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Abstract

Gene regulatory networks are ultimately encoded by the sequence-specific binding of

(TFs) to short DNA segments. Although it is customary to represent the binding

specificity of a TF by a position-specific weight matrix (PSWM), which assumes each

position within a site contributes independently to the overall binding affinity, evidence

has been accumulating that there can be significant dependencies between positions.

Unfortunately, methodological challenges have so far hindered the development of a

practical and generally-accepted extension of the PSWM model. On the one hand,

simple models that only consider dependencies between nearest-neighbor positions are

easy to use in practice, but fail to account for the distal dependencies that are observed

in the data. On the other hand, models that allow for arbitrary dependencies are prone

to overfitting, requiring regularization schemes that are difficult to use in practice for

non-experts.

Here we present a new regulatory motif model, called dinucleotide weight tensor

(DWT), that incorporates arbitrary pairwise dependencies between positions in binding

sites, rigorously from first principles, and free from tunable parameters. We

demonstrate the power of the method on a large set of ChIP-seq data-sets, showing that
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DWTs outperform both PSWMs and motif models that only incorporate

nearest-neighbor dependencies. We also demonstrate that DWTs outperform two

previously proposed methods. Finally, we show that DWTs inferred from ChIP-seq data

also outperform PSWMs on HT-SELEX data for the same TF, suggesting that DWTs

capture inherent biophysical properties of the interactions between the DNA binding

domains of TFs and their binding sites.

We make a suite of DWT tools available at dwt.unibas.ch, that allow users to

automatically perform ‘motif finding’, i.e. the inference of DWT motifs from a set of

sequences, binding site prediction with DWTs, and visualization of DWT ‘dilogo’ motifs.

Author Summary

Gene regulatory networks are ultimately encoded in constellations of short binding sites

in the DNA and RNA that are recognized by regulatory factors such as transcription

factors (TFs). For several decades, computational analysis of regulatory networks has

relied on a model of TF sequence-specificity, the position-specific weight-matrix

(PSWM), that assumes different positions in a binding site contribute independently to

the total binding energy of the TF. However, in recent years evidence has been

accumulating that, at least for some TFs, this assumption does not hold. Here we

present a new model for the sequence-specificity of TFs, the dinucleotide weight tensor

(DWT), that takes arbitrary dependencies between positions in binding sites into

account and show that it consistently outperforms PSWMs on high-throughput datasets

on TF binding. Moreover, in contrast to previous approaches, DWTs are directly

derived from first principles within a Bayesian framework, and contain no tunable

parameters. This allows them to be easily applied in practice and we make a suite of

tools available for computational analysis with DWTs.

Introduction 1

Gene regulatory networks are a crucial component of essentially all forms of life, allowing 2

organisms to respond and adapt to their environment, and allowing multi-cellular 3

organisms to express a single genotype into many different cellular phenotypes. 4
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Transcription factors (TFs) are central players in gene regulatory networks that bind to 5

DNA in a sequence-specific manner. Although the molecular mechanisms through which 6

TFs regulate expression of their target genes involve a complex interplay of interactions 7

between TFs, co-factors, chromatin modifiers, and signaling molecules, gene regulatory 8

networks are ultimately genetically encoded by constellations of transcription factor 9

binding sites (TFBSs) to which the TFs bind in a sequence-specific manner. 10

Consequently, a key question in the analysis of gene regulatory networks is to find a 11

proper mathematical representation of the sequence-specificities of TFs. That is, for 12

each TF, we want to determine an energy function E(s) that calculates, for any given 13

DNA segment s, the binding free energy of the TF binding to s. The segment s is 14

generally of fixed length for a given TF, which typically ranges from 6 to 30 base pairs. 15

Although there have been some attempts to use direct structural and biophysical 16

modeling of the sequence-specificity of TFs, e.g. [1–3], such efforts have generally 17

achieved only limited accuracy. Instead, by far the most common approach to 18

representing the sequence-specificity of TFs is through a statistical mechanical analysis, 19

which essentially assumes that the probability that a binding site for a particular TF 20

has sequence s is given by a maximum entropy distribution with respect to its binding 21

energy E(s), i.e. P (s) ∝ eλE(s) [4, 5]. Using this assumption, the binding energies E(s) 22

of sequence segments s can in principle be inferred from data on the relative frequencies 23

P (s) with which different sequences s are bound by a given TF. However, the number of 24

possible sequence segments s is 4l, which is already over a million for relatively short 25

TFBSs of length l = 10 base pairs, i.e. much larger than the total number of 26

genome-wide binding sites for a single TF. Thus, a crucial additional assumption, that 27

has been made for several decades [6], is to assume that each base pair in the binding 28

site contributes independently to the overall binding energy, i.e. E(s) =
∑l
i=1E

i
si , 29

where si is the base occurring at position i in sequence segment s and Eiα is the energy 30

contribution of base α at position i. Under this independence assumption, the 31

sequence-specificity of a TF can be parametrized by 3× l parameters 32

wiα =
eλE

i
α∑

γ e
λEiγ

, (1)

where wiα is the fraction of binding sites that have letter α at position i. This is the 33
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well-known position specific weight matrix (PSWM) representation which has been used 34

in the vast majority of works on modeling TF binding and TFBS prediction. The main 35

advantage of this approach is the relatively small number of parameters, allowing 36

reasonable estimation of the weight matrix entries wiα from as few as a dozen of 37

example binding sites. 38

With the drastic reduction in costs of DNA sequencing over the last decade and the 39

development of a number of experimental techniques for identifying TFBSs in 40

high-throughput, such as ChIP-seq [7], protein binding arrays [8], and HT-SELEX [9], 41

hundreds if not thousands of example TFBSs for a single TF can now be routinely 42

obtained. Such large collections of TFBSs have enabled researchers to investigate to 43

what extent the assumption of independence, i.e. that each position in the binding site 44

contributes to the binding energy independent of the other positions, holds in practice. 45

The results of these investigations indicate that, although the assumption of 46

independence is often reasonably accurate, there are also many cases which clearly 47

deviate from independence. 48

Studies going back over a decade, such as [10] and [11], had already provided 49

evidence that PSWMs can be unsatisfactory in describing DNA binding specificities of 50

particular TFs, and that the assumption of independence often breaks down. More 51

recently, a large-scale study by Bulyk and colleagues assayed 104 distinct mouse TFs 52

using protein binding microarray (PBM) technology and found that, for a large fraction 53

of the TFs investigated, the binding energy landscapes were significantly more complex 54

than assumed by PSWM models [12]. Notably, a number of assayed TFs exhibited 55

strong support for pairwise dependencies (PDs) within their binding sites. As another 56

example, Nutiu et al. [13] studied the binding specificity of the yeast TF Gcn4p in 57

detail and showed that it exhibits several strong PDs. Moreover, a model that 58

incorporates these PDs was shown to outperform PSWM models in explaining the 59

observed TFBSs. In summary, all these results suggest that accurate representation of 60

TF sequence-specificities requires that dependencies between positions are taken into 61

account, although it remains unclear how important such dependencies are for the 62

accuracy of TFBS prediction. 63
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Incorporating pairwise dependencies 64

Several works have modeled TF binding specificity by including dependence between 65

binding positions. A major challenge is that, when an arbitrary number of dependencies 66

between arbitrary pairs of positions is allowed, the number of possible models and 67

parameters grows rapidly, so that it becomes difficult to reliably identify the best 68

models, and to avoid overfitting. Previous works have taken different approaches for 69

addressing this challenge. 70

In some approaches, model complexity is directly controlled by only allowing 71

dependencies between adjacent positions, e.g. [14, 15]. However, previous analyses 72

indicated that substantial dependencies can occur between more distal pairs of positions, 73

and our analyses below also indicate that significant dependencies between 74

non-neighboring positions are common. Below we explicitly compare our general DWT 75

model with a restricted model that only incorporates dependencies between adjacent 76

positions. 77

In other approaches, PDs between arbitrary pairs of positions are in principle 78

allowed, but instead of incorporating all possible pairwise dependencies, different ad hoc 79

approaches are employed to restrict the number of PDs that are taken into account. For 80

example, a Bayesian network model by Barash et al. [16] starts by calculating 81

likelihoods for all possible PDs, finds the spanning tree of PDs that has maximum 82

likelihood (ML), and then models the TF binding specificity using only the PDs in this 83

ML spanning tree. That is, of the l(l − 1)/2 possible PDs, only (l − 1) end up being 84

used for modeling the TF binding specificity. As another example, the variable-order 85

Bayesian network model of Grosse and Grau [17] starts from a full higher order Markov 86

model (represented as a tree of possible sequence contexts) and then reduces the 87

number of parameters by systematically collapsing different sequence contexts that do 88

not show significantly different statistics in the data, i.e. pruning the tree. 89

Alternatively, some approaches start from a model without dependencies, and use a 90

greedy algorithm that iteratively adds PDs which maximally improve the model. For 91

example, Sharon et al. [18] express the TF’s binding specificity as a weighted sum of 92

features, where features are propositions that can either be true or false, e.g. a specific 93

pair of nucleotides appears at a particular pair of positions. Features are iteratively 94
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added to the model until no additional feature can be found that further improves the 95

model. However, this iterative procedure often leads to overfitting and Sharon et al. 96

used a combination of regularization procedures to control model complexity. 97

A similar iterative approach is used in the work of Santolini et al. [19] where the TF 98

binding specificity is modeled by an inhomogeneous Potts model, which incorporates 99

information from both single and pairs of positions. Individual pairs of positions are 100

iteratively added to the model so as to maximize its likelihood. Here too the authors 101

find that this procedure can easily lead to overfitting and they use the Bayesian 102

information criterion as a regularization scheme to penalize model complexity. Below we 103

will compare the performance of our approach with both the approaches of Sharon et 104

al. [18] and Santolini et al. [19]. 105

In spite of these efforts, no model that incorporates PDs has found widespread 106

application in the community so far. Models that only use adjacent positions are 107

attractive for their simplicity, but fail to capture the distal PDs that are clearly evident 108

in the data. In contrast, models that consider arbitrary PDs make use of ad hoc 109

approaches to restrict the number of PDs considered, and employ complex regularization 110

schemes that require expert supervision, which make them harder to use in practice. 111

The current challenge is thus to develop a model that, on the one hand, rigorously 112

incorporates all possible PDs, and that is easy to use in practice, i.e. not requiring 113

expert tuning of parameters or control of model complexity, on the other hand. 114

Here we present a new Bayesian network model, called dinucleotide weight tensor 115

(DWT), which takes into account all possible PDs within a rigorous probabilistic 116

framework that has no tunable parameters and automatically avoids over-fitting. In 117

particular, in the DWT model all unknown parameters including the topology of the 118

network of direct interactions and the joint probabilities for all dependent pairs of 119

nucleotides within the network are analytically marginalized over, so that binding 120

energies E(s) that take all PDs into account can be calculated from first principles, and 121

without the need for the user to set any tunable parameters. This makes the DWT 122

model highly robust and easily applicable in practice, i.e. even when there are no 123

significant PDs. Indeed, in addition to presenting the algorithm below, we have also 124

developed a suite of software tools that can be used to perform motif finding with 125

DWTs, visualization of DWT motifs, and TFBS prediction with DWTs, which we make 126
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publically available with this publication. 127

We demonstrate the power of the DWT approach using a large collection of 121 128

ChIP-seq data-sets representing 92 different human TFs. We show that DWTs 129

outperform PSWMs for a substantial fraction of the TFs, and never perform 130

substantially worse, demonstrating that DWTs automatically avoid over-fitting, even 131

though there are no explicit regularization schemes. Second, we show that DWTs 132

outperform a restricted model that only incorporates dependencies between adjacent 133

positions for the large majority of datasets, demonstrating that distal positions 134

contribute to the accuracy of TFBS prediction. We also show that DWTs substantially 135

outperform two previous approaches [18, 19]. Finally, using HT-SELEX data for a set of 136

TFs for which ChIP-seq data are also available, we show that the DWTs inferred from 137

ChIP-seq data also generally outcompete PSWMs on HT-SELEX data. Since the 138

HT-SELEX experiments are performed in vitro using only the DNA binding domains of 139

the TFs, these results suggest that the DWT likely captures aspects of the biophysical 140

interaction between the DNA binding domains of the TFs and their cognate binding 141

sites. 142

Materials and Methods 143

The Dinucleotide Weight Tensor model 144

We here present the dinucleotide weight tensor (DWT) model for describing TF 145

sequence-specificities using arbitrary pairwise dependencies. The DWT model is based 146

on a Bayesian network model that we have applied previously to model interactions 147

between proteins [20] and to predict contacting residues within three-dimensional 148

protein structures [21]. The model describes the probability distribution P (s) of binding 149

site sequence segments s as a mixture of all possible factorizations of the joint 150

distribution over s into pairwise conditional probabilities between pairs of positions in s. 151

Let S denote an ungapped alignment of sequences of a given length l, that are 152

hypothesized to correspond to a collection of binding sites for a common TF. A central 153

quantity in probabilistic motif finding is the probability P (S) that this collection of 154

sequences derives from a common PSWM w. Under the assumption of independence 155
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that the PSWM model makes, the probability P (S) is given by a product of the 156

probabilities P (Si) for the individual alignment columns Si, i.e. P (S) =
∏l
i=1 P (Si). 157

Formally, the probability P (Si) is given by an integral over all possible PSWM columns 158

wi = (wia, w
i
c, w

i
g, w

i
t), i.e. P (Si) =

∫
dwiP (Si|wi)P (wi), where P (wi) is a prior 159

probability density on the PSWM column and the integral is over the simplex wiα ≥ 0, 160∑
α w

i
α = 1. Using a Dirichlet prior of the form P (wi) ∝

∏
α(wiα)λ−1, the integral can 161

be performed analytically and yields 162

P (Si) =
Γ(4λ)

Γ(n+ 4λ)

∏
α

Γ(niα + λ)

Γ(λ)
, (2)

where niα is the number of sequences in S that have letter α at position i, n is the total 163

number of sequences in S, and Γ(x) is the gamma-function, see e.g. [5]. 164

Here we generalize the PSWM model by assuming that arbitrary pairwise 165

dependencies can occur between pairs of positions. In complete analogy with the 166

calculations for the PSWM above, we can introduce a dinucleotide weight tensor w for 167

the pairs of positions (i, j), with components wijαβ denoting the probability that the 168

combination of letters (α, β) occurs at the positions (i, j). Using a Dirichlet prior 169

P (wij) ∝
∏
α,β(wijαβ)λ

′−1 and integrating over all possible wij we then obtain the 170

probability P (Si, Sj) for a pair of columns (i, j) in complete analogy with the PSWM 171

case 172

P (Si, Sj) =
Γ(16λ′)

Γ(n+ 16λ′)

∏
αβ

Γ(nijαβ + λ′)

Γ(λ′)
, (3)

where nijαβ is the number of times the combination of letters (α, β) appears at the pair 173

of positions (i, j). As we explained previously [20] consistency of the mono- and 174

di-nucleotide priors requires that λ = 4λ′. As for the PSWM case [22], the results are 175

generally insensitive to the precise setting of 0 < λ ≤ 1 and we use the Jeffrey’s prior 176

λ = 1/2 throughout. 177

The evidence for dependency in the frequencies of letters at positions (i, j) can be 178

quantified by the likelihood ratio Rij : 179

Rij =
P (Si, Sj)

P (Si)P (Sj)
, (4)
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and as we will see below, the matrix R of these dependencies Rij will play a crucial role 180

in the calculations. As a side remark on the interpretation of the dependencies Rij , in 181

the limit of a large number of sequences n, the Gamma-functions are well approximated 182

by the Stirling approximation Γ(x+ 1) ≈ xx exp(−x) and using this it is easy to show 183

that Rij ≈ enIij , where Iij is the mutual information of the letter frequencies in 184

columns i and j. 185

In contrast to the PSWM model, we do not assume that the probability P (S) simply 186

factorizes into independent probabilities P (Si) for each column i. Instead, we will 187

approximate the joint probability P (S) as a mixture of all possible factorizations into 188

pairwise conditional probabilities of the form P (Si|Sj)P (Sj |Sk)P (Sk|Sm) · · · . For any 189

such factorization, there is a single ‘root’ position that is not dependent on any other 190

position, and each other position i is dependent on one ‘parent’ position π(i). If we 191

consider each position i a node of a graph, and draw an edge between each node and its 192

parent node π(i), then each possible factorization π corresponds to a spanning tree of 193

the set of l nodes. Noting that the conditional probability P (Si|Sj) of column i given 194

column j can be written as P (Si|Sj) = RijP (Si), we obtain for the probability P (S|π) 195

of the alignment given a particular factorization π: 196

P (S|π) = P (Sr)
∏
i 6=r

P (Si|Sπ(i)) =
∏
i

P (Si)
∏

(i,j)∈π

Rij , (5)

where r is the root node and the product on the right-hand side is over all edges in the 197

spanning tree π. Note that the first product on the right-hand side corresponds 198

precisely to the probability P (S) under the PSWM model of equation (2). The product 199

over the dependencies Rij along the edges (i, j) of the spanning tree π thus precisely 200

quantifies the effects of the pairwise dependencies. 201

Instead of assuming one particular factorization π, we consider all possible 202

factorizations and explicitly marginalize over the unknown factorization. That is, we 203

aim to calculate 204

P (S) =
1

|π|
∑
π

P (S|π) =
∏
i

P (Si)
1

|π|
∑
π

 ∏
(i,j)∈π

Rij

 , (6)

where |π| = ll−2 is the number of spanning trees of a complete graph with l nodes. To 205
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calculate P (S) we thus need to sum the product of the Rij over all edges in the 206

spanning tree π over all possible spanning trees, which may seem intractable given the 207

large number of possible spanning trees. However, using a generalization of Kirchhoff’s 208

matrix-tree theorem, this sum can be calculated efficiently as the determinant of an 209

l − 1 by l − 1 matrix [20,21,23]. 210

Specifically, the Laplacian L(R) of matrix R is obtained by replacing, for each row i, 211

the diagonal element Rii = 0 with minus the sum of the entries on the row, i.e. 212

L(R)ii = −
∑
j 6=iRij , and L(R)ij = Rij when i 6= j. If we define D(R) to be any minor 213

of the Laplacian L(R) of matrix R, we finally obtain 214

P (S) =
∏
i

P (Si)
D(R)

|π|
. (7)

The determinant D(R) can be calculated efficiently, i.e. in O(l3) steps. One 215

complication in practice is that, when there are many sequences in S and strong 216

dependencies between some positions, the elements of R may vary over many orders of 217

magnitude, causing the numerical calculation of the determinant to become unstable. In 218

the supporting information we describe how we control numerical stability using a 219

rescaling procedure. 220

Binding site prediction with DWTs 221

We first briefly review binding site prediction using PSWMs. Assume a set of known 222

TFBSs S for a particular TF is given. To predict new TFBSs for this TF one calculates 223

the probabilities P (s|S) that, sampling another sequence from the same PSWM that 224

the set S derives from, one would obtain sequence segment s. This probability is given 225

by the ratio of the probability P (s, S) that all sequences derive from a common PSWM 226

and the probability P (S) that the sequences in S derive from a common PSWM. Using 227

equation (2) we have 228

P (s|S) =
P (s, S)

P (S)
=

l∏
i=1

nisi + λ

n+ 4λ
, (8)

where niα is the number of times letter α occurs at position i in the set S, and si is the 229

letter at position i in sequence s. As the probabilities P (s|S) only depend on the base 230

counts niα, a PSWM is specified by specifying these counts (and the parameter λ of the 231
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prior), and the probability to sample any other sequence segment s from this PSWM is 232

then given by (8). 233

These calculations generalize in a straight-forward manner to our DWT model. The 234

probability to sample sequence segment s from the same DWT model as the set S is 235

given by 236

P (s|S) =
P (s, S)

P (S)
=
D(R(s, S))

D(R(S))

l∏
i=1

nisi + λ

n+ 4λ
, (9)

where R(s, S) is the dependency matrix R obtained from the full set of sequences (s, S) 237

and R(S) is the dependency matrix obtained from the set of sequences S. Equation (9) 238

nicely illustrates that the probability P (s|S) is given by a product of two factors: The 239

first is identical to the PSWM model’s probability, and the second, which incorporates 240

the effects of the dependencies, is given by a ratio of two determinants. As we will see 241

below, for TFs where there are no significant dependencies, the latter ratio 242

automatically becomes 1 and the DWT model automatically reduces to the PSWM 243

model. 244

Whereas the probabilities P (s|S) for the PSWM model depend only on the counts 245

niα, for the DWT model the probabilities P (s|S) depend on the pair counts nijαβ . Thus, 246

instead of specifying a set of binding sites S, we specify a DWT model M by the set of 247

16l(l − 1)/2 counts {nijαβ} and calculate the probabilities P (s|M) using equation (9). 248

Finally, as explained in the supporting information, we adapted the rescaling 249

procedure explained above to ensure numerical stability of the ratio of determinants in 250

(9) while at the same time guaranteeing that P (s|S) remains exactly normalized, i.e. 251∑
s P (s|S) = 1 when summing over all possible length-l sequences s. 252

Motif finding with DWTs 253

To infer a motif M from a given set of input sequences, we need to define the likelihood 254

function, i.e. the probability of observing our set of input sequences given the motif 255

model M . Whether our input sequences derive from ChIP-seq, HT-SELEX, or a similar 256

experimental procedure, what distinguishes the input sequences from other sequences is 257

that they were bound by the TF in question. Thus, the likelihood should reflect the 258

probability that the observed input sequences were bound to the TF, whereas typical 259

‘random’ sequences were not. We formalize this idea by imagining that we have a very 260
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large set of sequences, with nucleotide composition according to some background 261

model, and that we are sampling sequences from this set in proportion to the 262

probability that they are bound by the TF. The likelihood of our data set of input 263

sequences S is then the probability to sample these input sequences from the large pool. 264

Specifically, we will assume TF binding is well approximated by a thermodynamic 265

equilibrium model and define, for any length-l sequence segment s its effective ‘binding 266

energy’ (in units of kT ) as 267

E(s) = log

[
P (s|M)

P (s|B)

]
, (10)

where P (s|M) is calculated as described in the previous section and P (s|B) is the 268

probability of the sequence segment s under a background model. In this study we use a 269

simple single nucleotide background model, i.e. P (s|B) =
∏l
i=1 bsi , with bα the overall 270

frequency of letter α in the input data. Under a simple thermodynamic model, the 271

probability Pb(s|M, c,E0) that an isolated sequence segment s is bound by the TF is 272

given by 273

Pb(s|M, c,E0) =
c
(
eE(s) + eE0

)
1 + c

(
eE(s) + eE0

) , (11)

where c is the concentration of the TF and E0 is the energy with which the TF can be 274

bound to s in a non-specific (i.e. sequence independent) manner. Note that the 275

constant 1 in the denominator corresponds to the statistical weight of the unbound 276

state. In this work we will assume that the concentration c of the TF is sufficiently 277

small that binding is not saturated at any of the sequence segments. In this limit, the 278

denominator can be ignored and the probability of binding is well approximated by 279

Pb(s|M, c,E0) ≈ c
(
eE(s) + eE0

)
. Moreover, for a longer sequence S, the binding 280

probability Pb(S|M, c,E0) is just the sum of the binding probabilities at each of the 281

segments of S: 282

Pb(S|M, c,E0) =
∑
s∈S

c
(
eE(s) + eE0

)
= c

(
eE(S) + eE0LS

)
, (12)

where we have defined the total binding energy E(S) of a longer sequence S as 283

E(S) = log

[∑
s∈S

eE(s)

]
, (13)
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and LS is the number of sequence segments in S, which includes segments on both the 284

positive and negative strand of the sequence S. 285

For a large set of sequence segments sampled from the background distribution 286

P (s|B), the average binding probability is given by 287

〈Pb(s|M, c,E0)〉 =
∑
s

P (s|B)Pb(s|M, c,E0) =
∑
s

c
(
P (s|M) + eE0P (s|B)

)
= c

(
1 + eE0

)
.

(14)

Thus, the total amount of binding to a large set of B background segments is 288

Bc
(
1 + eE0

)
and, consequently, the probability to sample the sequence S from this 289

large pool of sequences is given by 290

Psamp(S|M,E0) =
c
(
eE(S) + LSe

E0
)

Bc(1 + eE0)
. (15)

Note that the concentration c cancels from this expression, i.e. in the limit that binding 291

is not saturated the relative amounts of binding to different sequences becomes 292

independent of the precise concentration of the TF. 293

Finally, our desired log-likelihood L(M,E0) is the log-probability to sample all the 294

sequences S from our input dataset D from the large pool of background sequences: 295

L(M,E0) =
∑
S∈D

log [Psamp(S|M,E0)] = constant +
∑
S∈D

log

[
eE(S) + LSe

E0

1 + eE0

]
. (16)

The aim of the motif finding is to maximize this log-likelihood. To do this our algorithm 296

starts from an initial PSWM model w and uses an expectation maximization (EM) 297

algorithm analogous to those used for inferring PSWMs [24] to iteratively improve 298

L(M,E0). 299

We initialize the DWT from a PSWM that can either be specified by the user, e.g. 300

when a known PSWM motif is already available for the TF in question, or it can be 301

obtained by running a standard PSWM motif finder on the input sequences S. The 302

sequences in the set S are generally longer than the length l of the motif but typically 303

not longer than a few hundred base pairs, e.g. they could consist of the binding peaks 304

obtained in a ChIP-seq experiment. 305

We then iterate the following steps. First we calculate the binding energies E(s) for 306
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each of the length-l segments in the input sequences S, and the total binding energies 307

E(S) of each input sequence. Second, we optimize the non-specific binding energy E0 308

by finding the root of 309

∂L(M,E0)

∂E0
= eE0

∑
S∈D

[
LS

eE(S) + LSeE0
− 1

1 + eE0

]
. (17)

Third, we predict binding sites in the sequences S to calculate the pair counts nijαβ , 310

i.e. the expected number of binding sites that have the pair of letters (α, β) at positions 311

(i, j). In particular, the probability that the TF is bound in a sequence-specific manner 312

to sequence S is 313

Pb(S|M,E0) =
eE(S)

eE(S) + LSeE0
, (18)

and the probability that it is bound at the specific segment s is 314

Pb(s|M,E0) =
eE(s)

eE(S) + LSeE0
, (19)

The updated pair counts nijαβ are then simply given by summing the binding 315

probabilities Pb(s|M,E0) over all sites in which letters (α, β) occur at the positions 316

(i, j). These updated pair counts then define the DWT motif M for the next iteration, 317

and this procedure is iterated until convergence. 318

Dilogos graphically represent DWT models 319

To visualize DWT models, we propose a graphical representation which generalizes the 320

well-known sequence logo and which we call a ‘dilogo’. As an example, Fig 1 shows the 321

dilogo for the TF NRF1, which we constructed from ENCODE ChIP-seq data (see 322

below). 323

The dilogo first of all shows the classical sequence logo representation of the 324

marginal probabilities wiα at the top. For example, in this example positions 3− 5 are 325

most likely to show the pattern CGC. Secondly, at the bottom the dilogo shows 326

information about pairwise dependencies evident in the DWT. As explained in the 327

supplementary materials and in previous work on protein contacts [25], we can calculate 328

for each pair of positions (i, j) the posterior probability P (i, j) that the factorization of 329
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Fig 1. Dilogo for the motif of the TF NRF1. The top row of the dilogo shows
the familiar sequence logo representation of the marginal probabilities wiα for each of
the letters α at each position i. The posterior probabilities for dependency between
each pair of positions are shown in the square lattice at the bottom of the dilogo, with
darker red color indicating higher probability of dependence. Above this square lattice a
graph with significant pairwise dependencies is shown: an arrow from node j to i
indicates that the probability of a particular letter at i depends on the letter appearing
at j. Finally, for each position i that depends on another position j, the probabilities
P (si|sj) are shown in sequence logo format, with each row corresponding to the identity
of the parent letter sj and each column showing the probabilities P (si|sj) for the child
letter si.
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P (S) contains a direct dependence between positions i and j. The probabilities P (i, j) 330

are shown in a square lattice, with the intensity of the color corresponding to the 331

posterior probability. For example, for NRF1 there are high posterior probabilities of 332

interaction between positions (2, 3), (2, 4), (2, 5), (6, 7), (6, 10), and (7, 8). 333

Because it is unwieldy to show the conditional probabilities P (si|sj) for all pairs of 334

positions (i, j), we select a set of pairwise dependencies that are jointly consistent with 335

a single factorization of the probability P (S) as follows. We list all pairwise 336

dependencies P (i, j), sorted from highest to lowest probability, and go down the list, 337

adding pairwise dependencies as long as the resulting graph does not contain any loops. 338

The resulting graph of dependencies is shown above the square with posterior 339

probabilities. In this example, position 12 depends on position 5, position 11 also 340

depends on position 5, position 10 depends on position 3, and so on. 341

Finally, for those positions i that are dependent on another position j, the 342

conditional probabilities P (si|sj) are shown in sequence logo format with one sequence 343

logo (rows in the figure) for each possible state of the parent letter sj (shown on the left 344

of the figure). For example, in the NRF1 example, the letters at position 3 through 5 345

depend on the letter at position 2. If position 2 shows a G, positions 3− 5 are very 346

likely to show the pattern CGC. However, when position 2 shows a T, positions 3− 5 347

are most likely to show the pattern CTC. 348

To enable easy application of DWT models in motif finding we have made a tool-box 349

with software available for motif inference with DWTs, prediction of TFBSs using 350

DWTs, and visualization of DWT models using dilogos. Source code and executables 351

can be downloaded from dwt.unibas.ch. 352

Calculating likelihoods of HT-SELEX datasets 353

Given a motif model that assigns energies E(s) to sequence segments s, we calculate the 354

likelihood L(E) of a HT-SELEX dataset as follows. First, for each sequence S that 355

occurs in the HT-SELEX data, we calculate a total energy E(S) = log[
∑
s∈S e

E(s)]. 356

One complication is that the HT-SELEX sequences are all very short, i.e. about 20 357

nucleotides, such that some motifs can be longer than the input HT-SELEX sequences. 358

To deal with this we padded each HT-SELEX sequence with l/2 N nucleotides on both 359
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the left and right, where l is the motif length, and adapted our sequence scoring to 360

calculate energies for sequence segments containing N nucleotides (see supporting 361

information). 362

We assume that, in each round of the HT-SELEX experiment, the probability of 363

sampling a sequence S is proportional to eE(S). Let ft(S) denote the frequency of 364

sequence S in the pool of sequences at generation t of the HT-SELEX experiment, and 365

let E(S) denote the total binding energy assigned by the model (either DWT or 366

PSWM) to sequence S. Under this model, the probability that a single selected 367

sequence is sequence S is given by 368

P (S|E, ft) =
eE(S)ft(S)∑
S′ ft(S′)eE(S′)

. (20)

If we denote by nt(s) the number of occurrences of sequence S at generation t in the 369

experiment, then the log-likelihood L(E) of the entire HT-SELEX data-set, given an 370

energy function E, is given by 371

L(E) =
T−1∑
t=1

(∑
S

nt+1(S) log[P (S|E, ft)]

)
, (21)

where T is the total number of generations in the experiment. This log-likelihood can 372

be compared with the log-likelihood for obtaining the same data by random sampling: 373

L0 =

T−1∑
t=1

(∑
S

nt+1(S) log[ft(S)]

)
. (22)

However, when we applied this calculation we find, for almost all corresponding 374

HT-SELEX/ChIP-seq combinations, that the likelihood L0 is larger than the likelihood 375

L(E), i.e. even for many cases of TFs with well-known motifs. To investigate the origin 376

of this we investigated to what extent the enrichment of sequences from one generation 377

to the next correlates with their predicted energies. In particular, we stratified all 378

sequences into energy bins and calculated the total frequencies ft(E) of sequences with 379

predicted energy E at each generation t. Note that if the probability of a sequence S to 380

be selected is proportional to eE(S) then the observed log-enrichment 381

log[ft+1(E)/ft(E)] should be directly proportional to the energy E. However, we 382
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observed that, while the log-enrichment generally correlates well with E, the slope of 383

the linear relationship is much less than 1, i.e. log[ft+1(E)/ft(E)] = βE + constant, 384

with β much smaller than 1. That is, it appears that in HT-SELEX the binding 385

energies vary over a smaller range than predicted by the motif models. 386

To incorporate this observation, we introduce a ‘temperature’ parameter β, assume 387

that the probability of selecting a sequence S is proportional to eβE(S), and calculate a 388

log-likelihood L(E, β) that depends on both the motif model energies E and the 389

temperature parameter β. It is straightforward to show that the difference dL(E, β) 390

between the log-likelihood L(E, β) and the random sampling log-likelihood L0 can be 391

written as 392

dL(E, β) = L(E, β)− L0 =
T−1∑
t=1

N(t+ 1)
(
β〈E〉t+1 − log[〈eβE〉t]

)
, (23)

where N(t) =
∑
S nS(t) is the total number of sequences in generation t, 〈E〉t is the 393

average energy of the sequences in generation t 394

〈E〉t =
1

N(t)

∑
S

nS(t)E(S), (24)

and 〈eβE〉t is the average selection probability of sequences in generation t 395

〈eβE〉t =
1

N(t)

∑
S

nS(t)eβE(S). (25)

For each PSWM and DWT model, we optimize β so as to maximize dL(E, β) and 396

calculate, as a final performance measure, the log-likelihood difference dL per sequence, 397

i.e. dL/N with N =
∑T
t=2N(t). 398

Results and Discussion 399

DWT models outperform PSWMs and models that only 400

incorporate adjacent dependencies 401

To compare the performance DWT models with the performance of PSWMs and other 402

motif models, we analyzed a collection of 121 ChIP-seq datasets for 92 different human 403
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TFs from the ENCODE consortium [26]. The general setup of our performance 404

comparison is shown in Fig. 2. 405

We processed each of the ChIP-seq datasets using CRUNCH, an integrated ChIP-seq 406

analysis pipeline that we developed in-house and that includes automated PSWM motif 407

analysis [28]. Full analysis reports on these ChIP-seq datasets as well as links to all the 408

raw ChIP-seq data used are available at crunch.unibas.ch/ENCODE REPORTS/. 409

CRUNCH returns a list of binding peaks, which are typically 100− 300 base pairs in 410

length, ordered by their significance. For each data-set, we selected the top 1000 411

binding peaks. The peak sequences were randomly divided into two subsets of 500 412

sequences, one of which was used as a training set to fit both a PSWM and DWT motif, 413

and one for testing the performance of the fitted motifs. As part of its motif analysis, 414

CRUNCH extracts orthologous sequences from 6 other mammalian species for each 415

peak sequence and multiply aligns these using T-Coffee [29]. The motif finder 416

PhyloGibbs [22] is then run on these alignments to infer PSWM motifs. CRUNCH 417

further refines these motifs on the multiple alignments of the training sequences using 418

MotEvo [30]. For each dataset, we use the top motif returned by CRUNCH as an initial 419

PSWM motif in our analysis and obtained its TFBS predictions on the peak sequences. 420

As an example, Fig. 2b shows the initial PSWM motif inferred for the TF CEBPB. 421

Using this PSWM as a starting motif we then iteratively fitted a PSWM and a 422

DWT motif on the training sequences (Fig. 2c). The DWT model was fitted using the 423

EM procedure described in the section on motif finding with DWTs above. In order to 424

compare DWTs and PSWMs on equal footing, a PSWM was also fitted on the same 425

training set using the exact same EM procedure. 426

We then assess the ability of the fitted DWT and PSWM models to explain the 427

ChIP-seq data. In particular, besides the 500 peak sequences of the test set, we created 428

2000 random decoy sequences that have the same overall dinucleotide frequencies and 429

distribution of lengths as the binding peaks. For each of these 2500 sequences we 430

calculate an overall binding energy E(S) according to equation (13) using both the 431

PSWM and DWT motifs inferred from the training set. Figure 2d shows the 432

distributions of binding energies that are assigned to the true binding peaks (black) and 433

the decoy sequences (grey) for the fitted PSWM motif, as well as the fitted DWT motif. 434

Comparison of these distributions makes clear that the predicted binding energies of 435
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Fig 2. Comparison of DWT and PSWM performance on ChIP-seq data. a)
For a given ChIP-seq data-set we use the CRUNCH ChIP-seq analysis pipe-line to
identify the top 1000 binding peaks and randomly subdivide these into an training set
and a test set of 500 peak sequences each. b) Standard PSWM motif finding is used to
determine an initial PSWM motif [22,27]. c) Using expectation maximization, a PSWM
and a DWT model are fitted on the training data. d) Distributions of the predicted
binding energies E(S), under both the DWT and PSWM models, of the 500 peak
sequences and a set of 2000 random ‘decoy sequences’ that have the same lengths and
dinucleotide composition as the peak sequences. e) Precision recall curves
demonstrating the ability of the DWT, PSWM, and initial PSWM models to
distinguish peak sequences from decoys based on their predicted binding energies.
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true binding peaks and decoys show a substantially larger separation in the DWT 436

model. Interestingly, this increased separation results mainly from the binding energies 437

of the decoy sequences being more tightly focused at low values. This behavior is 438

observed for a large number of the TFs that we analyzed. 439

By systematically varying a cut-off on the binding energy E(S), we then determine a 440

precision recall curve where, at each cut-off Ec, the precision is the fraction of all 441

sequences with E(S) > Ec that are true binding peaks, and the recall is the fraction of 442

all true binding peaks that have E(S) > Ec. Figure 2e shows the precision recall curves 443

of the original input PSWM, the fitted PSWM, and the DWT model for the TF 444

CEBPB. As a final measure of performance we use the area under the precision-recall 445

curve, which equals the average precision, averaged over all recalls between zero and one. 446

Figure 3a compares the performance, as measured by average precision, of the DWT 447

and PSWM models on all ENCODE [26] ChIP-seq data-sets that we studied. 448

Remarkably, with the exception of some minor score fluctuations, the DWT model 449

performs at least as well as the PSWM model on all data-sets. This shows that, even 450

though the DWT has no explicit regularization scheme or, in fact, any parameters that 451

need to be set by the user, the model never suffers from over-fitting. Moreover, the 452

DWT model clearly outperforms PSWMs for a substantial fraction of the datasets. 453
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Fig 3. Comparison of the performance of DWT, PSWM, and ADJ Models
on the ENCODE ChIP-seq data-sets. a: Difference in average precision of the
DWT and PSWM models across the 121 ChIP-seq datasets. Datasets are sorted from
left to right by the difference in average precision. The inset shows the PSWM average
precision (horizontal axis) against the DWT precision (vertical axis), with each dot
corresponding to one ChIP-seq dataset, as well as the line y = x. b: As in panel a, but
now comparing the average precisions of the DWT model with the ADJ model in which
only dependencies between adjacent positions are allowed.

We investigated whether TFs for which the DWT most significantly outperforms the 454
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PSWM tend to fall within particular structural families and did not find an any clear 455

association (data not shown). Although it is true that DWTs without any clear pairwise 456

dependencies do not outperform PSWMs, the reverse will not generally hold. That is, 457

the fact that certain positions show clear dependencies does not guarantee that these 458

dependencies will help distinguish binding sites from decoy sequences. Indeed, there are 459

datasets for which DWTs show pairwise dependencies with very high posterior, but 460

where the DWT does not significantly outperform the PSWM. For example, the TF 461

MEF2A shows several pairs of positions with very strong dependency, but the MEF2A 462

DWT does not significantly outperform the corresponding PSWM (see the table with 463

results at http://crunch.unibas.ch/DWT/table.html). 464

Previous investigations of dependencies between positions in TFBSs have suggested 465

that dependencies between immediately adjacent positions are much more common and 466

significant than dependencies between distal positions [31]. One may thus wonder to 467

what extent the distal dependencies that the DWT infers contribute to the performance 468

of the DWT, or whether a model that uses only dependencies between adjacent 469

positions would perform equally well. As explained in the supporting information, it is 470

straight-forward to adapt the DWT model to only allow dependencies between adjacent 471

positions. We call this version of our motif model the adjacent model (ADJ). We trained 472

and tested the ADJ model in the exact same way as the DWT and PSWM models on 473

all ChIP-seq datasets and Fig. 3b shows the performance comparison between the DWT 474

and ADJ models. We find that the DWT outperforms the ADJ model for more than 475

80% of the datasets and substantially so for about 25% of the datasets. 476

Whereas the PSWM never substantially outperformed the DWT (the largest 477

difference in average precision being 3%), there is one dataset for which the ADJ model 478

outperformed the DWT by more than 16% in average precision. This is for ChIP-seq 479

experiment performed in the HeLa cell-line with the chromodomain-like TF CHD2. 480

Notably, the CHD2 TF was also assayed in the GM12878 cell-line, and for this dataset 481

the DWT motif did outperform the ADJ motif. We investigated this case in more detail 482

and found that the DWT had converged to a motif without any significant 483

dependencies, whereas the ADJ had converged to a motif with identical consensus, but 484

with several strong adjacent dependencies. As a test, we reran the DWT motif search 485

on this dataset using the trained ADJ model as a starting motif. We found that the 486
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DWT search now converged to a motif that does outperform the ADJ model. That is, 487

there are DWT models that outperform the ADJ for this dataset and the reason the 488

DWT performed poorly was that the motif search happened to have gotten stuck in a 489

poor local optimum. 490

DWTs outperform previously proposed motif models that 491

incorporate distal dependencies 492

Comparing the performance of DWTs with previously proposed approaches is 493

challenging because readily usable software that can be applied to large-scale ChIP-seq 494

results is often not available, and even when software is available it can be challenging 495

to apply it in a manner that allows meaningful performance comparison. Our discussion 496

of the results on the CHD2 dataset underlined that, in order to compare the 497

performance of different motif models, it is essential that all other sources of variability 498

are kept as constant as possible, i.e. not only should we use the exact same train and 499

test data, also the way the motifs are inferred, the way scores of segments are combined 500

to calculate scores of longer sequences, and so on, should be kept as similar as possible. 501

While it was straightforward to accomplish this for comparing our own PSWM, ADJ, 502

and DWT models in the previous section, this is much more challenging when using 503

software from other groups. However, we performed a comparison analysis with two 504

previous methods that allow distal dependencies, for which software was available. 505

The authors of the FMM method (Sharon et al. [18]) and the PIM method 506

(Santolini et al. [19]) have not only made software for their motif models available, they 507

also graciously assisted us in adapting their code to allow it to be run in a manner that 508

is as close as possible to the way the DWT model is trained and tested, as detailed in 509

the supporting information. 510

Figure 4 compares the average precision of the DWT models with those of the PIM 511

and FMM models on the 121 ChIP-seq datasets. We find that, in these tests, the DWT 512

model outperforms the PIM and FMM models on virtually all datasets, and 513

substantially so for a large fraction of the datasets. We want to stress that this does not 514

imply that high-performance PIM and FMM motif models cannot be constructed for 515

these datasets. In our analysis the PIM and FMM motif finders were just run once with 516
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Fig 4. Comparison of the performance of the DWT, PIM [19] and
FMM [18] models on the ENCODE ChIP-seq data-sets. a: Difference in
average precision of the DWT and PIM models across the 121 ChIP-seq datasets.
Datasets are sorted from left to right by the difference in average precision. The inset
shows the PIM average precision (horizontal axis) against the DWT precision (vertical
axis), with each dot corresponding to one ChIP-seq dataset, as well as the line y = x. b:
As in panel a, but now comparing the average precisions of the DWT model with the
FMM model.

default settings and, with appropriate tuning of the parameters, their performance 517

could presumably be substantially improved. However, one of the impediments to the 518

general adoption of more complex motif models has been that running motif inference 519

with these more complex models typically requires expert supervision. One of the main 520

benefits of the DWT model is that it allows robust inference without the need of tuning 521

any parameters. 522

Pairwise dependencies are enriched at neighboring positions 523

and virtually absent in randomized data 524

We investigated to what extent pairs of positions that show dependency are restricted 525

to nearest-neighbor interactions. Combining results from all 121 ChIP-seq datasets we 526

calculated the total number of adjacent and and non-adjacent pairs at each posterior 527

probability of dependency. Figure 5 shows the reverse cumulative distributions of the 528

total number of adjacent and distal pairs in our data as a function of their posterior 529

probability. While the absolute number of distal dependencies is consistently above the 530

number of adjacent dependencies at each cut-off, it should be noted that the number of 531

possible distal dependencies is almost 7 times as large as the number of possible 532

adjacent dependencies. Thus, the fraction of adjacent positions that shows dependency 533

is significantly higher than the fraction of distal positions that shows dependency. In 534
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summary, adjacent positions are more likely to be dependent than distal positions, 535

although in absolute terms there are more distal dependencies. 536
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Fig 5. Number of adjacent and distal dependencies as a function of the
posterior probability of dependency. The total number of of adjacent (solid red)
and distal (solid blue) dependent pairs as a function of a cut-off on the posterior
probability of the dependency of the pairs. The dashed lines show the number of
adjacent (red) and distal (blue) pairs in randomized data in which DWTs were
constructed from sequences sampled from PSWM models.

To confirm the statistical significance of the observed dependencies, we constructed a 537

randomized dataset that should be devoid of dependencies as follows. For each dataset 538

we took the inferred DWT and marginalized it to obtain the corresponding PSWM. 539

When then sampled the same number of binding sites from this PSWM as went into the 540

construction of the DWT, and constructed a new DWT from this set of synthetic 541

binding sites. Finally, we calculated the posterior probabilities of dependency in the set 542

of 121 DWTs so constructed. As shown in Fig. 5, virtually no dependencies appear in 543

this marginalized data, and the dependencies that do appear have low posterior 544

probabilities. 545

DWT models trained on ChIP-seq data outperform PSWMs on 546

HT-SELEX data for the same TF 547

Systematic evolution of ligands by exponential enrichment (SELEX) is a 548

well-established in vitro method for studying protein-DNA binding specificity [32]. 549

Starting from a random pool of short DNA (or RNA) segments, the sequences are 550

selected for binding to a DNA protein of interest. The sequences that bound the target 551
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are then amplified. This selection and amplification is repeated for multiple rounds to 552

systematically enrich for sequences that strongly bind to the target protein. A 553

high-throughput variant of this method (HT-SELEX), in which the sequences from each 554

round are sequenced using next-generation sequencing was introduced by Jolma et 555

al. [33], and has been more recently applied to a large number of human TFs [34]. This 556

HT-SELEX data provides a completely independent dataset for comparing the 557

performance of DWT and PSWM models of TF binding affinities. Moreover, whereas 558

ChIP-seq data arguably probe the in vivo binding of a TF in a specific cell type, 559

HT-SELEX probes the binding properties of the DNA binding domain of the TF in an 560

in vitro setting. It is thus interesting to investigate whether the DWT outcompetes 561

PSWMs in this in vitro setting as well, and to what extent the binding specificities that 562

were inferred from the ChIP-seq data also apply to the HT-SELEX data. 563

We collected, for each of the TFs assayed in [34], all of our 121 ChIP-seq datasets 564

that were performed with the same (or very similar) TF. In total there were 45 565

combinations of HT-SELEX/ChIP-seq experiments that were done with the same TF 566

(listed in supplementary table S1). For each combination we then calculated how well 567

the DWT and PSWM models, as inferred from the ChIP-seq dataset, explain the 568

observed HT-SELEX data. 569

To model the HT-SELEX data we assume that, at each round of the experiment, 570

sequences are selected according to their binding energy to the TF as explained in the 571

materials and methods. As a performance measure of a given motif model, we calculate 572

the average excess of the log-likelihood per selected sequence in each HT-SELEX 573

generation relative to a model which assumes random sampling of sequences. Figure 6 574

shows the differences in log-likelihood per sequence between the DWT and PSWM 575

models on the 45 combinations of HT-SELEX/ChIP-seq datasets. 576

For 35 of the 45 combinations, the DWT outperforms the PSWM model on the 577

HT-SELEX data (Fig. 6). Moreover, there is only one example where the PSWM 578

clearly outperforms the DWT model (this example corresponds to the TF IRF4). Note 579

that, although the log-likelihood differences per sequence are typically modest, given the 580

very large number of observations in these HT-SELEX datasets, improvements as small 581

as 0.001 are still highly statistically significant. In summary, for all but one of the TFs, 582

the DWT model that was inferred from ChIP-seq data performs at least as well and 583
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Fig 6. Performance comparison of the DWT and PSWM Models on the
HT-SELEX data. Difference in the log-likelihood per sequence between the DWT
and PSWM models for each of the 45 corresponding HT-SELEX/ChIP-seq dataset
combinations, ordered from left to right by the difference in log-likelihood per sequence.
The inset shows the log-likelihood per sequence for the DWT (vertical axis) against the
log-likelihood per sequence for the PSWM (horizontal axis), with each dot
corresponding to one dataset combination.

often outperforms the PSWM model on HT-SELEX data for the same TF. 584

Conclusion 585

Since its introduction in the early 1980s [35], the PSWM model has become the 586

workhorse for binding site prediction in regulatory genomics. However, as data have 587

accumulated, evidence has been mounting over the last decade that there can be 588

significant dependencies between the nucleotides occurring at different positions of 589

regulatory sites. Consequently, there is a need for extending regulatory motif models to 590

take such dependencies into account. However, in order for such an extension to gain 591

wide acceptance the motif model should be rigorous, flexible, be guaranteed to perform 592

at least as well as PSWMs, and be easy to use. Approaches that have been presented so 593

far have either made unrealistic restrictions on the models, e.g. by demanding that 594

dependencies can only exist between neighboring positions, or they have involved 595

complex ad hoc regularization schemes to avoid over-fitting, which make them 596

cumbersome to use in practice. 597

Here we have presented a new motif model, the dinucleotide weight tensor, that is 598
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general in that it allows for dependencies between arbitrary positions in the motif, it is 599

rigorous in that it is derived from first principles within a Bayesian framework, and 600

avoids over-fitting by explicitly marginalizing over all unknown parameters. In 601

particular, because the model has no parameters that the user needs to tune, it can be 602

easily and robustly applied in practice. Indeed, by inferring DWTs on a large set of 603

ChIP-seq datasets, we have shown that DWTs never perform significantly worse than 604

PSWMs and clearly outcompete them in a substantial fraction of the cases. By showing 605

that, for most datasets, DWTs also outperform a model in which only dependencies 606

between adjacent positions are allowed, we further showed that distal dependencies 607

contribute significantly to the performance of the DWTs. We also showed that DWTs 608

outperform two previously proposed methods that incorporate distal dependencies. 609

Notably, while we were finishing this work, a very interesting new approach was 610

proposed by Siebert and Söding [36]. Their motif model is a standard k-order Markov 611

model in which each letter depends on the (k − 1) previous letters in the site, but a new 612

way for controlling over-fitting is proposed, in which the marginals at lower orders are 613

used a priors for the conditional probabilities at higher orders, and very robust 614

performance of this method is proposed. Interestingly, it would be straightforward to 615

combine this method of setting priors for conditional probabilities with the DWT’s 616

method for summing over possible spanning trees, and this would be an interesting 617

direction to explore for future work. 618

The fact that DWT models inferred from ChIP-seq data also outperform PSWMs on 619

HT-SELEX data, suggests that the dependencies captured by the DWT reflect 620

something in the biophysics of the interaction between the DNA binding domain of the 621

TF and the DNA sequence of the site. Our observation that, while significant 622

dependencies occur between distal positions, interactions between neighboring positions 623

are the most common, is also consistent with this interpretation. Another interesting 624

area for future research is to investigate the possible structural and biophysical basis for 625

the observed direct dependencies. However, we should note that, in spite of investing 626

considerable efforts ourselves in analyzing whether the occurrence of dependencies can 627

be related to structural features of the TFs, or to the way that they interact with the 628

DNA, we have so far not been able to uncover any consistent biophysical interpretation 629

of the observed dependencies. It is conceivable that there is no simple biophysical 630
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interpretation to the direct dependencies. For example, inspection of some of the DWT 631

models suggests that dependencies often cause combinations of deleterious mutations to 632

reduce the binding energy less than predicted by the PSWM model and this might be a 633

global effect that is spread across many dependencies, rather than reflecting particular 634

structural features of the TF-DNA interaction. 635

Our analysis has also shown that, notwithstanding the fact that DWTs strongly 636

outperform PSWMs for some TFs, for the majority of TFs the improvement that the 637

DWT provides is rather modest. This highlights that, for many TFs, PSWMs are 638

sufficiently accurate for TFBS prediction, and few significant dependencies exist. 639

Consequently, robust practical application of more complex motif models requires 640

strong safe-guards against over-fitting, i.e. because for many TFs there will simply not 641

be many strong dependencies. This is arguably the biggest advantage of the DWT 642

models presented here: DWTs have no parameters to tune, do not overfit, and 643

automatically reduce to a PSWM model when no significant dependencies exist. We 644

believe that these properties make DWTs especially attractive for adopting in practical 645

settings and we hope that many researchers can be convinced to start using DWT 646

models in their motif finding and TFBS prediction. 647

Acknowledgments 648

SO thanks Lukas Burger for help with the Bayesian model and its implementation, and 649

Peter Pemberton-Ross and Stephanie Bishop for help with the writing of the manuscript. 650

This work was supported by SystemsX.ch through the CellPlasticity project grant. 651

References

1. Paillard G, Lavery R. Analyzing protein-DNA recognition mechanisms. Structure.

2004;12(1):113–22.

2. Endres RG, Schulthess TC, Wingreen NS. Toward an atomistic model for

predicting transcription-factor binding sites. Proteins. 2004;57(2):262–8.

3. Morozov AV, Havranek JJ, Baker D, Siggia ED. Protein-DNA binding specificity

predictions with structural models. Nucleic Acids Res. 2005;33(18):5781–5798.

PLOS 29/33

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/078212doi: bioRxiv preprint 

https://doi.org/10.1101/078212
http://creativecommons.org/licenses/by-nc/4.0/


4. Berg OG, von Hippel PH. Selection of DNA binding sites by regulatory proteins:

Statistical-mechanical theory and application to operators and promoters. J Mol

Biol. 1987;193:723–750.

5. van Nimwegen E. Finding regulatory elements and regulatory motifs: a general

probabilistic framework. BMC Bioinformatics. 2007;8 Suppl 6:S4.

doi:10.1186/1471-2105-8-S6-S4.

6. Seeman NC, Rosenberg JM, Rich A. Sequence-specific recognition of double

helical nucleic acids by proteins. Proc Natl Acad Sci USA. 1976;73(3):804–808.

7. Johnson DS, Mortazavi A, Myers RM, Wold B. Genome-wide mapping of in vivo

protein-DNA interactions. Science. 2007;316(5830):1497–1502.

8. Mukherjee S, Berger MF, Jona G, Wang XS, Muzzey D, Snyder M, et al. Rapid

analysis of the DNA-binding specificities of transcription factors with DNA

microarrays. Nat Genet. 2004;36(12):1331–1339.

9. Ogawa N, Biggin MD. High-throughput SELEX determination of DNA sequences

bound by transcription factors in vitro. Methods Mol Biol. 2012;786:51–63.

10. Man TK, Stormo GD. Non-independence of Mnt repressor-operator interaction

determined by a new quantitative multiple fluorescence relative affinity

(QuMFRA) assay. Nucleic Acids Res. 2001;29(12):2471–8.

11. Bulyk ML, Johnson PLF, Church GM. Nucleotides of transcription factor

binding sites exert interdependent effects on the binding affinities of transcription

factors. Nucleic acids res. 2002;30(5):1255–61.

12. Badis G, Berger MF, Philippakis AA, Talukder S, Gehrke AR, Jaeger SA, et al.

Diversity and complexity in DNA recognition by transcription factors. Science.

2009;324(5935):1720–3.

13. Nutiu R, Friedman RC, Luo S, Khrebtukova I, Silva D, Li R, et al. Direct

measurement of DNA affinity landscapes on a high-throughput sequencing

instrument. Nat Biotechnol. 2011;29(7):659–664. doi:10.1038/nbt.1882.

PLOS 30/33

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 21, 2017. ; https://doi.org/10.1101/078212doi: bioRxiv preprint 

https://doi.org/10.1101/078212
http://creativecommons.org/licenses/by-nc/4.0/


14. Siddharthan R. Dinucleotide weight matrices for predicting transcription factor

binding sites: generalizing the position weight matrix. PLoS One.

2010;5(3):e9722.

15. Mathelier A, Wasserman WW. The next generation of transcription factor

binding site prediction. PLoS Comput Biol. 2013;9(9):e1003214.

16. Barash Y, Elidan G, Friedman N, Kaplan T. Modeling dependencies in

protein-DNA binding sites. Proceedings of the seventh annual international

conference on Computational molecular biology - RECOMB ’03. 2003; p. 28–37.

doi:10.1145/640075.640079.

17. Ben-Gal I, Shani A, Gohr A, Grau J, Arviv S, Shmilovici A, et al. Identification

of transcription factor binding sites with variable-order Bayesian networks.

Bioinformatics. 2005;21(11):2657–2666.

18. Sharon E, Lubliner S, Segal E. A feature-based approach to modeling

protein-DNA interactions. PLoS Comput Biol. 2008;4(8):e1000154.

19. Santolini M, Mora T, Hakim V. Beyond position weight matrices: nucleotide

correlations in transcription factor binding sites and their description.

arXiv:13024424v1. 2013;.

20. Burger L, van Nimwegen E. Accurate prediction of protein-protein interactions

from sequence alignments using a Bayesian method. Molecular Systems Biology.

2008;4(165).

21. Burger L, van Nimwegen E. Disentangling Direct from Indirect Co-Evolution of

Residues in Protein Alignments. PLoS Comput Biol. 2010;6(1):e1000633.

22. Siddharthan R, Siggia ED, van Nimwegen E. PhyloGibbs: A Gibbs Sampling

Motif Finder That Incorporates Phylogeny. PLoS Comput Biol. 2005;1(7):e67.
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