the two-component error covariance matrix of interest evaluate
to

∂

∂λ1
fML(λ) = −1

2
exp(λ1)

(
tr(V −1

λ )− (y −Xβ)TV −2
λ (y −Xβ)

)
(6.14)

and

∂

∂λ2
fV B(λ) = −1

2
exp(λ2)

(
tr(V −1

λ Q2)− (y −Xβ)TV −1
λ Q2V

−1
λ (y −Xβ)

)
(6.15)

As they correspond to a disregard of prior information and posterior uncer-
tainty about β, equations (6.12), (6.14) and (6.15) can also be attained from
the VML update equations (4.5), (4.10) and (4.11) by setting Σ−1

β = Sβ = 0.

7 SPM12 ReML Covariance Component Estimation

In the parameter recovery assessment of our VB, VML, ReML, and ML im-
plementation, we found that the covariance component parameter estimation
fails in a signi�cant number of cases. To investigate whether this behaviour is
speci�c to our implementation, we performed the same analyses using the co-
variance component parameter estimation functions spm_reml_sc.m (Version
4805) and spm_reml.m (Version 5223) of the SPM12 distribution. These func-
tions perform a Fisher scoring ascent on the ReML objective function to iden-
tify maximum-a-posteriori covariance component parameter estimates, prob-
ably documented best in (Friston et al., 2002). The function spm_reml_sc.m
uses weakly informative log normal priors to ensure the positivity of the covari-
ance component parameter estimates, while the spm_reml.m function, which
is called by SPM12 central spm_spm.m function, does not.

We visualize the results in Figure S1. The panel columns of this �gure
refer to the two covariance component parameter estimates and the panel
rows refer to the di�erent SPM12 functions. In the �rst row, we visualize
the cumulative average and variances of the respective parameter estimates
based on the spm_reml_sc.m function without the removal of outliers. The
performance for λ1 is acceptable, but for the estimation of λ2 outliers from
approximately the 10th simulation on bias the cumulative average signi�cantly
away from the true, but unknown, parameter value and strongly amplify the
cumulative variance. This is similar to the behaviour we detected in our imple-
menation which led us to remove these outliers automatically (Grubbs, 1969).
The second row of Figure S1 depicts the parameter recovery performance for
spm_reml_sc.m after removal of appoximately 15% of outliers. This results
in similar performance as in our implementation. Finally, the last row of
Figure S1 depicts the parameter recovery performance for the spm_reml.m
function. Because spm_reml.m can return negative covariance components
and because the SPM12 procedures assume a covariance structure of the form
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Figure 1: Parameter recovery for SPM12-based covariance component parameter
estimation. The panels along the �gure's columns depict the cumulative averages
(gree line), cumulative variances (green shaded area), and true, but unknown, pa-
rameter values (grey) for the �rst and second covariance component parameters λ1

and λ2, respectively. The panels along the �gure's rows depict these quantities for
the two implementations of covariance component parameter estimation in SPM12
as indicated on the right, and without and with a correction for outliers as indicated.
For implementational details, please see vbg_2.m.
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Vλ =
∑k
i=1 λiQi and not of the form Vλ =

∑k
i=1 exp(λi)Qi as in our implemen-

tation, the necessary log transformation of the returned parameter estimates
here can result in unde�ned results. In the data shown, these unde�ned re-
sults have been removed, again rendering the resulting cumulative averages
and variances within reasonable bounds of the true, but unknown, parameter
values.

In summary, we conclude that the numerical optimization problems that
we encountered for the estimation of covariance components based on our
implementation of the VB, VML, ReML, and ML estimation techniques are
not an uncommon phenomenon in the analysis of neuroimaging data.
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