
1

Automated Incorporation of Pairwise Dependency in
Transcription Factor Binding Site Prediction Using
Dinucleotide Weight Tensors
Saeed Omidi1,2,3, Erik van Nimwegen1,2,∗,
1 Biozentrum, University of Basel, Basel, Switzerland
2 Swiss Institute of Bioinformatics, Switzerland
3 Current address: EPFL, Lausanne, Switzerland
∗ To whom correspondence should be addressed at erik.vannimwegen@unibas.ch

Abstract

Gene regulatory networks are ultimately encoded by the sequence-specific binding of (TFs) to short
DNA segments. Although it is customary to represent the binding specificity of a TF by a position-
specific weight matrix (PSWM), which assumes each position within a site contributes independently to
the overall binding affinity, evidence has been accumulating that there can be significant dependencies
between positions. Unfortunately, due to various methodological challenges, there is currently still no
model that incorporates such dependencies in a way that is both general and practical. On the one hand,
simple models that only consider nearest-neighbor interactions are easy to use in practice, but fail to
account for the distal dependencies that are observed in the data. On the other hand, models that allow
for arbitrary dependencies are prone to overfitting, requiring regularization schemes that are difficult to
use in practice for non-experts.

Here we present a general model for TF binding specificity, called dinucleotide weight tensor (DWT),
that implements arbitrary pairwise dependencies between positions in binding sites, rigorously from first
principles, and free from any tunable parameters. We implemented a tool-box, available at dwt.unibas.ch,
that allows users to automatically perform ‘motif finding’, i.e. the inference of DWT motifs from a
set of sequences, binding site prediction with DWTs, and visualization of DWT ‘dilogo’ motifs. We
demonstrate the power of the method on a large set of ChIP-seq data-sets, showing that DWTs never
overfit, and significantly outperform PSWMs for a substantial fraction of TFs. In addition, we show that
the dependencies inferred by the DWTs from ChIP-seq data are corroborated by HT-SELEX data for
the same TF, suggesting that DWTs capture inherent biophysical properties of the interactions between
the DNA binding domains of TFs and their binding sites.

Introduction

Gene regulatory networks are a crucial component of essentially all forms of life, allowing organisms
to respond and adapt to their environment, and allowing multi-cellular organisms to express a single
genotype into a large number of different cellular phenotypes. Transcription factors (TFs) are central
players in gene regulatory networks that bind to DNA in a sequence-specific manner. Although the
molecular mechanisms through which TFs regulate expression of their target genes involve a complex
interplay of interactions between TFs, co-factors, chromatin modifiers, and signalling molecules, gene
regulatory networks are ultimately genetically encoded by constellations of transcription factor binding
sites (TFBSs) to which the TFs bind in a sequence-specific manner.

Consequently, a key question in the analysis of gene regulatory networks is to find a proper mathe-
matical representation of the sequence-specificities of TFs. That is, for each TF, we want to obtain an
energy function E(s) that calculates, for any given DNA segment s, the binding free energy of the TF
binding to s. The segment s is generally of fixed length for a given TF, which typically ranges from 6 to
30 base pairs. Although there have been some attempts to use direct structural and biophysical modeling
of the sequence-specificity of TFs, e.g. [1–3], such efforts have generally achieved only limited accuracy.
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Instead, by far the most commonly approach to representing the sequence-specificity of TFs is through
a statistical mechanical analysis, which essentially assumes that the probability that a binding site for
a particular TF has sequence s is given by a maximum entropy distribution with respect to its binding
energy E(s), i.e. P (s) ∝ eλE(s) [4, 5]. Using this assumption, the binding energies E(s) of sequence
segments s can in principle be inferred from data on the relative frequencies P (s) with which different
sequences s are bound by a given TF. However, the number of possible sequence segments s is 4l, which is
already over a million for relatively short TFBSs of length l = 10 base pairs, i.e. generally larger than the
total number of genome-wide binding sites for a single TF. Thus, a crucial additional assumption, that
has been made for several decades [6], is to assume that each base pair in the binding site contributes

independently to the overall binding energy, i.e. E(s) =
∑l
i=1E

i
si , where si is the base occurring at

position i in sequence segment s and Eiα is the energy contribution of base α at position i. Under this
independence assumption, the sequence-specificity of a TF can be parametrized by 3× l parameters

wiα =
eλE

i
α∑

γ e
λEiγ

, (1)

where wiα is the fraction of binding sites that have letter α at position i. This is the well-known position
specific weight matrix (PSWM) representation which has been used in the vast majority of works on
modeling TF binding and TFBS prediction. The main advantage of this approach is the relatively small
number of parameters, allowing reasonable estimation of the weight matrix entries wiα from as few as a
dozen of example binding sites.

With the drastic reduction in costs of DNA sequencing over the last decade and the development of
a number of experimental techniques for identifying TFBSs in high-throughput, such as ChIP-seq [7],
protein binding arrays [8], and HT-SELEX [9], hundreds if not thousands of example TFBSs for a
single TF can now be routinely obtained. Such large collections of TFBSs have enabled researchers to
investigate to what extent the assumption of independence, i.e. that each position in the binding site
contributes to the binding energy independent of the other positions, holds in practice. The results of
these investigations indicate that, although the assumption of independence is often reasonably accurate,
there are also many cases which clearly deviate from independence.

Studies going back over a decade, such as [10] and [11], had already provided evidence that PSWMs
can be unsatisfactory in describing DNA binding specificities of particular TFs, and that the assumption
of independence often breaks down. More recently, a large-scale study by Bulyk and colleagues assayed
104 distinct mouse TFs using protein binding microarray (PBM) technology and found that, for a large
fraction of the TFs investigated, the binding energy landscapes were significantly more complex than
assumed by PSWM models [12]. Notably, a number of assayed TFs exhibited strong support for pairwise
dependencies (PDs) within their binding sites. As another example, Nutiu et al. [13] studied the binding
specificity of the yeast TF Gcn4p in detail and showed that it exhibits several strong PDs. Moreover, a
model that incorporates these PDs was shown to outperform PSWM models in explaining the observed
TFBSs. In summary, all these results suggest that accurate representation of TF sequence-specificities
requires that dependencies between positions are taken into account, although it remains unclear how
important such dependencies are for the acuracy of TFBS prediction.

Incorporating pairwise dependencies

Several works have modeled TF binding specificity by including dependence between binding positions.
A major challenge is that, when an arbitrary number of dependencies between arbitrary pairs of positions
is allowed, the number of possible models and parameters grows rapidly, so that it becomes difficult to
reliably identify the best models, and to avoid overfitting. Previous works have taken different approaches
for addressing this challenge.
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In some approaches, model complexity is directly controlled by only allowing dependencies between
neighboring positions, e.g. [14, 15]. However, previous analyses indicated that substantial dependencies
can occur between more distal pairs of positions, and our analysis below also indicates that significant
dependencies between non-neighboring positions are common.

In other approaches, PDs between arbitrary pairs of positions are in principle allowed, but instead of
incorporating all possible pairwise dependencies, different ad hoc approaches are employed to restrict the
number of PDs that are taken into account. For example, a Bayesian network model by Barash et al. [16]
starts by calculating likelihoods for all possible PDs, finds the spanning tree of PDs that has maximum
likelihood (ML), and then models the TF binding specificity using only the PDs in this ML spanning
tree. That is, of the l(l− 1)/2 possible PDs, only (l− 1) end up being used for modeling the TF binding
specificity.

Alternatively, some approaches start from a model without dependencies, and use a greedy algorithm
that iteratively adds PDs which maximally improve the model. For example, Sharon et al. [17] express
the TF’s binding specificity as a weighted sum of features, where features are binary statements such
as that a specific pair of nucleotides appears at a particular pair of positions. Features are iteratively
added to the model until no additional feature can be found that further improves the model. However,
this iterative procedure often leads to overfitting and Sharon et al. used a combination of regularization
procedures to control model complexity.

A similar iterative approach is used in the work of Santolini et al. [18] where the TF binding specificity
is modeled by an inhomogeneous Potts model, which incorporates information from both single and pairs
of positions. Individual pairs of positions are iteratively added to the model so as to maximize its
likelihood. Here too the authors find that this procedure can easily lead to overfitting and they use the
Bayesian information criterion as a regularization scheme to penalize model complexity.

In spite of these efforts, no model that incorporates PDs has found widespread application in the
community so far. Models that only use nearest-neighbors are attractive for their simplicity, but fail to
capture the distal PDs that are clearly evident in the data. In contrast, models that consider arbitrary
PDs make use of ad hoc approaches to restrict the number of PDs considered, and employ complex
regularization schemes that require expert supervision, which make them harder to use in practice. The
current challenge is thus to develop a model that, on the one hand, rigorously incorporates all possible
PDs, and that is easy to use in practice, i.e. not requiring expert tuning of parameters or control of
model complexity, on the other hand.

Here we present a new Bayesian network model, called dinucleotide weight tensor (DWT), which
rigorously takes into account all possible PDs within a rigorous probabilistic framework that has no
tuneable parameters and automatically avoids over-fitting. In particular, in the DWT model all unknown
parameters including the topology of the network of direct interactions and the joint probabilities for all
dependent pairs of nucleotides within the network are analytically marginalized over, so that binding
energies E(s) that take all PDs into account can be calculated from first principles, and in a parameter-
free manner. This makes the DWT model highly robust and easily applicable in practice, i.e. even
when there are no significant PDs. Indeed, in addition to presenting the algorithm below, we have also
developed a suite of software tools that can be used to perform motif finding with DWTs, visualization of
DWT motifs, and TFBS prediction with DWTs, which we make publically available with this publication.

We demonstrate the power of the DWT approach using a large collection of ChIP-seq data-sets for 78
different human TFs. We show that DWTs always perform at least as well as PSWMs, demonstrating
that DWTs automatically avoid over-fitting, even though there are no explicit regularization schemes.
Moreover, DWTs clearly outcompete PSWMs for a substantial fraction of TFs. Finally, using HT-SELEX
data for a set of TFs for which ChIP-seq data are also available, we show that the DWTs inferred from
ChIP-seq data also generally outcompete PSWMs on HT-SELEX data. Since the HT-SELEX experiments
are performed in vitro using only the DNA binding domains of the TFs, these results suggest that the
DWT likely captures aspects of the biophysical interaction between the DNA binding domains of the TFs
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and their cognate binding sites.

Results

The Dinucleotide Weight Tensor model

We here present the dinucleotide weight tensor (DWT) model for describing TF sequence-specificities
using arbitrary pairwise dependencies. The DWT model is based on a Bayesian network model that we
have applied previously to model interactions between proteins [19] and to predict contacting residues
within three-dimensional protein structures [20]. The model describes the probability distribution P (s)
of binding site sequence segments s as a mixture of all possible factorizations of the joint distribution
over s into pairwise conditional probabilities between pairs of positions in s.

Let S denote an ungapped alignment of sequences of a given length l, that are hypothesized to
correspond to a collection of binding sites for a common TF. A central quantity in probabilistic motif
finding is the probability P (S) that this collection of sequences derives from a common PSWM w. Under
the assumption of independence that the PSWM model makes, the probability P (S) is given by a product

of the probabilities P (Si) for the individual alignment columns Si, i.e. P (S) =
∏l
i=1 P (Si). Formally,

the probability P (Si) is given by an integral over all possible PSWM columns wi = (wia, w
i
c, w

i
g, w

i
t), i.e.

P (Si) =
∫
dwiP (Si|wi)P (wi), where P (wi) is a prior probability density on the PSWM column and the

integral is over the simplex wiα ≥ 0,
∑
α w

i
α = 1. Using a Dirichlet prior of the form P (wi) ∝

∏
α(wiα)λ−1,

the integral can be performed analytically and yields

P (Si) =
Γ(4λ)

Γ(n+ 4λ)

∏
α

Γ(niα + λ)

Γ(λ)
, (2)

where niα is the number of sequences in S that have letter α at position i, n is the total number of
sequences in S, and Γ(x) is the gamma-function, see e.g. [5].

Here we generalize the PSWM model by assuming that arbitrary pairwise dependencies can occur
between pairs of positions. In complete analogy with the calculations for the PSWM above, we can
introduce a dinucleotide weight tensor w for the pairs of positions (i, j), with components wijαβ denoting
the probability that the combination of letters (α, β) occurs at the positions (i, j). Using a Dirichlet prior
P (wij) ∝

∏
α,β(wijαβ)λ

′−1 and integrating over all possible wij we then obtain the probability P (Si, Sj)
for a pair of columsn (i, j) in complete analogy with the PSWM case

P (Si, Sj) =
Γ(16λ′)

Γ(n+ 16λ′)

∏
αβ

Γ(nijαβ + λ′)

Γ(λ′)
, (3)

where nijαβ is the number of times the combination of letters (α, β) appears at the pair of positions (i, j).
The evidence for dependency in the frequencies of letters at positions (i, j) can be quantified by the

likelihood ratio Rij :

Rij =
P (Si, Sj)

P (Si)P (Sj)
, (4)

and as we will see below, the matrix R of these dependencies Rij will play a crucial role in the calculations.
As a side remark on the interpretation of the dependencies Rij , in the limit of a large number of sequences
n, the Gamma-functions are well approximated by the Stirling approximation Γ(x+1) ≈ xx exp(−x) and
using this it is easy to show that Rij ≈ enIij , where Iij is the mutual information of the letter frequencies
in columns i and j.
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In contrast to the PSWM model, we do not assume that the probability P (S) simply factorizes into
independent probabilities P (Si) for each column i. Instead, we will approximate the joint probabil-
ity P (S) as a mixture of all possible factorizations into pairwise conditional probabilities of the form
P (Si|Sj)P (Sj |Sk)P (Sk|Sm) · · · . For any such factorization, there is a single ‘root’ position that is not
dependent on any other position, and each other position i is dependent on one ‘parent’ position π(i). If
we consider each position i a node of a graph, and draw an edge between each node and its parent node
π(i), then each possible factorization π corresponds to a spanning tree of the set of l nodes. Noting that
the conditional probability P (Si|Sj) of column i given column j can be written as P (Si|Sj) = RijP (Si),
we obtain for the probability P (S|π) of the alignment given a particular factorization π:

P (S|π) = P (Sr)
∏
i 6=r

P (Si|Sπ(i)) =
∏
i

P (Si)
∏

(i,j)∈π

Rij , (5)

where r is the root node and the product on the right-hand side is over all edges in the spanning tree π.
Note that the first product on the right-hand side corresponds precisely to the probability P (S) under
the PSWM model of equation (2). The product over the dependencies Rij along the edges (i, j) of the
spanning tree π thus precisely quantifies the effects of the pairwise dependencies.

Instead of assuming one particular factorization π, we consider all possible factorizations and explicitly
marginalize over the unknown factorization. That is, we aim to calculate

P (S) =
1

|π|
∑
π

P (S|π) =
∏
i

P (Si)
1

|π|
∑
π

 ∏
(i,j)∈π

Rij

 , (6)

where |π| = ll−2 is the number of spanning trees of a complete graph with l nodes. To calculate P (S)
we thus need to sum the product of the Rij of all edges in the spanning tree π over all possible spanning
trees, which may seem intractable given the large number of possible spanning trees. However, using a
generalization of the matrix-tree theorem, this sum can be calculated efficiently as the determinant of an
l − 1 by l − 1 matrix [19–21].

Specifically, the Laplacian L(R) of matrix R is obtained by replacing, for each row i, the diagonal
element Rii = 0 with minus the sum of the entries on the row, i.e. L(R)ii = −

∑
j 6=iRij , and L(R)ij = Rij

when i 6= j. If we define D(R) to be any minor of the Laplacian L(R) of matrix R, we finally obtain

P (S) =
∏
i

P (Si)
D(R)

|π|
. (7)

The determinant D(R) can be calculated efficiently, i.e. in O(l3) steps. One complication in practice is
that, when there are many sequences in S, the elements of R may vary over many orders of magnitude,
causing the numerical calculation of the determinant to become unstable. As far as we are aware, there is
no rigorous procedure to ensure numerical stability, and we use an ad hoc approximation which involves
raising all elements of R to a power, such that the overall range of the values is reduced (see supplementary
material).

Binding site prediction with DWTs

We first briefly review binding site prediction using PSWMs. Assume a set of known TFBSs S for a
particular TF is given. To predict new TFBSs for this TF one calculates the probabilities P (s|S) that,
sampling another sequence from the same PSWM that the set S derives from, one would obtain sequence
segment s. This probability is given by the ratio of the probability P (s, S) that all sequences derive
from a common PSWM and the probability P (S) that the sequences in S derive from a common PSWM.
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Using equation (2) we have

P (s|S) =
P (s, S)

P (S)
=

l∏
i=1

nisi + λ

n+ 4λ
, (8)

where niα is the number of times letter α occurs at position i in the set S, and si is the letter at position
i in sequence s. As the probabilities P (s|S) only depend on the base counts niα, a PSWM is specified
by specifying these counts (and the parameter λ of the prior), and the probability to sample any other
sequence segment s from this PSWM is then given by (8).

These calculations generalize in a straight-forward manner to our DWT model. The probability to
sample sequence segment s from the same DWT model as the set S is given by

P (s|S) =
P (s, S)

P (S)
=
D(R(s, S))

D(R(S))

l∏
i=1

nisi + λ

n+ 4λ
, (9)

where R(s, S) is the dependency matrix R obtained from the full set of sequences (s, S) and R(S) is
the dependency matrix obtained from the set of sequences S. Equation (9) nicely illustrates that the
probability P (s|S) is given by a product of two factors: The first is identical to the PSWM model’s
probability, and the second, which encorporates the effects of the dependencies, is given by a ratio of two
determinants. As we will see below, for TFs where there are no significant dependencies, the latter ratio
automatically becomes 1 and the DWT model automatically reduces to the PSWM model.

Whereas the probabilies P (s|S) for the PSWM model depend only on the counts niα, for the DWT
model the probabilities P (s|S) depend on the pair counts nijαβ . Thus, instead of specifying a set of binding

sites S, we specify a DWT model M by the set of 16l(l−1)/2 counts {nijαβ} and calculate the probabilities
P (s|M) using equation (9).

Motif finding with DWTs

To infer a DWT model from a set of sequences that are known to contain binding sites for a common TF
we use an expectation maximization (EM) algorithm analogous to those used for inferring PSWMs [22].

The DWT inference algorithm takes as input a set of sequences S and an initial PSWM w. That is,
we will initialize the DWT from a PSWM that can either be specified by the user, e.g. when a known
PSWM motif is already available for the TF in question, or it can be obtained by running a standard
PSWM motif finder on the input sequences S. The sequences in the set S are generally longer than the
length l of the motif but typically not longer than a few hundred base pairs, e.g. they could consist of
the binding peaks obtained in a ChIP-seq experiment.

We use the given PSWM w to predict a set of TFBSs in the input sequences S and initialize the DWT
model M by calculating the pair counts nijαβ for these predicted sites. We then iteratively predict binding

sites using the DWT M and use the predicted sites to update the counts nijαβ . More specifially, for each
length-l sequence segment s that occurs in the input sequences, we calculate an effective ‘binding energy’

E(s) = log

[
P (s|M)

P (s|B)

]
, (10)

where P (s|M) is calculated as described in the previous section and P (s|B) is the probability of the
sequence segment s under a background model. In this study we use a simple zeroth-order background
model, i.e. P (s|B) =

∏l
i=1 bsi , with bα the overall frequency of letter α in the input data. To calculate,

for each segment s, the posterior probability P (M |s) that it derives from the DWT model M , i.e. that s is
a binding site, we also need a prior probability P (M), i.e. the a priori expected frequency of sites within
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the input S. We parametrize this prior probability as P (M) = e−c/(1 + e−c), with c a ‘concentration’
parameter. Using this, the joint log-likelihood L(M, c) of the model and prior is given by

L(M, c) =
∑
s∈S

log [P (s|M)P (M) + P (s|B)(1− P (M))] = cons.+
∑
s∈S

log

[
1 + eE(s)−c

1 + e−c

]
, (11)

where the sum is over all length-l sequence segments s in the input set S and the constant in the second
equality is the sum over the background probabilities log[P (s|B)]. We then iteratively maximize this
log-likelihood L(M, c) using EM.

At each round, given a current DWT model M , we first maximize the likelihood L(M, c) with respect
to the concentration parameter c. Using the optimal concentration parameter c∗m we then calculate, for
each segment s, the posterior probabilitiy P (M |s) that s is a site for the motif:

P (M |s) =
eE(s)−c∗

1 + eE(s)−c∗
. (12)

We select all sequences s for which P (M |s) ≥ 0.5 and calculate new pair counts nijαβ by summing the pair

counts nijsisj over all these sequences s, weighing each sequence with its posterior probability P (M |s).
These summed pair counts (which may be non-integer) then define our updated DWT model M . These
steps are repeated until the pair counts nijαβ converge (see supplementary materials for details).

Dilogos graphically represent DWT models

To visualize DWT models, we propose a graphical representation which generalizes the well-known se-
quence logo and which we call a ‘dilogo’. For example, Fig. 1 shows the dilogo for the TF NFKB1, which
we constructed from ChIP-seq data (see below).

The dilogo first of all shows the classical sequence logo representation of the marginal probabilities
wiα at the top. For example, in this example the first 3 positions are most likely to show the letter
G. Secondly, at the bottom the dilogo shows information about pairwise dependencies evident in the
DWT. As explained in the supplementary materials and in previous work on protein contacts [23], we
can calculate for each pair of positions (i, j) the posterior probability P (i, j) that the factorization of
P (S) contains a direct dependence between positions i and j. The probabilities P (i, j) are shown in a
square lattice, with the intensity of the color corresponding to the posterior probability. For example, for
NFKB there are high posterior probabilities of interaction between positions (4, 5), (5, 6), (3, 8), (4, 8),
(8, 9), (1, 11), and (10, 11).

Because it is unwieldy to show the conditional probabilities P (si|sj) for all pairs of positions (i, j),
we select a set of pairwise dependencies that are jointly consistent with a single factorization of the
probability P (S) as follows. We list all pairwise dependencies P (i, j), sorted from highest to lowest
probability, and go down the list, adding pairwise dependencies as long as the resulting graph does
not contain any loops. The resulting graph of dependencies is shown above the square with posterior
probabilities. In this example, position 11 depends on position 1, position 10 depends on position 11,
position 9 depends on position 8, and so on.

Finally, for those positions i that are dependent on another position j, the conditional probabilities
P (si|sj) are shown in sequence logo format with one sequence logo (rows in the figure) for each possible
state of the parent letter sj (shown on the left of the figure). For example, in the NFKB example, the
letter at position 8 depends on the letter at position 4. If position 4 shows an A, position 8 is almost
certain to show a C. However, when position 4 shows a G or T, position 8 is roughly equally likely to
show a T or C. When position 4 shows a C, position 8 is roughly equally likely to show any of the 4
letters.

To enable easy application of DWT models in motif finding we have made a tool-box with software
available for motif inference with DWTs, prediction of TFBSs using DWTs, and visualization of DWT

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 28, 2016. ; https://doi.org/10.1101/078212doi: bioRxiv preprint 

https://doi.org/10.1101/078212
http://creativecommons.org/licenses/by-nc/4.0/


8

Figure 1. Dilogo for the motif of the TF NFKB. The top row of the dilogo shows the normal
sequence logo representation of the marginal probabilities wiα for each of the letters α at each position i.
The posterior probabilities for dependency between each pair of positions are shown in the square
lattice at the bottom of the dilogo, with darker red color indicating higher probability of dependence.
Above this square lattice a graph with significant pairwise dependencies is shown: an arrow from node j
to i indicates that the probability of a particular letter at i depends on the letter appearing at j.
Finally, for each position i that significantly depends on another position j, the probabilities P (si|sj)
are shown in sequence logo format, with each row corresponding to the identity of the parent letter sj
and each column showing the probabilities P (si|sj) for the child letter si.
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models using dilogos. Source code and executables can be downloaded from Github. In addition, to
make DWT analysis available to users that are less computationally savvy, we are also making TFBS
prediction and motif inference with DWTs available through a web-interface at dwt.unibas.ch. Here the
user only has to provide a set of DNA sequences and an initial motif guess (in the form of a PSWM),
after which the DWT motif finding, TFBS binding site prediction, and dilogo visualization will all be
performed automatically.

DWT models outperform PSWMs on ChIP-seq data

To compare the performance DWT models with the performance of standard PSWM models, we analyzed
a large set of ChIP-seq data-sets for 78 different human TFs from the ENDOCE consortium [24]. The
general setup of our performance comparison is shown in Fig. 2. We processed each of the ChIP-seq
datasets using CRUNCH, an integrated ChIP-seq analysis pipeline that we developed in-house and that
includes automated PSWM motif analysis [27]. CRUNCH returns a list of binding peaks, which are
typically 100− 300 base pairs in length each, ordered by their significance. For each data-set, we selected
the top 1000 binding peaks. The peak sequences were randomly divided into two subsets of 500 sequences,
one of which will be used as a training set to fit both a PSWM and DWT motif, and one for testing the
performance of the fitted motifs. As part of its motif analysis, CRUNCH extracts orthologous sequences
from 6 other mammalian species for each peak sequence and multiply aligns these using T-Coffee [28].
The motif finder PhyloGibbs [25] is then run on these alignments to infer PSWM motifs. CRUNCH
further refines these motifs on the multiple alignments of the training sequences using MotEvo [29]. We
use the top motif returned by CRUNCH as an initial PSWM motif in our analysis and obtained its TFBS
predictions on the peak sequences. As an example, Fig. 2b shows the initial PSWM motif inferred for
the TF CEBPB.

Using this PSWM as a starting motif we then iteratively fitted a PSWM and a DWT motif on the
training sequences (Fig. 2c). The DWT model was fitted using the EM procedure described in the section
on motif finding with DWTs above. In order to compare DWTs and PSWMs on equal footing, a PSWM
was fitted on the same training set using the exact same EM procedure.

We then assess the ability of the fitted DWT and PSWM models to explain the ChIP-seq data. Both
the PSWM and DWT model assign an effective binding energy E(s) to each possible length-l sequence
segment s which is given by the log-likelihood ratio of s under the PSWM or DWT model and the
background model, i.e. E(s) = log[P (s|M)/P (s|B)]. Ideally, using either the DWT or PSWM model
that assigns binding energies E(s) to all sequence segments genome-wide, we would rigorously calculate
a likelihood P (D|E) of obtaining the entire ChIP-seq data-set D, i.e. the precise number of reads at
every position of the genome, as a function of the binding energy model E. Unfortunately, in an in vivo
situation the binding along the genome does not only depend on the nuclear concentration of the TF
and local binding energies E(s) but also on many other parameters such as chromatin state, binding of
co-factors, etcetera. We therefore approximate P (D|E) for the ChIP-seq epxeriment by imagining an
idealized in vitro experiment in which purified TF is mixed with the test set of observed peak sequences
and a large set of ‘decoy sequences’, and this mixture is subjected to chromatin immunoprecipitation.

In particular, besides the 500 peak sequences of the test set, we create 2000 random decay sequences
that have the same overall dinucleotide frequencies and distribution of lengths as the binding peaks.
Given the binding energies E(s), we can calculate the overall binding affinity to each of the 2500 longer
sequence S (500 peaks and 2000 decoys) under both the PSWM and DWT models as

E(S) = log

[∑
s∈S

eE(s)

]
. (13)

Note that this sum includes both segments on the positive and negative strand of the sequence S. Figure
2d shows the distributions of the inferred binding energies of the peak and decoy sequences of the test
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Figure 2. Comparison of DWT and PSWM performance on ChIP-seq data. a) For a given
ChIP-seq data-set we use the CRUNCH ChIP-seq analysis pipe-line to identify the top 1000 binding
peaks and randomly subdivide these into an training set and a test set of 500 peak sequences each (see
supplementary materials for details). b) Standard PSWM motif finding is used to determine an initial
PSWM motif [25, 26]. c) Using expectation maximization, a PSWM and a DWT model are fitted on
the training data. d) Distributions of the predicted binding energies, under both the DWT and PSWM
models, of the 500 peak sequences and a set of 2000 random ‘decoy sequences’ that have the same
lengths and dinucleotide composition as the peak sequences. e) Enrichment scores for the DWT model,
the fitted PSWM model, and the initial PSWM model, quantifying the ability of the models to
distinguish peak sequences from the decoys. f) Precision recall curves demonstrating the ability of the
DWT, PSWM, and initial PSWM models to classify peak sequences and decoys based on the predicted
binding energies of the sequences.
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set for DWT and PSWM motifs inferred for the TF CEBPB.
In our idealized ChIP-seq experiment, each sequence S is bound by the TF with a probability propor-

tional to eE(S) and we calculate P (D|E) as the probability that, when immunoprecipitating TF-bound
sequences, we end up sampling exactly all peak sequences, and none of the decoy sequences. That is,
let T denote the entire test set of sequences, which separates into a ‘foreground’ set F of peak sequences
and a ‘background’ set B of decoy sequences. The probability that, when immuno-precipitating a single
sequence, the resulting sequence will be S, is given by

P (S|T,E,Ens) =
eE(S) + eEns∑

S′∈T e
E(S′) + eEns

, (14)

where the energy Ens is the energy associated with non-specific binding of the TF. That is, we recognize
that aside from sequence-specific binding, TFs can also bind to DNA in a non-specific manner. Using
(14) the likelihood P (D|E) for sampling only the peak sequences is given by

P (D|E) = max
Ens

[∏
S∈F

P (S|T,E,Ens)

]
, (15)

where we have maximized the likelihood with respect to the non-specific binding energy Ens. Finally,
we transform this likelihood to an ‘log-enrichment score’ ε(E) which is the log-likelihood difference, per
sequence, between P (D|E) and the probability |T |−|F | of obtaining the data under random sampling, i.e

ε(E) =
1

|F |
log

[
P (D|E)

|T |−|F |

]
= log[|T |] +

1

|F |
log[P (D|E)], (16)

where |T | is the total number of sequences in the test set, and |F | is the number of peak sequences.
Thus, when the log-enrichment ε(E) = 0 the model performs no better than random sampling, when
ε(E) = 1 the probability of sampling the peak sequences is on average a factor e higher than under
random sampling, and when ε(E) ≈ 4.6 the peak sequences are on average 100-fold more likely to be
sampled than by chance.

Figure 2d-f show the results of our comparison on ChIP-seq data for the TF CEBPB. Figure 2d shows
the distributions of binding energies that are assigned to the true binding peaks (black) and the decoy
sequences (grey) for the fitted PSWM motif, as well as the fitted DWT motif. Comparison of these
distributions makes clear that the predicted binding energies of true binding peaks and decoys show a
substantially larger separation in the DWT model. Interestingly, this increased separation results mainly
from the binding energies of the decoy sequences being more tightly focused at low values. This behavior
is observed for a large number of the TFs that we analyzed. Our log-enrichment performance measure
clearly shows the DWT outperforming the PSWM models (Fig. 2e). This superior performance is not
specific to our enrichment measure. For example, if we use the predicted binding energies E(S) to classify
the test set sequences into binders and decoys, then standard precision-recall curves also show the DWT
clearly outperforming the PSWMs (Fig. 2f).

Figure 3 compares the performance, as measured by log-enrichment, of the DWT and PSWM models
on all ENCODE [24] ChIP-seq data-sets that we studied. Remarkably, with the exception of some
minor score fluctuations, the DWT model performs at least as well as the PSWM model on all data-
sets. This shows that, even though the DWT has no explicit regularization scheme or, in fact, any
tunable parameters at all, the model never suffers from over-fitting. Moreover, the DWT model clearly
outperforms PSWMs for a substantial fraction of the datasets. Note that, since the test-set has 500 peak
sequences, a log-enrichment difference as small as 0.1 corresponds to a total log-likelihood difference of
50.

We investigated whether TFs for which the DWT most significantly outperforms the PSWM tend
to fall within particular structural families and did not find an any clear association (data not shown).
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Figure 3. Comparison of the performance of DWT and PSWM Models on the ENCODE
ChIP-seq data-sets. a: Each dot corresponds to one ENCODE ChIP-seq data-set with the horizontal
axis showing the performance of the PSWM model and the vertical axis the performance of the DWT
model as measured by the log-enrichment per sequence ε. The colors indicate different types of the TFs,
with green corresponding to ‘standard’ sequence-specific PolII TFs, red corresponding to DNA binding
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As expected, the highest performance scores are observed for sequence-specific PolII TFs.b: The
difference in log-enrichment between the DWT and PSWM model for each TF sorted from high to low.
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Although it is true that DWTs without any clear pairwise dependencies generally do not outperform
PSWMs, the reverse is not true. That is, there are data-sets for which DWTs show pairwise dependencies
with very high posterior, but where the DWT does not significantly outperform the PSWM. For example,
the TF GABP shows two pairs of positions with very strong dependency, but the GABP DWT does not
outperform the corresponding PSWM (see the table with results at http://crunch.unibas.ch/DWT/table.html).

Pairwise dependencies are enriched at neighboring positions

We investigated to what extent pairs of positions that show strong dependency are restricted to nearest-
neighbor interactions. We first selected all pairwise dependencies with posterior at least 90% and calcu-
lated their distances along the binding site. Figure 4a shows the observed distribution of distances for
these high confidence pairs. This distribution shows that nearest neighbor dependencies are much more
frequent than dependencies at other distances.
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Figure 4. Frequency of nearest-neighbor and distal pair dependencies a Histogram of
distances along the primary sequence of all pair-dependencies with posterior at least 0.9. b Fraction of
all dependencies that are nearest-neighbor (blue) versus distal (red) as a function of a cut-off on the
posterior probability of the dependency.

However, a substantial number of dependencies between distal pairs are also observed. Figured 4b
shows, as a function of a cut-off on the posterior probabilities of the dependencies, what fraction of
predicted dependent pairs are nearest neighbors (blue) versus distal (red). This plot shows that, when
only very high posterior dependencies are included, roughly two thirds of dependent pairs are nearest
neighbors, whereas at lower cut-offs on the posterior probability of dependency, the majority of dependent
positions are distal. These results confirm that, although nearest-neighbor interactions are the strongest,
a large fraction of dependencies occur between more distal pairs, confirming that it is important to take
distal dependencies into account.

DWT models trained on ChIP-seq data outperform PSWMs on HT-SELEX
data for the same TF

Systematic evolution of ligands by exponential enrichment (SELEX) is a well-established in vitro method
for studying protein-DNA binding specificity [30]. Starting from a random pool of short DNA (or RNA)
segments, the sequences are selected for binding to a DNA protein of interest. The sequences that
bound the target are then amplified. This selection and amplification is repeated for multiple rounds to
systematically enrich for sequences that strongly bind to the target protein. A high-throughput variant of
this method (HT-SELEX), in which the sequences from each round are sequenced using next-generation
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sequencing was introduced by Jolma et al. [31], and has been more recently applied to a large number
of human TFs [32]. This HT-SELEX data provides a completely independent dataset for comparing the
performance of DWT and PSWM models of TF binding affinities. Moreover, whereas ChIP-seq data
arguably probes the in vivo binding of a TF in a specific cell type, the HT-SELEX experiment directly
probes the binding properties of the DNA binding domain of the TF in an in vitro setting. It is thus
interesting to investigate whether the DWT outcompetes PSWMs in this in vitro setting as well, and
to what extent the binding specificities that were inferred from the ChIP-seq data also apply to the
HT-SELEX data.

We selected a set of 17 TFs for which we have inferred DWT and PSWM models from the ChIP-seq
data and for which HT-SELEX data is also available. We then calculated, for each of these TFs, how
well these DWT and PSWM models (inferred from the ChIP-seq) explain the observed HT-SELEX data.
To model that HT-SELEX data we assume that, at each round of the experiment, sequences are selected
according to their binding energy to the TF, i.e. such that a sequence s has a probability proportional to
eE(s) to be selected. Let ft(s) denote the frequency of sequence s in the pool of sequences at generation t
of the HT-SELEX experiment, and let E(s) denote the total binding energy assigned by the model (either
DWT or PSWM) to sequence s. Under this model, and in analogy to equation (14), the probability that
a single selected sequence is sequence s is given by

P (s|E, ft) =
eE(s)ft(s)∑
s′ ft(s

′)eE(s′)
. (17)

If we denote by nt(s) the number of occurrences of sequence s at generation t in the experiment, then
the log-likelihood L(E) of the entire HT-SELEX data-set given an energy function E is given by

L(E) =

T−1∑
t=1

(∑
s

nt+1(s) log[P (s|E, ft)]

)
, (18)

where T is the total number of generations in the experiment. We can transform this log-likelihood into
a log-enrichment per measured sequence by subtracting the probability of sampling the sequences by
chance (assuming all sequences have identical energy) and divide by the number of measured sequences.
The log-likelihood for obtaining the data by random sampling is given by

L0 =
T−1∑
t=1

(∑
s

nt+1(s) log[ft(s)]

)
, (19)

so that the log-enrichment is given by

ε(E) =
L(E)− L0∑T−1

t=1 Nt
, (20)

where Nt =
∑
s nt(s) is the total number of sequences at generation t.

Equation (20) calculates the full likelihood of the entire HT-SELEX dataset for a given motif, and
an optimal motif would thus maximize the enrichment (20). However, this approach is very different
from the way by which sequence motifs have been inferred from HT-SELEX data so far [31,32]. In these
works, the most common k-mers are extracted from the data at one (late) round of the procedure, and
a PSWM is inferred by comparing the frequency of the most common k-mer with the frequencies of
point mutants of this consensus. At first glance it may seem that such an approach, which uses only
a very small subset of the available data, must be inferior to approaches that include information from
all the data. However, upon close inspection of the HT-SELEX data we have found that, even in late
rounds of the HT-SELEX procedure, a very large fraction of the observed sequences does not appear to
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contain any binding sites for the motif in question, and we suspect that this is the reason that previous
approaches have explicitly focused on a small subset of sequences that were most enriched. Indeed, when
we calculate the log-enrichment (20) from full HT-SELEX data-sets, we find that the common occurrence
of ‘background’ sequences without binding sites leads to negative enrichments for most TFs.

To avoid the influence of the large fraction of background sequences that persist through all rounds
of the procedure, we filtered out all sequences with energies less than 5 according to either the PSWM
or DWT model. That is, we calculate the observed enrichment across all rounds, of all sequences that
have at least a reasonable match to both the PSWM and DWT motifs. Figure 5 shows the resulting
log-enrichment per sequence for the HT-SELEX experiments for both the DWT and PSWM models, as
well as the total log-likelihood differences between the DWT and PSWMs for the 17 TFs that we tested.

For 16 of the 17 TFs, the DWT outperforms the PSWM model on the HT-SELEX data (Fig. 5, lower
panel). In 4 cases there is a very large improvement, i.e. with log-enrichment per sequence ranging from
11.25 to 0.65. Note that a log-enrichment difference of 0.65 per sequence corresponds to each observation
in the HT-SELEX data-set being exp(0.65) ≈ 2 times as likely under the DWT model as under the
PSWM model. For the next 7 TFs the log-enrichment improvement per sequence ranges from 0.076 to
0.024. The latter corresponds to roughly 2.5% improvement in likelihood per observation. Although this
is relatively modest, given the very large number of independent observations in the HT-SELEX data, this
improvement is still highly statistically significant. The next 6 TFs show log-enrichment improvements
per sequence that are quite small, ranging from 0.01 to 4 ∗ 10−5. Finally, for the TF SRF we find that
the PSWM outperforms the DWT with an improvement of about 0.02 in log-enrichment per sequence.

In summary, for all but one of the TFs, the DWT model that was inferred from ChIP-seq data also
outperforms the PSWM model on HT-SELEX data for the same TF.

Discussion

Since its introduction in the early 1980s [33], the PSWM model has become the workhorse for binding site
prediction in regulatory genomics. However, as data has accumulated, evidence has been mounting over
the last decade that there can be significant dependencies between the nucleotides occurring at different
positions of regulatory sites such as TFBSs. Consequently, there is a strong need for extending regulatory
motif models to take such dependencies into account. However, in order for such an extension to gain
wide acceptance the motif model should be rigorous, flexible, be guaranteed to perform at least as well
as PSWMs in all situations, and be easy to use. Appraoches that have been presented so far have either
made unrealistic restrictions on the models, e.g. by demanding that dependencies can only exist between
neighboring positions, or they have involved complex ad hoc regularization schemes to avoid over-fitting,
that make them umbersome to use in practice.

Here we have presented a new motif model, the dinucleotide weight tensor, that is general in that it
allows for dependencies between arbitrary positions in the motif, it is rigorous in that it is derived from
first principles, and avoids it over-fitting by explicitly marginalizing over all unknown parameters. In
particular, because the model has no tunable parameters at all, it can be easily and robustly applied in
practice. Indeed, by inferring DWTs on a large set of ChIP-seq datasets, we have shown that DWTs always
perform as least as well as PSWMs and outcompete them in a substantial fraction of the cases. The fact
that DWT models inferred from ChIP-seq data also outperform PSWMs on HT-SELEX data, suggests
that the dependencies captured by the DWT reflect something in the biophysics of the interaction between
the DNA binding domain of the TF and the DNA sequence of the site. In addition, our observation
that, while significant dependencies can occur between distal positions, interactions between neighboring
positions are highly enriched, is also consistent with this interpretation.

An interesting area for future research is to investigate the possible structural and biophysical basis
for the observed direct dependencies. However, we should note that we already invested a considerable
efforts ourselves in analyzing whether the occurrence of dependencies can be related to structural features
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Figure 5. Comparison between the DWT and PSWM Models on the HT-SELEX data.
The bottom panel shows the log-enrichment per sequence for the DWT models that were inferred on
ChIP-seq data, when applied to HT-SELEX data [32], for 17 TFs for which HT-SELEX data was also
available. The top panel shows the differences in log-enrichment per sequence between the DWT and
PSWM models. The TFs are sorted from left to right in order of decreasing difference in log-enrichment.
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of the TFs, or to the way that they interact with the DNA, but we have so far been unable to uncover
any clear biophysical interpretation of the observed dependencies. It is conceivable that there is no
simple biophysical interpretation to the direct dependencies. For example, inspection of some of the
DWT models suggests that dependencies often cause combinations of deleterious mutations to reduce
the binding energy less than predicted by the PSWM model and this might be a global effect that is
spread across many dependencies, rather than reflecting particular structural features of the TF-DNA
interaction.

Our analysis has also shown that, nothwithstanding the fact thatDWTs strongly outperform PSMWs
for some TFs, for the majority of TFs the improvement that the DWT provides is rather modest. This
highlights that, for many TFs, PSWMs are sufficiently accurate for TFBS prediction, and few significant
dependencies exist. Consequently, robust practical application of more complex motif models requires
strong safe-guards against over-fitting, i.e. because for many TFs there will simply not be many strong
dependencies. This is arguably the biggest advantage of the DWT models presented here: DWTs have
no parameters to tune whatsoever, never overfit, and automatically reduce to a PSWM model when no
significant dependencies exist. We believe that these properties make DWTs especially attractive for
adopting in practical settings and we hope that many researchers can be convinvced to start using DWT
models in their motif finding and TFBS prediction.
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1 Supplementary Material

1.1 Calculating posterior probabilities for the pairwise dependencies

As part of the dilogo we calculate, for each pair of positions (i, j) the posterior probability P (i, j|S),
that a direct dependency between exists between positions i and j, given the sequence alignment S. As
we have shown previously [20], the posterior probability P (i, j|S) is given by of the sum of P (S|π) over
all spanning trees in which the edge (i, j) occurs, divided by P (S), i.e. P (S|π) summed over all trees,
irrespective of the occurrence of the edge (i, j). That is, we have

P (i, j|S) =

∑
π|(i,j)∈π P (S|π)∑

π P (S|π)
, (21)

and Fig. 6 illustrates all the topologies that contribute to the sum in the numerator and denominator of
this ratio for a sequence of length 4.

As we also derived previously [20], this posterior can be calculated by defining a new (l− 1) by (l− 1)
matrix R(i,j) in which the two nodes i and j have been ‘contracted’ into a single node (i, j). The entries
for the matrix elements involving this node are given by

R
(i,j)
(i,j)k = Rik +Rjk, (22)
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Figure 6. Illustration of the calculation of the posterior probability that positions 1 and 2 are directly
connected, for the simple case of sequences of length 4. Each position is represented by a node in the
possible spanning tree graphs π. In the numerator are all trees in which the edge (1, 2) appears, and in
the denominator are all possible spanning trees.

whereas
R

(i,j)
kl = Rkl, (23)

for all other nodes. Using this contracted matrix R(i,j), the posterior is given by

P (i, j|S) =
RijD(R(i,j))

D(R)
. (24)

1.2 Rescaling of the dependency matrix

When the pair-counts nijαβ are large, the entries Rij of the dependency matrix R may range over many or-
ders of magnitude. When this happens, the calculation of the determinant D(R) may become numerically
unstable. As far as we are aware, there is no principled method for avoiding this numerically instability
and we therefore rely on an ad hoc procedure for ensuring the determinant calculation is numerically
stable. In particular, we rescale all entries in log-space the transformation

log[Rij ]→ α log[Rij/Rmax], (25)

where Rmax is the largest entry in the matrix R and α = k log[10]/(log[Rmax]− log[Rmin]) is chosen such
that the entries of the transformed matrix lie in the range [10−k, 1], i.e. spanning k orders of magnitude.
In this study we chose k = 15, i.e. the ratio between the largest and smallest entry of the rescaled R is
1015.

Test and Results

We have selected 78 TF ChIP-seq data published by ENCODE Consortium [24]. The list of the raw
FASTQ data we have analyzed is given in table 1 .
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Table 1. The ENCODE TF ChIP-seq data that are analyzed for this project

TF Dataset
ATF2 wgEncodeHaibTfbsGm12878Atf2sc81188V0422111
ATF3 wgEncodeHaibTfbsGm12878Atf3Pcr1x
BATF wgEncodeHaibTfbsGm12878Batf
BCL11A wgEncodeHaibTfbsGm12878Bcl11a
BCL3 wgEncodeHaibTfbsGm12878Bcl3V0416101
CEBPB wgEncodeHaibTfbsGm12878Cebpbsc150V0422111
CREB1S wgEncodeHaibTfbsGm12878Creb1sc240V0422111
EBF wgEncodeHaibTfbsGm12878Ebfsc137065
EGR1 wgEncodeHaibTfbsGm12878Egr1Pcr2x
ELF1 wgEncodeHaibTfbsGm12878Elf1sc631V0416101
ETS1 wgEncodeHaibTfbsGm12878Ets1Pcr1x
FOXM1 wgEncodeHaibTfbsGm12878Foxm1sc502V0422111
GABP wgEncodeHaibTfbsGm12878GabpPcr2x
IRF4 wgEncodeHaibTfbsGm12878Irf4sc6059
MEF2A wgEncodeHaibTfbsGm12878Mef2aPcr1x
MEF2C wgEncodeHaibTfbsGm12878Mef2csc13268V0416101
MTA3 wgEncodeHaibTfbsGm12878Mta3sc81325V0422111
NFATC1 wgEncodeHaibTfbsGm12878Nfatc1sc17834V0422111
NFIC wgEncodeHaibTfbsGm12878Nficsc81335V0422111
NRSF wgEncodeHaibTfbsGm12878NrsfPcr1x
P300 wgEncodeHaibTfbsGm12878P300
PAX5 wgEncodeHaibTfbsGm12878Pax5c20
PAX5 wgEncodeHaibTfbsGm12878Pax5n19Pcr1x
PBX3 wgEncodeHaibTfbsGm12878Pbx3Pcr1x
PML wgEncodeHaibTfbsGm12878Pmlsc71910V0422111
POU2 wgEncodeHaibTfbsGm12878Pou2f2Pcr1x
PU1 wgEncodeHaibTfbsGm12878Pu1Pcr1x
RAD21 wgEncodeHaibTfbsGm12878Rad21V0416101
RUNX3 wgEncodeHaibTfbsGm12878Runx3sc101553V0422111
RXLCH wgEncodeHaibTfbsGm12878RxlchPcr1x
RXLCH wgEncodeHaibTfbsGm12878RxlchV0416101
RXRA wgEncodeHaibTfbsGm12878RxraPcr1x
SIX5 wgEncodeHaibTfbsGm12878Six5Pcr1x
SP1 wgEncodeHaibTfbsGm12878Sp1Pcr1x
SRF wgEncodeHaibTfbsGm12878SrfPcr2x
SRF wgEncodeHaibTfbsGm12878SrfV0416101
STAT5A wgEncodeHaibTfbsGm12878Stat5asc74442V0422111
TAF1 wgEncodeHaibTfbsGm12878Taf1Pcr1x
TCF12 wgEncodeHaibTfbsGm12878Tcf12Pcr1x
TCF3 wgEncodeHaibTfbsGm12878Tcf3Pcr1x
USF1 wgEncodeHaibTfbsGm12878Usf1Pcr2x
YY1 wgEncodeHaibTfbsGm12878Yy1sc281Pcr1x
ZBTB33 wgEncodeHaibTfbsGm12878Zbtb33
ZEB1 wgEncodeHaibTfbsGm12878Zeb1sc25388V0416102
BHLHE40C wgEncodeSydhTfbsGm12878Bhlhe40cIggmus
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BRCA1A wgEncodeSydhTfbsGm12878Brca1a300Iggmus
CDPS wgEncodeSydhTfbsGm12878Cdpsc6327Iggmus
CHD1A wgEncodeSydhTfbsGm12878Chd1a301218aIggmus
CHD2A wgEncodeSydhTfbsGm12878Chd2ab68301Iggmus
CORESTS wgEncodeSydhTfbsGm12878Corestsc30189Iggmus
CTCF wgEncodeSydhTfbsGm12878Ctcfsc15914c20Std
E2F4 wgEncodeSydhTfbsGm12878E2f4Iggmus
EBF1 wgEncodeSydhTfbsGm12878Ebf1sc137065Std
ELK1 wgEncodeSydhTfbsGm12878Elk112771Iggmus
ERRA wgEncodeSydhTfbsGm12878ErraIggrab
IRF3 wgEncodeSydhTfbsGm12878Irf3Iggmus
JUND wgEncodeSydhTfbsGm12878JundIggrab
MAFK wgEncodeSydhTfbsGm12878MafkIggmus
MAX wgEncodeSydhTfbsGm12878MaxIggmus
MAZ wgEncodeSydhTfbsGm12878Mazab85725Iggmus
MXI1 wgEncodeSydhTfbsGm12878Mxi1Iggmus
NFE2 wgEncodeSydhTfbsGm12878Nfe2sc22827Std
NFkB wgEncodeSydhTfbsGm12878NfkbTnfaIggrab
NRF1 wgEncodeSydhTfbsGm12878Nrf1Iggmus
P300 wgEncodeSydhTfbsGm12878P300bStd
P300 wgEncodeSydhTfbsGm12878P300sc584Iggmus
RAD21 wgEncodeSydhTfbsGm12878Rad21Iggrab
RFX wgEncodeSydhTfbsGm12878Rfx5200401194Iggmus
SIN3 wgEncodeSydhTfbsGm12878Sin3anb6001263Iggmus
SMC3 wgEncodeSydhTfbsGm12878Smc3ab9263Iggmus
SREBP1 wgEncodeSydhTfbsGm12878Srebp1Iggrab
SREBP2 wgEncodeSydhTfbsGm12878Srebp2Iggrab
STAT1** wgEncodeSydhTfbsGm12878Stat1Std
STAT3 wgEncodeSydhTfbsGm12878Stat3Iggmus
TBLR wgEncodeSydhTfbsGm12878Tblr1ab24550Iggmus
TBP wgEncodeSydhTfbsGm12878TbpIggmus
USF2 wgEncodeSydhTfbsGm12878Usf2Iggmus
WHIP wgEncodeSydhTfbsGm12878WhipIggmus
ZNF143 wgEncodeSydhTfbsGm12878Znf143166181apStd
ZNF384 wgEncodeSydhTfbsGm12878Znf384hpa004051IggmusRawDataRep1.fastq.gz
c-MYC wgEncodeOpenChromChipGm12878Cmyc
CEBPB wgEncodeSydhTfbsHelas3CebpbIggrab
ERRA wgEncodeSydhTfbsHepg2ErraForskln
E2F1 wgEncodeYaleChIPseqRawDataHelas3E2f1
IRF3 wgEncodeSydhTfbsGm12878Irf3Iggmus
HSF1 wgEncodeYaleChIPseqRawDataHepg2Hsf1Forskln
STAT1 wgEncodeSydhTfbsHelas3ifngStat1
STAT5 wgEncodeHaibTfbsK562Stat5asc74442V0422111
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