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Abstract	1	
Abundant	public	expression	data	capture	gene	expression	across	diverse	conditions.	These	2	
steady	state	mRNA	measurements	could	reveal	the	transcriptional	consequences	of	cells’	3	
genetic	backgrounds	or	their	responses	to	the	environment.	However,	public	data	remain	4	
relatively	untapped,	in	part	because	extracting	biological	signal	as	opposed	to	technical	noise	5	
remains	challenging.	Here	we	introduce	a	procedure,	termed	eADAGE,	that	performs	6	
unsupervised	integration	of	public	expression	data	using	an	ensemble	of	neural	networks	as	7	
well	as	heuristics	that,	given	a	dataset,	help	users	identify	an	appropriate	level	of	model	8	
complexity.	This	ensemble	modeling	approach	captures	biological	pathways	more	clearly	than	9	
existing	methods,	enabling	analyses	that	span	entire	public	gene	expression	compendia	such	as	10	
that	for	the	bacterium	Pseudomonas	aeruginosa.	These	analyses	reveal	a	previously	11	
undiscovered	feature	of	the	phosphate	starvation	response	apparent	in	public	data:	a	sensor	12	
kinase,	KinB,	that	is	required	for	full	activation	of	the	response	to	phosphate	at	intermediate	13	
concentrations.	Our	molecular	validation	experiments	confirm	this	role	of	KinB	and	our	screen	14	
of	a	histidine	kinase	knock	out	collection	confirmed	the	prediction’s	specificity.	Public	data	are	15	
captured	from	a	broad	range	of	conditions	in	diverse	organism	backgrounds	and	may	provide	a	16	
unique	opportunity	to	identify	these	subtle	and	context-specific	regulatory	interactions.	17	
Algorithms	that	extract	biological	signal	from	these	data,	such	as	eADAGE,	can	highlight	18	
opportunities	to	discover	mechanisms	that	are	apparent	from	but	unrealized	in	public	data.	19	
	20	
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	24	
Introduction	25	
Available	gene	expression	data	are	outstripping	our	knowledge	about	the	organisms	that	we’re	26	
measuring.	Ideally	each	organism’s	data	reveals	the	principles	underlying	gene	regulation	and	27	
consequent	pathway	activity	changes	in	every	condition	in	which	gene	expression	is	measured.	28	
Extracting	this	information	requires	new	algorithms,	but	many	commonly	used	algorithms	are	29	
supervised.	These	algorithms	require	curated	pathway	knowledge	to	work	effectively,	and	in	30	
many	species	such	resources	are	biased	in	various	ways	(Schnoes	et	al,	2013;	Gillis	&	Pavlidis,	31	
2013;	Greene	&	Troyanskaya,	2012).	Annotation	transfer	can	help,	but	such	function	32	
assignments	remain	challenging	for	many	biological	processes	(Jiang	et	al,	2016).		An	33	
unsupervised	method	that	doesn’t	rely	on	annotation	transfer	would	bypass	the	challenges	of	34	
both	annotation	transfer	and	biased	knowledge.	35	
	36	
Along	with	our	wealth	of	data,	abundant	computational	resources	can	now	power	deep	37	
unsupervised	applications	of	neural	networks	(Vincent	et	al,	2008).	Denoising	autoencoders	38	
(DAs),	an	unsupervised	neural	network	method,	are	well	suited	to	gene	expression	data	(Tan	et	39	
al,	2015).	DAs	are	more	robust	than	linear	approaches	such	as	ICA	or	PCA	in	the	context	of	40	
public	data,	which	employ	heterogeneous	experimental	designs,	lack	shared	controls	and	41	
provide	limited	metadata	(Tan	et	al,	2016b).	Investigators	can	use	models	trained	on	public	42	
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data	to	reexamine	their	own	data	to	identify	the	processes	or	pathways	that	are	particularly	43	
perturbed	in	their	experiment.	44	
	45	
As	a	result	of	a	training	process	that	uses	stochastic	gradient	descent,	each	DA	model	46	
represents	a	local	minimum.	Because	the	number	of	parameters	is	large,	there	are	many	47	
distinct	models	that	can	explain	the	data.	One	way	to	address	this	challenge	is	by	finding	48	
patterns	that	are	stable	across	multiple	models,	which	Yu	highlights	for	its	importance	in	49	
statistical	inference	(Yu,	2013).	Even	if	run-to-run	variability	in	models	obscures	some	biological	50	
features,	these	stable	cross-model	patterns	may	clearly	resolve	biological	pathways.	To	directly	51	
target	stability,	we	introduce	an	unsupervised	ensemble	modeling	procedure	that	improves	52	
model	robustness	by	constructing	an	ensemble	neural	network	model.		Our	approach	is	53	
inspired	by	consensus	clustering	(Monti	et	al,	2003),	which	now	has	become	a	standard	part	of	54	
clustering	applications	for	biological	datasets.	55	
	56	
While	this	new	generation	of	unsupervised	data	integration	methods	provides	a	powerful	lens	57	
through	which	to	study	complex	biological	systems,	it	also	raises	questions:	how	many	58	
biological	signatures	are	in	the	data;	and	how	many	samples	are	needed	to	find	those	features?	59	
Heuristics	should	include	data-driven	analyses	that	can	be	applied	in	any	setting,	as	well	as	60	
knowledge-based	heuristics	that	are	suitable	in	cases	where	pathway	annotations	are	available.	61	
We	introduce	both	data-	and	knowledge-based	heuristics	to	suggest	an	appropriate	model	size	62	
for	a	given	data	compendium.		63	
	64	
We	previously	constructed	a	50-node	ADAGE	(Analysis	using	Denoising	Autoencoders	for	Gene	65	
Expression)	model	of	P.	aeruginosa	because	this	balanced	the	need	for	breadth	of	the	model	66	
with	the	limits	of	manual	annotation	required	for	the	initial	validation	of	the	method	(Tan	et	al,	67	
2016b).	Our	heuristics	indicate	that	the	existing	P.	aeruginosa	compendium	can	support	300	68	
node	models,	which	we	use	in	this	work.	We	compare	ADAGE	models	with	models	generated	69	
through	an	ensemble	form	of	ADAGE	(eADAGE)	and	find	that	eADAGE	models	have	greater	70	
stability.	The	eADAGE	models	are	not	only	more	robust,	but	also	more	successfully	capture	71	
pathway	features	in	the	data.	While	ADAGE	allows	comparison	of	pathway	activities	within	an	72	
experiment,	eADAGE	models	also	enable	analyses	that	cut	across	an	organism’s	gene	73	
expression	compendium.	We	analyze	P.	aeruginosa’s	responses	to	multiple	types	of	media	with	74	
eADAGE.	This	cross-compendium	analysis	reveals	a	gene	expression	signature	for	the	response	75	
to	low-phosphate	in	certain	media,	which	our	molecular	validation	confirms.	Our	analyses	of	76	
this	signature	across	the	compendium	revealed	a	previously	undiscovered	link	between	KinB	77	
and	PhoB	activity.	PhoB	is	known	to	mediate	the	low	phosphate	response	and	is	canonically	78	
regulated	by	a	histidine	kinase,	PhoR.	However,	our	molecular	validation	shows	PhoA	activity,	79	
which	indicates	PhoB	activity,	independent	of	PhoR	in	some	conditions	and	dependent	on	KinB	80	
in	some	conditions.	Our	experiments	confirm	that	KinB	regulates	PhoB	activity	at	physiologically	81	
relevant	phosphate	concentrations	and	that	this	activity	is	specific	to	KinB	among	kinases.	82	
	83	
In	summary,	eADAGE	more	precisely	and	robustly	represents	biological	processes	and	pathways.	84	
It	allows	biologists	to	identify	not	only	differentially	active	signatures	within	one	experiment,	85	
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but	also	cross-compendium	patterns	that	reveal	undiscovered	regulatory	mechanisms	captured	86	
within	existing	public	data.	87	
	88	
Results	89	
Analysis	of	the	effects	of	model	size	on	pathway	characterization	of	ADAGE	models	from	P.	90	
aeruginosa	gene	expression.	91	
While	ADAGE	models	are	constructed	without	the	use	of	any	curated	information,	we	can	use	92	
experimentally-derived	knowledge	on	gene	functions	to	provide	heuristic	information	about	93	
the	number	and	types	of	pathways	captured	by	a	model	and	determine	how	this	varies	with	94	
model	size.	We	define	a	functional	signature	learned	by	an	ADAGE	model	as	a	set	of	genes	that	95	
contribute	the	highest	positive	or	highest	negative	weights	to	a	specific	node	(see	methods	for	96	
detail).	Therefore,	one	node	results	in	two	gene	signatures,	one	on	each	high	weight	side.	These	97	
high-weight	(HW)	genes	are	often	involved	in	a	common	biological	process	as	demonstrated	by	98	
the	fact	that	there	is	often	a	statistically	significant	enrichment	in	specific	KEGG	pathways	99	
within	each	signature.	For	models	of	different	sizes	(10-1000	nodes),	we	determined	the	100	
number	of	KEGG	pathways	significantly	associated	with	at	least	one	gene	signature	in	a	model,	101	
referred	to	as	KEGG	pathway	coverage	for	that	model,	and	found	that	KEGG	pathway	coverage	102	
increased	as	model	size	increased	until	a	model	size	of	approximately	300	(Figure	1A).	The	103	
number	of	pathways	per	node	(including	pathways	associated	with	both	the	positive	and	104	
negative	signatures	in	a	node)	for	all	nodes	with	at	least	one	associated	KEGG	pathway	105	
decreased	as	model	size	increased	(Figure	EV1),	suggesting	that	multiple	pathways	were	106	
grouped	in	small	models	and	were	separated	into	more	discrete	features	in	large	models	with	107	
more	nodes.			108	
	109	
Methods	that	use	pathway	coverage	to	identify	the	appropriate	model	size	for	a	collection	of	110	
samples	require	curated	pathways,	but	a	parallel	analysis	can	be	performed	without	this	111	
requirement.	During	ADAGE	training,	neural	networks	are	trained	to	reconstruct	the	input	from	112	
data	with	noise	added,	and	calculating	the	reconstruction	error	does	not	require	any	curated	113	
information.	The	reconstruction	error	can	also	be	used	to	estimate	model	sizes	that	can	be	114	
supported	by	the	available	data.	The	reconstruction	error	quickly	decreases	as	model	size	115	
increases	and	reaches	a	plateau	at	model	size	of	approximately	300	(Figure	1B).	Further	116	
increasing	model	size	does	not	improve	reconstruction,	suggesting	that	the	available	data	are	117	
insufficient	to	support	larger	models.	Therefore,	considering	the	knowledge-driven	and	data-118	
driven	heuristics	together,	we	identified	a	300-node	model	as	most	appropriate	for	the	existing	119	
P.	aeruginosa	gene	expression	compendium.	120	

	121	
Analysis	of	the	effects	of	sample	number	in	the	training	set	on	ADAGE	models		122	
The	expression	compendium	contains	1051	samples	from	125	experiments.	We	next	performed	123	
a	subsampling	analysis	in	which	we	trained	ADAGE	models	on	randomly	selected	sets	of	100,	124	
200,	500,	and	800	expression	profiles.	We	examined	the	number	of	KEGG	pathways	associated	125	
with	at	least	one	gene	signature	(pathway	coverage)	as	a	function	of	the	size	of	the	training	set	126	
(Figure	1C).	In	the	50-node	models,	the	size	used	in	(Tan	et	al,	2016b),	the	average	KEGG	127	
pathway	coverage	at	each	training	size	increased	significantly	up	to	500	samples	(Tukey’s	HSD	128	
adjusted	p-values	<	0.05	between	models	trained	with	100,	200,	and	500	samples),	but	129	
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differences	beyond	500	training	samples	were	not	significant	(Tukey’s	HSD	adjusted	p	values	>	130	
0.05	between	models	trained	with	500,	800,	and	1051	samples).	For	300-node	models,	pathway	131	
coverage	showed	significant	increases	(Figure	1C)	between	the	models	constructed	with	100,	132	
200,	500,	and	800	samples	(Tukey’s	HSD	adjusted	p-values	<	0.05)	but	not	between	800	and	133	
1051	(Tukey’s	HSD	adjusted	p-value	>	0.05).	The	slower	increase	in	pathway	coverage	when	134	
sample	size	is	relatively	large	suggests	redundancy	in	the	compendium,	potentially	due	to	135	
biological	replicates	or	experiments	probing	similar	processes.	This	highlights	the	importance	of	136	
data	that	capture	diverse	processes.	137	
	138	
Using	the	subsampling	strategy,	we	also	evaluated	the	reconstruction	error	of	each	model	on	139	
its	training	set	and	a	randomly	chosen	held	out	test	set	of	200	samples.	As	sample	size	140	
increased,	training	reconstruction	errors	increased	slightly	while	testing	reconstruction	errors	141	
dropped	dramatically	(Figure	1D).	We	fitted	exponential	models	between	sample	size	and	the	142	
differences	of	training	and	testing	errors	(R2=	0.78	for	50-node	models	and	R2=	0.83	for	300-143	
node	models).	We	extrapolated	from	these	models	to	predict	that	testing	errors	would	144	
approximately	match	training	errors	when	sample	size	was	782	for	50-node	models	and	1076	145	
for	300-node	models.	These	results	suggested	that	smaller	models	were	less	sensitive	to	sample	146	
size,	likely	because	they	have	fewer	parameters	to	fit	and	also	that	our	1051	sample	147	
compendium	was	sufficient	to	train	a	300-node	model.		148	
	149	
eADAGE:	ensemble	modeling	improves	the	model	breadth,	depth,	and	robustness		150	
Individual	ADAGE	models	capture	a	local	minimum,	with	models	of	the	same	size	capturing	151	
different	pathways.	This	occurs	because	each	ADAGE	model	is	initialized	with	random	weights,	152	
and	the	training	processes	are	sensitive	to	these	initial	conditions.	eADAGE,	in	which	we	built	153	
an	ensemble	version	of	individual	ADAGE	models,	took	advantage	of	this	variation	to	enhance	154	
model	robustness.	Each	eADAGE	model	integrated	nodes	from	100	individual	ADAGE	models	155	
(Figure	2A).	To	unite	nodes	from	different	models,	we	applied	consensus	clustering	on	nodes’	156	
weight	vectors.	Our	previous	ADAGE	analyses	showed	that	HW	genes	characterized	each	node’s	157	
biological	significance,	so	we	designed	a	weighted	Pearson	correlation	to	incorporate	gene	158	
weights	in	building	eADAGE	models	(see	methods).	We	compared	eADAGE	to	two	primary	159	
baseline	methods:	individual	ADAGE	models	and	corADAGE,	which	combined	nodes	with	an	160	
unweighted	Pearson	correlation.	For	direct	comparison,	the	model	sizes	of	ADAGE,	eADAGE,	161	
and	corADAGE	were	all	fixed	to	300	nodes,	which	we	found	to	be	appropriate	for	the	current	162	
P.a	expression	compendium.	163	
	164	
eADAGE	models	exhibited	greater	KEGG	pathway	coverage	than	those	generated	by	other	165	
methods.	We	evaluated	ADAGE,	corADAGE,	and	eADAGE	for	the	number	of	covered	KEGG	166	
pathways	(Figure	2B).	Both	corADAGE	and	eADAGE	covered	significantly	more	KEGG	pathways	167	
than	ADAGE	(t-test	p-value	of	1.04e-6	between	corADAGE	(n=10)	and	ADAGE	(n=1000)	and	t-168	
test	p-value	of	1.41e-6	between	eADAGE	(n=10)	and	ADAGE	(n=1000)).	Moreover,	eADAGE	169	
models	covered,	on	average,	10	more	pathways	than	corADAGE	(t-test	p-value	of	1.99e-3,	n=10	170	
for	both	groups),	confirming	the	critical	roles	of	an	ADAGE	node’s	HW	gene	signatures	in	171	
defining	biological	pathways.	Genes	that	participate	in	multiple	pathways	can	influence	172	
pathway	enrichment	analysis,	a	factor	termed	pathway	crosstalk	(Donato	et	al,	2013).	If	173	
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eADAGE	signatures	tended	to	include	genes	that	participated	in	many	pathways,	this	could	also	174	
drive	the	increase	in	number	of	observed	pathways.	To	control	for	this,	we	performed	crosstalk	175	
correction	(Donato	et	al,	2013).	After	correction,	the	total	number	of	covered	pathways	176	
dropped	approximately	by	half	(Figure	EV2),	but	eADAGE	still	covered	significantly	more	177	
pathways	than	corADAGE	(t-test	p-value	of	1.60e-3)	and	ADAGE	(t-test	p-value	of	6.16e-07).	178	
These	results	suggested	that	eADAGE	effectively	integrates	multiple	models	to	more	broadly	179	
capture	pathway	signals	embedded	in	diverse	gene	expression	compendia.		180	
	181	
We	next	evaluated	how	specifically	and	completely	signatures	learned	by	the	models	capture	182	
known	KEGG	pathways.	We	use	each	gene	signature’s	FDR	corrected	p-value	for	enrichment	of	183	
a	KEGG	pathway	as	a	combined	measure,	as	this	captures	both	the	sensitivity	and	specificity.	If	184	
a	pathway	was	significantly	associated	with	multiple	gene	signatures	in	a	model,	we	only	185	
considered	its	most	significant	association.	We	found	that	71%	of	pathways	were	more	186	
significantly	enriched	(had	lower	median	p-values)	in	corADAGE	models	(n=10)	when	compared	187	
to	individual	ADAGE	models	(n=100)	(Figure	EV3).	This	increased	to	87%	for	eADAGE	(n=10).	We	188	
also	directly	compared	eADAGE	and	corADAGE	by	this	measure	and	observed	that	74%	of	189	
pathways	were	more	significantly	enriched	in	eADAGE.	Our	earlier	evaluation	of	pathway-based	190	
heuristics	showed	that	different	pathways	were	best	captured	at	different	model	sizes	(Figure	191	
EV3).	We	next	compared	the	300-node	eADAGE	model	to	individual	models	of	each	size.	192	
Although	the	300-node	eADAGE	models	were	constructed	only	from	300-node	ADAGE	models,	193	
we	found	that	69%	pathways	were	more	significantly	enriched	(i.e.	lower	median	p-values)	in	194	
eADAGE	models	than	ADAGE	models	of	any	size,	including	those	with	more	nodes	than	the	195	
eADAGE	models	(Figure	EV3).	Three	example	pathways	that	are	best	captured	either	when	196	
model	size	is	small,	large,	or	in	the	middle	are	all	well	captured	in	the	300-node	eADAGE	model	197	
(Figure	2C).	These	results	demonstrate	that	eADAGE’s	ensemble	modeling	procedure	captures	198	
signals	across	model	sizes	more	effectively	than	individual	ADAGE	and	corADAGE	models.	Thus	199	
eADAGE	more	completely	and	precisely	captures	the	gene	expression	signatures	of	biological	200	
pathways.	201	
	202	
We	designed	eADAGE	to	provide	a	more	robust	analysis	framework	than	individual	ADAGE	203	
models.	To	assess	this,	we	examined	the	percentage	of	models	that	covered	each	pathway	204	
(coverage	rate)	between	ADAGE	and	eADAGE	(Figure	EV4).	The	pathways	covered	by	each	205	
individual	ADAGE	model	were	highly	variable.	Most	KEGG	pathways	were	covered	by	less	than	206	
half	of	individual	models	but	more	than	half	of	eADAGE	models	(Figure	EV5),	suggesting	that	207	
eADAGE	models	were	more	robust	than	individual	ADAGE	models.	We	excluded	all	pathways	208	
always	covered	by	both	individual	ADAGE	and	eADAGE	models	and	observed	that	72%	of	the	209	
remaining	pathways	were	covered	more	frequently	by	eADAGE	than	ADAGE.	This	suggests	that	210	
their	associations	are	stabilized	through	the	ensemble	construction	procedures.	In	summary,	211	
these	comparisons	of	eADAGE	and	ADAGE	reveal	that	not	only	are	more	pathways	captured	212	
more	specifically,	but	also	those	that	are	captured	are	captured	more	consistently.	213	
	214	
Principle	component	analysis	(PCA)	and	independent	component	analysis	(ICA)	have	been	215	
previously	used	to	extract	biological	features	and	build	functional	gene	sets	(Engreitz	et	al,	2010;	216	
Raychaudhuri	et	al,	2000;	Gong	et	al,	2007;	Alter	et	al,	2000;	Raychaudhuri	et	al,	2000;	Lutter	et	217	
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al,	2009;	Frigyesi	et	al,	2006;	Chen	et	al,	2008;	Roden	et	al,	2006;	Ma	&	Kosorok,	2009).	We	218	
performed	PCA	and	generated	multiple	ICA	models	from	the	same	P.	aeruginosa	expression	219	
compendium	and	evaluated	their	KEGG	pathway	coverage	following	the	same	procedures	used	220	
for	eADAGE.	eADAGE	substantially	and	significantly	outperforms	PCA	in	terms	of	pathway	221	
coverage	(Figure	2D).	We	observed	that	low-order	PCs	tend	to	be	associated	with	more	222	
pathways	than	high-order	PCs,	which	is	consistent	with	the	higher	variance	explained	by	low-223	
order	PCs.	ICA	and	eADAGE	covered	a	similar	number	of	pathways	at	the	significance	cutoff	of	224	
FDR	0.05.	However,	we	observed	that	eADAGE	represented	KEGG	pathways	more	precisely	225	
than	ICA.	Specifically,	among	pathways	significantly	enriched	in	either	approach,	68%	pathways	226	
exhibited	more	significant	enrichment	in	eADAGE.	Increasing	the	significance	threshold	for	227	
pathway	coverage	demonstrates	the	advantage	of	eADAGE	(Figure	2D).	228	
	229	
Taken	together,	the	eADAGE	method	outperformed	PCA,	ICA,	ADAGE,	and	corADAGE	in	230	
capturing	KEGG	pathways	of	P.	aeruginosa.	eADAGE	had	higher	pathway	coverage,	covered	231	
pathways	more	specifically,	and	more	robustly	than	existing	methods.	Though	the	primary	goal	232	
of	eADAGE	is	not	function	prediction,	it	captures	pathway	signals	in	transcriptional	data	233	
significantly	more	effectively	than	existing	unsupervised	data	integration	methods.	These	234	
results	clearly	indicate	that	eADAGE	extracts	biological	patterns	from	gene	expression	235	
compendia.	236	
	237	
Elucidating	functional	signatures	that	are	indicative	of	growth	medium	238	
Gene	expression	analysis	experiments	are	generally	designed	to	include	only	a	small	number	of	239	
variables.	Thus,	it	is	not	surprising	that	in	the	majority	of	publically	available	P.	aeruginosa	gene	240	
expression	experiments,	the	growth	medium	was	held	constant	while	there	was	variation	in	241	
other	parameters	such	as	strain,	environmental	parameters	(i.e.	pH,	temperature,	growth	242	
phase,	or	gaseous	atmosphere),	or	culture	amendments	(antibiotics,	etc.).	Though	it	was	rare	243	
for	the	base	medium	to	vary	within	a	single	experiment,	our	manual	annotation	showed	that	78	244	
different	base	media	were	used	across	the	gene	expression	compendium	(Table	EV1).	These	245	
media	exhibit	great	diversity	in	the	number	of	different	medium	components,	the	abundance	of	246	
different	nutrients,	and	the	form	in	which	nutrients	were	provided.	Some	medium	groups	247	
contained	numerous	samples	from	multiple	experiments	other	media	types	were	unique	to	a	248	
single	experiment.	249	
	250	
For	biological	evaluation,	we	built	a	single	new	eADAGE	model	with	300	nodes.	In	this	model	251	
we	identified	cross-media	signals	of	biological	importance.	The	model’s	weight	matrix	(Table	252	
EV2),	positive	and	negative	gene	signatures	for	each	node	(Table	EV3)	and	signature	activities	253	
for	each	sample	in	the	compendium	(Table	EV4)	are	provided.		For	each	gene	signature,	we	254	
used	its	mean	activity	for	samples	prepared	from	cells	grown	in	a	given	medium	compared	to	255	
the	mean	activity	of	the	signature	across	all	the	remaining	samples	in	the	compendium	256	
normalized	to	the	total	range	to	provide	an	activation	score.	We	then	further	reduced	this	set	257	
by	filtering	to	all	signature-medium	relationships	with	an	activation	score	greater	than	or	equal	258	
to	0.4	(Table	EV5),	which	included	only	the	top	2.4%	of	potential	pairs.	To	capture	pan-media	259	
patterns	we	identified	signatures	that	had	multiple	signature-media	activation	scores	above	this	260	
threshold	and	averaged	their	activation	scores.	Table	EV6	lists	the	media	groups	on	which	gene	261	
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signatures	were	most	differentially	active	(a	complete	list	of	signature-media	associations	is	in	262	
Table	EV7).	263	
	264	
The	signature	Node164pos	had	the	highest	pan-media	activation	score.	To	evaluate	the	basis	265	
for	the	high	activation	score,	we	examined	the	signature’s	underlying	activity	across	media.	This	266	
revealed	that	Node164pos	was	highly	active	in	King’s	A	medium,	peptone	medium,	and	267	
NGM+<0.1mM	phosphate	(NGMlowP),	but	not	in	NGM+25mM	phosphate	(NGMhighP)	(Figure	268	
3A).	The	difference	in	Node164pos	activity	between	NGMlowP	and	NGMhighP	suggested	that	269	
the	genes	in	this	signature	respond	to	phosphate	concentrations.	Consistent	with	this	proposal,	270	
a	KEGG	pathway	enrichment	analysis	of	Node164pos	genes	suggested	a	strong	enrichment	in	271	
genes	involved	in	phosphate	acquisition	(Table	EV6).	The	other	two	media	in	which	P.	272	
aeruginosa	gene	expression	leads	to	consistently	high	Node164pos	activity	(Peptone	and	King’s	273	
A)	also	had	low	phosphate	concentrations	(0.4	mM)	relative	to	other	media	in	the	compendium.	274	
For	example,	commonly	used	LB	has	a	phosphate	concentration	of	approximately	4.5	mM	275	
(Bertani,	2004)	and	many	others	have	concentrations	above	20	mM.	276	
	277	
Many	of	the	phosphate	responsive	genes	in	Node164pos	are	known	to	be	under	the	control	of	278	
the	transcription	factor	PhoB	in	P.	aeruginosa	(Santos-Beneit,	2015;	Blus-Kadosh	et	al,	2013;	279	
Bielecki	et	al,	2015)	and	phoB	itself	is	in	this	signature.	Analysis	of	genes	in	Node164pos	finds	280	
that	this	signature	has	the	largest	overlap	with	the	PhoB	regulon	(see	methods)	in	comparison	281	
to	all	other	gene	signatures	learned	by	this	eADAGE	model	(FDR	q-value	of	8.1e-29	in	282	
hypergeometric	test).	The	transcript	levels	of	genes	in	Node164pos	are	higher	in	peptone,	283	
King’s	A,	and	NGM+<0.1	phosphate	medium	relative	to	the	other	samples	in	the	compendium	284	
including	NGM+	25	mM	phosphate	(Figure	3B).		285	
	286	
Among	the	highest	weight	genes	in	Node164pos	is	a	gene	that	encodes	alkaline	phosphatase	287	
(PhoA),	an	enzyme	with	an	activity	that	can	be	easily	measured	using	a	colorimetric	assay.	As	288	
expected,	PhoA	activity	(blue	color)	was	high	when	P.	aeruginosa	was	grown	on	NGMlowP	and	289	
not	when	grown	on	NGMhighP	(Figure	4A).	The	same	trend	was	observed	in	another	medium,	290	
MOPS,	with	the	same	high	and	low	phosphate	concentrations.	Also	consistent,	PhoA	was	not	291	
active	on	the	phosphate	replete	medium	LB.	Furthermore,	PhoA	activity	was	dependent	on	292	
PhoB	and	the	PhoB-activating	histidine	kinase	PhoR,	which	is	consistent	with	previous	293	
publications	(Bielecki	et	al,	2015).	These	results	provide	striking	evidence	that	low	phosphate	294	
media	induced	PhoB	activity	as	predicted	by	the	eADAGE	analysis	and	previous	295	
characterizations	of	the	P.	aeruginosa	phosphate	response.		296	
	297	
Interestingly,	Node164pos	activity	exhibited	a	wide	spread	in	PIA	medium	(0.8	mM	phosphate),	298	
with	six	samples	having	high	activities	and	the	other	six	samples	having	low	activities	(Figure	299	
3A).	Each	set	of	six	samples	came	from	a	different	study.	All	of	the	strains	in	the	first	sample	set,	300	
published	in	2012,	in	which	Node164pos	was	low	used	a	PAO1	kinB::GmR	mutant	background	301	
(Damron	et	al,	2012).	The	second,	published	in	2013,	used	a	PAO1	strain	with	kinB	intact	and	302	
showed	high	Node164pos	activity	on	PIA	(Damron	et	al,	2013).	The	fact	that	kinB	mutant	303	
samples	in	PIA	show	significantly	lower	Node164pos	activity	suggests	that	KinB	may	be	a	304	
regulator	of	PhoB	on	PIA.		305	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2016. ; https://doi.org/10.1101/078659doi: bioRxiv preprint 

https://doi.org/10.1101/078659
http://creativecommons.org/licenses/by/4.0/


	306	
Expectedly,	PhoA	activity	was	high	in	peptone	and	King’s	A	media,	as	in	NGMlowP.	Further,	as	307	
predicted	by	eADAGE	Node164pos	activity,	PhoA	activity	was	evident	and	was	KinB	dependent	308	
on	PIA	medium	(Figure	4B).	Notably,	PhoA	activity	was	still	dependent	on	PhoB	and	PhoR	as	it	309	
was	on	peptone	and	King’s	A.	Over	time	the	∆phoR	mutants	developed	PhoA	activity	on	all	310	
three	media,	but	the	∆kinB	on	PIA	did	not	(Figure	4C).	Recovery	of	PhoA	activity	in	∆phoR	311	
mutants	suggests	that	there	are	PhoR-independent	paths	for	PhoB	activation.	The	co-312	
dependence	on	KinB	and	PhoR	suggest	that	these	kinases	do	not	perform	redundant	functions	313	
but	rather	regulate	PhoB	in	conjunction	with	each	other.	To	determine	if	the	deletion	of	kinases	314	
non-specifically	altered	PhoB	activation,	we	screened	63	in-frame	deletion	mutants	each	lacking	315	
a	histidine	kinase	(Table	EV8)	to	identify	mutants	altered	in	PhoA	activation	on	PIA.	Other	than	316	
∆phoR,	∆kinB	was	the	only	strain	lacking	PhoA	activity	on	NGMlowP.	This	suggests	that	PhoA	317	
activity	is	not	altered	by	changes	in	generic	kinase	activity	but	rather	the	interaction	with	KinB	is	318	
specific.	319	
	320	
Notably,	although	PIA,	peptone	and	King’s	A	contain	low	phosphate	levels	compared	to	rich	321	
media	such	as	LB,	PIA	has	a	higher	phosphate	concentration	(0.8mM)	than	do	peptone	and	322	
King’s	A	(0.4mM).	To	test	whether	the	moderately	low	level	of	phosphate	in	PIA	provokes	KinB	323	
regulation	of	PhoA,	we	conducted	a	titration	experiment	in	MOPS	minimal	medium.	PhoA	324	
activity	was	consistent	with	that	on	NGM	and	other	media.	Further,	while	the	PAO1	wild	type	325	
(WT)	showed	PhoA	activity	at	0.5	mM,	PAO1	∆kinB	did	not	(Figure	4D).		This	shows	KinB	326	
regulation	of	PhoB	in	moderately	low	phosphate	and	not	in	lower	phosphate.	Noting	that	PIA	327	
has	a	phosphate	concentration	of	0.8	mM	and	our	titration	experiment	in	MOPS	showed	kinB-328	
sensitivity	at	0.5	mM,	it	is	likely	that	the	precise	concentration	at	which	KinB	regulates	PhoA	329	
depends	on	the	background	medium.	Node164pos	activity	across	the	compendium	suggested,	330	
and	experimental	evidence	confirmed,	that	KinB	regulates	PhoA	at	moderately	low	phosphate	331	
levels.	To	our	knowledge,	KinB	has	not	been	previously	implicated	in	the	activation	of	PhoB,	332	
although	cross-compendium	eADAGE	analysis	of	two	PIA	experiments	was	capable	of	revealing	333	
this	relationship.	334	
		335	
In	summary,	eADAGE	effectively	extracted	biologically	meaningful	features,	accurately	336	
indicated	their	activity	in	multiple	media	spanning	numerous	independent	experiments,	and	337	
revealed	a	novel	regulatory	mechanism.	By	summarizing	gene-based	expression	information	338	
into	biologically	relevant	features,	eADAGE	greatly	simplifies	analyses	that	cut	across	large	gene	339	
expression	compendia.	340	
	341	
Discussion	342	
For	unsupervised	approaches,	it	has	been	very	challenging	to	determine	the	appropriate	model	343	
complexity.	In	supervised	learning	problems,	predictors	can	be	assessed	through	cross-344	
validation	accuracies.	To	our	knowledge,	there	is	not	yet	a	similar	well-established	approach	to	345	
estimate	appropriate	model	size	for	unsupervised	feature	construction	of	gene	expression	data.	346	
Here	we	develop	heuristics	that	target	two	aspects	of	the	problem:	the	model	needs	to	be	well	347	
supported	by	the	amount	of	available	data	and	the	extracted	features	should	well	resemble	348	
known	biological	processes.	Our	data-driven	heuristics	can	be	applied	to	organisms	for	which	349	
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gene-process	annotations	are	lacking.	We	expect	that	additional	data	will	support	larger	models,	350	
especially	data	that	measure	experimental	conditions	that	are	not	tested	in	the	existing	351	
compendium.	352	
	353	
We	also	contribute	a	novel	eADAGE	algorithm.	This	algorithm	combines	multiple	ADAGE	354	
models	into	one	ensemble	model	to	address	model	variability	due	to	stochasticity	and	local	355	
minima.	The	algorithm	is	inspired	by	consensus	clustering,	which	reconciles	the	differences	in	356	
cluster	assignments	in	multiple	runs.	Comparable	approaches	have	also	been	applied	for	ICA,	357	
where	researchers	have	used	the	centrotypes	of	multiple	ICA	models	as	the	final	model	358	
(Frigyesi	et	al,	2006).	The	ICA	centrotype	approach	for	ADAGE	corresponds	to	corADAGE,	and	359	
our	comparison	of	eADAGE	and	corADAGE	shows	that	eADAGE	not	only	covers	more	biological	360	
pathways,	but	also	results	in	cleaner	representations	of	biological	pathways.	The	results	of	our	361	
direct	comparison	suggest	that	placing	particular	emphasis	on	the	genes	most	associated	with	a	362	
particular	signature	may	be	a	useful	property	for	other	unsupervised	feature	construction	363	
algorithms	in	biology.	364	
	365	
Our	eADAGE	model	revealed	patterns	that	were	obvious	in	the	analysis	of	the	large	data	366	
compendium	containing	experiments	performed	in	78	different	media,	but	that	were	not	367	
necessarily	evident	in	individual	experiments.	For	example,	our	cross-compendium	analysis	of	368	
expression	patterns	specific	to	certain	media	determined	those	media	in	which	P.	aeruginosa	369	
was	in	a	phosphate	limited,	PhoB-ON	state.	PhoB	is	a	global	regulator,	and	thus	an	awareness	370	
of	the	different	states	of	the	PhoB	regulon	in	different	media	will	likely	provide	important	371	
insight	into	medium-specific	phenotypes	of	relevance.		Using	eADAGE,	we	uncovered	a	subtle	372	
aspect	of	the	phosphate	starvation	response	that	depends	on	a	histidine	kinase	not	previously	373	
associated	with	the	PhoB-dependent	phosphate	response	pathway.		Bacteria	have	evolved	374	
many	mechanisms	to	insulate	response	pathways	from	each	other	(Podgornaia	&	Laub,	2013),		375	
but	cross-talk,	wherein	a	sensor	kinase	from	one	pathway	phosphorylates	a	response	regulator	376	
from	another,	has	been	suggested	to	explain	the	complexity	of	signaling	networks,	including	377	
that	of	PhoB	(Ninfa	et	al,	1988;	Fisher	et	al,	1995).		Thus,	it	is	possible	that	both	PhoR	and	KinB	378	
directly	activate	PhoB.	While	there	are	many	examples	of	one	kinase	partially	compensating	379	
when	the	cognate	kinase	is	absent,	it	is	more	challenging	to	find	conditions	where	two	kinases	380	
are	needed	for	full	response	regulator	activation	(Verhamme	et	al,	2002).	Alternatively,	KinB	381	
may	influence	PhoB	activity	indirectly	by	regulating	activities	that	affect	PhoB	levels,	PhoB	382	
dephosphorylation,	or	PhoB	localization,	or	protein-protein	interactions.	Future	work	will	383	
further	address	the	mechanistic	aspects	of	this	model.	We	propose	that	moderate	levels	of	384	
phosphate,	like	those	in	PIA,	provide	a	niche	for	crosstalk:	the	activity	of	PhoR	is	low	enough	385	
that	the	interaction	with	KinB	is	needed	for	full	PhoB	activity	on	this	medium.		Together,	PhoR	386	
and	KinB	may	enable	a	more	sensitive	and	effective	response	to	phosphate	limitation.	Without	387	
the	eADAGE	analysis	across	multiple	media,	we	would	not	have	found	this	nuanced	mechanism.		388	
	389	
In	the	300-node	eADAGE	model	used	for	medium	analysis,	81%	genes	in	P.a.	PAO1	genome	are	390	
included	in	at	least	one	gene	signature.	Among	all	signatures,	59%	have	a	KEGG	pathways	391	
associated	with	them.	Among	the	remaining	41%	of	signatures,	17	of	them	had	ten	or	fewer	392	
genes	and	may	not	have	associated	with	KEGG	pathways	for	this	reason.	Some	others	were	393	
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associated	with	known	pathways	that	have	not	yet	been	annotated	in	KEGG,	such	as	394	
Node174pos	which	encodes	genes	encoded	by	the	P2	phage	or	Node150neg	which	contains	395	
genes	involved	in	the	formation	of	surface	associated	communities	referred	to	as	biofilms.	Thus	396	
eADAGE	can	group	functionally	linked	genes	in	ways	that	may	facilitate	the	identification	or	397	
annotation	of	pathways.	398	
	399	
There	are	now	abundant	public	gene	expression	data.	Cross-compendium	analyses	provide	the	400	
opportunity	to	efficiently	use	existing	data	to	identify	regulatory	patterns	that	are	evident	401	
across	multiple	experiments,	datasets,	and	labs.	To	tap	this	potential,	we	will	require	algorithms	402	
that	robustly	integrate	these	diverse	datasets	in	a	manner	that	is	not	tied	to	only	aspects	of	403	
biology	that	are	well	understood.	We	expect	that	robust	unsupervised	data	integration	404	
methods,	like	eADAGE,	will	play	a	key	role	in	this	process.	405	
	406	
Materials	and	Methods		407	
Data	processing	408	
We	followed	the	same	procedures	for	data	collection,	processing,	and	normalization	from	(Tan	409	
et	al,	2016b)	and	updated	the	P.	aeruginosa	gene	expression	compendium	to	include	newly	410	
uploaded	datasets	on	GPL84	platform	from	the	ArrayExpress	database	(Rustici	et	al,	2013)	on	411	
31	July	2015.	The	updated	P.	aeruginosa	compendium	contains	125	datasets	with	1051	412	
individual	genome-wide	assays.	We	provide	the	P.	aeruginosa	expression	compendium	(Dataset	413	
EV1)	along	with	all	the	code	used	in	this	paper	(Tan	et	al,	2016a).	The	eADAGE	repository	is	also	414	
tracked	under	version	control	at	https://bitbucket.org/greenelab/eadage.	415	
	416	
Construction	of	ADAGE	models	417	
We	constructed	ADAGE	models	as	described	in	(Tan	et	al,	2016b).	To	summarize	the	process	418	
and	outputs,	we	constructed	a	denoising	autoencoder	for	the	gene	expression	compendium.	419	
Denoising	autoencoders	model	the	data	in	a	lower	dimension	than	the	input	space,	and	the	420	
models	are	trained	with	random	gene	expression	measurements	set	to	zero.	Thus	an	ADAGE	421	
model	must	learn	gene-gene	dependencies	to	fill	in	this	missing	information.	Once	the	ADAGE	422	
model	is	trained,	each	node	in	the	hidden	layer	contains	a	weight	vector.	These	positive	and	423	
negative	weights	represent	the	strength	of	each	gene’s	connection	to	that	node.	424	
	425	
Gene	signatures	as	sign-specific	high-weight	gene	sets	426	
In	previous	work	(Tan	et	al,	2016b)	we	defined	high-weight	(HW)	genes	as	those	in	the	427	
extremes	of	the	weight	distribution	on	the	positive	or	negative	side	of	a	node.	Here,	we	use	a	428	
more	granular	definition	that	accounts	for	sign	specificity.	Each	node’s	gene	weights	are	429	
approximately	normal	and	centered	at	zero	in	ADAGE	models	(Tan	et	al,	2015,	2016b).	We	430	
defined	positive	HW	genes	as	those	that	were	more	than	2.5	standard	deviations	from	the	431	
mean	on	the	positive	side,	and	negative	HW	genes	as	those	that	were	more	than	2.5	standard	432	
deviations	from	the	mean	on	the	negative	side.	After	this	split,	a	model	with	n	nodes	provides	433	
2n	gene	signatures.	Because	a	node	is	simply	named	by	the	order	that	it	occurs	in	a	model,	we	434	
named	two	gene	signatures	derived	from	one	node	as	“NodeXXpos”	and	“NodeXXneg”.	435	
	436	
KEGG	pathway	enrichment	analysis		437	
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To	evaluate	the	biological	relevance	of	gene	signatures	extracted	by	an	ADAGE	model,	we	438	
tested	how	they	relate	to	known	KEGG	pathways	(Kanehisa,	2000).	We	tested	a	signature’s	439	
association	with	each	KEGG	pathway	using	hypergeometric	test	and	corrected	the	p-value	by	440	
the	number	of	KEGG	pathways	we	tested	following	the	Benjamini–Hochberg	procedure.	We	441	
used	a	false	discovery	rate	of	0.05	as	the	significance	cutoff.		442	
	443	
Genes	can	be	annotated	to	multiple	pathways.	To	control	for	this	effect	in	our	analysis,	we	also	444	
performed	a	parallel	analysis	after	applying	crosstalk	correction	as	described	in	(Donato	et	al,	445	
2013).	This	approach	uses	expectation	maximization	to	map	each	gene	to	the	pathway	in	which	446	
it	has	the	greatest	predicted	impact.	A	gene-to-pathway	membership	matrix,	defined	using	447	
KEGG	pathway	annotations,	initially	makes	the	assumption	that	each	gene’s	role	in	all	of	its	448	
assigned	pathways	remains	constant	independent	of	context.	We	then	applied	pathway	449	
crosstalk	correction	using	genes’	weights	for	each	node	in	the	ADAGE	model.	We	used	the	450	
expectation	maximization	algorithm	to	maximize	the	log-likelihood	of	observing	the	451	
membership	matrix	given	each	node’s	weight	vector.	This	process	inferred	an	underlying	gene-452	
to-pathway	impact	matrix	and	iteratively	estimated	the	probability	that	a	particular	gene	g	453	
contributed	the	greatest	fraction	of	its	impact	to	some	pathway	P.	Upon	convergence,	we	454	
assigned	each	gene	to	the	pathway	in	which	it	had	the	maximum	impact.	The	resulting	pathway	455	
definitions	do	not	share	genes.	We	then	used	these	corrected	definitions	for	an	analysis	parallel	456	
to	the	KEGG	process	described	above.	457	
	458	
Reconstruction	error	calculation	459	
The	training	objective	of	ADAGE	is	to	take	a	sample	with	added	noise	and	return	the	originally	460	
measured	expression	values.	The	error	between	the	reconstructed	data	and	the	initial	data	is	461	
the	‘reconstruction	error.’	To	summarize	the	difference	over	all	genes	we	used	cross-entropy	462	
between	the	original	sample	and	the	reconstruction,	which	has	been	widely	used	with	these	463	
methods	and	in	this	domain	(Vincent	et	al,	2008;	Tan	et	al,	2016b).	This	matches	the	statistic	464	
used	during	training	of	the	model.	To	calculate	reconstruction	error	for	a	model,	we	use	the	465	
mean	reconstruction	error	across	samples.	466	
	467	
Model	size	and	sample	size	heuristics	468	
One	important	parameter	of	a	denoising	autoencoder	model	is	the	number	of	nodes	in	the	469	
hidden	layer,	which	we	refer	to	as	the	model	size.	To	evaluate	the	impact	of	model	size	and	470	
choose	the	most	appropriate	size,	we	built	100	ADAGE	models	at	each	model	size	of	10,	50,	100,	471	
200,	300,	500,	750,	and	1000,	using	different	random	seeds.	The	random	seed	determines	the	472	
initialization	statuses	of	the	weight	matrix	and	bias	vectors	in	ADAGE	construction	and	thus	473	
different	random	seeds	will	result	in	training	stopped	at	different	local	minimums.	Other	474	
training	parameters	were	kept	the	same	and	set	to	the	values	identified	as	suitable	for	a	gene	475	
expression	compendium	(Tan	et	al,	2015).	In	total,	800	ADAGE	models	with	100	at	each	model	476	
size	were	generated	in	the	model	size	evaluation	experiment.	477	
	478	
To	evaluate	the	impact	of	sample	size	on	the	performance	of	ADAGE	models,	we	randomly	479	
generated	subsets	of	the	P.	aeruginosa	expression	compendium	with	sample	size	of	100,	200,	480	
500,	and	800.	We	then	trained	100	ADAGE	models	at	each	sample	size,	each	with	a	different	481	
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combination	of	10	different	random	subsets	and	10	different	random	training	initializations.	To	482	
evaluate	each	model,	we	randomly	selected	200	samples	not	used	during	training	as	its	testing	483	
set.	We	performed	this	subsampling	analysis	at	model	size	50	and	300.	In	total,	800	ADAGE	484	
models	were	built	in	the	sample	size	evaluation	experiment.		485	
	486	
Construction	of	eADAGE	models	487	
We	constructed	ensemble	ADAGE	(eADAGE)	models	by	combining	many	individual	ADAGE	488	
models	in	to	a	single	model.	For	each	eADAGE	model	we	combined	100	individual	ADAGE	489	
models.	The	100	models	were	trained	with	identical	parameters	but	distinct	random	seeds.	For	490	
an	eADAGE	model	of	size	300,	we	trained	100	individual	models	with	300	nodes	each,	which	491	
provided	30000	total	nodes.	Each	node	has	a	weight	vector.	We	have	previously	observed	that	492	
high-weight	genes	provided	the	most	information	to	each	node	(Tan	et	al,	2016b),	so	we	493	
calculated	a	weighted	Pearson	correlation	between	each	node’s	weight	vectors.	Our	weighted	494	
Pearson	correlation	used	(|node1	weight|+|node2	weight|)/2	as	the	weight	function	for	each	495	
gene.	We	compared	this	to	an	unweighted	Pearson	correlation	(corADAGE)	as	well	a	baseline	496	
ADAGE	model.	497	
	498	
After	calculating	correlation	(weighted	for	eADAGE	and	unweighted	for	corADAGE),	we	499	
converted	the	correlation	to	distance	by	calculating	(1-	correlation)/2.	This	provided	a	500	
30000*30000	distance	matrix	storing	distances	between	every	two	nodes.	We	clustered	this	501	
distance	matrix	using	the	Partition	Around	Medoids	(PAM)	clustering	algorithm	(Park	&	Jun,	502	
2009).We	implemented	clustering	in	R	using	the	ConsensusClusterPlus	package	(Wilkerson	&	503	
Hayes,	2010)	from	Bioconductor	with	the	ppam	function	from	Sprint	package	to	perform	504	
parallel	PAM	(Piotrowski	et	al,	2011).	We	set	the	number	of	clusters	to	match	the	individual	505	
ADAGE	model	(e.g.	300)	allowing	for	direct	comparison	between	the	eADAGE	and	ADAGE	506	
methods.		507	
	508	
Clustering	assigned	each	node	to	a	cluster	ranging	from	1	to	300.	We	combined	nodes	assigned	509	
to	the	same	cluster	by	calculating	the	average	of	their	weight	vectors.	These	300	averaged	510	
vectors	formed	the	weight	matrix	of	the	eADAGE	model.	Because	the	ensemble	model	is	built	511	
from	the	weight	matrices	of	individual	models,	it	does	not	have	the	parameters	that	form	the	512	
bias	vectors.	We	built	10	eADAGE	and	10	corADAGE	models	from	1000	ADAGE	models	with	513	
each	ensemble	model	built	upon	100	different	individual	models.	The	individual	eADAGE	model	514	
used	for	biological	analysis	in	this	work	was	constructed	with	random	seed	123,	which	was	515	
arbitrarily	chosen	before	model	construction	and	evaluation.	516	
	517	
PCA	and	ICA	model	construction	518	
We	constructed	PCA	and	ICA	models	and	defined	each	model’s	weight	matrix	following	the	519	
same	procedures	in	(Tan	et	al,	2016b).	To	compare	with	the	300-node	eADAGE,	we	generated	520	
models	of	matching	size	(300	components).	For	ICA,	we	evaluated	10	replicates.	PCA	provides	a	521	
single	model.	PCA	and	ICA	models	were	evaluated	through	the	KEGG	pathway	enrichment	522	
analysis	described	above.		523	
	524	
Media	annotation	of	the	P.	aeruginosa	compendium	525	
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A	team	of	P.	aeruginosa	biologists	annotated	the	media	for	all	samples	in	the	compendium	by	526	
referring	to	information	associated	with	each	sample	in	the	ArrayExpress	(Rustici	et	al,	2013)	527	
and/or	GEO	(Edgar,	2002)	databases	and	along	with	the	original	publication,	if	reported.	Each	528	
sample	was	annotated	by	two	curators	separately.	Conflicting	annotations,	if	they	occurred,	529	
were	resolved	by	a	third	curator.	The	media	annotation	for	all	samples	in	the	compendium	530	
were	provided	in	Table	EV1.	531	
	532	
Activity	calculation	for	a	gene	signature	533	
We	calculated	a	signature’s	activity	for	a	specific	sample	as	A = W ∙ E / N,	in	which	W	is	the	534	
weight	vector	of	genes	in	that	signature,	E	is	a	vector	of	genes’	expression	values	after	zero-one	535	
normalization	in	that	sample,	and	N	is	the	number	of	genes.	It	can	be	viewed	as	an	averaged	536	
weighted	sum	of	genes’	expression	levels.	We	normalized	a	signature’s	activity	by	the	number	537	
of	genes	(N)	in	that	signature,	because	different	signatures	have	different	number	of	genes.	538	
	539	
Identification	of	signatures	activated	across	media	540	
We	calculated	an	activation	score	to	identify	gene	signatures	with	dramatically	elevated	or	541	
reduced	activity	in	a	specific	medium.	We	grouped	samples	by	their	medium	annotation.	For	542	
each	gene	signature	and	medium	combination,	we	calculated	the	difference	between	the	mean	543	
activity	of	the	signature	for	samples	in	that	medium	as	well	as	the	mean	activity	across	the	544	
remainder	of	samples	in	the	compendium.	We	divided	this	absolute	difference	in	the	means	by	545	
the	range	of	activity	for	all	samples	across	the	compendium.	This	score	captures	the	proportion	546	
by	which	the	mean	activity	in	a	medium	differs	relative	to	the	total	difference	across	the	547	
compendium.	We	termed	this	ratio	the	activation	score.	548	
	549	
To	identify	the	most	specifically	active	signatures	for	each	medium,	we	constructed	a	table	for	550	
all	pairs	with	an	activation	score	greater	than	or	equal	to	0.4	(Table	EV5).	This	was	highly	551	
stringent:	it	captured	only	the	top	2.4%	of	the	potential	signature-medium	pairs.	To	identify	552	
pan-media	signatures,	we	limited	signatures	to	those	that	were	active	in	multiple	media	553	
(greater	or	equal	to	0.4)	and	averaged	their	activation	scores.	These	signatures	exhibit	parallel	554	
patterns	for	multiple	media	across	multiple	distinct	experiments.	555	
	556	
Definition	of	the	PhoB	regulon	557	
A	PhoB	regulon	for	the	PAO1	genome	was	adapted	from	the	PhoB	regulon	of	PA14	in	(Bielecki	558	
et	al,	2015)	in	order	to	be	comparable	to	ADAGE	models.	Of	the	187	genes	in	the	PA14	regulon,	559	
160	were	in	the	PAO1	reference	genome	(www.pseudomonas.com).		560	
	561	
Strains	and	Media	562	
Strains	used	were	WT,	∆phoB	(DH2633,	O’Toole	lab	collection),	∆phoR	(DH2516)	and	∆kinB	563	
(DH2517),	all	in	the	PA14	background. All	strains	were	maintained	on	LB	with	1.5%	agar	and	564	
grown	at	37	°C.	For	cross-media	and	phosphate	concentration	comparisons,	BCIP	assays	(see	565	
methods	below)	were	conducted	on	different	base	media	with	1.5%	agar	(Fisher):	King’s	A	566	
(pancreatic	digest	of	gelatin	(Difco)	20g/L;	MgCl2	1.4g/L;	K2SO4	10g/L;	glycerol	10ml/L)	(King	et	al,	567	
1954),	LB	(Tryptone	(Fisher)	10g/L;	Yeast	Extract	(Fisher)	5g/L;	NaCl	5g/L)	(Bertani,	2004),	MOPS	568	
(morpholinepropanesulfonic	acid	40mM;	Glucose	20	ml/L;	K2SO4	2.67mM;	K2HPO2	0mM,	25mM	569	
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or	0.1	–	1	mM)	(Neidhardt	et	al,	1974),	NGM	(Pancreatic	digest	of	gelatin	2.5g/L;	cholesterol	570	
5mg/L;	NaCl	3g/L;	MgSO4	1mM;	CaCl2	1mM;	KCl	25mM;	Potassium	Phosphate	buffer	pH6	0	or	571	
25	mM)	(Zaborin	et	al,	2009),	Peptone	(Pancreatic	digest	of	gelatin	10g/L;	MgSO4	1.5g/L;	K2SO4	572	
10g/L)	(Lundgren	et	al,	2013),	Pseudomonas	Isolation	Agar	(PIA,	prepared	as	per	instructions,	573	
BioWorld).	574	
	575	
BCIP	assay	576	
Various	media	were	supplemented	with	5-bromo-4-chloro-3-indolyl	phosphate	(BCIP)	DMF	577	
solution	to	a	final	concentration	of	60	µg/mL.	BCIP	assay	plates	were	inoculated	with	5	µl	of	578	
overnight	P.a	culture	in	LB	broth.	Colonies	were	grown	for	16	hours	at	37	°C	then	matured	at	579	
room	temperature	until	imaging.	Images	were	collected	16	and	32	hours	post	inoculation.	580	
	581	
Screen	of	a	histidine	kinase	knock	out	collection	582	
Molecular	techniques	to	construct	the	histidine	kinase	(HK)	knock	out	collection	were	carried	583	
out	as	previously	described	(Ha	et	al,	2014).	For	each	strain	in	the	HK	collection,	a	BCIP	assay	584	
was	performed	on	PIA.	Plates	were	struck	with	an	overnight	P.a.	culture	concentrated	two-fold	585	
by	centrifugation.	Plates	were	incubated	at	37	°C	12-16	hours	and	matured	at	room	586	
temperature	for	an	additional	12-16	hours	alkaline	phosphatase	activity	was	determined	587	
qualitatively,	based	on	blue	color.	588	
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	726	
Figure	Legends	727	
Figure1:	Knowledge-	and	data-driven	heuristics	for	ADAGE	728	
A	 Knowledge-driven	model	size	heuristics	on	pathway	coverage.	As	model	size	increases,	729	
pathway	coverage	also	increases	at	first	and	then	levels	out	at	size	300.	The	red	line	goes	730	
through	the	median	value	at	each	model	size.		731	
B	 Data-driven	model	size	heuristics	on	reconstruction	error.	As	model	size	increases,	the	732	
reconstruction	error	drops	quickly	at	the	beginning	and	levels	out	at	size	300.	The	red	line	goes	733	
through	the	median	reconstruction	errors	at	each	model	size.	734	
C	 	Knowledge-driven	sample	size	heuristics	on	pathway	coverage.	For	50-node	models,	735	
pathway	coverage	increases	with	sample	size	and	peaks	at	500	samples.	300-node	models	736	
cover	more	pathways	than	50-node	modes	in	general	and	maintain	a	slow	growing	trend	of	737	
pathway	coverage	at	the	maximum	sample	size.	738	
D	 Data-driven	sample	size	heuristics	on	reconstruction	error.	In	both	50-	and	300-node	739	
models,	the	reconstruction	errors	on	the	test	set	get	closer	to	the	reconstruction	errors	on	the	740	
train	set	as	sample	size	increases.	741	
	742	
Figure	2:	The	construction	and	performance	of	eADAGE.		743	
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A	 eADAGE	construction	workflow.	100	individual	ADAGE	models	were	built	using	the	same	744	
input	dataset	(step	1).	Nodes	from	all	models	were	extracted	(step	2)	and	clustered	based	on	745	
the	similarities	in	their	associated	weight	vectors	(step	3).	Nodes	derived	from	different	models	746	
were	rearranged	by	their	clustering	assignments	(step	4).	Weight	vectors	from	nodes	in	the	747	
same	cluster	were	averaged	and	thus	becoming	the	final	weight	vector	of	a	newly	constructed	748	
node	in	an	eADAGE	model	(step5).		749	
B	 Pathway	coverage	comparison	between	individual	ADAGE	and	ensemble	ADAGE.	750	
eADAGE	models	(n=10)	covers	significantly	more	pathways	than	both	corADAGE	(n=10)	and	751	
ADAGE	(n=1000).		752	
C	 The	enrichment	significance	of	three	example	pathways	in	different	models.	The	three	753	
pathways	show	different	trends	as	model	size	increases	in	individual	ADAGE,	however,	their	754	
median	significance	levels	in	eADAGE	are	comparable	or	better	than	all	individual	models	with	755	
different	sizes.	The	grey	dotted	line	indicates	FDR	q-value	of	0.05	in	pathway	enrichment.		756	
D	 Comparison	among	PCA,	ICA,	and	eADAGE	in	pathway	coverage	at	different	significance	757	
levels.	eADAGE	outperforms	PCA	at	all	significance	levels.	eADAGE	and	ICA	show	similar	758	
pathway	coverage	at	the	cutoff	q-value	=	0.05.	However,	ICA	covers	less	pathways	than	759	
eADAGE	as	the	significance	cutoff	becomes	more	stringent.		760	
	761	
Figure	3:	Node164pos	is	active	in	a	NGM+<0.1phosphate,	peptone,	King’s	A,	and	PIA	media		762	
A	 Activity	of	Node164pos	in	each	medium	type.	NGM+<0.1phosphate,	peptone,	and	King’s	763	
A	media	have	evident	elevation	in	Node164pos’s	activity.	PIA	medium	show	a	wide	range	in	764	
Node164pos’s	activity.	All	other	media	have	very	low	activities.	765	
B	 Gene	expression	heatmaps	of	genes	in	Node164pos	across	samples	in	766	
NGM+<0.1phosphate,	peptone,	King’s	A,	and	PIA	media.	Heatmap	color	range	is	determined	767	
by	the	Z-scored	gene	expression	of	all	samples	in	the	compendium	(Figure	EV6).	These	genes	768	
are	highly	expressed	in	all	samples	grown	on	NGM	+	<0.1mM	phosphate,	peptone,	King’s	A,	and	769	
half	of	samples	on	PIA,	but	not	expressed	in	samples	grown	on	NGM	+	25mM	phosphate.	770	
	771	
Figure	4:	PhoA	activity,	as	seen	by	the	colorimetric	BCIP	assay	in	various	media		772	
A	 PhoA	activity,	as	seen	by	the	blue-colored	product	of	BCIP	cleavage,	is	dependent	on	773	
low	phosphate	concentrations,	phoB,	phoR	and,	in	NGM,	kinB.		774	
B	 PhoA	is	active	in	King’s	A,	Peptone	and	PIA	and	is	dependent	on	phoB	and	phoR	on	775	
King’s	A	and	peptone	but	dependent	on	kinB	as	well	on	PIA	at	16	hours.	776	
C	 PhoA	is	active	in	King’s	A,	Peptone	and	PIA	and	is	dependent	on	phoB,	but	no	longer	777	
phoR,	while	still	dependent	on	kinB	on	PIA	after	32	hours.	778	
D	 PhoA	activity	is	dependent	on	phosphate	concentrations	<	0.6	mM,	phoB,	phoR	and	kinB	779	
as	well	at	0.5	mM	phosphate	in	MOPS.	Concentration	0.2	mM	(not	shown)	mimics	0.1mM	and	780	
concentrations	0.7mM	–	0.9mM	(not	shown)	mimic	1.0	mM.	781	
	782	
Expanded	View	Figure	Legends	783	
Figure	EV1:	The	relationship	between	model	size	and	the	number	of	KEGG	pathways	a	node	784	
significantly	associated	with.	Pathways	associated	with	positive	and	negative	signatures	of	a	785	
node	were	added	together.	When	model	is	small,	one	node	needs	to	account	for	multiple	KEGG	786	
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pathways.	As	model	size	grows,	more	nodes	become	available	and	pathways	also	tend	to	787	
spread	into	different	nodes.		788	
	789	
Figure	EV2:	Pathway	coverage	comparison	between	individual	ADAGE	and	ensemble	ADAGE	790	
after	correcting	pathway	crosstalk	effects.	eADAGE	models	(n=10)	covers	significantly	more	791	
pathways	than	both	corADAGE	(n=10)	and	ADAGE	(n=1000).		792	
	793	
Figure	EV3:	The	association	significance	of	each	KEGG	pathway	in	the	300-node	eADAGE	models	794	
(n	=	10),	300-node	corADAGE	models	(n=10)	and	ADAGE	models	with	different	number	of	795	
nodes	(n	=	100	for	each	model	size).	796	
	797	
Figure	EV4:	The	coverage	rate	of	each	KEGG	pathway	in	300-node	ADAGE	models	(n=1000)	and	798	
300-node	eADAGE	(n=10)	models.	799	
	800	
Figure	EV5:	The	distribution	of	KEGG	pathway	coverage	rates	in	300-node	ADAGE	models	801	
(n=1000)	and	300-node	eADAGE	models	(n=10).	eADAGE	shows	a	higher	density	in	distribution	802	
on	the	high	coverage	end.	803	
	804	
Figure	EV6:	Z-scored	gene	expression	heatmap	of	genes	in	signature	Node164pos	across	all	805	
samples	in	the	compendium.	806	
	807	
Expanded	View	Datasets	and	Tables	808	
Dataset	EV1:	Pseudomonas	aeruginosa	gene	expression	compendium.	Gene	expression	values	809	
in	each	sample	have	been	background	corrected	and	quantile	normalized.	810	
	811	
Table	EV1:	Medium	annotation	for	each	sample	in	the	compendium.	Some	medium	names	are	812	
abbreviated	and	their	actual	ingredients	are	provided	in	a	separate	sheet	in	the	excel	file.	813	
	814	
Table	EV2:	Weight	matrix	of	the	eADAGE	model	highlighted	in	this	paper.	The	weight	matrix	815	
defines	how	much	each	gene	contributes	to	each	node.	816	
	817	
Table	EV3:	Genes	in	each	signature	in	the	eADAGE	model.	Filtering	the	weight	matrix	provides	818	
these	gene	sets.	Specifically,	genes	in	a	signature	are	those	that	were	more	than	2.5	standard	819	
deviations	from	the	mean	on	the	positive	side,	or	those	that	were	more	than	2.5	standard	820	
deviations	from	the	mean	on	the	negative	side.	821	
	822	
Table	EV4:	The	activity	of	each	signature	for	each	sample	in	the	compendium.	A	signature	has	823	
high	activity	when	its	gene	weights	are	required	to	reconstruct	the	gene	expression.	824	
	825	
Table	EV5:	A	complete	list	of	signatures	activated	in	one	medium	with	activation	scores	higher	826	
than	or	equal	to	0.4.	827	
	828	
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Table	EV6:	Top	5	eADAGE	signatures	that	were	active	in	a	group	of	media.	Each	signature	was	829	
annotated	by	its	percentage	of	uncharacterized	genes,	its	associated	KEGG	pathways,	and	a	830	
manual	inspection	of	genes	in	the	signature.	831	
	832	
Table	EV7:	A	complete	list	of	signatures	activated	in	a	group	of	media.		833	
	834	
Table	EV8:	Library	of	histidine	kinase	deletion	mutants	in	PA14	used	for	a	BCIP	screen	in	PIA.	All	835	
strains	in	the	collection	of	PA14	histidine	kinase	mutants	described	by	the	number	from	the	836	
Hogan	lab	collection	(DH	number),	the	locus	of	the	deleted	gene,	gene	name	(if	available)	and	837	
position	in	the	storage	plate.	 	838	
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