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Abstract

We present a computational method, implemented in an open source R package, to explore how cancers from
different tissue types might have acquired the same cancer hallmark (evolutionary successful trait) via
preferential genomically altering different biological pathways. To this aim, we have curated a collection of 374
orthogonal pathway gene-sets encompassing thousands of genes (from public available resources) mapped to
10 canonical cancer hallmarks.

Using this curated data resource, we have characterised the landscape of pathway alterations putatively
contributing to the acquisition of different cancer hallmarks via systematic analysis of somatic mutations in
large cohorts of patients across 10 cancer types, from the Cancer Genome Atlas.

We assume that the heterogeneity of each hallmark in terms of number of corresponding enriched pathway
alterations is reflective of its evolutionary fitness to the cancer type under consideration. A systematic
evaluation of this heterogeneity across hallmarks and cancer types has resulted into a set of cancer hallmark
heterogeneity signatures. These signatures quantitatively confirm the established predominance of certain
hallmarks in determined cancer types and their clinical relevance, and they allow an easy data-driven
comparison of cancer hallmark heterogeneity across different lineages.

We have found, as expected, that most of the pathway alteration enrichments and large hallmark
heterogeneities are guided by somatic mutations in established, and highly frequently mutated, high-confidence
cancer driver genes. However and most importantly, when excluding these variants from the analyses, we
observe that the hallmark heterogeneity signatures, thus the level of predominance of the considered hallmarks,
are strikingly preserved across cancer types. Therefore we propose to use the hallmark heterogeneity signatures
as a ground truth to characterise long tails of infrequent genomic alterations, across cancer types, and we
highlight a number of potential novel cancer driver genes and networks.
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Background
The swift progression of next-generation sequencing
technologies is enabling a fast and affordable produc-
tion of an extraordinary amount of genome sequences.
Cancer research is particularly benefiting from these
advances, and comprehensive catalogues of somatic
mutations involved in carcinogenesis, tumour progres-
sion and response to therapy are becoming increas-
ingly available and ready to be exploited for the iden-
tification of new diagnostic, prognostic and therapeu-
tic markers [1, 2, 3, 4]. Exploration of the genomic
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makeup of multiple cancer types has highlighted that
driver somatic mutations typically involve few genes
altered at high frequency and a long tail of more genes
mutated at very low frequency [5, 6], with a tendency
for both sets of genes to code for proteins involved
into a limited number of biological processes [7]. As
a consequence, a reasonable approach is to consider
these alterations by grouping them based on a prior
knowledge of the cellular mechanisms and biological
pathways where the products of the mutated genes
operate. Multiple methods exist based on this princi-
ple, reviewed in [8]. This reduces the dimensionality of
large genomic datasets involving thousands of altered
genes into a sensibly smaller set of altered mechanisms
that are more interpretable, possibly actionable in a
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pharmacological or experimental way [9], and can be
also used as therapeutic markers whose predictive abil-
ity is significantly improved when compared to that of
genomic lesions in individual genes [10]. Additionally,
this facilitates the stratification of cancer patients into
informative subtypes [11], the characterisation of rare
somatic mutations [12], and the identification of the
spectrum of possible alterations underpinning a com-
mon evolutionary successful trait acquired by a nor-
mal cell as it transforms itself in a precancerous one
and ultimately into cancer. In two landmark papers
[13, 14] these traits have been summarised into a set
of 11 principles, collectively referred as the hallmarks
of cancer.

Here we propose a computational strategy to char-
acterise the set of genomically altered pathways con-
tributing to the acquisition of the canonical cancer
hallmarks across 10 different cancer types, via a sys-
tematic analysis of 4,415 public available cancer pa-
tients’ genomes (from the Cancer Genome Atlas).
Then we devise a metric to assess the predominance
of each hallmark in each cancer type quantitatively
and in a data driven way. Finally, after verifying that
the majority of these predominances are led by so-
matic mutations in established high-confidence cancer
genes, we show that they are maintained when exclud-
ing these variants from the analysis. Thus we propose
to use the obtained heterogeneity signatures of cancer
hallmarks as the ground truth for functionally char-
acterising long tails of infrequent genomic alterations,
across cancer types. Finally we highlight a number of
potential novel cancer driver genes and networks, iden-
tified with the proposed approach.

Results
Sample Level Analysis of Pathway Alterations
Enrichments (SLAPenrich)
In the first step of our computational pipeline we make
use of SLAPenrich (Sample Level Analysis of Path-
way alteration Enrichments): a computational method
implemented into an R package to perform pathway
analyses of genomic datasets at the sample-population
level. We have designed this tool on purpose as a mean
to characterize in an easily interpretable way sparse
somatic mutations detected in heterogeneous cancer
sample populations, which share traits of interest and
are subjected to strong selective pressure, leading to
combinatorial patterns.

Several computational methods have been designed
to perform pathway analysis on genomic data, aim-
ing at prioritizing sets of genomically altered genes

whose products operate in the same cellular process
or functional network. All the approaches proposed so
far toward this aim can be classified into two main
classes [8].

The first class of approaches aims at identifying
pathways whose composing genes are significantly
over-represented in the set of altered genes across all
the samples of a dataset, compared against the back-
ground set of all studied genes. Many tools exist and
are routinely used to perform this analysis [15, 16, 17],
sometimes incorporating additional features, such as
inter-gene dependencies and signal correlations [18],
and also estimating single sample pathway deregula-
tions based on transcriptional data [19].

To identify pathways, gene sets and gene-ontology
categories that are over-represented in a selected set of
genes satisfying a certain property (for example, being
differentially expressed when contrasting two biolog-
ical states of interests), the likelihood of their recur-
rence in the gene set of interests is usually estimated.
This is usually quantified through a p-value assign-
ment computed through a hypergeometric (or Fisher’s
exact) test, against the null hypothesis that there is
no association between the pathway under considera-
tion and the biological state yielding the selected set
of genes. The test fails (producing a non significant
p-value) when the size of the overlap between the con-
sidered pathway and the set of genes of interests is
close to that expected by random chance.

The problem we tackle with SLAPenrich is rather
different: we want to test the hypothesis that, in a
given cohort of cancer patients (or any population un-
der evolutionary pressure), the number of samples har-
bouring a mutation in at least one gene belonging to
a given pathway is significantly larger and divergent
from its expectation (when considering the size of the
measured cohort, the background mutation rate and
the non-overlapping total exonic block lengths of all
the genes). If this is the case, then the pathway under
consideration is deemed as enriched at the sample pop-
ulation level (SLAPenriched) in relation to the whole
cohort of patients.
The first step of our method consists in modeling the
probability of observing at least a mutation in a sin-
gle gene belonging to the pathway under consider-
ation across the individual samples (one probability
per sample, quantifying the likelihood of observing at
least a mutation in that pathway by random chance,
given the background mutation rate and the total ex-
onic block length of the pathway). These individual
probabilities are then aggregated in a collective test
against the null hypothesis that there is no associ-
ation between the pathway under consideration and
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the genomic alterations observed in the analysed co-
hort.To our knowledge there are only two other tools
to conduct this type of analyses: PathScan [20] and
PathScore [21]. SLAPenrich performs comparably to
them, showing a slightly improved ability to rank as
highly enriched pathways containing established can-
cer driver genes. Additionally, several aspects make
SLAPenrich more suitable for the analyses described
in this manuscript. These are discussed in the follow-
ing section, together with a systematic comparison of
SLAPenrich, PathScan and PathScore.

The second class of approaches aims at identifying
novel pathways by mapping genomic alteration pat-
terns on large protein interaction networks. The com-
binatorial properties occurring among the alterations
are then analyzed and used to define cost functions,
for example based on the tendency of a group of genes
to be mutated in a mutual exclusive manner. On the
basis of these cost functions, optimal sub-networks are
identified and interpreted as novel cancer driver path-
ways [22, 23, 24]. However, at the moment there is no
consensual way to rigorously define a mathematical
metric for mutual exclusivity and compute its statisti-
cal significance, and a number of interpretations exist
[22, 23, 25, 26, 27].

SLAPenrich does not require somatic mutations in
a pathway to be statistically enriched among those
detected in an individual sample nor the merged (or
aggregated) set of mutations in the population. It as-
sumes that a single mutation of a gene of a pathway
in an individual sample can be sufficient to deregulate
the pathway activity, potentially providing selective
advantages. This allows pathways containing groups
of genes with a tendency to be mutated in mutually
exclusive fashion (therefore different individually mu-
tated genes in different samples) to be still detected as
enriched at the sample population level.
Subsequently, using a filter that accounts for this ten-
dency, SLAPenrich can prioritize the pathways that
are statistically enriched and also mutated in a mutu-
ally exclusive manner, as a further evidence of positive
selection [28]. Hence, SLAPenrich belongs roughly to
the first category described above, although it shares
the mutual exclusivity consideration with the methods
in the second.

More precisely, after modeling the probability of ob-
serving a genomic alteration in at least one mem-
ber of a given pathway across the individual sam-
ples, SLAPenrich performs a collective statistical test
against the null hypothesis that the number of sam-
ples with at least one alteration in that pathway is

close to that expected by random chance, therefore
no association exists between the analyzed population
and the pathway under consideration. An additional
advantage of modeling probabilities of at least an in-
dividual mutation in a given pathway (instead of, for
example, the probability of the actual number of mu-
tated genes) is that this prevent signal saturations due
to hypermutated samples.

The input to SLAPenrich is a collection of samples
accounting for the mutational status of a set of genes,
such as a cohort of human cancer genomes. This is
modeled as a dataset where each sample consists of a
somatic mutation profile indicating the status (point-
mutated or wild-type) of a list of genes (Figure 1A).
For a given biological pathway P , each sample is con-
sidered as an individual Bernoulli trial that is success-
ful when that sample harbours somatic mutations in
at least one of the genes belonging to the pathway un-
der consideration (Figure 1B).

The probability of success of each of these trials
can be computed by either (i) a general hypergeo-
metric model accounting for the mutation burden of
the sample under consideration, the size of the gene
background population and the number of genes in
the pathway under consideration, or (ii) a more re-
fined modeling of the likelihood of observing point
mutations in a given pathway, accounting for the total
exonic block lengths of the genes in that pathway (Fig-
ure 1AB) and the estimated (or actual) mutation rate
of the sample under consideration [29]. In addition,
more sophisticated methods, accounting for example
for gene sequence compositions, trinucleotide rates,
and other covariates (such as expression, chromatin
state, etc) can be used through user-defined functions
that can be easily integrated in SLAPenrich.

Once these probabilities have been computed, the
expected number of samples in the population har-
bouring at least one somatic mutation in P can be
estimated, and its probability distribution modeled
analytically. Based on this, a pathway alteration score
can be computed observing the deviance of the number
of samples harbouring somatic mutations in P from its
expectation, and its statistical significance quantified
analytically (Figure 1C). Finally, the resulting statisti-
cally enriched pathways are further filtered by looking
at the tendency of their composing genes to be mu-
tated in a mutually exclusive fashion across all the
analyzed samples, as an additional evidence of posi-
tive selection [30, 22, 23].
SLAPenrich includes a visualization/report framework
allowing an easy exploration of the outputted enriched
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Figure 1 Schematic of the statistical framework underlying SLAPenrich: (A) The probability pi of a pathway P being genomically
altered in the individual sample si of the analyzed dataset is computed. This accounts for the somatic mutation rate of the sample
and the sum of the total exonic length blocks of all the k genes in the pathway under consideration. Xi is a random variable
quantifying the number of genes belonging to P that are altered in si, hence the probability of P being altered is pi = Pr(Xi ≥ 1)
(B) A pathway P is assumed to be genomically altered in the sample si if at least one of its k genes is mutated in si. (C) The
number of samples for which Xi is greater than 0 is modeled through a Poisson binomial distribution π. Here the success
probabilities are the likelihoods computed in A. δ is the Dirac delta function, equal to 1 only when its argument is equal to 0. A
p-value against the null hypothesis that there is no association between P and the genomic somatic alterations in the analyzed
dataset is computed as the complementary cumulative distribution function of π evaluated at O(P ), which is the observed number
of samples where P is genomically altered.

pathways across the analyzed samples, in a way that

highlights their mutual exclusivity mutation trends,

and a module for the identification of core-components

genes, shared by related enriched pathways.

A formal description of the statistical framework un-

derlying SLAPenrich is provided in the Methods; fur-

ther details are provided in the Supplementary File 1.

SLAPenrich: case study and comparisons with existing
tools
To test the ability of SLAPenrich to recover pathways
that are known to be associated to a given disease state
and different clinico-pathological features, we have re-
analysed (as detailed in the Supplementary File 1),
a published dataset encompassing somatic mutations
found in 188 lung adenocarcinoma (LUAD) patients,
studied in [20].

This analysis yielded 48 significantly enriched path-
ways, at a FDR < 5% and a mutual exclusive coverage
(EC) > 50% (Supplementary Table S1). Among these,
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we found pathways whose deregulation is known to be
involved in lung cancer, such as Tight Junction (al-
teration score (AS) = 0.37, EC = 89%) [31] (Supple-
mentary Figure S1A), Gap Junction (AS = 0.45, EC
= 75%) [32], and several pathways previously found
with other computational methods in LUAD (such as
PathScan [20], among others [33]), and recently pro-
posed as potential targets for lung cancer therapy (de-
tailed results are included in Additional File 1). We
found a significant agreement between our results and
those obtained with PathScan on the same cohort of
cancer patients (and reported in the Supplementary
Table 1 of [20]) (Fisher’s exact test (FET) p-value =
2.10 × 10−14, Supplementary Tables S1 and S2 and
Additional File 1). Additionally, we observed a signif-
icant correlation (R = 0.66, p = 0.0002) between the
significance levels of the 26 commonly enriched path-
ways across the two methods (Figure 3A).

Similarly, we performed a comparison between the
output obtained with SLAPenrich and PathScore [21]
when analysing the LUAD dataset described above.
To obtain comparable results we used the whole col-
lection of 1,392 canonical pathway signatures from the
Molecular Signature Database (MsigDB) [34], as this
is the reference collection used by PathScore. We ob-
served a significant overlap (181 pathways, FET p-
value = 2.76 × 10−70) between the enriched path-
ways outputted by SLAPenrich (at an FDR < 5%)
and those outputted by PathScore (adjusted p-value
< 0.05) (Supplementary Table S3).

We also performed, with the same common collec-
tion of pathways as above, a systematic comparison
between SLAPenrich and PathScore [21] on genomic
datasets encompassing 4,415 patients across 10 dif-
ferent cancer types from The Cancer Genome At-
las (TCGA). Results confirmed that SLAPenrich and
PathScore detect very similar sets of enriched path-
ways across all the different analysed cancer types (me-
dian − log10(FET p)= 119.2 ranging from 29 to 202,
Supplementary Figure S3A). We observed a slightly
better ability of SLAPenrich in ranking highly path-
ways that include at least one tissue-specific high-
confidence cancer gene (HCG) [35]: median HCGs cov-
ered by the top 10 enriched pathway for SLAPenrich
= 18% against 8% for PathScore; 21% and 14% for
the top 20; 33% and 25% for the top 50; 45% and 34%
for the 100% (Figure 3B, and Supplementary Figure
S3BC). The median difference of HCGs covered by
pathways enriched according to the two methods at
the same significance level (5% FDR for SLAPenrich
and adjusted p < 0.05 for PathScore) favoured Path-
Score for a 1%.

Even if performing similarly to SLAPenrich a num-
ber of features of PathScan and PathScore make them
unsuitable for the hallmark analyses presented here.
PathScan does not take into account of possible mu-
tual exclusivity trends between patterns of mutations
of genes in the same pathway and, in more practical
terms, it requires raw sequencing data (BAM files) as
input: this is quite uncomfortable for large scale anal-
yses where (as in our case) it is far more convenient to
use available processed datasets represented through
binary presence/absence matrices. PathScore uses the
same mathematical framework of SLAPenrich, but the
models for computing the individual pathway muta-
tion probabilities are not fully customisable. More im-
portantly, it is implemented as a web-application that
restricts the number of individual analyses to a maxi-
mum of 10 per week.
Furthermore, both PathScan and PathScore make use
of fixed pathway collections from public repositories
(KEGG [36] for PathScan, and MsigDB [34] for Path-
Score). In contrast, the SLAPenrich R package allows
users to define and use any collection of gene sets and
by default it employs a large pathway collection from
Pathway Commons [37] (including 2,794 pathways,
covering 15,281 genes, 15 times the pathways and 3
times the genes considered by Pathscan, and twice the
pathways and 1.72 times the genes of PathScore). Ad-
ditionally, the SLAPenrich R package includes routines
to update on the fly gene attributes and exonic lengths,
to check and update gene nomenclatures in datasets
and reference pathway gene sets, to perform mutual
exclusivity sorting of binary matrices, and to identify
core-components (i.e. sub-sets of genes leading the en-
richment of different pathways). Furthermore, a unique
feature of SLAPenrich with respect to PathScan and
PathScore is that it allows to perform pathway differ-
ential enrichment analyses between sub-populations of
the analysed cohort. Thus, it is able to associate path-
way enrichments to different clinicopathological fea-
tures. As an example, in the LUAD case study we were
able to correctly identify pathways that are prefer-
entially recurrently altered in never-smokers/current-
smokers patients as well as mucinous/non-mucionous
bronchioalveolar carcinomas (detailed results are re-
ported in the Additional File 1, Supplementary Table
S4 and S5, and Supplemtary Figures S1 and S2). Fi-
nally, SLAPenrich post-processes pathway collections
for redundancy reduction: in this way pathways with
large overlaps are merged together instead of being
tested individually (Figure 2).

In summary, while other tools, specially PathScore,
are based on similar assumptions and perform com-
parably, SLAPenrich provides a more flexible environ-
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ment enabling a wide range of possible large-scale anal-
yses.

SLAPenrich analyses across different cancer types
highlights the heterogeneity of cancer hallmark
acquisition
Leveraging the unique capacity of SLAPEnrich, we
set out to perform a systematic large-scale analysis of
pathway deregulation in cancer. We used a collection
of pathways from the Pathway Commons data portal
(v8, 2016/04) [37] (post-processed as detailed in the
Methods), and we performed individual SLAPenrich
analyses of 10 different genomic datasets containing
somatic point mutations, preprocessed as described
in [38], from 4,415 patients across 10 different cancer
types, from public available studies, in particular The
Cancer Genome Atlas (TCGA) and the International
Cancer Genome Consortium (ICGC). In these anal-
yses we used a Bernoulli model to define individual
pathway alteration probabilities across the single sam-
ples (equation 5). With respect to the hypergeometric
models (equations 3 and 4), this formulation upon full
expansion sums the individual gene mutation probabil-
ities, each accounting for the individual gene lengths.
The analysed samples (see Methods) comprise breast
invasive carcinoma (BRCA, 1,132 samples), colon and
rectum adenocarcinoma (COREAD, 489), glioblas-
toma multiforme (GBM, 365), head and neck squa-
mous cell carcinoma (HNSC, 375), kidney renal clear
cell carcinoma (KIRC, 417), lung adenocarcinoma
(LUAD, 388), ovarian serous cystadenocarcinoma
(OV, 316), prostate adenocarcinoma (PRAD, 242),
skin cutaneous melanoma (SKCM, 369), and thyroid
carcinoma (THCA, 322).

Results from all these individual SLAPenrich analy-
ses are contained in the Additional File 5.
We observed a weak correlation (R = 0.53, p = 0.11)
between the number of enriched pathways across the
different analyses and the number of available samples
in the analysed dataset (Supplementary Figure S4A),
but a down-sampled analysis showed that our results
are not broadly confounded by the sample sizes (see
Methods and Supplementary Figure S4B).
We investigated how our pathway enrichments capture
known tissue specific cancer driver genes. To this aim,
we used a list of high-confidence and tissue-specific
cancer driver genes [38, 35] (from now high-confidence
Cancer Genes, HCGs, assembled as described in the
Methods). We observed that the majority of the HCGs
was contained in at least one SLAPenriched pathway,
across the 10 different tissues analyses (median per-
centage = 63.5, range = 88.5%, for BRCA, to 28.7%
for SKCM) (Supplementary Figure S4C).

Interestingly, we found that the number of SLAPen-
riched pathways per cancer type (median = 130, range
= 55 for PRAD, to 200 for BRCA and COREAD)
was independent from the average number of mutated
genes per sample across cancer types (median = 46,
range from 15 for THCA to 388 for SKCM) with a
Pearson correlation R = 0.16 (p = 0.65), Figure 3C,
as well as from the number of high confidence can-
cer driver genes (as predicted in [35], median = 100,
range from 33 for THCA to 251 for SKCM, Figure 3D).
Particularly, THCA has the lowest average number of
mutations per sample (15.03), but there are 4 tissues
with a lower number of pathways mutated. In contrast,
SKCM has the highest average number of point muta-
tions per sample (387.63), but the number of affected
pathways is less than half of those of BRCA and GBM
(82 enrichments against an average of 191), which have
on average less than 100 mutations per sample (Fig-
ure 3C). GBM, OV, KIRC, PRAD and BRCA are
relatively homogeneous with respect to the average
number of somatic mutations per sample (mean =
41.03, from 34.76 for KIRC to 45.95 for PRAD) but
when looking at the number of enriched pathways for
this set of cancer types we can clearly distinguish two
separate groups (Figure 3C). The first group includes
BRCA and GBM that seem to have a more hetero-
geneous sets of processes impacted by somatic muta-
tions (average number of SLAPenriched pathways =
191) with respect to the second group (63 SLAPen-
riched pathways on average). These results suggest
that there is a large heterogeneity in the number of
processes deregulated in different cancer types that is
independent of the mutational burden. This might be
also indicative of different subtypes with dependencies
on different pathways (and at least for BRCA this is
expected) but could be also biased by the composition
of the analysed cohorts being representative of a se-
lected subtypes only.

Subsequently, we reasoned that since the main role
of cancer driver alterations is to enable cells to achieve
a series of phenotypic traits called the ‘cancer hall-
marks’ [13, 14], that can be linked to gene mutations
[39], it would be informative to group the pathways
according to the hallmark they are associated with.
Towards this end, through a computer aided manual
curation (see Methods and Supplementary Table S5)
we were able to map 374 gene-sets (from the most re-
cent release of pathway commons [37]) to 10 cancer
hallmarks [13, 14] (Figure 2AB), for a total number
of 3,915 genes (included in at least one gene set asso-
ciated to at least one hallmark; Supplementary Table
S5). The vast majority (99%, 369 sets) of the consid-
ered pathway gene-sets were mapped on two hallmarks
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Figure 2 Manually curated mapping between genes, pathways and hallmarks (properties): (A) Heatmap with cancer hallmarks on
the rows, pathways gene sets on the columns. A coloured bar in position (i, j) indicates that the j-th pathway is associated with the
i-th hallmark; bar diagram on the right shows the number of pathways associated with each hallmark. (B) Heatmap with cancer
hallmarks on the rows and genes on the columns. A coloured bar in position (i, j) indicates that the j-th gene is contained in at least
one pathway associated with the i-th hallmark (thus associated with the i-th hallmark); bar diagram on the right shows the number
of genes associated with each hallmark. (C) Number of associated hallmarks per pathways: the majority of the pathways is associated
with 1 hallmark. (D) Number of associated hallmarks per gene: the majority of the genes is associated with less than 3 hallmarks. (E)
Distribution of Jaccard similarity scores (quantifying the extent of pair-wise overlaps) computed between pairs of pathway gene sets.

at most, and 298 of them (80%) was mapped onto one
single hallmark (Figure 2C). Regarding the individ-
ual genes contained in at least one pathway gene-set,
about half (49%) were associated with a single hall-
mark, 22% with two, 12% with three, and 7% with four
(Figure 2D). Finally, as shown in Figure 2E, the over-
laps between the considered pathway gene-sets was
minimal (74% of all the possible pair-wise Jaccard in-
dexes was equal to 0 and 99% < 0.2). In summary, our
manual curation produced a non-redundant matching
in terms of both pathways- and genes-hallmarks asso-
ciations.

Mapping pathway enrichments into canonical cancer
hallmarks through this curation allowed us to explore
how different cancer types might acquire the same hall-
mark by selectively altering different pathways (Figure
4, and Supplementary Figure S5). Heatmaps in these
figures (one per each hallmark) show different level of
enrichments of pathways associated to the same hall-
mark across different tissues.

We investigated at what extent the identified en-
riched pathways were dominated by somatic mutations
in established tissue specific and high-confidence can-
cer genes (HCGs) [35], across cancer types. To this
aim, for each pathway P enriched in a given cancer
type T , we computed an HCG-dominance score as the
ratio between the number of T samples with mutations
in HCGs belonging to P and the total number of T
samples with mutations in any of the gene belonging to
P . Results of this analysis are shown in Supplementary
Figures S6 and S7. We observed a median of 15% of
pathway enrichments, across hallmarks, with an HCG-
dominance score < 50%, thus not led by somatic mu-
tations in HCGs (range from 9% for Deregulating Cel-
lular Energetics to 21% for Genome Instability and
Mutation). Additionally, a median of 3% of pathway
enrichments had a null HCG-dominance, thus not in-
volved somatic mutations in HCGs (range from 0.25%
for Evading Growth Suppression to 15% for Avoiding
Immune Destruction). Across all the hallmarks, the
cancer type with the lowest median HCG-dominance
was KIRC (33%), whereas that with the highest was
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Figure 3 SLAPenrich comparison with existing methods and comparison between number of enrichments versus mutation
burdens and number of established cancer genes: (A) Comparison between the significance levels of the enriched pathways (blue
dots) identified with both SLAPenrich (x-axis) and PathScan (y-axis) on the LUAD dataset; (B) Percentages of tissue specific
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representative cancer types are reported. All the other results are included in Supplementary Figure S3C; (C) Number of pathway
enriched at the population level across cancer types compared with the average number of mutated genes and (D) the average
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THCA (91%).

Patterns and well defined clusters can be clearly
distinguished in the heatmaps of Figure 4 and Sup-
plementary Figure S5. As an example, the heatmap
related to the Genome Instability and mutation hall-
mark shows that BRCA, OV, GBM, LUAD and HNSC
might achieve this hallmark by selectively altering a
group of pathways related to homologous recombina-
tion deficiency, whose prevalence in BRCA and OV is
established [40]. This deficiency has been therapeuti-
cally exploited recently and translated into a clinical
success thanks to the introduction of PARP inhibition
as a very selective therapeutic option for these two

cancer types [41].
Pathways preferentially altered in BRCA, OV, GBM,
LUAD and HNSC include G2/M DNA Damage Check-
point // Processing Of DNA Double Strand Break
Ends, TP53 Regulates Transcription Of DNA Re-
pair Genes, and other signaling networks related
to BRCA1/2 and its associated RING Domain 1
(BARD1). Conversely, the Androgen receptor path-
way, known to regulate the growth of glioblastoma
multiforme (GBM) in men [42] is also exclusively and
preferentially altered in this cancer type.
The acquisition of the Genome Instability and muta-
tion hallmark seems to be dominated in COREAD by
alterations in the HDR Through Single Strand Anneal-
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Figure 4 Heterogeneity of hallmark acquisition across cancer types: Heatmaps showing pathways enrichments at the population
level across cancer types for individual hallmarks (representative cases). Color intensities correspond to the enrichment significance.
Cancer types and pathways are clustered using a correlation metric. See also additional figure 4.
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ing (SSA), Resolution Of D Loop Structures Through
Synthesis Dependent Strand Annealing (SDSA), Ho-
mologous DNA Pairing And Strand Exchange and
other pathways more specifically linked to a mi-
crosatellite instability led hypermutator phenotype,
known to be prevalent in this cancer type [43].
Finally, the heatmap for Genome Instability and Mu-
tation shows nearly no enriched pathways associated
to the acquisition of this hallmark for SKCM. This is
consistent with the high burden of mutations observed
in melanoma being the effect of this hallmark rather
than leading its acquisition. In fact, the genomic insta-
bility of SKCM originates from cell extrinsic processes
such as UV light exposure [44].
The maintenance of genomic integrity is guarded by
a network of damage sensors, signal transducers, and
mediators, and it is regulated through changes in gene
expression. Recent studies show that miRNAs play a
crucial role in the response to UV radiation in skin
cells [45]. Our analysis strikingly detects MiRNAs In-
volved In DNA Damage Response as the unique path-
way associated to Genome instability and mutation
enriched in SKCM. This suggests that mutations in
this pathway, involving ATM (as top frequently mu-
tated gene, and known to induce miRNA biogenesis
following DNA damage [46]), impair the ability of
melanocytes to properly respond to insult from UV
light and may have a significant role in the tumouri-
genesis of melanoma.

The Avoiding Immune destruction heatmap (Figure
4) highlights a large number of pathways selectively
enriched in COREAD, wheareas very few pathways
associated to this hallmark are enriched in the other
analysed cancer types. This could explain why im-
munotherapies, such as PD-1 inhibition, have a rel-
atively low response rate in COREAD when com-
pared to, for example, non-small cell lung cancer [47],
melanoma [48] or renal-cell carcinoma [49]. In fact, re-
sponse to PD-1 inhibition in COREAD is limited to
tumours with mismatch-repair deficiency, perhaps due
to their high rate of neoantigen creation [50].
In the context of COREAD, the Tumor-promoting in-
flammation heatmap (Figure 4) also highlights several
pathways predominantly and very specificically altered
in this cancer type. Chronic inflammation is a proven
risk factor for COREAD and studies in animal models
have shown a dependency between inflammation, tu-
mor progression and chemotherapy resistance [51]. In-
deed, a number of clinical trials evaluating the utility
of inflammatory and cytokine-modulatory therapies
are currently underway in colorectal cancer [52, 53].
Interestingly, according to our analysis this hallmark

is acquired by SKCM by exclusively preferentially al-
tering IRF3 related pathways.

Several other examples would be worthy of mention.
For example, the detection of the Warburg effect path-
way contributing to the acquisition of the Deregulating
cellular energetics hallmark in GBM only (Figure 4).
The Warburg effect is a unique bioenergetic state of
aerobic glycolysis, whose reversion has been recently
proposed as an effective way to decrease GBM cell
proliferation [54]. Additionally, the pathway Forma-
tion of senescence associated heterochromatin, associ-
ated to the Enabling replicative immortality hallmark
is enriched in multiple cancer types. Genomic alter-
ations in this pathway have not been linked to cancer
so far. More interestingly the enrichment of this path-
way, across cancer types, is not driven by any estab-
lished cancer gene.

Finally, we quantified the diversity of pathways used
to achieve each hallmark in a given cancer type, via a
cumulative heterogeneity score (CHS) computed as the
proportion of the pathways associated to that hallmark
that are significantly enriched. The larger this score
the more a given cancer type relies on altering a large
number of pathways in order to achieve the considered
hallmark. A larger heterogeneity of pathways, in turn,
could point to the exploitment of more evolutionary
trajectories (reflected by selecting genomic alterations
in a large number of associated pathways). As a con-
sequence, the larger this score the higher might be the
evolutionary fitness of that hallmark for the cancer
type under consideration.
Joining the CHSs of all the hallmarks resulting from
the analysis of a given cancer type, gives its hallmark
heterogeneity signature (Figure 5). Results show con-
sistency with the established predominance of certain
hallmarks in determined cancer types, such as for ex-
ample a high CHS for Genome instability and muta-
tion in BRCA and OV [55], for Tumour-promoting
inflammation and Avoiding immune-destruction in
COREAD [56]. Lastly, and as expected for Sustaining
proliferative-signaling and Enabling replicative immor-
tality, the key hallmarks in cancer initiation [13], high
CHSs are observed across the majority of the analysed
cancer types.

Taken together, these results show the potential of
SLAPenrich to perform systematic landscape analy-
ses of large cohorts of cancer genomes. In this case
this is very effective in highlighting commonalities and
differences in the acquisition of the cancer hallmarks
across tissue types, confirming several known relations
between cancer types, and pinpointing preferentially
altered pathways and hallmark acquisitions.
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Hallmark heterogeneity analysis points at potential
novel cancer driver genes and networks
To investigate the potential of SLAPenrich in identi-
fying novel cancer driver genes and networks we per-
formed a final analysis (from now the filtered analysis)
after removing all the variants involving, for each con-
sidered cancer type, the corresponding HCGs. Results
from this exercise (Figure 6, Additional File 6 and
Supplementary Figure S8), showed that the majority
of the enrichments identified in the original analyses
(on the unfiltered genomic datasets) were actually led
by alterations in the HCGs (consistent with their con-
dition of high reliable cancer genes). The average ratio
of retained enrichments in the filtered analyses across
cancer types (maintained enrichments (MA) in Fig-

ure 6 and Supplementary Figure S8) was 21%, (range
from 2.1% for GBM to 56.2% for COREAD). How-
ever, several pathway enrichments (some of which did
not include any HCGs) were still detected in the fil-
tered analysis and, most importantly, the correspond-
ing hallmark heterogeneity signatures were largely con-
served across the filtered and unfiltered analyses for
most of the cancer types, with coincident top fitting
hallmarks and significantly high over-all correlations
(Figure 6, Supplementary Figure S8). If the hallmark
signatures from the original unfiltered analyses are
faithful representations of the mutational landscape
of the analysed cancer types and the filtered analyses
still detect this landscape despite removal of known
drivers, then the filtered analyses might have uncov-
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ered novel cancer drivers in the long tail of infrequently
mutated genes. In fact, these new gene modules are
typically composed by groups of functionally inter-
connected and very lowly frequently mutated genes
(examples are shown in Figure 7 and the whole bulk
of results is included in the Additional File 7).

An example is represented by the pathway Acti-
vation Of Matrix Metalloproteinases associated with
the Invasion and metastasis hallmark and highly en-
riched in the filtered analyses of COREAD (FDR =
0.002%), SKCM (0.09%) (Figure 7A), LUAD (0.93%),
and HNSC (3.1%). The activation of the matrix met-
alloproteases is an essential event to enable the mi-
gration of malignant cells and metastasis in solid tu-
mors [57]. Although this is a hallmark acquired late in
the evolution of cancer, according to our analysis this
pathway is still detectable as significantly enriched. As
a consequence, looking at the somatic mutations of its
composing genes (of which only Matrix Metallopep-
tidase 2 - MMP2 - has been reported as harbouring
cancer driving alterations in LUAD [35]) might re-
veal novel key components of this pathway leading to
metastatic transitions. Interestingly, among these, one
of the top frequently mutated genes (across all the 4
mentioned cancer types) is Plasminogen (PLG), whose
role in the evolution of migratory and invasive cell phe-
notype is established [58]. Furthermore, blockade of
PLG with monoclonal antibodies, DNA-based vacci-
nation or silencing through small interfering RNAs has
been recently proposed to counteract cancer invasion
and metastasis [59]. The remaining altered component
of this pathway is mostly made of a network of very
lowly frequently mutated (and in a high mutual exclu-
sive manner) other metalloproteinases.

Another similar example is given by the IL 6 Type
Cytokine Receptor Ligand Interactions pathway signif-
icantly enriched in the filtered analysis of SKCM (FDR
= 4.6%) and associated with the Tumour-promoting
inflammation hallmark (Figure 7B). IL-6-type cy-
tokines have been observed to modulate cell growth of
several cell types, including melanoma [60]. Increased
IL-6 blood levels in melanoma patients correlate with
disease progression and lower response to chemother-
apy [61]. Importantly, studies proposed OSMR, a IL-
6-type of cytokine receptor, to play a role in the pre-
vention of melanoma progression [62], and as a novel
potential target in other cancer types [63]. Consis-
tently with these findings, OSMR is the member of
this pathway with the largest number of mutations in
the SKCM cohort (Figure 7B), complemented by a
large number of other lowly frequently mutated genes
(most of which are interleukins).

In the context of melanoma, we observed other
two pathways highly enriched in the filtered analysis:
PDGF receptor signaling network (FDR = 2.7%) (Fig-
ure 7C) and Neurophilin Interactions with VEGF And
VEGFR (0.21%)(Figure 7D), both associated with the
Inducing angiogenesis hallmark. Mutations in all the
components of these two pathways are not common
in SKCM and have not been highlighted in any ge-
nomic study so far. The first of these two pathway
enrichments is characterised by patterns of highly mu-
tual exclusive somatic mutations in Platelet-derived
growth factor (PDGF) genes, and corresponding re-
ceptors: a network that has been recently proposed
as an autocrine endogenous mechanism involved in
melanoma proliferation control [64].

A final example is given by the enriched path-
way Regulating the activity of RAC1 (associated with
the Activating Invasion and Metastasis hallmark)
in COREAD (Figure 7E). The Ras-Related C3 Bo-
tulinum Toxin Substrate 1 (RAC1) gene is a member
of the Rho family of GTPases, whose activity is piv-
otal for cell motility [65]. Previous in vitro and in vivo
studies in prostate cancer demonstrated a marked in-
crease in RAC1 activity in cell migration and invasion,
and that RAC1 inhibition immediately stopped these
processes [66, 67]. However, although the role of RAC1
in enabling metastasis has already been suggested, the
mechanisms underlying such aberrant behaviour are
poorly understood, and our findings could be used as
a starting point for further investigations [68].

Another interesting case is the high level of mu-
tual exclusivity observed in the mutation patterns
involving members of the TP53 network, highly en-
riched in the filtered analysis of SKCM, encompass-
ing TP63, TP73, TNSF10, MYC and SUMD1 (Figure
7F). Whereas alterations in some nodes of this net-
work are known to be an alternative to p53 repres-
sion, conferring chemoresistance and poor prognosis
[69], dissecting the functional relations between them
is still widely considered a formidable challenge [70].
Our results point out alternative players worthy to be
looked at in this network (particularly, among the top
frequently altered, TNSF10).

Taken together, these results show the effectiveness
of SLAPenrich in identifying potential novel cancer
driver genes and cancer driver networks composed by
lowly frequently mutated genes.

Discussion
We have presented a computational pipeline, with a
paired statistical framework implemented in an open
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Figure 6 Hallmark heterogeneity signature analysis with and without known drivers: In each row, the first circle plot show
pathway enrichments at the population level when considering all the somatic variants (bars on the external circle) and when
considering only variants not involving known high-confidence cancer driver genes (internal circle); the second circle plot compares
the hallmark signatures resulting from SLAPenrich analysis including (bars on the external circle) or excluding (bars on the internal
circle) the variants involving known high-confidence cancer genes. The bar plot shows a comparison, in terms of true-positive-rate
(TPR) and positive-predicted-value (PPV), of the SLAPenriched pathways recovered in the filtered analysis vs. the complete
analysis., The scatter plots on the right show a comparison between the resulting hallmark signatures.
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source R package (SLAPenrich) to identify genomic
alterations in biological pathways contributing in the
acquisition of the canonical cancer hallmarks. Our sta-
tistical framework does not seek for pathways whose
alterations are enriched at the individual sample level
nor at the global level, i.e. considering the union of all
the genes altered in at least one sample. Instead, it
assumes that an individual mutation involving a given
pathway in a given sample might be sufficient to dereg-
ulate the activity of that pathway in that sample and
it allows enriched pathways to be mutated in a mutual
exclusive manner across samples.

The SLAPenrich package includes (i) fully tunable
functions where statistical significance criteria and al-
ternative models, can be defined by the user; (ii) a
visualization and reporting framework, and (iii) acces-
sory functions for data management and gene iden-
tifier curation and cross-matching. Worthy of note is
that many different tools provide the possibility of vi-
sualizing a mutual-exclusivity sorted sets of somatic
mutations and other genomic alterations from publicly
available or user defined datasets via a browser acces-
sible software suite (e.g. GiTools [71] and cBioPortal
[72]) or as a result of combinatorial pattern analysis
(such as MEMo [73] and Dendrix [23]). However, none
of these tools offer this feature as a mean to visualise
an arbitrarily defined data matrix and, to our knowl-
edge, there is no publicly available R implementation
for this.
SLAPenrich can be used to systematically analyze
large cohorts of cancer genomes providing a data-
driven exploration of mutated pathways that can be
easily compared across cancer types. Additionally, the
format of the results allows a wide range of novel in-
vestigations at a high level of abstraction. As a conse-
quence, our computational pipeline should be of wide
usability for the functional characterization of sparse
genomic data from heterogeneous populations sharing
common traits and subjected to strong selective pres-
sure. As an example of its applicability we have stud-
ied large cohorts of publicly available cancer genomes
patient data that is publicly available in the TCGA.
However, SLAPenrich is of great utility in other sce-
narios such as for characterizing genomic data gener-
ated upon chemical mutagenesis to identify somatic
mutations involved in acquired drug resistance (an ap-
plication has been recently published in [74]). More
generally, SLAPenrich can be used to characterize at
the pathway level any type of biological dataset that
can be modeled as a presence/absence matrix, where
genes are on the rows and samples are on the columns.

Conclusions
We have performed a large-scale comparative analysis
of the mutational landscape of different cancer types
at the level of Cancer Hallmarks. Our results repre-
sent a first data-driven landmark exploration of the
hallmarks of cancer showing that they might be ac-
quired through preferential genomic alterations of het-
erogenous sets of pathways across cancer types. This
has confirmed the established predominance of certain
hallmark in defined cancer types, and has highlighted
peculiar patterns of altered pathways for several can-
cer lineages. Finally, by using the identified hallmark
signatures as a ground truth signal, we have devised
an approach to detect novel cancer driver genes and
networks.

A number of possible limitations could hamper deriv-
ing definitive conclusions from our study, such as the
use of only mutations, the possibility that some of the
analysed cohorts of patients are representative only of
well-defined disease subtypes, or the limitation of our
knowledge of pathways. Possible future developments
of our method could integrate different omics, such as
transcriptional data, to better refine the set of func-
tionally impacting variants considered in the analysis.
Additionally further refinements will account for struc-
tural variants such as small indels and copy number
alterations, known to play an important role in cancer.
Nevertheless, we have provided the community with a
useful tool for the analysis of large genomic datasets,
whose results could open a wide range of novel in silico
investigations.

Methods
Formal description of the SLAPenrich statistical
framework
Let us consider the list of all the genes
G = {g1, g2, . . . , gn}, whose somatic mutational status
has been determined across a population of samples
S = {s1, s2, . . . , sm}, and a function

f(gi, sj) = {1 if gi is mutated in sj and 0 otherwise}.
(1)

Given the set of all the genes whose products belong
to the same pathway P , we aim at assessing if there
is a statistically significant tendency for the samples
in S to carry mutations in P . Importantly, we do not
require the genes in P to be significantly enriched in
those that are altered in any individual sample nor
in the sub-set of G composed by all the genes har-
bouring at least one somatic mutation in at least one
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sample. In what follows P will be used to indicate
the pathway under consideration as well as the cor-
responding set of genes, interchangeably. We assume
that P is altered in sample sj if there is a gene gi
belonging to G such that gi is a member of P and
f(gi, sj) = 1, i.e. at least one gene in the pathway P
is altered in the j-th sample (Figure 1B). To quantify
how likely it is to observe at least one gene belonging
to P altered in sample sj , we introduce the variable
Xj = |{gi ∈ G : gi ∈ P and f(gi, sj) = 1}|, account-
ing for the number of genes in P altered in sample sj .
Under the assumption of both a gene-wise and sample-
wise statistical independence, the probability of Xj as-
suming a value greater or equal than 1 is given by:

pj = Pr(Xj ≥ 1) =
k∑

x=1

H(x,N, k, nj), (2)

where N is the size of the gene background-population,
k is the number of genes in P , nj is the total number of
genes gi such that f(gi, sj) = 1, i.e. the total number
of genes harbouring an alteration in sample sj , and H
is the probability mass function of a hypergeometric
distribution:

H(x,N, k, nj) =

(
k
x

)(
N−k
nj−x

)(
N
nj

) . (3)

To take into account the impact of the exonic lengths
λ(g) of the genes (g) on the estimation of the alteration
probability of the pathway they are part of P , it is
possible to redefine the pj probabilities (of observing
at least one genes in the pathway P altered in sample
sj) as follows:

pj = Pr(Xj ≥ 1) =
k∑

x=1

H(x,N ′, k′, n′j), (4)

whereN ′ =
∑

g∈G λ(g), withG the gene background-
population, i.e. the sum of all the exonic content block
lengths of all the genes; k′ =

∑
g∈P λ(g) is the sum of

the exonic block length of all the genes in the pathway
P ; n′j is the total number of individual point mutations
involving genes belonging to P in sample sj , and H is
defined as in equation 3, but with parameters x,N ′, k′,
and n′j . Similarly, the pj probabilities can be modeled
accounting for the total exonic block lengths of all
the genes belonging to P and the expected/observed
background mutation rate [29], as follows:

pj = Pr(Xj ≥ 1) = 1− exp(−ρk′), (5)

where k′ is defined as for equation 4 and ρ is the
background mutation rate, which can be estimated
from the input dataset directly or set to established
estimated values (such as 10−6/nucleotide)[29].
If considering the event “the pathway P is altered in
sample sj” as the outcome of a single test in a set of
Bernoulli trials {j} (with j = 1, . . . ,M) (one for each
sample in S), then each pj can be interpreted as the
success probability of the j − th trial. By definition,
summing these probabilities across all the elements of
S (all the trials) gives the expected number of successes
E(P ), i.e. the expected number of samples harbouring
a mutation in at least one gene belonging to P :

E(P ) =
M∑
j=1

pj . (6)

On the other hand, if we consider a function φ on the
domain of the X variables, defined as φ(X) = 1−δ(X),
where δ(X) is the Dirac delta function (assuming
null value for every X 6= 0), i.e. φ(X) = {1 if X >
0, and 0 otherwise}, then summing the φ(Xi) across
all the samples in S, gives the observed number of
samples harbouring a mutation in at least one gene
belonging to P :

O(P ) =

M∑
j=1

φ(Xj). (7)

A pathway alteration index, quantifying the deviance
of O(P ) from its expectation, and thus how surprising
is to find so many samples with alterations in the path-
way P , can be then quantified as:

∆(P ) = log10

O(P )

E(P )
. (8)

To assess the significance of such deviance, let us
note that the probability of the event O(P ) = y, with
y ≤ M , i.e. the probability of observing exactly y
samples harbouring alterations in the pathway P , dis-
tributes as a Poisson binomial B (a discrete probability
distribution modeling the sum of a set of {j} indepen-
dent Bernoulli trials where the success probabilities pj
are not identical (with j = 1, . . . ,M). In our case, the
j-th Bernoulli trial accounts for the event “the path-
way P is altered in the sample sj” and its success
probability is given by the {pj} introduced above (and
computed with one amongst 2, 4, or 5). The parame-
ters of such B distribution are then the probabilities
π = {pj}, and its mean is given by Equation 6. The
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probability of the event O(P ) = y can be then written
as

Pr(O(P ) = y) = B(π, y) =
∑
A∈Fy

∏
k∈A

pk
∏

h∈Ac

(1−ph),

(9)

where Fy is the set of all the possible subsets
of y elements that can be selected from the trial
1, 2, . . . ,M (for example, if M = 3, then F2 =
{{1, 2}, {1, 3}, {2, 3}}, and Ac is the complement of A,
i.e. {1, 2, . . . ,M}\A. Therefore a p-value can be com-
puted against the null hypothesis that O(P ) is drawn
from a Poisson binomial distribution parametrised
through the vector of probabilities π. Such p-value can
be derived for an observation O(P ) = z, with z ≤ M ,
as (Figure 1C):

Pr(O(P ) ≥ z) =

M∑
j=z

Pr(O(P ) = j) =

M∑
j=z

B(π, j)

(10)

Finally, p-values resulting from testing all the path-
ways in the considered collection are corrected for mul-
tiple hypothesis testing with a user-selected method
among (in decreasing order of stringency) Bonferroni,
Benjamini-Hochberg, and Storey-Tibshirani [75].
SLAPenrich is implemented as an R packag pub-
licly available and fully documented at (https://
github.com/saezlab/SLAPenrich/). An overview
of the exposed function of this package is also provided
in the Additional File 8.

Pathway gene sets collection and pre-processing
To highlight the versatility of SLAPenrich and guar-
antee results’ comparability with respect to previously
published studies, we have conducted the analyses de-
scribed in the Results section using different collections
of pathway gene sets, all included (as R objects) in our
software package.

For the case study analysis on the LUAD dataset we
downloaded the whole collection of KEGG [36] path-
way gene sets from MsigDB [34], encompassing 189
gene sets for a total number of 5,224 genes included in
at least one set.

The following differential enrichment analyses and
the hallmark signature analyses were performed on a
larger collection of pathway gene sets from the Path-
way Commons data portal (v8, 2016/04) [37]

(http://www.pathwaycommons.org/archives/
PC2/v4-201311/). This contained an initial cat-
alogue of 2,794 gene sets (one for each pathway)
that were assembled from multiple public available
resources, and covering 15,281 unique genes.

From this pathway collection, those gene sets con-
taining less than 4 or more than 1,000 genes, were
discarded. Additionally, in order to remove redundan-
cies, those gene sets (i) corresponding to the same
pathway across different resources or (ii) with a large
overlap (Jaccard index (J) > 0.8, as detailed below)
were merged together by intersecting them. The gene
sets resulting from this compression were then added
to the collection (with a joint pathway label) and those
participating in at least one of these merging were
discarded. Finally, gene names were updated to their
most recent HGCN [76] approved symbols (this updat-
ing procedure is also executed by a dedicate function
in of the SLAPenrich package, by default on each ge-
nomic datasets prior the analysis). The whole process
yielded a final collection of 1,911 pathway gene sets,
for a total number of 1,138 genes assigned to at least
one gene set.

Given two gene sets P1 and P2 the corresponding
J(P1, P2) is defined as:

J(P1, P2) =
|P1 ∩ P2|
|P1 ∪ P2|

. (11)

Curation of a pathway/hallmark map
We implemented a simple routine (included in the
SLAPenrich R package) that assigns to each of the 10
canonical cancer hallmarks a subset of the pathways
in a given collection. To this aim this routine searches
for determined keywords (typically processes or cellu-
lar components) known to be associated to each hall-
mark in the name of the pathway (such as for example:
‘DNA repair’ or ‘DNA damage’ for the Genome insta-
bility and mutations hallmark) or for key nodes in the
set of included genes or key word in their name prefix
(such as for example ‘TGF’, ’SMAD’, and ‘IFN’ for
Tumour-promoting inflammation. The full list of key-
words used in this analysis are reported in the Sup-
plementary Table S6. Results of this data curation are
reported in the Supplementary Table S7.

Mutual exclusivity coverage
After correcting the p-values yielded by testing all the
pathways in a given collection, the enriched pathways
can be additionally filtered based on a mutual exclu-
sivity criterion, as a further evidence of positive selec-
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tion. To this aim, for a given enriched pathway P , an
exclusive coverage score C(P ) is computed as

C(P ) = 100
O′(P )

O(P )
(12)

where O(P ) is the number of samples in which at
least one gene belonging to the pathway P is mutated,
and O′(P ) is the number of samples in which exactly
one gene belonging to the pathway gene-set P is mu-
tated. All the pathways P such that C(P ) is at least
equal to a chosen threshold value pass this final filter.

Hallmark heterogeneity signature analysis: genomic
datasets and high-confidence cancer genes
Tissue specific catalogues of genomic variants for
10 different cancer types (breast invasive carcinoma,
colon and rectum adenocarcinoma, glioblastoma mul-
tiforme, head and neck squamous cell carcinoma, kid-
ney renal clear cell carcinoma, lung adenocarcinoma,
ovarian serous cystadenocarcinoma, prostate adeno-
carcinoma, skin cutaneous melanoma, and thyroid car-
cinoma) were downloaded from the GDSC1000 data
portal described in [38]
(http://www.cancerrxgene.org/gdsc1000/).
This resource (available at
http://www.cancerrxgene.org/gdsc1000/
GDSC1000_WebResources/Data/suppData/
TableS2B.xlsx) encompasses variants from se-
quencing of 6,815 tumor normal sample pairs derived
from 48 different sequencing studies [35] and rean-
notated using a pipeline consistent with the COS-
MIC database [77] (Vagrent: https://zenodo.
org/record/16732#.VbeVY2RViko).
Lists of tissue specific high-confidence cancer genes [35]
were downloaded from the same data portal (http://
www.cancerrxgene.org/gdsc1000/GDSC1000_
WebResources/Data/suppData/
TableS2A.xlsx). These were identified by com-
bining complementary signals of positive selection
detected through different state of the art meth-
ods [78, 79] and further filtered as described in
[38] (http://www.cell.com/cms/attachment/
2062367827/2064170160/mmc1.pdf).

Hallmark heterogeneity signature analysis: Individual
SLAPenrich analysis parameters
All the individual SLAPenrich analyses were per-
formed using the SLAPE.analyse function of the
SLAPenrich R package (https://github.com/
saezlab/SLAPenrich/) using a Bernoulli model
for the individual pathway alteration probabilities
across all the samples, the set of all the genes in

the dataset under consideration as background pop-
ulation, selecting pathways with at least one gene
point mutated in at least 5% of the samples and at
least 2 different genes with at least one point mu-
tation across the whole dataset, and and a path-
way gene sets collection downloaded from pathway
commons[37], post-processed for redundancy reduc-
tion as explained in the previous sections, and em-
bedded in the SLAPenrich package as R data object:
PATHCOM HUMAN nr i hu 2016.RData.
A pathway in this collection was considered signifi-
cantly enriched, and used in the following computation
of the hallmark cumulative heterogeneity score, if the
SLAPenrichment false discovery rate (FDR) was less
than 5% and its mutual exclusive coverage (EC) was
greater than 50%.

Down-sampling analyses
To investigate how differences in sample size might
bias the SLAPenrichment results due to a poten-
tial tendency for larger datasets to produce larger
number of SLAPenriched pathways, down-sampled
SLAPenrich analyses were conducted for the 5 datasets
with more than 350 samples, i.e. BRCA, COREAD,
GBM, HNSC, and LUAD. Particularly, for n ∈
{800, 400, 250} for BRCA and n = 250 for the other
cancer types, 50 different SLAPenrich analyses were
performed on n samples randomly selected from the
genomic dataset of the cancer type under consider-
ation, with the parameter specifications described in
the previous section. The average number of enriched
pathways (FDR < 5% and EC > 50%) across the 50
analysis was observed.

Hallmark signature analysis: signature quantification
For a given cancer type C and a given hallmark H a
cumulative heterogeneity score (CHS) was quantified
as the ratio of the pathways associated to H in the
SLAPenrich analysis of the C variants.
The CDS scores for all the 10 hallmark composed the
hallmark signature of C.
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Figure 7 Example of putative novel cancer genes and networks identified by SLAPenrich Picked examples of novel putative cancer
driver genes and networks. The first FDR value refers to the unfiltered analysis, whereas the second FDR refers to the filtered one (in
which variants involving high confidence and highly frequently mutated cancer driver genes have been removed).
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