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Abstract  

The concept of calcium nanodomains established around the sites of calcium entry into the cell is 

fundamental for mechanistic consideration of key physiological responses. It stems from linear 

models of calcium diffusion from single channel into the cytoplasm, but is only valid for calcium 

increases smaller than the concentration of calcium-binding species. Recent experiments indicate 

much higher calcium levels in the vicinity of channel exit that should cause buffer saturation. I here 

derive explicit solutions of respective non-linear reaction-diffusion problem and found dichotomous 

solution - for small fluxes the steady state calcium profiles have quasi-exponential form, whereas in 

the case of buffer saturation calcium distributions show spatial periodicity. These non-trivial and 

novel spatial calcium profiles are supported by Monte-Carlo simulations. Imaging of 1D- and radial 

distributions around single α-synuclein channels measured in cell-free conditions supports the 

theory. I suggest that periodic patterns may arise under different physiological conditions and play 

specific role in cell physiology.  

 

Introduction   

Living cells are not well mixed test tubes but specialized devices where physiologically relevant 

events proceed in micro- or nanocompartments.  This allows to efficiently isolate complex 

biochemical cascades from bulk interior, saving the time, space and reagents. For example, the 

synaptic transmission, secretion, contraction etc. utilize fast, big and local single calcium transients 

that are spatially limited by putative calcium-binding proteins (Augustine et al. 2003; Eggermann et 

al. 2011). The compartmentalization is well suited to selectively activate low-affinity calcium 

sensors that are often strategically positioned in the immediate vicinity of the calcium channels. The 

existence of highly localized calcium increases around single channels has been predicted by Neher 

(1986).  He treated calcium binding to cytoplasmic buffers as fast and irreversible reaction without 
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buffer saturation and considered steady state calcium profiles. Under these assumptions the 

reaction-diffusion (RD) problem reduces to the linear ordinary differential equation (ODE)  

DCrr – (konBo) C = 0         (1) 

where C = [Ca]/r, Crr is the second derivative by the radial coordinate r,  D = 220
 
µm

2
/s is calcium 

diffusion coefficient in the cytoplasm, Bo ≈ 0.2 mM is the total concentration of cytoplasmic 

buffer(s) and kon ≈ 2
.
10

8 
M

-1
s

-1
 is the on-rate constant for calcium binding (Mironova & Mironov, 

2008). The solution of (1) is straightforward 

C(r) = Aexp(-r/ro)          (2) 

and predicts exponential decay of calcium levels from the point source, a single calcium channel. A 

typical space constant is ro = √D/konBo ≈ 70 nm and the characteristic time-constant is τo = 1/Bokon = 

40 μs, much lower than typical open and closure times of the calcium channels (>0.1 ms). Thus 

steady state profiles around single channels should be established fast during opening and quickly 

disappear during closures. The mean time for calcium unbinding from the buffer is τoff  = 10 ms and 

can be omitted from the consideration. 

The problem yet appears when we consider maximal calcium levels around the channels. 

For radial diffusion of calcium it is defined as  

A = i/2πDFR          (3)  

where i is the single channel current i and R is exit radius of the channel. A theoretical estimate of 

the ratio A/i is 1.2 mM/pA (Mironov, 1990) and close to recent experimental values ≈0.7 (Tay et al. 

2012) and 1.0 mM/pA (Tadross et al. 2013). Therefore local calcium  increases can be really big 

that does not validate the use of a simple linear model. Indeed, for single calcium currents i > 0.2 

pA, the calcium level at channel lumen exceed a typical concentration of cytoplasmic buffers (0.2 

mM) and violates the assumptions adapted in linear treatment.  

The considerations prompted me to revisit the problem of steady state calcium profiles 

around single calcium channels. A general problem of calcium diffusion into the cytoplasm with 

multiple calcium binding proteins (buffers) is described by the system of nonlinear parabolic partial 

differential equations (PDE)  

∂C/∂t  =  DCaΔC – ∑(kon,n CFn - koff,n Bn)       

∂Bn/∂t  =  DnΔBn + ∑(kon,n CFn - koff,n Bn)      (4) 

 ∂Fn/∂t  =  DnΔFn – ∑(kon,n CFn - koff,n Bn) 

where Δ stands for the Laplacian; C, Fn and Bn are the concentrations of calcium and nth buffer in 

free and calcium-bound forms, respectively; kon,n and koff,n are the rate constants of calcium binding 

to and dissociation from the buffers. The ratio koff,n/kon,n = Kd,n is the dissociation constant of the 

buffer and measures its affinity to calcium. DCa  is the calcium diffusion coefficient and Dn‘s are the 

diffusion coefficient of the buffers.  
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To make the problem tractable, I first consider a one-dimensional steady state problem of 

calcium diffusion in the presence of single buffer and derive explicit solutions without any 

restrictions on the magnitude of calcium influx or buffer saturation. All derivations below are made 

in non-dimensional form. The concentrations are normalized to the total buffer concentration Bo 

(0.2 mM), and the times and distances are defined as t  = t/τo and x = x/ro (see the definition of the 

characteristic scales above). For calcium and single buffer the system (4) is reduced to  

ct = cxx – cf + γb           (5) 

ft = dfxx – cf + γb 

where c and f are the concentrations of free calcium and buffer, respectively, and d = DB/DCa  is 

buffer diffusion coefficient relative to that of calcium. The last term in the right-hand side 

represents calcium unbinding from the buffer. The value γ = koff/konBo = 0.005 is very small and can 

be neglected. Subtraction of the two equations in (5) gives a single PDE 

 (c - f)t = (c - df)xx         (6) 

that is readily solved in the case d = 1 (DB = DCa) with  

c - f  =  A erfc(x/2√t) - 1         (7) 

where erfc(y) is the complementary error function. The constant A is defined by the boundary 

conditions implying that both calcium and buffer at the channel lumen are free (not yet reacted) . 

f x=0 = 1  and cx=0 = A = [Ca]x=0/Bo        (8) 

Constant calcium at channel lumen in 1D-presentation is equivalent to the assumption of constant 

calcium flux through the channel in the case of radial diffusion (Neher, 1986; Mironov, 1990). The 

radial calcium gradients in the linearized treatment can be obtained by dividing 1D-spatial profiles 

by the distance from the channel (Mironov, 1990). In a non-linear case this transformation is not 

exact but still provides a very good approximation as shown in the Appendix. Expressing  f  through 

c from (7) transforms the first Eq. (5) into a single PDE 

ct = cxx – c[c + 1 – A erfc(x/2√t)]        (9) 

More compact presentation is obtained after scaling the variables as  

s = c/│1 - A│          (10a) 

z = x√│1 - A│          (10b) 

τ = t │1 - A│           (10c) 

that transforms (9) into 

sτ= szz - s
2
 ± sßerfc(x/2√t)        (11) 

with ß=A/│1 - A│. Note that from a single PDE we obtained two equations. This is due to the fact 

that normalisation factor (1 - A) can be either positive or negative. For A > 1 the square root in 

(10b) without modulus is imaginary.  Introduction of modulus is equivalent to introduce (±) sign 
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before the linear term sßerfc. This has a crucial importance  because (11) possesses the two 

different solutions that describe spatial calcium profiles below and above the critical point A = 1.  

PDE (11) is non-linear and its general solution is yet to be found. It is possible to obtain 

approximate analytical solutions as shown below. I start first with the analysis of steady state 

problem that already gives important insights. By approach to the steady state st →0 and erfc→1  

and (11) is replaced by the ODE 

szz  - s
2
 ± ßs = 0          (12) 

that is solved by subsequent integration. The first one gives  

sz = s√(2s/3 ± ß) 

and the results of second integration are  

 

              √(2s/3+ß) - √ß         

z  = [log ———————  - w]/√ß,  for A < 1     (14a) 

  √(2s/3+ß) + √ß       

 

 z  = 2[arctan(√2s/3ß + 1) - w]/√ß ,  for A > 1     (14b) 

 

Here w is the constant of integration determined by the boundary condition. Eqs. (14) define the 

concentration of calcium implicitly. Inversion of (14) gives explicit expressions  

 

            3 (1 - A)             

c =   ————————      A < 1  (15a) 

       2sinh
2 
[(z + w)/2]     

 

            3 (A - 1)             

c = ————————        A > 1  (15b) 

       2cos
2 
[(z + w)/2]     

Note that the concentrations and distances are given in the normalized variables z = x√│1 - A│and 

c = [Ca]/Bo. The constant of integration w has a meaning of phase shift. 

As mentioned above, the appearance of the two solutions stems from inherent structure of 

stationary RD equation (12). The result is general and is not due to the boundary conditions 

imposed or assumption about equal diffusion coefficients. Let the relative diffusion coefficient for 

buffer be d = DB/DCa < 1. In the steady state Eq. (6) is  

(c - df)xx = 0  
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and prescribes (c – df) = const = A - 1, by analogy to (7). Insertion of f = (c – A + 1)/d into the first 

Eq. (5) gives the steady state equation, identical to (12). Therefore concentration dependences are 

still given by (15), given a new scaling  

z = x√(│1 - A│/d)          (16) 

The characteristic scale constant is now ro = √DB/konBo. In comparison with that defined in (2) here 

DCa is replaced with DB. Thus, for DB < DCa  the width of calcium nanodomains depends from the 

diffusion coefficient of the buffer, not calcium. The difference can be significant for cytoplasmic 

calcium buffers that are bulky proteins. For calmodulin and calbindin DB = 0.03DCa  (Mironova & 

Mironov, 2008) and the characteristic space scale should increase by around 6-fold.   

It is important to know, how the predicted steady state calcium profiles develop.  As PDE 

(11) is not yet solvable, I examined its asymptotics by setting st = 0, an assumption used sometimes 

in the RD field. This leads to the non-linear Schrödinger equation 

szz  - s
2  

±  s ßerfc(y) = 0         (17) 

where y = x/2√t is a classical Boltzmann similarity variable that naturally appears in various 

diffusion problems (Polyanin & Zajtsev, 2007). Without quadratic term, Eq. (17) may be considered 

as typical problem of quantum mechanics describing the particle moving in the potential ßerfc(y). 

No analytical solution exists, but WKB approximation (Holmes, 1995) delivers a leading term in in 

solution  

         Aexp[-∫√±erfc(y)dz] + Bexp[∫√±erfc(y)dz)] 

 s = ―――――――――――――――――――――     (18) 

 [±erfc(y)]
1/4 

 

This analytical result is important, because it also predicts the two types of solutions – decaying and 

periodical. They appear because the expressions under the square root in (18) are either positive or 

negative that give either real or imaginary arguments in the exponentials. At big times, when t→∞, 

the function erfc(y)→1, and ∫√erfc(y)dz → z and ∫√-erfc(y)dz =iz. Therefore the sum in the 

numerator invokes either hyperbolic or trigonometric functions.  

This analysis is confirmed by numerical solution of (17) using the shooting method 

(Polyanin & Zajtsev, 2007). First, the calculations showed that st << szz  at times t > 0.01 ms. This 

validates use of asymptotic approach to derive (17). The time-dependent solutions converged to the 

steady state profiles given by (15). Fig. 1A shows the development of calcium profiles for decaying 

and periodic solutions. For A = 0.2 the exponential profile is established within < 1 ms. For A = 2 

the initial decaying pattern transforms into a spatially periodic waveform. The same approach was 

used to calculate radial calcium profiles (Fig. 1B).  

How would these theoretical calcium profiles look in experiments? Calcium profiles 

measured with indicator dyes are inevitably distorted due to finite resolution in imaging. To 
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simulate such effects, I convolved the radial calcium profiles with the Gaussian point spread 

function psf = (α/√π)exp(-α
2
x

2
). The half-width-half-maximum (HWHM) was set to 0.4 µm, close 

to the experimental resolution of imaging system used to measure calcium distributions around 

single channels (see below). As expected, the ‘imaging’ blurs calcium distributions, the amplitudes 

of radial calcium gradients decrease and they broaden (Fig. 1C). For decaying transients (A < 1) the 

width of calcium nanodomains is around HWHM. Periodic radial patterns for (A > 1) are also 

deformed but the secondary peaks are well discerned.  

I next simulated stochastic diffusion of calcium in the presence of buffer (see Methods). 

Calcium ions appeared randomly at the origin (x or r = 0) and the mean level was set to a 

prescribed A value. Representative simulation runs are presented in Fig. 2 as kymographs showing 

instantaneous positions of particles (free calcium, free and bound buffer). Initial and final 

distributions of species were obtained as averages of 1000 subsequent ‘frames’ in the beginning and 

the end of the runs. In all simulations the distribution of calcium in the beginning was always 

decaying and did not appreciably change with time for A = 0.2 (Fig. 2A).  A  half-width in this case 

was ro ≈ 0.1 µm, close to the expected value. For A = 2, a secondary peak around 0.6 µm slowly 

evolved (Fig. 2B), in accord with a theoretical estimate under these conditions. 

In order to test theoretical predictions, I imaged calcium profiles around single α-synuclein 

(αS) channels in the excised patches. A cell-free experimental configuration is better suited to 

imaging calcium nanodomains on several reasons. First, the composition of bath solutions is well 

defined. Second, I used fluo-4 that has weak intrinsic fluorescence in a free form and increases it 

>10-fold after calcium binding. Therefore the regions where calcium binding to the indicator does 

not occur, marginally contribute to measured fluorescence, minimize out-of-focus effects and 

improve spatial resolution. The on-cell measurements, in contrast, can be severely contaminated by 

bulk fluorescence that considerably masks local changes in calcium. 

αS channels were incorporated into the membrane of hippocampal neurons as described 

(Mironov, 2015) and calcium distributions were measured with fluo-4 using TIRF excitation 

(Methods). Mean calcium levels from inside-out patches depicted well opening of αS channels (Fig. 

3, top panels). αS-channels have three conductance states, but the upper two are short living and did 

not significantly contribute to calcium changes. Steady state distributions were imaged at different 

holding potentials set to desired values of the theoretical parameter A in Eq. (8), the ratio between 

calcium levels at channel lumen and buffer concentration in the medium (100 µM fluo-4). Under 

conditions used, A values are numerically equal to the mean single channel current e. g. for i = 0.1 

pA, A = 0.1 etc.  

The one-dimensional profiles were generated by forcing calcium to diffuse from the bath 

into the pipette filled with fluo-4. Stationary calcium increases established fast and were localised to 
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the pipette tip or formed periodic patterns within it that depended on the value of A fixed (Fig. 3A). 

The radial patterns generated by calcium diffused out of the pipette into the bath with fluo-4 showed 

single spot and had a concentric shell around it at A > 1 (Fig. 3B). For small calcium currents (A = 

0.2), the half-width at half-maximum (HWHM) was 0.42 ± 0.05  (linear diffusion) and 0.44 ± 0.06 

µm (radial diffusion), respectively (mean data from four patches in each case). The values are close 

to the radial resolution of the experimental set-up (HWHM = 0.39 ± 0.03 µm, see Methods) 

indicating that a true quasi-exponential calcium decay is apparently hidden within the optical spot (a 

theoretical characteristic space constant in this case is ro = √Dfluo-4/kon[Fluo-4]  = 66 nm, Eq. (16)). 

This is in line with the results of ‘imaging’ simulations (Fig. 1C). For big calcium fluxes (A = 2), 

the steady state patterns were periodic. In linear case the mean interval between the equidistant 

peaks was 0.65 ± 0.03 µm (n = 4). For radial diffusion the distance between the main and secondary 

peak was 0.68 ± 0.04 µm (n = 4). Both values are close to the theoretical estimate 2πro = 0.66 µm 

calculated for experimental conditions used.  

 

Discussion 

Neher (1986) predicted existence of local gradients (calcium nanodomains) around single channels 

and this concept emerged into a cornerstone of contemporary physiology. It is frequently used to 

explain the mechanisms of key physiological processes such as secretion, synaptic transmission and 

muscle contraction. To describe distributions of free calcium around single channels, he used a 

linear reaction-diffusion model. Recent experiments (Tay et al. 2012; Tadross et al. 2013) however 

indicate calcium levels around 1 mM near the channel lumen. Such values exceed concentration of 

putative cytoplasmic buffers (~0.2 mM). 

This prompted me to make a leap beyond linear model and  I solved a non-linear reaction-

diffusion problem for steady calcium state profiles. The solutions indicated more complex patterns 

of calcium distribution around single channels. The main theoretical result in Fig. 1 shows that 

profiles haveeither decaying to periodic forms, whose appearance depends on critical parameter A = 

[Ca]o/Bo, the ratio between the calcium level at channel lumen and total buffer concentration. For A 

< 1 calcium decays quasi-exponentially and resembles a classical solution of linear model. For A > 

1 the non-linear RD model predicts spatially periodic calcium profiles. This is a novel, unexpected 

and perhaps counterintuitive finding. It would be logical to assume that calcium distributions 

always have the same waveform and are only proportionally scaled according to the magnitude of 

calcium flux. A theoretical analysis does not support the mechanistic interpretation, however. When 

calcium levels at channel lumen exceed buffer concentration, the spatially periodic steady-state 

patterns appear.  
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Mechanistically, the existence of the two distinctly different patterns stems from the fact that 

the two different equations describe the profiles in the case of small and big calcium fluxes. This is 

instantly seen from Eq. (12). Without a quadratic term a respective ODE sxx  ± s = 0  has different 

sign of linear term. When it is negative (A < 1), the solution is exponential and when it is positive 

(A > 1),  the solution is trigonometric. The result is general, but not as exotic as it may seem. A 

spatial periodicity is well-known in the reaction-diffusion field (Koch & Meinhardt, 1994; Vanag & 

Epstein, 2007) with a seminal example presented by Liesegang periodic patterns (1896) that can be 

produced even within a test tube.  

Visualization of spatial calcium distributions in living cells at nanoscale is difficult due to 

considerable image distortions (Fig. 1C). Measured single calcium transients yet frequently show 

the main peak with broad shoulders (Beaumont et al. 2005; Shuai & Parker, 2005; Demuro & 

Parker, 2006) that may hide secondary calcium peaks predicted by a non-linear model. I imaged 

calcium profiles established around single αS-channels (Fig. 3) in cell-free conditions. The 

experimental configuration enabled to depict both one-dimensional and radial periodic calcium 

profiles. Theoretical analysis is further supported by the Monte-Carlo simulations (Fig. 2).  

What could be possible implications to the cell biology? The ratio A = [Ca]o/Bo is critical for 

appearance of spatially periodic calcium profiles. Recent experimental estimates give for the ratio 

between calcium level at channel exit and the single channel conductance (i) the values [Ca]o/i ~ 1 

mM/pA (Tay et al. 2012; Tadross et al. 2013). For Bo = 0.2 mM the critical value A = 1 corresponds 

to i = 0.2 pA. The borderline can be easily crossed when the single channel current gets bigger or 

channel exit radius gets smaller. Another way to increase the ratio [Ca]o/Bo is to take into account 

the effects caused by surface charges near the channels (Kostyuk et al. 1982). Even for a very 

moderate local surface potential -25 mV, the calcium levels under membrane are e
2 

≈ 7 higher and 

for tetra-anion e. g. fluo-4 are e
4 

≈ 50–fold lower than in the bulk that will increase the ratio A = 

[Ca]o/Bo dramatically. The possibilities show only a few ways to increase A that will promote the 

appearance of spatial periodic profiles around single calcium channels. 

According to (16), a decrease in buffer diffusion coefficient increases spatial scaling. 

Calcium gradients therefore may be more extended in the presence of genetically encoded calcium 

probes or intrinsic cytoplasmic buffers, the bulky proteins that have much smaller diffusion 

coefficients. Organic calcium buffers and indicator probes have bigger diffusion coefficients (yet 

smaller than that of calcium). Their presence in the cytoplasm should restrict calcium increases in 

comparison with that established in native environment. Therefore imaging with synthetic dyes 

likely overestimates the width of calcium profiles.  

The concept of nanodomains has been originally invoked to explain the difference in the 

effects of calcium buffers – EGTA and BAPTA – upon calcium-activated K
+
 channels. The two 
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species were accordingly dubbed as slow and fast buffers, because they bind calcium with 

apparently 100-fold difference in the on-rate constants (Smith et al. 1984). A seemingly slow 

calcium binding by EGTA has been previously discussed (Mironova & Mironov, 2008). Briefly, a 

doubly protonated EGTA (H2EGTA
2-

) is dominant at physiological pH but it cannot bind calcium 

efficiently – a Kd = 4 M (Smith et al. 1984) indicates its extremely low affinity to calcium. 

HEGTA
3- 

species (Kd = 5 µM) can do this, but in 10 mM EGTA their concentration is only 0.1 

mM. At ms-time scale calcium ion is captured by the first buffer molecule it meets in the cytoplasm 

with the on-rate close to the diffusion limit. The rate of calcium binding is kon[Buffer] and for equal 

nominal EGTA and BAPTA concentrations, an apparent 100-fold difference in kon values simply 

reflects a 100-fold smaller concentration of calcium-binding species in the former case. At bigger 

times EGTA accommodates calcium in exchange for protons that are well buffered. The process is 

much slower and explains why EGTA should minimally disturb fast calcium transients but prevent 

the cell from calcium overload in e. g. whole-cell recordings, where EGTA virtually eliminates 

possible deleterous long-lasting increases in cytoplasmic calcium. 

The predicted periodic solutions do not violate the concept of calcium nanodomains as large 

peaks around the channel exit are also present for A > 1. There are yet secondary maxima at 

multiples of 2πro ≈ 1 µm. They are better visible in 1D-systems, where they have a constant height. 

What physiological function in the living cells they may have? For radial diffusion the amplitudes 

of secondary peaks decay hyperbolically (~1/r, Fig. 1), but they are yet big enough to trigger 

specific calcium-dependent events in the neighbourhood. The two possibilities are worth to 

consider. First, a collective activity of calcium release channels in internal stores produces such 

events as sparks, puffs, etc. (Wang et al. 2004). They are generated by closely apposed IP3 receptors 

(=calcium release channels) that require calcium for a full activation. It is plausible that secondary 

calcium peaks generated by one channel will promote the activation of its neighbours.  

Asynchronous transmitter release (Kaeser & Regehr 2014) may represent another implication. This 

type of release is triggered by brief spontaneous calcium channel opening at resting potentials. The 

events have short duration (0.1 ms), but single channel currents are big enough to produce 

secondary calcium peaks that can trigger exocytosis of vesicles loosely coupled to calcium 

channels.  

Taken together, this study reveals novel unexpected profiles that can be established around 

single calcium channels. The results may be fruitful in exploring new research directions and help 

to explain the features previously interpreted invoking more sophisticated proposals. 

 

Methods  
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Patch-clamp and imaging. Cultures of hippocampal neurons were prepared from 2- to 4-day-old 

mice as described previously (Mironov, 1995). Bath and pipette solutions contained 30 mM Tris 

buffer (pH 7.4), and 154 mM NaCl or 88 mM CaCl2. The solutions had osmolality from 305 to 315 

mosmol/l. Fluo-4 was from Invitrogen (Darmstadt, Germany). Patch-clamp pipettes had long shank 

(around 5 mm) and 20 ± 3 MOhm resistance. Imaging was made with 63x objective lens (N. A. 1.4) 

of an upright microscope (Axioscope 2, Zeiss). The fluorescence was excited by 488 nm light from 

SLM Diodenlaser (Soliton, Gilching, Germany) and captured by cooled CCD camera (BFI Optilas, 

Puchheim) operated under ANDOR software (500 x 500 pixels at 12 bit resolution). The laser beam 

was delivered from below at the angle appropriate to evoke TIRF. The spatial resolution of the 

experimental set-up was estimated by imaging fluorescent beads (40 nm diameter). Their half-width 

at half-maximum (HWHM) was 0.39 ± 0.03 µm (a mean from 12 objects). 

Coverslips with hippocampal neurons were placed on the microscope stage. The inside-out 

patches were excised and, when they showed no activity of intrinsic ion channels, αS channels were 

incorporated into membrane as described previously (Mironov, 2015). The pipette was positioned 

nearly horizontal and carefully lowered down to the bottom. The approach was controlled by 

monitoring resistance, similar to that used in the scanning ion conductance microscopy (Kornchev 

et al. 2000). When the resistance dropped by 1%, it indicated that the pipette tip is <100 nm from 

the bottom, within a TIRF illumination layer. The stationary calcium distributions were obtained at 

different holding potentials set to obtain a prescribed stationary calcium influx.  Imaging 1D-

calcium profiles was made with isotonic calcium solution in the bath and NaCl and 100 μM fluo-4 

in the pipette. Ionic composition of the solutions in imaging radial calcium profiles was reversed i. 

e. the indicator was in the bath. In the outside-out patches the calcium patterns were similar (n = 6, 

data not shown).  

 

Stochastic simulations. To test theoretical predictions I simulated calcium diffusion in the presence 

of buffer in one- and two dimensions. The parameters of the model were DCa = 600 µm
2
/s, Dfluo-4 

=300 µm
2
/s and the on-rate-constant for calcium binding kon = 2

.
10

8 
M

-1
s

-1
.  In 1D-simulations (Fig. 

2A, B), a 1 μm-linear compartment was divided into 1000 cells, each contained 6 buffer molecules. 

This corresponds to 0.1 mM buffer, the concentration used in the experiments. The time step was 10 

ns.  Mean calcium levels at x = 0  were set either to 0.2 and 2 mM. Calcium, fluo-4 and bound 

calcium molecules diffused, jumped into either direction chosen randomly. When calcium and free 

buffer molecule were in the same cell, a Ca-buffer particle was formed. Consideration of calcium 

unbinding did not modify the results of simulation; in line with the theoretical estimates (see 

Introduction). Before starting simulation, randomly set buffer molecules equilibrated for 1 ms and 

then calcium ‘influx’ was switched on. Time-dependent calcium patterns are plotted in Eq. 2 as 
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kymographs, together with mean concentration profiles were obtained as averages of 1000 frames 

taken in the beginning and the end of the run. Two-dimensional radial diffusion was simulated in a 

square (Fig. 3B). Free buffer molecules at mean concentration 0.1 mM were first equilibrated for 1 

ms and then calcium influx was switched on. Other parameters were the same as in the case of 1D-

diffusion. 
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Fig. 1. Steady state profiles for calcium diffusing from the point source.  

One-dimensional (A) and radial (B) calcium distributions around the point source (single calcium 

channel) obtained as the solutions of non-linear RD equation (12). Relative calcium concentrations 

at the point source [Ca]o/Bo bracket the critical value A = 1 that separates decaying and periodic 

solutions. The time-dependence was obtained by solving Eq. (17) and the upper and lower graphs 

show calcium profiles at 0.05, 0.2, and 2 ms as curves with respective colours. The traces at 2 ms 

coincide with the steady state distributions given by Eqs. (12). The black dots indicate stationary 

exponential solutions predicted by linearized treatment, Eq. (1).  C  - To simulate blurring of radial 

calcium profiles by imaging, the theoretical curves (black) were convoluted with the Gaussian point 

spread function (HWHM = 0.4 µm). Note that despite blurring, the secondary peaks for A = 2 are 

clearly visible.   
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Fig. 2. Stochastic simulations of calcium distributions in the presence of buffer.   

Simulations were performed as described in Methods. A, B – The kymographs plot 1D- 

instantaneous distributions of free calcium and buffer species. The time and space directions are 

indicated by the arrows in the middle. Calcium ions appeared randomly at the origin (the upper left 

corner in the kymograph), spread and reacted with buffer molecules. The representative runs were 

performed at different ratios A = [Ca]o/Bo = 0.2 (A) and 2 (B). The concentration profiles above and 

below the kymographs plot averaged initial and final distributions of particles in the runs. 

C, D – Radial profiles for 2D-diffusion. The snapshots in panels were taken in the beginning of the 

run and after 1 ms. Calcium influx was set constant and the ratio between calcium and free buffer 

was set to A = 0.2 and 2. The curves above the panels present radially averaged ‘steady state’ 

distributions of free calcium and buffer as well as bound calcium.  
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Fig. 3. Calcium gradients established around α-synuclein channels in inside-out patches.  

The channels were incorporated into the patches excised from cultured hippocampal neurons as 

described in Methods (see also Mironov, 2015).  A  - The outward calcium currents through αS 

channels, mean calcium changes and 1D-profiles. The uppermost trace presents channel opening 

during 2 s-voltage ramp from 0 to +100 mV. The trace below shows relative changes in mean fluo-

4 fluorescence in 2 µm-circle around the patch. Pipette solution contained 100 µM fluo-4 in 154 

mM NaCl and 88 mM CaCl2 was present in the bath.  Fluo-4 images (acquisition time, 3 s) indicate 

stationary calcium distributions at different patch potentials. The parameter A is the ratio of calcium 

level at channel lumen (determined by the single channel current, Eq. (3)) and buffer concentration.  

Horizontal linescans present stationary 1D-calcium distributions.  For A = 0.2 (mean single channel 

current, 0.2 pA), HWHM (half-width at half-maximum) was 0.43  µm, close to the radial resolution 

of the experimental set-up (HWHM ≈ 0.4 µm, Methods). For A = 2 the calcium distribution is 

spatially periodic and equidistant peaks are separated by 0.66 µm, in accord with a theoretical 

estimate 2πro = 0.67 µm. B  - The inward calcium currents through αS channels, mean calcium 

changes and radial calcium profiles. The top trace shows channel activity during 2 s-voltage ramp 

from 0 to -100 mV and the lower trace presents mean changes in fluo-4 fluorescence around pipette 

tip. The fluorescence images in panels were acquired at different patch potentials and the traces 

present their diagonal linescans. The half-width of the spot for A = 0.2 was 0.41  µm. For A = 2,  

calcium distribution showed also a secondary peak. A concentric shell has radius 0.68 µm.  
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Appendix. Radial steady state calcium profiles 

The spread of calcium from single channels into the cytoplasm is described by radial diffusion from 

the point source into infinite medium (Neher, 1986; Mironov, 1990; Stern, 1992). Similar to Eq. 

(12), the ODE for the steady state calcium profiles can be presented as  

srr + (2/r)sr  = s
2
 ± βs         (A1) 

where r is the radial coordinate and the normalized space and concentration variables are defined by 

Eq. (10) in the main text. This ODE differs from 1D-case by the term in the left-hand side that 

contains the first spatial derivative. Substitution s = u/r eliminates it and gives  

urr = ±u + u
2
/r          (A2) 

For the constant flux of calcium through the channel, the boundary condition is  

 dC/dr = i/2πDFR
2
         (A3)  

where R is the exit radius, i is single channel current, D is the diffusion coefficient and F is the 

Faraday constant. The substitution C = u/r transforms (A3) into  

Rdu/dr – u = i/2πDF          (A4) 

The first term in the left-hand side is small and can be neglected that defines 

ux=0 = i/2πDFR = Cx=0         (A5) 

Remarkably, the condition (A5) is identical to that used in 1D-case, Eq. (8). (A2) would have the 

solutions identical to 1D-case, were it not the square term u
2
/r. In order to estimate its influence, I 

presented the right-hand side as  

urr = (±u + u
2
) + µu

2
(1/r - 1)        (A6) 

and expanded u = u +  µU. The equation in zero order (µ
o
) is identical to 1D-equation (12) whose 

solution is given by (14) and (15).  I estimated the first-order correction (µ
1
U) from the 

inhomogeneous ODE 

Urr - (±1 + 2u)U =  u
2
(1/r - 1)        (A7) 

using the shooting method. Fig. A shows that for both decaying and periodic solutions the 

corrections in the first order are very small for all values of A = Cx=0/Bo. 1D-solutions are hence 

appear sufficiently accurate to obtain radial calcium concentrations after dividing them by the 

distance from origin. 
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Fig. A. Radial calcium profiles. 

Thick curves present the leading (zero order) term. Dotted curves show their modification by the 

first order correction obtained through Eq. (A7). The calculations were made for cases when the 

calcium level at origin is smaller (A) and bigger (B) than the concentration of buffer (Bo), 

respectively. The values A = Cx=0/Bo are indicated near respective curves. 
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