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Abstract. Invasion processes are ubiquitous throughout cell biology and ecology. During

invasion, individuals can become isolated from the bulk population and behave differently.

We present a discrete, exclusion-based description of the birth, death and movement of indi-

viduals. The model distinguishes between individuals that are part of, or are isolated from,

the bulk population by imposing different rates of birth, death and movement. This enables

the simulation of various co-operative or competitive mechanisms, where there is either a pos-

itive or negative benefit associated with being part of the bulk population, respectively. The

mean-field approximation of the discrete process gives rise to 22 different classes of partial dif-

ferential equation, which can include Allee kinetics and nonlinear diffusion. Here we examine

the ability of each class of partial differential equation to support travelling wave solutions and

interpret the long time behaviour in terms of the individual-level parameters. For the first

time we show that the strong Allee effect and nonlinear diffusion can result in shock-fronted

travelling waves. We also demonstrate how differences in group and individual motility rates

can influence the persistence of a population and provide conditions for the successful invasion

of a population.

Introduction

Processes where individuals invade, and subsequently colonise, a region of space are prevalent in

cell biology and ecology [1–11]. In cell biology, wound healing involves the invasion of fibroblasts

into the wound space for tissue regeneration [7]. The invasion of glioma cells throughout the

brain can lead to the formation of malignant brain tumours (glioblastoma) [1, 3, 10]. In ecology,

the introduction and subsequent invasion of an alien species is a significant factor contributing
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to the extinction of native species [2, 11].

During invasion, individuals that become separated from the bulk population have been ob-

served to have different behaviours to individuals within the bulk population [8, 12–15]. This

is intuitive in ecological processes, as a decrease in the number of individuals within the bulk

population can reduce the number of potential mates [13, 15–17] or lessen the efficacy of preda-

tor avoidance [14–16]. In cell biology, individual micrometastases have been observed to have

reduced growth rates below a threshold size, which suggests that the presence of additional cells

enhances the birth rate [12].

Continuum mathematical models of invasion processes have been studied extensively since the

Fisher-Kolmogorov model was first proposed in 1937 [15,18–30]. The Fisher-Kolmogorov model

is a partial differential equation (PDE) description of the evolution of population density, where

the temporal change in population density is attributed to a combination of linear diffusion and

logistic growth [24, 27]. The Fisher-Kolmogorov model has been applied to various problems

in cell biology and ecology [31–34]. The logistic growth term implies that the population den-

sity will always tend toward the carrying capacity [29]. This prediction does not reflect the

observation that isolated individuals can experience a reduction in their birth rate [14]. This

effect, known as the Allee effect, has two known forms. First, the strong Allee effect, where

the growth rate is negative for sufficiently low densities [15, 35]. Second, the weak Allee effect,

where the growth rate is reduced, but remains positive, at low densities [15]. Reaction-diffusion

PDEs incorporating linear diffusion and Allee growth kinetics have been proposed and anal-

ysed [15, 19, 22, 23, 25, 26, 28, 30]. A key feature of interest for models of invasion is whether the

PDE supports a travelling wave solution, where a wave front of constant shape moves through

space with a constant speed. The sign of the wave speed indicates whether successful invasion

occurs, and the magnitude of the wave speed provides an estimate of how quickly a population

invades or recedes. More complicated descriptions of invasion processes with either Fisher or

Allee kinetics and density-dependent nonlinear diffusion have been proposed, with the motiva-

tion of describing spatial aggregation or segregation [36–41].

A key feature of the Fisher-Kolmogorov model, and many extensions thereof, is that these PDE

models are typically derived using phenomenologically-based arguments without incorporating
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information from an underlying stochastic description of individual-level behaviours. In this work

we consider a relatively straightforward lattice-based discrete birth-death-movement model. An

important characteristic of the model is that it explicitly accounts for crowding effects by only

allowing for one agent per lattice site. Additionally, the rates at which birth, death and move-

ment events occur depend on whether an agent is part of a group of agents or is isolated. We

demonstrate that the standard continuum approximation of this discrete model can lead to either

logistic or Allee kinetics, in an appropriate parameter regime. Furthermore, we demonstrate that

imposing a different motility rate for agents that are isolated, compared to other agents, leads

to a variety of density-dependent nonlinear diffusion functions. Previous studies have examined

many different types of phenomenologically-based PDEs that are motivated in an ad hoc fash-

ion. In contrast, our PDE description arises from a single, relatively simple, physically-motivated

model. In Table 1 we highlight this generality, as the single discrete model gives rise to 22 dif-

ferent classes of PDE that describe the population-level behaviour.

While several of these PDEs have been studied previously, for completeness we examine the ability

of each class of PDE to support travelling wave solutions. For certain classes of PDE, we present

details of the travelling wave solutions for the first time. Interestingly, we obtain travelling wave

solutions for PDEs that have nonlinear diffusivity functions with regions of negative diffusivity.

Furthermore, we show that the strong Allee effect combined with these diffusivity functions can

lead to novel shock-fronted travelling wave solutions. As these diffusivity functions are obtained

directly from a discrete model, we can determine which competitive/co-operative individual-level

mechanisms result in shock-fronted travelling wave solutions. Similarly, we are able to interpret

the influence of motility on the persistence of a population, and highlight how this influence

varies nonlinearly with the carrying capacity density. More generally, we provide new insight

into the long time behaviour of an invasive population in terms of its individual-level properties.
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Results

We consider a discrete lattice-based exclusion process where agents undergo birth, death and

movement events. We distinguish between isolated agents and grouped agents by imposing

different rates of birth, death and movement depending on whether an agent has zero or at least

one nearest-neighbour agent, respectively. A more detailed description of the discrete model

is presented in the Methods. To derive a continuum limit PDE description of the discrete

model [58, 63] we consider the change in occupancy of a lattice site j during a single time step

of duration τ , and obtain

δCj =
P im
2

[
Cj−1(1− Cj)(1− Cj−2) + Cj+1(1− Cj)(1− Cj+2)− 2Cj(1− Cj−1)(1− Cj+1)

]
+
P gm
2

[
Cj−1(1− Cj) + Cj+1(1− Cj)− Cj(1− Cj−1)− Cj(1− Cj+1)

]
− P gm

2

[
Cj−1(1− Cj)(1− Cj−2) + Cj+1(1− Cj)(1− Cj+2)− 2Cj(1− Cj−1)(1− Cj+1)

]
+
P ip
2

[
Cj−1(1− Cj)(1− Cj−2) + Cj+1(1− Cj)(1− Cj+2)

]
+
P gp
2

[
Cj−1(1− Cj) + Cj+1(1− Cj)

]
−
P gp
2

[
Cj−1(1− Cj)(1− Cj−2) + Cj+1(1− Cj)(1− Cj+2)

]
− P id

[
Cj(1− Cj−1)(1− Cj+1)

]
− P gd

[
Cj

]
+ P gd

[
Cj(1− Cj−1)(1− Cj+1)

]
. (1)

Here, Cj represents the probability that the site j is occupied and, therefore, 1− Cj represents

the probability that the site is vacant [63]. Furthermore, as products of probabilities are inter-

preted as net transition probabilities, the usual assumption that the occupancy of lattice sites

are independent is made [58,61,64–66].

Note that Cj is the total occupancy of site j, that is, the sum of the occupancy of isolated agents

and the occupancy of grouped agents at that site. We now interpret the terms on the right-hand

side of Equation (1) in terms of the physical change in lattice occupancy. The positive terms

proportional to P im correspond to isolated agents moving into site j, while the negative terms

correspond to isolated agents moving out of site j. Each term consists of three factors. For the

negative terms, these factors are the probability that site j is occupied, and the probabilities

that sites j− 1 and j+ 1 are vacant. For the positive terms, the three factors are the probability

that site j ± 1 is occupied, and the probabilities that sites j and j ± 2 are vacant. The third
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factor is required to ensure that the term describes isolated agents. The positive/negative terms

proportional to the first P gm term on the right-hand side of Equation (1) correspond to grouped

agents moving in/out of site j. These terms consist of two factors; the probability that the

selected site is occupied and the probability that the target site is vacant. The second P gm term

ensures that the isolated agents are not counted twice. The remaining terms can be interpreted

similarly; products of probabilities that specific sites are occupied or vacant that describe the

change of occupancy of a site in response to a birth or death event.

To obtain a PDE description we divide Equation (1) by τ and consider Cj as a continuous

function, C(x, t). We expand C(x, t) in a Taylor series around x = j∆, truncating terms of

O(∆3), where ∆ is the lattice spacing [58, 63]. Taking the limit ∆ → 0 and τ → 0 such that

∆2/τ is held constant [60,63,67] gives

∂C

∂t
= Dg

∂2C

∂x2
+
(
Di −Dg

) ∂
∂x

((
1− 4C + 3C2

)∂C
∂x

)
+ λgC

(
1− C

)
+
(
λi − λg

)
C
(

1− C
)2

−KgC −
(
Ki −Kg

)
C
(

1− C
)2

, (2)

where

Dg = lim
∆,τ→0

P gm∆2

2τ
, Di = lim

∆,τ→0

P im∆2

2τ
, λg = lim

τ→0

P gp
τ
, λi = lim

τ→0

P ip
τ
,

Kg = lim
τ→0

P gd
τ
, Ki = lim

τ→0

P id
τ
, (3)

with the further assumption that P ip, P
g
p , P

i
d, P

g
d are O(τ) [63]. The individual-level parameters

are treated as being interchangeable with the continuum-level parameters as defined in (3). All

implementations of the discrete model in this work have ∆ = τ = 1.

It is convenient to write Equation (2) in conservation form

∂C

∂t
=

∂

∂x

(
F (C)

∂C

∂x

)
+R(C), (4)

where

F (C) = Di(1− 4C + 3C2) +Dg(4C − 3C2), (5)

is the nonlinear diffusivity function, and

R(C) = λgC(1− C) + (λi − λg −Ki +Kg)C(1− C)2 −KgC, (6)
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is the source/sink term.

The aims of this work are to first illustrate that the very different types of behaviour encoded in

the discrete model are also reflected in the solution of Equation (2). Once we have demonstrated

this connection, we focus on examining travelling wave solutions for the 22 different classes em-

bedded within Equation (2), as summarised in Table 1. In the main document we highlight novel

and key results for specific classes of PDEs resulting from the discrete model, and provide rele-

vant discussion about the implications of the long time population behaviour. A more thorough

investigation of the travelling wave solutions arising from all 22 classes of PDEs is presented in

the Supplementary Material.

Twenty identically-prepared realisations of the discrete model are presented in Figures 1(a)-(f)

for two different parameter regimes. In the first parameter regime, where P gd = 0, the initially-

occupied region of the lattice remains fully occupied, as shown in Figures 1(a)-(c). When we

introduce P gd > 0, as shown in Figures 1(d)-(f), the initially-occupied region of the lattice be-

comes partially vacant as time increases. We also compare the average discrete behaviour and

the corresponding numerical solution of Equation (2) in Figures 1(g)-(h). This comparison shows

that the solution of the continuum PDE matches the average discrete behaviour well, and pre-

dicts both the spread of the agent population in Figure 1(g) and the decrease in agent density

in Figure 1(h).

The governing PDE, Equation (2), can be simplified in specific parameter regimes. While several

of these simplified PDEs have been studied extensively, we summarise all non-trivial cases for

completeness. It is instructive to consider each case and discuss the implications of the long term

behaviour in terms of the discrete model parameters, as previous derivations of these PDEs have

arisen from a variety of ad hoc arguments rather than working with a single unifying model.

In Table 1 we summarise the salient features of 22 different special cases of Equation (2). The

nonlinear diffusivity function, F (C), has four key properties:

• F (C) can either be a constant, or a function of the density of individuals;
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200 400 600
0
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C(x,t)

x
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0

1

x

C(x,t)

1 x 600

(a)

(b)

(c)

(d)

(e)

(f )

(g)

(h)

t = 0

t = 500

t = 1000

t = 0

t = 500

t = 1000

1 x 600

Figure 1. Comparison of the discrete model and the continuum ap-
proximation. (a)-(f) 20 identically-prepared realisations of the discrete model
at (a), (d) t = 0; (b), (e) t = 500; (c), (f) t = 1000. The discrete model sim-
ulations correspond to (a)-(c) P im = P gm = 1, P ip = P gp = 0.005, P id = 0.002,

P gd = 0; (d)-(f) P im = P gm = 1, P ip = P gp = 0.005, P id = 0.008, P gd = 0.002.
For all simulations τ = 1, ∆ = 1. (g)-(h) Comparisons between the averaged
discrete model (black, solid) and the numerical solution of Equation (2) (cyan,
dashed) at t = 0, t = 500 and t = 1000 for the parameters in (a)-(c) and (d)-(f),
respectively. The grey lines indicate the initial condition and the arrow indicates
the direction of increasing time. For all discrete solutions, M = 1000, X = 600,
∆ = τ = 1. For all continuum solutions, δx = 1, δt = 0.1, ε = 10−6.

• F (C) can be degenerate, which implies that at one or more densities, C∗, we have

F (C∗) = R(C∗) = 0;

• F (C) can be zero at values of C∗ that are non-degenerate, that is, F (C∗) = 0, R(C∗) 6= 0.

In our model, this can occur at either zero, one or two different values of C; and

• F (C) can be negative for an interval of C values.

The source term, R(C), has two key properties:
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• R(C) can represent either Fisher kinetics (logistic growth) or Allee kinetics (bistable);

and

• the grouped agent death rate, P gd , can be zero or non-zero. If the rate is non-zero, the

carrying capacity density is reduced.

There are three different types of Allee kinetics considered in this work; weak, strong and reverse.

We consider these three kinetics together for brevity, as it is relatively simple to change the pa-

rameter regime to alter the type of Allee effect without changing the competitive/co-operative

mechanism described. The reverse Allee effect, which we describe here for the first time, refers to

a growth rate that is reduced at high density, compared to logistic kinetics, but remains positive.

Fisher kinetics. The choice of whether the birth and death mechanisms imposed in the discrete

model are neutral or are competitive/co-operative determines the form of the source term. If

both P ip = P gp and P id = P gd , and hence both the birth and death mechanisms are neutral, the

source term represents Fisher kinetics and Equation (2) simplifies to

∂C

∂t
=

∂

∂x

(
F (C)

∂C

∂x

)
+ λC(1− C)−KC, (7)

where λ = λi = λg and K = Ki = Kg. Transforming Equation (7) into travelling wave co-

ordinates z = x− vt, where v is a constant wave speed and −∞ < z <∞, results in

v
dC

dz
+ F (C)

d2C

dz2
+ (Di −Dg)(6C − 4)

(
dC

dz

)2

+ λC(1− C)−KC = 0, −∞ < z <∞. (8)

Substituting U = dC/dz allows Equation (8) to be expressed as a system of ordinary differential

equations (ODEs)

dC

dz
= U, (9)

dU

dz
=
−vU − (Di −Dg)(6C − 4)U2 − λC(1− C) +KC

F (C)
. (10)

The equilibrium points of Equations (9)-(10) occur at (C,U) = (0, 0) and (C,U) = (S, 0), where

S = (λ − K)/λ. The range of physically relevant C values correspond to 0 ≤ C ≤ S. Hence

the carrying capacity density, S, determines the numbers of times that F (C) = 0 for physically

relevant C values. As such, we introduce a new variable C = C/S such that the agent density is

scaled by the carrying capacity and the zeroes of R(C) occur at C = 0 and C = 1.
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(c)

0 1
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F
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C

S = 1.0 S = 0.9
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(d)

Figure 2. Classification of Fs(C) for different carrying capacity densities.
(a)-(c) Type of Fs(C) function for 0 ≤ C ≤ 1 for the parameter space P im ∈ [0, 1]
and P gm ∈ [0, 1] with (a) S = 1.0; (b) S = 0.9; (c) S = 0.5. Grey regions cor-
respond to parameter pairs that result in strictly positive Fs(C), purple regions
correspond to parameter pairs that result in positive-negative-positive Fs(C) and
red regions correspond to parameter pairs that result in positive-negative Fs(C).
Cyan, orange and black lines correspond to constant, extinction-degenerate non-
negative and capacity-degenerate positive-negative Fs(C) curves, respectively.
(d) Example Fs(C) for each region in (b). The white circles in (b) denote the
parameter pairs used to generate the curves in (d).

Transforming Equation (7) in terms of C, we obtain

∂C

∂t
=

∂

∂x

(
Fs(C)

∂C

∂x

)
+ (λ−K)C(1− C), (11)

where Fs(C) = F (SC) = Di(1 − 4SC + 3(SC)2) + Dg(4SC − 3(SC)2). Equation (11) is the

Fisher-Kolmogorov equation in terms of C with a nonlinear diffusivity function, Fs(C). This new
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nonlinear diffusivity function has different properties depending on S, Di and Dg. To highlight

this, Figure 2 shows the (P im, P
g
m) parameter space for three different choices of S and the qual-

itative behaviour of the corresponding Fs(C) function. For all S values, parameter pairs that

result in a constant Fs(C) are highlighted in cyan. All parameter pairs that result in Fs(C) > 0

for 0 ≤ C ≤ 1 are denoted by the grey regions. This type of diffusivity function is referred to as

strictly positive. Similarly, for all S values, there are parameter pairs that result in Fs(0) = 0,

and Fs(C) > 0 otherwise, which are highlighted in orange. We refer to this type of diffusivity

function as extinction-degenerate non-negative.

For S = 1, presented in Figure 2(a), P im > 4P gm, denoted in purple, results in an interval

α < C < β, α < β < 1, where Fs(C) < 0. We refer to this type of nonlinear diffusivity

function as positive-negative-positive. Decreasing S to 0.9, presented in Figure 2(b), we observe

that the purple region again occurs for P im > 4P gm. However, if P gm < 0.145P im, highlighted

in red, Fs(C) < 0 for ω < C ≤ 1, and hence Fs(C) has only one zero in 0 ≤ C ≤ 1. This

type of nonlinear diffusivity function is not observed with S = 1 and we refer to it as positive-

negative. Specifically, this behaviour occurs when (16 − (6S − 4)2)P gm < (4 − (6S − 4)2)P im

and P im > 4P gm. Furthermore, this implies that for S < 2/3 there are no (P im, P
g
m) values that

correspond to positive-negative-positive Fs(C). A choice of (P im, P
g
m) that demonstrates this is

shown in Figure 2(c). Unlike in Figures 2(a)-(b), we see that there is no purple region. Finally,

if (16 − (6S − 4)2)P gm = (4 − (6S − 4)2)P im, highlighted in black, Fs(1) = 0 and Fs(C) < 0 for

ω < C < 1, which we refer to as capacity-degenerate positive-negative. Note that for S < 1/3,

Fs(C) ≥ 0 for 0 ≤ C ≤ 1. An example Fs(C) curve for each type of diffusivity function is pre-

sented in Figure 2(d). PDE models that contain diffusivity functions with a region of negative

diffusivity have been considered previously. However, these models either do not contain a source

term or consider source terms that do not support travelling wave solutions [70–72]. Hence the

model and analysis considered in this work is significantly different to the previous studies.

For all combinations of neutral, competitive and co-operative mechanisms that give rise to a

reaction-diffusion equation with Fisher kinetics we examine the ability of the equation to give

rise to long time travelling wave solutions. While details of the travelling wave solutions for

certain types of diffusivity functions have been presented previously, we summarise the key

features of the travelling wave solutions in tabular form for all cases for completeness in Table
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Diffusivity function classification Travelling wave Front type Direction
Constant Yes Smooth Positive
Strictly positive Yes Smooth Positive
Extinction-degenerate non-negative Yes Sharp Positive
Positive-negative-positive Yes Smooth Positive
Capacity-degenerate positive-negative Yes Smooth Positive
Positive-negative Yes Smooth Positive

Table 2. Classification of travelling wave solutions arising from different classes
of PDEs with Fisher kinetics. Highlighted entries refer to cases analysed in detail
in the manuscript; the other cases are analysed in the Supplementary Material.

2. For the cases where solution profiles have not been presented previously, we provide more

detailed discussion. A detailed analysis for each case is presented in the Supplementary Material.

Positive-negative-positive nonlinear diffusivity function. The first diffusivity function we examine

in detail is the positive-negative-positive nonlinear diffusivity function, where Fs(C) < 0 for an

interval α < C < β. The simplest positive-negative-positive Fs(C) occurs where P id = P gd = 0

and hence S = 1. For these parameters, Fs(C) = F (C). Note that introducing non-zero P id and

P gd merely scales the governing equation and hence extending this analysis to cases with non-zero

agent death is straightforward, provided that Fs(C) has two zeroes on the interval 0 < C < 1.

Parameters that result in a positive-negative-positive Fs(C) are highlighted in purple in Figure

2 and, for this case, with P id = P gd = 0, occur when P im > 4P gm. For positive-negative-positive

F (C), Equation (10) is singular at C = α and C = β, where the interval of F (C) < 0 is given by

α =
2

3
−
√

(P im)2 − 5P imP
g
m + 4(P gm)2

3(P im − P
g
m)

< C < β =
2

3
+

√
(P im)2 − 5P imP

g
m + 4(P gm)2

3(P im − P
g
m)

. (12)

The singularities at C = α and C = β cannot be removed using a stretching transformation

(Supplementary Material) since R(α) 6= 0 and R(β) 6= 0. However, it is possible for dU/dz to be

finite at C = α and C = β if Uα and Uβ exist such that

lim
C→α

[
−vUα − (Di −Dg)(6C − 4)U2

α − λC(1− C)

Di(1− 4C + 3C2) +Dg(4C − 3C2)

]
, (13)

lim
C→β

[−vUβ − (Di −Dg)(6C − 4)U2
β − λC(1− C)

Di(1− 4C + 3C2) +Dg(4C − 3C2)

]
, (14)
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are both finite. This requires the numerator in the expressions (13)-(14) vanish at C = α and

C = β, respectively. As such, Uα and Uβ are obtained by solving the system

0 = −vUα − (Di −Dg)(6α− 4)U2
α − λα(1− α), (15)

0 = −vUβ − (Di −Dg)(6β − 4)U2
β − λβ(1− β), (16)

resulting in Uα = −(v±
√
v2 − 4F ′(α)R(α))/2F ′(α) and Uβ = −(v±

√
v2 − 4F ′(β)R(β))/2F ′(β).

We note that as R(C) ≥ 0 for 0 ≤ C ≤ 1, and that F ′(α) ≤ 0 for all possible α values, Uα will be

real-valued. Subsequently, we have a wave speed condition that v ≥ 2
√
F ′(β)R(β), as F ′(β) ≥ 0

for all possible β values. Ferracuti et al. [36] prove that the minimum wave speed, v∗, is greater

than a threshold value, which in turn is greater than max{R′(0)F (0), F ′(β)R(β)}. Therefore,

Uβ will also always be real-valued.

Applying L’Hopital’s Rule to Equation (10), we obtain

lim
C→α

dU

dz

∣∣∣∣
U=Uα

= lim
C→α

[
6(Di −Dg)U

2
α + λ(1− 2C)

(Dg −Di)(6C − 4)

]
, (17)

lim
C→β

dU

dz

∣∣∣∣
U=Uβ

= lim
C→β

[
6(Di −Dg)U

2
β + λ(1− 2C)

(Dg −Di)(6C − 4)

]
, (18)

which are finite provided that α 6= 2/3 and β 6= 2/3. For the system of Equations (9)-(10), we

have two straight lines in the phase plane where dU/dz is infinite, at C = α and C = β. These

kind of lines have previously been called walls of singularities for hyperbolic models related to

chemotactic and haptotactic invasion [52]. For a smooth solution trajectory joining the two equi-

librium points on opposite sides of the wall of singularities, we require that the trajectory passes

through the wall of singularities. This implies that the solution trajectory must pass through the

wall of singularities at the special points, (α,Uα) and (β, Uβ), known as holes in the wall [52,53].

Otherwise, a smooth heteroclinic orbit between (1, 0) and (0, 0) cannot exist, as limC→α |U | → ∞

and limC→β |U | → ∞. As Uα and Uβ are real valued and the limits in Equations (11)-(12) are

finite, the holes in the wall always exist for Fisher kinetics.

We superimpose the numerical solution of Equation (7) in (C,U) co-ordinates on the phase plane

for the system (9)-(10) in Figures 3(a) and 3(d). Details of the numerical techniques used to

solve Equation (7) and to generate the phase planes are given in the Methods. The numerical

solution appears to form a heteroclinic orbit between (1, 0) and (0, 0) in both cases, and passes
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Figure 3. Travelling wave behaviour for Equation (7) with positive-
negative-positive F (C) (Case 2.3). (a), (d) Phase plane for the system
(9)-(10) with the numerical solution of Equation (7), in (C,U) co-ordinates,
superimposed. The grey region corresponds to values of C where F (C) < 0.
The dashed black lines denote a wall of singularities. Red circles correspond
to equilibrium points and purple circles correspond to holes in the wall. (b),
(e) Numerical solution of Equation (7) at t = 100 and t = 200. The grey lines
indicate the initial condition and the arrows indicate the direction of increasing
time. (c), (f) The time evolution of the position of the leading edge of the
travelling wave solution, L(t). All results are obtained using P id = P gd = 0,
δx = 0.01, δt = 0.01, ε = 10−6 and (a)-(c) P im = 0.5, P gm = 0.1, P ip = P gp = 0.75,

v = 0.864; (d)-(f) P im = 0.1, P gm = 0.01, P ip = P gp = 1.0, v = 0.448.

through the holes in the wall of singularities, denoted using purple circles. Continuum models

with negative diffusivity and no source terms have been relatively well studied, and exhibit shock

behaviour across the region of negative diffusion [50,51]. Interestingly, our solution does not in-

clude a shock and is instead smooth through the region of negative diffusion.

The numerical solution of Equation (7) at t = 100 and t = 200 is shown in Figures 3(b) and

3(e), confirming that the waveform does not change with time. To quantify the wave speed we

calculate the time evolution of the leading edge, L(t) = xf such that C(xf , t) ≈ 1× 10−4. If the

solution of Equation (7) forms a travelling wave, L(t) will tend to a straight line with slope v,

as t → ∞. In Figures 3(c) and 3(f), we observe that L(t) is approximately linear with slope v,
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and hence the solution of Equation (7) moves with approximately constant speed at long times.

Overall, these features suggest that the solution of Equation (7) with positive-negative-positive

F (C) approaches a travelling wave.

Capacity-degenerate positive-negative nonlinear diffusivity function. For the special case where

P gm = 0, Fs(1) = 0. Again, we consider the case with zero agent death for simplicity, and

note that it is straightforward to extend the analysis for cases with non-zero agent death. As

F (C) is degenerate at C = 1, it is intuitive to expect there could be sharp-fronted travelling wave

solutions, with the sharp front near C = 1, similar to the results in [46] and in the Supplementary

Material. However, unlike these cases, we have an interval 1/3 < C < 1 where F (C) < 0. To

determine whether this negative diffusivity influences the presence of sharp fronts, we follow the

approach of Maini et al. [38], who show that the existence of travelling waves for reaction-diffusion

equations with capacity-degenerate positive-negative F (C) can be determined by considering the

existence of travelling waves for

∂C

∂t̂
=
∂2C

∂x2
+ F (C)R(C), t̂ ≥ 0. (19)

The restriction on t̂ implies F (C) > 0. As F (C) < 0 for 1/3 < C < 1, Equation (19) is only

equivalent to Equation (7) for 0 ≤ C ≤ 1/3. For 1/3 ≤ C ≤ 1, Equation (7) is equivalent to

∂C

∂t̂
=
∂2C

∂x2
+ F̂ (C)R̂(C), t̂ ≥ 0, (20)

where F̂ (C) = −F (1 − C) and R̂(C) = R(1 − C) [38]. Equations (19)-(20) have minimum

travelling wave speeds v∗0 and v∗1 , respectively. Maini et al. [38] prove that sharp fronts in the

travelling wave near C = 1 only exist if F (1) = 0 and v∗1 < v∗0 . The first condition is obviously

satisfied, while the second can be determined by considering the behaviour of the equivalent

ordinary differential systems in travelling wave coordinates in the neighbourhood of the equilib-

rium points. Both equations have minimum wave speed conditions, v∗0 = v∗1 = 2
√
λDi, to obtain

physically-relevant heteroclinic orbits, and hence travelling wave solutions with a sharp region

near C = 1 do not exist.

Travelling wave behaviour for a parameter regime with F (1) = 0 is shown in Figure 4. The

equilibrium point at (1, 0) is also a hole in the wall. The solution trajectory forms a heteroclinic

orbit between (1, 0) and (0, 0), and passes through the region of C where F (C) < 0. Although
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Figure 4. Travelling wave behaviour for Equation (7) with capacity-
degenerate positive-negative F (C) (Case 2.4). (a) Phase plane for the sys-
tem (9)-(10) with the numerical solution of Equation (7), in (C,U) co-ordinates,
superimposed. The grey region corresponds to values of C where F (C) < 0. The
dashed black lines denote two walls of singularities. Red circles correspond to
equilibrium points and purple circles correspond to holes in the wall. (b) Nu-
merical solution of Equation (7) at t = 100 and t = 200. The grey lines indicate
the initial condition and the arrow indicates the direction of increasing time. (c)
The time evolution of the position of the leading edge of the travelling wave so-
lution, L(t). All results are obtained using P im = 0.01, P gm = 0, P ip = P gp = 1.0,

P id = P gd = 0, δx = 0.01, δt = 0.01, ε = 10−6, v = 0.1433.

F (1) = 0, we do not observe a solution trajectory corresponding to a sharp front, as for capacity-

degenerate non-negative F (C) (Supplementary Material). This result is consistent with the

analysis of Maini et al. [38]. The numerical solution of Equation (4), presented in Figure 4(b),

has a relatively steep front but is not sharp near C = 1. As L(t), presented in Figure 4(c),

becomes linear as t increases and the waveform in Figure 4(b) are consistent, the numerical

solution of Equation (7) with F (1) = 0 appears to form a classic travelling wave.

Positive-negative nonlinear diffusivity function. The positive-negative case, where Fs(C) > 0

for 0 ≤ C < ω and Fs(C) < 0 for ω < C ≤ 1, cannot occur with K = 0. It is in-

structive to examine whether stable travelling wave solutions of Equation (7) exist in such a

case, as the non-zero equilibrium point now occurs in the region where Fs(C) < 0. If we

perform standard linear analysis on Equations (9)-(10), the Jacobian at (S, 0) has eigenval-

ues ξ = (−v ±
√
v2 + 4F (S)(λ(2S − 1) +K))/2F (S), which implies that the equilibrium point

is an unstable node provided v > 2
√
−F (S)(λ(2S − 1) +K). The negative sign is present

as F (S) < 0 for positive-negative Fs(C). The Jacobian at (0, 0) has eigenvalues ξ = (−v ±√
v2 − 4Di(λ−K))/2Di, which is a stable node provided that v > 2

√
(λ−K)Di. While there

are infinitely many solution trajectories out of the unstable node, we require that the solution

trajectory passes through the hole in the wall, and hence there is a single solution trajectory
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Figure 5. Travelling wave behaviour for Equation (7) with positive-
negative Fs(C) (Case 4.5). (a) Phase plane for the system (9)-(10) with the
numerical solution of Equation (7), in (C,U) co-ordinates, superimposed. The
grey region corresponds to values of C where Fs(C) < 0. The dashed black
lines denote a wall of singularities. Red circles correspond to equilibrium points
and purple circles correspond to holes in the wall. (b) Numerical solution of
Equation (7) at t = 50 and t = 100. The grey lines indicate the initial condition
and the arrow indicates the direction of increasing time. (c) The time evolution
of the position of the leading edge of the travelling wave solution. All results
are obtained using P im = 0.05, P gm = 0.01, P ip = P gp = 1.0, P id = P gd = 0.25,

δx = 0.1, δt = 0.01, ε = 10−6, v = 0.2760.

that forms a heteroclinic orbit.

Travelling wave behaviour for Equation (7) with positive-negative Fs(C) is shown in Figure

5. The numerical solution of Equation (7), in (C,U) co-ordinates, passes through the wall of

singularities where Equation (10) is finite and forms a heteroclinic orbit between (S, 0) and (0, 0).

The travelling wave front is of classic type, a result predicted by the analysis performed by Maini

et al. [38] as Fs(0) 6= 0 and Fs(1) 6= 0.

Allee kinetics. If the birth and death mechanisms are either competitive or co-operative, that

is, P ip 6= P gp and P id 6= P gd , then the source term represents an Allee effect [15] and hence Equation

(2) can be expressed as

∂C

∂t
=

∂

∂x

(
F (C)

∂C

∂x

)
+ (Ki −Kg − λi + λg)A1C

(
1− C

A1

)(
C −A2

)
, (21)

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 8, 2016. ; https://doi.org/10.1101/077743doi: bioRxiv preprint 

https://doi.org/10.1101/077743


18 JOHNSTON ET AL.

where

A1 =
2λi − λ− 2Ki + 2Kg −

√
λ2
g + 4Kg(λi − λg −Ki +Kg)

2(λi − λg −Ki +Kg)
,

A2 =
2λi − λ− 2Ki + 2Kg +

√
λ2
g + 4Kg(λi − λg −Ki +Kg)

2(λi − λg −Ki +Kg)
. (22)

Note that either λg ≥ 2(Kg +
√
Kg(Ki − λi)) or λi > Ki must be satisfied or R(C) ≤ 0 for

0 ≤ C ≤ 1 and the population will tend to extinction. In travelling wave co-ordinates, Equation

(21) is

v
dC

dz
+F (C)

d2C

dz2
+F ′(C)

(
dC

dz

)2

+(Ki−Kg−λi+λg)A1C

(
1− C

A1

)(
C−A2

)
= 0, −∞ < z <∞,

(23)

and, making the substitution U = dC/dz, it corresponds to

dC

dz
= U, (24)

dU

dz
= − vU

F (C)
− (Di −Dg)(6C − 4)U2

F (C)
− (Ki −Kg − λi + λg)A1C

F (C)

(
1− C

A1

)(
C −A2

)
.

(25)

If P gd = 0, then A1 = 1, and the source term in (21) simplifies to R(C) = rC(1 − C)(C − A),

where r = Ki−λi +λg is the intrinsic growth rate and A = (Ki−λi)/(Ki−λi +λg) is the Allee

parameter [15].

A new variable C = C/A1 is introduced such that the range of physically relevant C values

corresponds to 0 ≤ C ≤ 1. Substituting C into Equation (21) results in

∂C

∂t
=

∂

∂x

(
FA(C)

∂C

∂x

)
+ (Ki −Kg − λi + λg)A

2
1C(1− C)(C −A), (26)

where FA(C) = F (A1C) = Di(1− 4A1C
2

+ 3A2
1C

2
) +Dg(4A1C − 3A2

1C
2
) and

A =
A2

A1
=

2λi − λ− 2Ki + 2Kg +
√
λ2
g + 4Kg(λi − λg −Ki +Kg)

2λi − λ− 2Ki + 2Kg −
√
λ2
g + 4Kg(λi − λg −Ki +Kg)

. (27)

The transformed nonlinear diffusivity, FA(C), has the same characteristics as Fs(C), presented

in Figure 2, albeit in terms of the scaled Allee carrying capacity, A1. For P im = P gm, FA(C)

represents linear diffusion. Reaction-diffusion equations with linear diffusion and either weak or
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Figure 6. Comparison of source terms. R(C) corresponding to the weak
Allee effect with r = 1, A = −0.5 (cyan), strong Allee effect with r = 1, A = 0.5
(orange), reverse Allee effect with r = −1, A = 1.5 (purple) and logistic growth
with r = 1 (black).

strong Allee kinetics have been well-studied [15,19,22,23,25,26,28,30]. For additional details we

refer the reader to [15]. Weak Allee kinetics correspond to (Ki −Kg − λi + λg) > 0 and A < 0,

and represent a growth rate that is inhibited at low densities, compared to logistic growth, but

remains positive. Strong Allee kinetics correspond to (Ki−Kg−λi+λg) > 0 and 0 < A < 1 [15],

and represent a growth rate that is negative beneath a threshold value, and positive otherwise.

Interestingly, a third type of Allee kinetics can arise from the parameter values chosen in the

discrete model, that has not been considered previously. If (Ki −Kg − λi + λg) < 0 and A > 1,

the growth rate is non-negative for all relevant C values but is inhibited at high densities, com-

pared to logistic growth, rather than low densities like the weak Allee effect. We term this type

of growth term the reverse Allee effect. Representative source terms showing the three types of

Allee effect are compared with a logistic source term in Figure 6.

For all combinations of neutral, competitive and co-operative mechanisms that give rise to a

reaction-diffusion equation with Allee kinetics we examine the ability of the equation to give rise

to long time travelling wave solutions. Furthermore, the three types of Allee effect arising from

the discrete model are considered. Several of these cases have been presented and examined

previously, but we present details about the travelling wave solutions for all combinations of
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Diffusivity function classification Allee effect Travelling wave Front type Direction
Constant Weak/Reverse Yes Smooth Positive
Constant Strong Yes Smooth Positive
Constant Strong Yes Smooth Negative
Strictly positive Weak/Reverse Yes Smooth Positive
Strictly positive Strong Yes Smooth Positive
Strictly positive Strong Yes Smooth Negative
Extinction-degenerate non-negative Weak/Reverse Yes Sharp Positive
Extinction-degenerate non-negative Strong Yes Sharp Positive
Extinction-degenerate non-negative Strong Yes Smooth Negative
Positive-negative-positive Weak/Reverse Yes Smooth Positive
Positive-negative-positive Strong Yes Shock Positive
Positive-negative-positive Strong Yes Shock Negative
Capacity-degenerate positive-negative Weak/Reverse Yes Smooth Positive
Capacity-degenerate positive-negative Strong No N/A N/A
Positive-negative Weak/Reverse Yes Smooth Positive
Positive-negative Strong No N/A N/A

Table 3. Classification of travelling wave solutions arising from different classes
of PDEs with Allee kinetics. Highlighted entries refer to cases analysed in detail
in the manuscript; the other cases are analysed in the Supplementary Material.

diffusivity functions and Allee effects in Table 3. A detailed analysis for each case is presented

in the Supplementary Material.

Persistence and extinction. A key question of interest for a particular class of PDE is whether

the population described persists or becomes extinct in the long time limit. In all cases with

Fisher kinetics with λ > K, the source term is positive for 0 ≤ C ≤ 1, and subsequently the

population persists and spreads. As the kinetics representing an Allee effect can contain a source

term that is negative for an interval of C, it is less obvious whether the minimum wave speed is

positive or negative, corresponding to persistence or extinction, respectively.

For the case with constant F (C) and P gd = 0, the minimum wave speed for Equation (21) with

A < −1/2 is v∗ = 2
√

(λi −Ki)D and hence the population persists, provided λi > Ki. In-

troducing P gd 6= 0 results in the same minimum wave speed, provided that A < −1/2. This

implies that introducing grouped agent death at a rate that does not result in a population

tending to extinction has no influence on the invasion speed of the population. Specifically, the

condition for A < −1/2 with Kg = 0 corresponds to 3(λi−Ki) > λg. It can be shown that, with

3(λi −Ki) > λg, we require 3Kg < λg for A < −1/2. This implies that there is a range of Kg
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values that result in a travelling wave with a minimum wave speed that is independent of both

Kg and λg. Interestingly, this suggests that if a control is implemented that increases the death

rate of grouped agents, there is a threshold value of P gd for the control to influence the invasion

speed and the subsequent persistence of the population. Introducing a non-zero Kg value for a

parameter regime that results in the strong Allee effect with Kg = 0 never changes the type of

Allee effect. It is possible to go from a weak Allee effect to a reverse Allee effect by introducing

a non-zero Kg value. Non-zero Kg values correspond to a decreased benefit for grouped agents,

which explains why the source term, previously a weak Allee effect, becomes the reverse Allee

effect, corresponding to inhibited growth at high density.

The reaction-diffusion equation with constant FA(C) and the strong Allee effect, corresponding

to 0 < A2 < A1 ≤ 1, has a unique wave speed v = 2
√

(Ki −Kg − λi + λg)D (A1/2 − A2) [28].

This implies that for A2 > A1/2, v < 0 and v > 0 otherwise. Furthermore, the same wave speed

applies for −A1/2 < A2 < 0 [28]. For both intervals, the minimum wave speed depends on the

Kg value, and hence implementing any kind of partial eradication of the grouped agents will

either reduce the speed of invasion or cause the extinction of the population.

For cases where FA(C) ≥ 0 for 0 ≤ C ≤ 1 and FA(C) is not constant, we follow the approach

of Hadeler to establish whether the minimum wave speed is positive, and hence the population

persists [42–44]. The integral condition for the wave speed to be positive,∫ 1

0

(Ki−Kg−λi+λg)A2
1(Di(1−4A1C

2
+3A2

1C
2
)+Dg(4A1C−3A2

1C
2
))C(1−C)(C−A) dC > 0,

(28)

corresponds to

Di(5− 10A+ 6A2
1 − 9A1A2 − 12A1 + 20A2)−Dg(6A

2
1 − 9A1A2 − 12A1 + 20A2) > 0. (29)

If Di = Dg, then A > 1/2 leads to v < 0. For the strong Allee effect, A1 > A2 = AA1, we can

determine the threshold value for the persistence of the population, namely,

A <
5Di + (Di −Dg)(6A

2
1 − 12A1)

10Di + (Di −Dg)(9A2
1 − 20A1)

. (30)

Considering the two limiting cases for strictly positive FA(C), where Di = 0 and Di = 4Dg, A

takes on a value of (6A2
1 − 12A1)/(9A2

1 − 20A1) and (18A2
1 − 36A1 + 20)/(27A2

1 − 60A1 + 30),
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Figure 7. Persistence threshold. Persistence threshold as a function of the
carrying capacity A1, expressed as (a) an explicit value; (b) a proportion of the
carrying capacity for three different diffusivities, corresponding to P im = P gm
(black), P im = 4P gm (orange) and P im = 0 (cyan).

respectively. These values reduce to 6/11 and 2/7 in the case that A1 = 1, corresponding to

Kg = 0. Therefore, populations with isolated agents that are more motile than grouped agents

are less susceptible to extinction. To illustrate how the threshold value changes with A1, P im and

P gm, Figure 7 shows the maximum A2 and A values for three different P im and P gm combinations.

The A2 value corresponds to the persistence threshold for a given A1 value. The A value can

be interpreted as the highest proportion of a given A1 value that will result in the persistence of

the population. For example, in Figure 7(a), we see that with P im = 0 and A1 = 0.5 we require

A2 < 0.194 for persistence. This corresponds to A < 0.388.

Extinction-degenerate non-negative nonlinear diffusivity function. Travelling wave behaviour for

the strong Allee effect with extinction-degenerate non-negative F (C) is shown in Figure 8. The

numerical solution of Equation (21) with A = 1/4, in Figures 8(a)-(c), leads to a sharp-fronted

travelling wave solution near C = 0 with v > 0. With A = 1/4, we expect to obtain v > 0. For a

parameter regime that results in A = 4/7, we obtain a travelling wave solution of Equation (21)

with v < 0 (Figures 8(d)-(f)). Interestingly, the sharp front near C = 0 is not present for the

strong Allee effect with v < 0.
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Figure 8. Travelling wave behaviour for Equation (21) with the strong
Allee effect and extinction-degenerate non-negative F (C) (Case 6.2).
(a), (d) Phase plane for the system (24)-(25) with the numerical solution of
Equations (21) (cyan, solid) and (23) (orange, dashed), in (C,U) co-ordinates,
superimposed. Red circles correspond to equilibrium points. (b), (e) Numerical
solution of Equation (21) calculated at (b) t = 50 and t = 100; (e) t = 400 and
t = 800. The grey lines indicate the initial condition and the arrows indicate
the direction of increasing time. (c), (f) The time evolution of L(t). All results
are obtained with δx = 0.01, δt = 0.005, ε = 10−6, P im = 0, P gm = 1.0,P gd = 0,
(a)-(c) P ip = 0.4, P gp = 0.3, P id = 0.5, v = 0.199; (d)-(f) P ip = 0.4, P gp = 0.3,

P id = 0.8, v = −0.026.

Positive-negative-positive nonlinear diffusivity function. A positive-negative-positive F (C), where

there is an interval α < C < β where F (C) < 0, corresponds to parameter pairs highlighted

in purple in Figure 2(a). Kuzmin and Ruggerini [37] examine reaction-diffusion equations with

similar properties for the strong Allee effect, in the context of diffusion-aggregation models, and

provide conditions for smooth travelling wave solutions to exist. For a solution with v > 0, we

require A < α [37] and ∫ α

0

F (C)R(C) dC > 0. (31)

Furthermore, we require [37]

3

∫ α

0

F (C)R(C) dC ≥ max{Φ(σ),Φ(ρ)}, (32)
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Figure 9. Parameter pairs that satisfy Kuzmin and Ruggerini’s Con-
ditions. (a) Condition (31); (b) Condition (32); (c) Conditions (31)-(32) com-
bined. Orange regions correspond to parameter pairs that satisfy the respective
condition(s), whereas grey regions correspond to parameter pairs that do not.

where

Φ(y) = 8α2y + 4
√

4α2y2 − 2mα3y,

σ = sup
C∈[α,β)

[
F (C)R(C)

C − β

]
, ρ = sup

C∈(β,1]

[
F (C)R(C)

C − β

]
, and

m = min
C∈[0,A]

[
F (C)R(C)

]
.

A suite of P gm values with P im = 1 that correspond to 1/3 < α < 2/3 are considered for parameter

regimes that result in A < α. Figures 9(a)-(c) show the parameter pairs, (A,α), that satisfy

Condition (31), Condition (32) and Conditions (31)-(32) simultaneously, respectively. Orange

regions represent parameter pairs where the condition is satisfied and grey regions represent pa-

rameter pairs where the condition is not satisfied. These results suggest that smooth travelling

wave solutions should exist for certain choices of parameters. Interestingly, all parameter pairs

that satisfy Condition (31) also satisfy Condition (32).

For Equation (7) with positive-negative-positive F (C), smooth travelling wave solutions that

pass through holes in the wall of singularities for positive-negative-positive F (C) are obtained.

The minimum wave speed bound presented by Ferracuti et al. [36] implies that the locations of

the holes in the wall occur are real-valued for the wave speed arising from the Heaviside initial

condition. As such, to obtain smooth travelling wave solutions of Equation (21) with positive-

negative-positive F (C), we might expect that the wave speed satisfies v > 2
√
F ′(β)R(β), such

that the holes in the wall at C = β are real-valued.
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Figure 10. Travelling wave behaviour for Equation (21) with the
strong Allee effect and positive-negative-positive F (C) (Case 6.3). (a),
(d) Phase plane for the system (24)-(25) with the numerical solution of Equation
(21) (cyan, solid), in (C,U) co-ordinates, superimposed. The dashed black lines
denote a wall of singularities. Red circles correspond to equilibrium points and
purple circles correspond to holes in the wall. (b), (e) Numerical solution of
Equation (21) calculated at (b) t = 200 and t = 400; (e) t = 500 and t = 1000.
The grey lines indicate the initial condition and the arrows indicate the direction
of increasing time. The insets correspond to the areas within the red dashed
lines, and highlight the shocks. (c), (f) The time evolution of L(t). All results
are obtained with δx = 0.05, δt = 0.001, ε = 10−6, P gd = 0, (a)-(c) P im = 0.5,
P gm = 0.1, P ip = 0.5, P gp = 0.4, P id = 0.6, v = 0.009; (d)-(f) P im = 0.5, P gm = 0.1,

P ip = 0.4, P gp = 0.2, P id = 0.5, v = −0.028.

Following the approach used for Equation (7) with positive-negative-positive F (C), it is simple

to demonstrate that both the weak and reverse Allee effect have real-valued holes in the wall

(Supplementary Material). We now examine numerical solutions of Equation (21) with the strong

Allee effect. For parameter regimes that give rise to wave speeds that satisfy v > 2
√
F ′(β)R(β),

numerical travelling wave solutions could not be found. While the condition for real-valued holes

in the wall is satisfied, the zeroes of Equation (25) are imaginary for a certain interval of C > β.

This corresponds to a nullcline that is not real-valued for certain C values.
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We now consider parameter regimes corresponding to the strong Allee effect with the additional

restriction that v < 2
√
F ′(C)R(C) for 2/3 < C ≤ 1. For all P im and P gm that give rise to a

positive-negative-positive F (C), holes in the wall at C = β do not exist and, as such, we do

not expect to obtain smooth solutions. Interestingly, we observe travelling wave solutions with

shocks such that the solution never enters the region α < C < β. An example of a shock-fronted

travelling wave solution for the strong Allee effect with both v > 0 and v < 0 is shown in

Figures 10(a)-(c) and Figures 10(d)-(f), respectively. Solutions of diffusion equations, without

any source terms, that contain shocks have been reported previously [50, 51]. Similarly, shock-

fronted travelling wave solutions arise in other kinds of models, including multispecies models

of combustion [54] and haptotactic cell migration [53]. However, the models presented here are

very different as our model contains a source term and no advection term, and it is therefore of

interest to determine the properties of the reaction-diffusion equation that lead to shock-fronted

travelling wave solutions.

Capacity-degenerate positive-negative nonlinear diffusivity function. Capacity-degenerate positive-

negative F (C), where F (1) = 0, arises if P gm = 0 and includes an interval 1/3 < C < 1 where

F (C) < 0. For the corresponding case with Fisher kinetics, despite the degenerate nature of the

nonlinear diffusivity function at C = 1, we did not obtain solutions with a sharp front near C = 1.

Instead, the solution passes through the region of negative diffusivity and a hole in the wall at

C = 1/3 , leading to smooth travelling wave solutions. As such, we expect similar solutions for

both the weak and reverse Allee effect due to the qualitatively similar behaviour of the R(C)

function. It is of interest to examine whether smooth or shock-fronted travelling wave solutions

arise from Equation (21) for the strong Allee effect and capacity-degenerate positive-negative

F (C), as for the positive-negative-positive F (C) no smooth travelling wave solutions could be

found.

As expected, smooth travelling wave solutions for both the weak and reverse Allee effects with

capacity-degenerate positive-negative F (C) are obtained. The solution behaviour for both the

weak and reverse Allee effects are presented in the Supplementary Material. For the strong Allee

effect, we examined a considerable number of parameter regimes and initial conditions and were

unable to find travelling wave solutions.
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Positive-negative nonlinear diffusivity function. For the case where FA(C) has exactly one zero

on the interval 0 ≤ C ≤ 1 at C = ω, Maini et al. [39] examine the existence of travelling wave

solutions, and provide the necessary conditions for existence,

A2 < ω, v > 0,

∫ ω

0

F (C)R(C) dC > 0, (33)

where F (ω) = 0 and 0 < ω < 1. For the strong Allee effect in this parameter regime, the third

part of Condition (33) corresponds to

Di(20(A1 +A2)ω − 30A1A2ω − 15ω2)+

(Di −Dg)((84A1 + 36A2)ω3 − (45A1A2 + 60A1 + 60A2)ω2 − 30ω4 + 80A1A2ω) > 0. (34)

Equation (21) is equivalent to

∂C

∂t̂
=
∂2C

∂x2
+ (Ki −Kg − λi + λg)A1F (C)C

(
1− C

A1

)(
C −A2

)
, t̂ ≥ 0, (35)

on the interval 0 ≤ C < ω, and equivalent to

∂C

∂t̂
=
∂2C

∂x2
+ (Ki −Kg − λi + λg)A1F̂ (C)(1− C)

(
1− 1− C

A1

)(
1−A2 − C

)
, t̂ ≥ 0, (36)

where F̂ (C) = −F (1 − C), on the interval ω < C ≤ A1. The final necessary and sufficient

condition from Maini et al. [39] for the existence of travelling wave solutions is that the minimum

wave speed for Equation (35), v∗1 , is greater than, or equal to, the minimum wave speed for

Equation (36), v∗2 . On the interval 0 ≤ C < ω, Equation (21) has a strictly positive F (C), where

F (C) ≤ Di, and strong Allee kinetics. Hence, the minimum wave speed for Equation (35) has an

upper bound, v∗1 ≤
√

2(λi −Ki)Di(1/2−A2). On the interval ω < C < A1 Equation (36) has a

source term qualitatively similar to the Fisher-Kolmogorov equation and hence a lower bound for

the minimum wave speed exists [39], v∗2 ≥ 2
√
−F (A1)(λ2 + 4Kg(λi − λg −Ki +Kg))1/2. For all

parameter regimes considered that correspond to the strong Allee effect with positive-negative

FA(C) we never observe a case where the upper bound for v∗1 is higher than the lower bound

for v∗2 and hence the conditions required for travelling wave solutions are not met. As expected,

numerical solutions of Equation (21) in these parameter regimes did not lead to travelling wave

behaviour.
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Discussion

In this work we present a discrete lattice-based model of birth, death and movement. The model

is an exclusion process, and hence it explicitly incorporates crowding by allowing no more than

one agent per site. A key feature of the model is that birth, death and movement rates depend

on whether an agent is isolated or whether it is part of a group of agents. The discrete model

can, therefore, be used to describe co-operative or competitive mechanisms [8, 13–15]. These

kinds of mechanisms are thought to be relevant to many applications in cell biology [8,12,55,56]

and ecology [13–15]. By considering different combinations of parameters, the continuum limit

PDE approximation of the discrete model leads to 22 different cases. These cases are reaction-

diffusion equations with either Fisher kinetics or Allee kinetics, and a variety of density-dependent

nonlinear diffusivity functions (Table 1). This approach also leads to a new kind of Allee effect,

which we call the reverse Allee effect, where the growth rate is inhibited at high density. Although

some of the PDEs that we consider have been investigated previously [15, 18–30, 36–41], they

have never been linked together before using a single modelling framework. The presence of

Allee kinetics allows for the more realistic description of biological and ecological phenomena, as

the standard reaction-diffusion model with Fisher kinetics predicts either the population tending

to extinction everywhere or the spread of the population in the form of a travelling wave. In

comparison, Allee kinetics can describe population retreat, as well as shocks in the invading front

of a population. Well-defined edges are thought to be present in invasive tumours [56], which

can be described with travelling waves containing shocks.

In this work, we summarise properties of the long time travelling wave solutions for all classes

of PDEs arising from our discrete model. For certain PDEs, where only existence of travelling

wave solutions has been considered previously, we present numerical solutions here for the first

time. We find that PDE models with density-dependent nonlinear diffusivity functions that

have regions of negative diffusivity require a sufficiently non-negative source term to support

smooth travelling wave solutions. Furthermore, there appears to be a threshold proliferation

value, depending on the rate of motility, that must be exceeded for travelling wave solutions to

be observed numerically. However, we do not comment on the putative relationship between the

parameters in the discrete model and the existence of travelling wave solutions in the continuum

limit PDE. Interestingly, for the strong Allee effect, shock-fronted travelling wave solutions are

obtained. Following arguments presented in [39], we show that smooth travelling wave solutions

cannot be obtained for certain types of nonlinear diffusivity functions and the strong Allee effect.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 8, 2016. ; https://doi.org/10.1101/077743doi: bioRxiv preprint 

https://doi.org/10.1101/077743


29

We describe how nonlinear diffusion can either hinder or promote the persistence of a population,

depending on the relative motility rates of the isolated and grouped agents. Interestingly, the

motility rates affect the persistence differently for different carrying capacities. This relationship

could provide insight into the requirements for a cell population, for example, to persist in the

presence of a chemical treatment.

The six birth, death and motility rate parameters in the discrete model allow for the inter-

pretation of the results in terms of whether individuals are part of, or isolated from, the bulk

population. For example, a parameter regime corresponding to the strong Allee effect with con-

stant diffusivity and no grouped agent death leads to the same travelling wave speed in the

PDE description as a parameter regime corresponding to the strong Allee effect with constant

diffusivity and a non-zero rate of grouped agent death, up to a threshold. This implies that a

sufficiently strong intervention strategy aimed at grouped agents must be implemented if the

goal of the intervention is to slow or halt the invasion of a population.

The work presented here suggests several avenues for future research. This work could be gen-

eralised by considering a two- or three–dimensional discrete process and deriving the continuum

limit PDE descriptions in higher dimensions. This kind of higher-dimensional model might pro-

vide a more accurate description of real world observations where one-dimensional travelling

wave solutions might not apply. In this work, numerical travelling wave solutions for each class

of PDE are examined, but the formal stability of these travelling wave solutions is not considered.

Another approach for analysing the discrete model would be to consider a coupled multispecies

PDE model by accounting for the density of isolated agents and the density of grouped agents

separately. This approach would lead to a system of two coupled PDEs instead of a single PDE

for the total agent density. However, instead of working with coupled multispecies PDEs, we

have taken the simplest and most fundamental approach of considering a single PDE description

of the total population. In addition, a significant number of mechanisms could be implemented

into the discrete model, such as cell-to-cell adhesion/repulsion [57, 58] or directed migration of

isolated agents, such as chemotaxis [59]. We leave these extensions for future analysis.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 8, 2016. ; https://doi.org/10.1101/077743doi: bioRxiv preprint 

https://doi.org/10.1101/077743


30 JOHNSTON ET AL.

Methods

Discrete model. We consider a one-dimensional lattice-based random walk with X sites and

lattice spacing ∆ [60]. Each site may be occupied by, at most, one agent [61–63]. The number of

agents at time t is N(t). Agents attempt to undergo birth, death and movement events. During a

birth event, an agent attempts to place a daughter agent at a randomly selected nearest-neighbour

site. This event is successful provided that the selected site is vacant. During a death event,

an agent is removed from the lattice. During a movement event, an agent attempts to move to

a randomly selected nearest-neighbour site. This event is successful provided that the selected

site is vacant. We distinguish between types of agents based on the number of occupied nearest-

neighbour sites for each agent [64]. We refer to agents with zero occupied nearest-neighbour

sites as isolated agents, and agents with one or two occupied nearest-neighbour sites as grouped

agents. This approach allows us to specify different birth, death and movement rates for isolated

and grouped agents.

Different parameter choices can be used to impose either co-operative or competitive mecha-

nisms, where an increase in local agent density provides a positive or negative benefit, respec-

tively. Specifically, in situations where the group motility or group proliferation rates are higher

than the isolated motility or isolated proliferation rates, respectively, we interpret this choice of

parameters as a model of co-operation. Similarly, in situations where the group motility or group

proliferation rates are lower than the isolated motility or isolated proliferation rates, respectively,

we interpret this as a model of competition.

During each time step of duration τ , N(t) agents are selected at random, one at a time, with

replacement, and are given the opportunity to undergo a movement event. The constant proba-

bility that a selected agent attempts to undergo a movement event is P im for an isolated agent and

P gm for a grouped agent. We repeat this process for both birth and death events, with respective

constant probabilities P ip and P id for isolated agents and P gp and P gd for an agent within a group.

At the end of each time step we update N(t + τ). To obtain the average agent density at each

lattice site we perform M identically-prepared realisations of the discrete model and average the

binary lattice occupancy at each lattice site at each time step. In any single realisation of the
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discrete model we have Cj = 1 when site j is occupied and Cj = 0 when site j is vacant. To eval-

uate the average occupancy of any lattice site we consider an ensemble of M identically-prepared

realisations and calculate 〈Cj〉 =
∑M
m=1 C

m
j /M .

Numerical techniques. Here we describe the techniques used to obtain numerical solutions of

Equation (2), the corresponding ODE in travelling wave co-ordinates, and to generate the phase

planes in (C,U) co-ordinates.

Partial differential equations. To obtain numerical solutions of Equation (2), we first spatially

discretise Equation (2) onto a grid with uniform grid spacing δx by approximating the spatial

derivatives with a central finite difference approximation. A backward Euler approximation with

constant time steps of duration δt is used to approximate the temporal derivative. The resulting

system of nonlinear algebraic equations is solved using Picard iteration with absolute convergence

tolerance ε. The resulting system of tridiagonal algebraic equations is solved using the Thomas

algorithm [68]. All results presented correspond to sufficiently small choices of δx, δt and ε

so that the numerical solutions are grid independent. In all cases consider zero-flux boundary

conditions are considered, and the finite domain is sufficiently large such that the numerical

solution of Equation (2) does not interact with the boundaries on the time scale of the numerical

simulations. All numerical solutions correspond to a Heaviside initial condition with C = 1 for

x ≤ X0, and C = 0 otherwise.

Ordinary differential equations. The second order ODEs in the travelling wave co-ordinates are

solved using Matlab’s ode45 routine [69]. This routine implements an adaptive Runge-Kutta

method with relative error tolerance of 10−3 and an absolute error tolerance of 10−6 [69]. Trav-

elling wave ODEs that contain a singularity are not solved numerically. Therefore, for these

singular problems we obtain only the numerical solution of the PDE and present this solution in

the transformed (C,U) travelling wave co-ordinate system.

Phase planes. To generate phase planes we substitute U = dC/dz into the second order travelling

wave ODE to obtain a system of two first-order ODEs. The phase plane is constructed by

considering 22 equally-spaced values of C and 22 equally spaced values of U to calculate both

dC/dz and dU/dz at all 22 × 22 = 484 pairs of (C,U) values. In each phase plane the same

22 equally spaced values of C on the interval 0 ≤ C ≤ 1 are considered. However, depending

on the steepness of the waveform, we choose a different interval of U to construct the phase
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plane, and this choice is made to accommodate the heteroclinic orbit. The phase planes are

constructed using Matlab’s quiver function. The location of the equilibrium points, where

dC/dz = dU/dz = 0 are superimposed. Furthermore, in many cases the expression for dU/dz

has a rational form, dU/dz = G(C,U)/H(C,U). In these cases both the wall of singularities

(H(C,U) = 0) and the locations of the holes in the wall (H(C,U) = G(U,C) = 0) are also

superimposed.
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