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ABSTRACT 

 

The impact of inherited genetic variation on gene expression in humans is well-established.  The majority 

of known expression quantitative trait loci (eQTLs) impact expression of local genes (cis-eQTLs); more 

research is needed to identify effects of genetic variation on distant genes (trans-eQTLs) and understand 

the biological mechanisms.  One common trans-eQTLs mechanism is “mediation” by a local (cis) 

transcript. Thus, mediation analysis can be applied to genome-wide SNP and expression data in order to 

identify transcripts that are “cis-mediators” of trans-eQTLs, including those “cis-hubs” involved in 

regulation of many trans-genes.  Identifying such mediators helps us understand regulatory networks and 

suggests biological mechanisms underlying trans-eQTLs, both of which are relevant for understanding 

susceptibility to complex diseases. The multi-tissue expression data from the Genotype-Tissue Expression 

(GTEx) program provides a unique opportunity to study cis-mediation across human tissue types. 

However, the presence of complex hidden confounding effects in biological systems can make mediation 

analyses challenging and prone to confounding bias, particularly when conducted among diverse samples.  

To address this problem, we propose a new method: Genomic Mediation analysis with Adaptive 

Confounding adjustment (GMAC).  It enables the search of a very large pool of variables, and adaptively 

selects potential confounding variables for each mediation test. Analyses of simulated data and GTEx 

data demonstrate that the adaptive selection of confounders by GMAC improves the power and precision 

of mediation analysis. Application of GMAC to GTEx data provides new insights into the observed 

patterns of cis-hubs and trans-eQTL regulation across tissue types. 
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INTRODUCTION 

Recent studies of the effects of genetic variation on expression of distant genes (trans-eQTLs) have 

revealed that many trans-eQTL effects are “mediated” by the local (cis-) gene transcripts near the eQTLs 

[1, 2].  In other words, some cis-eQTLs are also trans-eQTLs because the variation in the expression of 

the cis-genes effects the expression of a trans-gene or genes.  By studying the cis- to trans-gene transcript 

mediation patterns, one may identify the cis-genes that regulate trans-eQTLs, including the “cis-hubs” 

that regulate many trans-genes [3, 4].  Characterizing these regulatory relationships will allow us to better 

understand regulatory networks and their roles in complex diseases [5], as it is well-known that SNP 

influencing human traits tend to be eQTLs [6].  Analyses of cis-mediation will also provide us with a 

better understanding of the biological mechanisms underlying trans-eQTLs [7]. 

 

The expression levels of a given gene can vary substantially across human cell types, and the regulatory 

relationships between SNPs and gene expression levels may also depend on cell type [8, 9]. To date, most 

large-scale eQTL studies have been conducted using RNA extracted from peripheral blood cells, which 

are mixtures of different cell types and may not be informative for gene regulation in other human tissues.  

In order to study gene expression and regulation in a variety of human tissues, the National Institutes of 

Health common-fund GTEx (Genotype-Tissue Expression) project has collected expression data on 44 

tissue types from hundreds of post-mortem donors [10, 11]. This rich transcriptome data, coupled with 

data on inherited genetic variation, provides an unprecedented opportunity to study gene expression and 

regulation patterns from both cross-tissue and tissue-specific perspectives.  

 

In prior studies, mediation tests have been applied to genome-wide expression data from blood cells to 

examine whether the effects of trans-eQTLs are mediated by cis-gene transcripts, i.e., cis-gene expression 

levels regulate trans-gene expression levels [1, 4, 12]. One major challenge in such mediation analyses or 

gene regulatory analysis is the presence of unmeasured or unknown confounding effects, as it is well-
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known that “mediator-outcome confounding” (or in this case, confounding of the association between the 

cis and trans genes affected by an eQTL) can bias estimates obtained from mediation analysis [13-15]. It 

is well recognized that transcriptional variation can be affected by many factors including genetic, 

environmental, demographic, technical, as well as biological factors.   The presence of unmeasured or 

unknown confounding effects may induce inflated rates of false detection of mediation relationships or 

jeopardize the power to detect real mediation, if those effects are not well accounted for.  Given that 

eQTL analyses are conducted in the context of complex biological systems, there are a wide array of 

biological variables that could bias mediation estimates, a problem that may be exacerbated by the 

diversity of GTEx participants, with respect to ethnicity, age, and cause of death. Given these challenges, 

it is desirable to have methods that consider a large pool of potential confounding variables. 

 

To adjust for unmeasured or unknown confounding effects in genomics studies, existing literature focused 

on the construction of sets of “hidden” variables that capture a substantial amount of the variation in a 

large set of variables. Common approaches for detecting hidden variables in expression data include 

principal components analysis (PCA) [16], surrogate variable analysis (SVA) [17], and the Probabilistic 

Estimation of Expression Residuals (PEER) method [18].  A commonality of those approaches is that 

they model the effects of hidden confounding factors and summarize those effects into a set of 

constructed variables. The constructed variables are sorted decreasingly by their estimated impacts on 

expression variability, and the top constructed variables are selected and adjusted as a set of covariates to 

eliminate major confounding effects. For example, in GTEx eQTL analyses [10] (cite Jo et al., GTEx 

companion paper, unpublished) the top PEER factors were estimated for each tissue type, with the 

number of selected PEER factors depending on tissue sample size.  Up to 35 PEER factors are selected 

for tissues with large sample sizes.  One aspect that is largely ignored is that not all the potential gene 

pairs (or pairs of regulator and regulated genes) are affected by the same set of hidden confounders. When 

studying mediation or gene regulation in the genome, potentially there are many thousands of trios 

representing a cis-mediated trans-eQTL, consisting of a genetic variant, a cis-gene transcript, and a trans-

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 30, 2016. ; https://doi.org/10.1101/078683doi: bioRxiv preprint 

https://doi.org/10.1101/078683
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 | P a g e  
 

gene transcript in a specific tissue type.  Adjusting a universal set of variables for all mediation trios is not 

only inefficient but also may limit our ability to consider a larger pool of potential confounding variables 

in genomic mediation analyses. 

   

We propose to adaptively select the variables to adjust for each trio given a large set of constructed or 

directly measured potential confounding variables. This strategy supplements existing confounding 

adjustment approaches that focus on the construction of variables for capturing confounding effects, and 

enlarges the pool of variables to be considered.  Additionally, by leveraging the cis genetic variant as an 

‘instrumental variable’, we are able to select the variables capturing confounding effects rather than 

variables only correlated with cis- and trans-genes. We further propose a mediation test with non-

parametric p-value calculation, adjusting for the adaptively selected sets of confounders.  We term the 

proposed algorithm Genomic Mediation analysis with Adaptive Confounding adjustment (GMAC).  

Figure 1 provides a graphical illustration of the main steps in GMAC. The GMAC algorithm improves the 

efficiency and precision of confounding adjustment and the subsequent genomic mediation analyses. We 

applied GMAC to each of the 44 tissue types of GTEx data (accession number: GTEx_phs000424) in 

order to study the trans-regulatory mechanism in human tissues.  Our algorithm identifies genes that 

mediate trans-eQTLs in multiple tissues, as well as “cis-hubs” that mediate the effects of a trans-eQTL on 

multiple genes. 

 

 

RESULTS 

GMAC improves power and precision of analysis of GTEx data  

We performed genomic mediation analysis with data from each tissue type in GTEx. Taking the tissue 

Adipose Subcutaneous as an example, there are 298 samples for this tissue type and gene-level expression 

measures for 27,182 unique transcripts are available after quality control. We detect a cis-eQTL for 8,500 

of these transcripts, corresponding to 8,216 unique cis-eSNPs for subsequent analysis. We applied Matrix 
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eQTL [19] to the 8,216 SNPs and the 27,182 gene expression levels to calculate the pair-wise trans-

associations. At the p-value cutoff of 10
-5

, there are 3,169 significant pairs of SNP and trans-gene 

transcripts. Since some cis-eSNPs are the lead cis-eSNPs for multiple local gene transcripts, those 

significant SNP and trans-gene pairs entailed a total of 3,332 trios (i.e., SNP-cis-trans) for this tissue type. 

We applied GMAC to the 3,332 trios in this tissue type to test for mediation, and obtained the mediation 

p-values for those trios. We considered all PCs constructed from the expression data of each tissue type as 

potential confounders, with the number of PCs equal to the sample size for each tissue minus 1.  We 

analyzed trios for mediation in a similar fashion for all other GTEx tissue types.  

 

At the 5% false discovery rate (FDR) [20] level, we identified 6,145 instances of significant mediation out 

of 64,824 trios tested in the 44 tissue types. These trios represent potential examples of cis-mediation of 

trans-eQTLs within a specific tissue.  Table 1 lists the number of significant mediation trios at 5% FDR 

and the number of trios with suggestive mediation (p-value < 0.05), as well as the total number of trios 

with significant cis- and trans-associations for all tissue types.  The number of confounders selected for 

each mediation test ranged from 0 to 22 across all tissue types, with a mean of 7.695 and a median of 8. 

The median number of confounders selected for each tissue type ranged from 3 to 12, while the pool of 

variables (PCs) from which we selected confounders from ranged from 69 to 360.  Supplementary Table 

2 presents the descriptive statistics for the number of selected confounders for all the trios in each tissue 

type. It is clear that with GMAC, on average we adjust a much fewer number of confounding variables in 

the mediation tests, and greatly improving the efficiency of the analyses.  

 

Again taking the tissue Adipose Subcutaneous as an illustration, in Figure 2 we plotted the negative log 

base 10 of the mediation p-values versus the percentage of reduction in trans-effects after adjusting for a 

potential cis-mediator, based on mediation tests without adjusting for hidden confounders (Figure 2A) 

and mediation tests by GMAC considering all PCs as potential confounders (Figure 2B). The percentage 

of reduction in trans-effects is calculated by (𝛽2
𝑚 − 𝛽2)/𝛽2

𝑚, where 𝛽2
𝑚 is the marginal trans-effect of the 
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eQTL on the trans-gene expression levels, and 𝛽2 is the trans-effect after accounting for cis-mediation. 

For trios representing true cis-mediation, we expect the trans-effects to be substantially reduced after 

adjusting for the mediator. That is, we expect the trios with very significant mediation p-values to have 

positive % reduction in the trans-effect.  In Figure 2A, we observed many trios with significant mediation 

p-values, but for a substantial number of these trios, the percentages of reduction in trans-effects are 

negative. This pattern is expected in the presence of unadjusted confounders, so these trios represent false 

positives. Thus, mediation analyses of GTEx data without adjusting for hidden confounding effects will 

lead to many spurious findings.  

 

In addition to our main analysis based on GMAC (adaptively selecting confounders from all expression 

PCs), we also conducted mediation tests adjusting for only the 35 PEER factors used in the GTEx eQTL 

analyses (cite Jo et al., GTEx companion paper, unpublished) At an FDR of 5%, 3,356 out of 64,824 trios 

from all tissue types were significant. Using GMAC adjusting for adaptively selected PEER factors, 5,131 

trios were significant at the 5% FDR level.  The comparison of adjusting for all (up to 35) PEER factors 

versus GMAC (considering a larger pool of potential confounders with up to 360 PCs) demonstrates that 

adaptive selection enables more efficient adjustment of confounding effects with a much fewer number of 

selected confounding variables (Supplementary Table 2) and improves power to detect mediation. 

Furthermore, using GMAC to adaptively select confounders from all PCs identifies 6,145 significant trios, 

suggesting an increase in power. Meanwhile, all the three methods, 1) GMAC with adaptively-selected 

PCs, 2) GMAC with adaptively-selected PEER factors, and 2) adjusting for all PEER factors, would yield 

reasonable mediation estimates (i.e., percentages of reduction in trans-effects versus mediation p-values), 

as compared to no confounder adjustment (see Supplementary Figure 1). 

 

The majority of the cis-mediators and trans target genes observed among our trios showing mediation 

have high mappability scores (Supplementary Figure 2A and 2D).  However, non-uniquely mapping reads 

can result in false positive eQTLs, so we consider the mappability of each gene as a quality control filter 
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for studying specific examples of cis-mediation (see Methods).  Examining the mappability for genes 

involved in cis-mediation, we observed that cis-genes showing evidence of cis-mediation for multiple 

trans genes were enriched for cis-genes with low mappability scores (Supplementary Figure 2). Similarly, 

genes showing evidence of cis-mediation across many different tissue types were also enriched for genes 

showing low mappability scores (Supplementary Figure 2).  This finding demonstrates that transcripts 

that do not uniquely map to the genome are an important source of false positives when conducting 

genomic mediation analysis.  More specifically, we find that analyzing low-mappability genes can lead to 

the identification of spurious cis-hubs and cross-tissue cis-mediators. 

 

We attempted to identify “cis-hubs” with high mappability in the GTEx data, defined as a transcript that 

appears to mediate the effect of a nearby eSNP on expression of multiple distant (i.e., trans) gene 

transcripts.   Restricting our analysis to cis and trans genes with mappability >0.95, we observed 685 cis-

genes with at least two trans targets (considering all tissues), representing 21% of the 3,168 cis-genes 

observed among the trios with a mediation P <0.05 (Table 2).  In addition, we attempted to identify cis-

genes that have at least one trans target in multiple tissues.  Restricting to high mappability genes, we 

observed 531 cis-genes with trans targets in more than one tissue, representing 17% of the 3,168 cis-genes 

observed among the trios with a mediation P <0.05 (Table 2).  We observed only six examples of cis-

genes that had the same trans targets in multiple tissues.  In other words, vast majority of cis-hubs 

observed were of two distinct types: 1) those that mediated the effect of a trans-eQTL on multiple trans-

genes within a single tissue type, and 2) those that were mediators in multiple tissues, but with unique 

trans targets in each tissue type.  All instances of cis-mediation of trans-eQTLs with a mediation P-value 

<0.1 (16,648 trios) are listed in Supplementary Table 1, including trios containing transcripts with low 

mappability.   
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Examples of mediation across tissues 

In analyses restricting to cis and trans genes with mappability scores >0.95, one biologically interpretable 

example of a cis-gene that appears to mediate the effects of a trans-eSNPs in multiple tissues is the 

IFI44L gene on chromosome 1 (Figure 3A).  IFI44L is a cis-eGene in two GTEx tissues (cerebellar 

hemisphere and tibial nerve), and the cis-eSNPs associated with IFI44L expression are also associated 

with expression of multiple genes in trans in both cerebellar and tibial nerve tissue.   OAS1 is a trans 

target of these SNPs in both tissues, while other trans targets are observed in only cerebellar (AGRN and 

PARP12) or tibial nerve (RSAD2, OAS2, and EPSTI1).  Below the mappability threshold of 0.95, we 

observe an additional potential trans targets of IFI44L, present in both cerebellar and tibial nerve tissue, 

IFIT3 (mappability=0.87).  These relationships are depicted in Figure 3A.     

 

Interestingly, if we expand our analysis to include cis and trans genes with mappability >0.90, we detect 

IFI44 (mappability of 0.93) as a cis-mediator regulating a nearly identical similar set of trans genes across 

three tissues: cerebellar hemisphere (OAS1, IFIT2, AGRN, and PARP12), tibial nerve (OAS1, IFIT3, 

RSAD2, and EPSTI1), and sun-exposed skin (IFIT1) (Figure 3B). IFI44 resides adjacent to IFI44L on 

1p31.1, and these genes appear to be regulated by the same SNP in each tissue, making it unclear which 

of the two genes is truly a cis-mediator of the observed trans-eQTLs.  IFI44 and IFI44L are paralogs, so it 

is also possible that sequence similarity between these two genes causes our RNA-seq-based gene 

expression measurements for IFI44 (and/or IFI44L) to reflect the expression variation of both genes to 

some extent.  The causal cis-eSNP for IFI44 (and/or IFI44L) appears to be different in different tissues, as 

the LD between the lead cis-eSNPs in cerebellar (rs12129932) and the lead eSNP in tibial nerve 

(rs74998911) is quite low (r
2
<0.01 in EUR 1000 Genomes data). 

 

Regardless of the uncertainty whether IFI44L or IFI44 is the true cis-hub of this trans-eQTL, nearly all of 

the genes involved in the putative regulatory pathways identified here are interferon-regulated/inducible 

genes, namely OAS1, OAS2, IFIT1, IFIT3, IFI44, IFI44L, RSAD2, and AGRN  [21, 22].  These genes 
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have been previously reported to be co-expressed and/or co-regulated in various human cell types, 

including interferon-exposed fibroblasts and mammary epithelial cell lines [21], virus-infected airway 

epithelial cells cultures [23], peripheral blood of individuals with acute respiratory infections [24] as well 

as in both normal and cancerous human tissue (Cancer Cell Metabolism Gene DB, 

https://bioinfo.uth.edu/ccmGDB/).  This previously-reported co-expression findings also extend to 

EPSTI1 [21], the one gene we find to be a trans-target of IFI44L (and/or IFI44) that does not have a well-

established function in immune response, providing additional evidence of an immune-related function 

for this gene.   

 

Variation in the IFI44L gene is associated with risk for MMR (measles, mumps, and rubella) vaccination-

related febrile seizures, with a missense variant in IFI44L showing the strongest association [25].  

Variation in IFI44L has also been implicated in schizophrenia risk [26] as well as bipolar disorder [27].  

These findings suggest that the putative cross-tissue cis-hub identified here may be relevant to multiple 

neurological and psychological disorders, particularly those with etiologies related to immune function. 

 

Comparison of GMAC with other methods using simulated data 

We evaluate the performance of the proposed GMAC in various simulated data scenarios. For each 

scenario described below, we simulated 1000 mediation trios (Li, Ci, Tj) for a sample size n = 350, similar 

to the sample size of the GTEx data. Each mediation trio consists of a gene transcript i (Ci), its cis-

associated genetic locus (Li), and a gene transcript j (Tj) in trans-association with the locus. Note that in 

the mediation analysis in this work (simulations and real data analysis), we consider only the trios with 

evidence of cis and trans- associations, 𝐿𝑖 → 𝐶𝑖  and 𝐿𝑖 → 𝑇𝑗 . We are interested in testing whether an 

observed trans-eQTL association is mediated by the cis-gene transcript, i.e., 𝐿𝑖 → 𝐶𝑖 → 𝑇𝑗. We compared 

GMAC with other methods in different scenarios, including in the presence of confounders, common 

child variables, and intermediate variables. A common child variable is a variable that is affected by both 
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Ci and Tj, and an intermediate variable is a variable that is affected by Ci and affecting Tj, that is, at least 

partially mediating the effects from Ci to Tj.  Figure 1C illustrates a common child variable and Figure 1D 

shows an example of an intermediate variable.   

 

Comparison with other methods under the null in the presence of common child variables 

We first consider a scenario in which there is one common child variable for each pair of cis and trans 

gene transcripts (Figure 1C). In this scenario, adjusting common child variables in mediation analyses 

would ‘marry’ Ci and Tj and make Ci appearing to be regulating Tj even if there is no such effect (i.e., 

“collider bias”) [28] increasing the false positive rate for detecting mediation.  

 

We simulated a pool of independent and normally distributed variables H, with dimensionality being the 

same as sample size 350. Note that GMAC allows the dimensionality of candidate variables to be greater 

than sample size. For each of the 1000 mediation trios, we simulated the genetic locus 𝐿𝑖  under the 

Hardy-Weinberg Equilibrium assumption with a minor allele frequency of 0.1. Given 𝐿𝑖, the cis-gene 

transcript Ci and trans-gene transcript Tj are generated according to the models: 𝐶𝑖 =  𝛽𝑖0𝑐 + 𝛽𝑖1𝑐  𝐿𝑖 + 𝜖𝑖𝑐 

and 𝑇𝑗 =  𝛽𝑖0𝑡 + 𝛽𝑖1𝑡 𝐿𝑖 + 𝜖𝑖𝑡. In this scenario, the trans-effect is not mediated by the cis-gene transcript. 

We let the parameters in the above models vary across the 1000 trios with 𝛽𝑖1𝑐 sampled uniformly from 

0.5 to 1.5, and the rest sampled uniformly from 0.5 to 1.0. The error terms 𝜖𝑖𝑐  and 𝜖𝑖𝑡  are normally 

distributed. For each mediation trio, one candidate variable in H is randomly chosen to be the common 

child variable, 𝑍𝑗, and the effects of cis- and trans- gene transcripts on 𝑍𝑗 are sampled uniformly from 1 to 

1.5.  

 

We compared the results based on the following methods: 1) Oracle adjustment, which correctly adjusts 

for no variables in H in the mediation test in this scenario; 2) The GMAC algorithm; and 3) Adjustment 

for child, which incorrectly adjusts for the common child variable, 𝑍𝑗. Table 3A shows the true Type I 
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error rates at the significance levels of 0.01 and 0.05. As expected, adjusting for child would “marry” the 

cis- and trans-genes in the mediation test and would result in inflated rates of false positive findings. 

 

Comparison with other methods under the null in the presence of confounders 

We also consider a scenario in which the data is generated under the null in the presence of confounders 

(Figure 1B). Each candidate variable has a 95% probability of being an unrelated variable for all trios, 

and a 5% probability of being a confounder in the cis-trans genes relationship for a randomly chosen 

proportion of trios where the proportion follows a uniform distribution from 0 to 0.2. This specification 

results in on average 1.85 confounders for each trio in our simulated data. Suppose for the i
th
 trio, there 

are 𝑛𝑖 number of variables in H selected to be confounders, which are 𝑋𝑖1, … , 𝑋𝑖𝑛𝑖
. The cis-gene transcript 

Ci and trans-gene transcript Tj are generated according to the regression models 𝐶𝑖 =  𝛽𝑖0𝑐 + 𝛽𝑖1𝑐  𝐿𝑖 +

𝛼𝑖1𝑋𝑖1 + ⋯ + 𝛼𝑖𝑛𝑖
𝑋𝑖𝑛𝑖

+ 𝜖𝑖𝑐  and 𝑇𝑗 =  𝛽𝑖0𝑡 + 𝛽𝑖1𝑡 𝐿𝑖 + 𝛾𝑖1𝑋𝑖1 + ⋯ + 𝛾𝑖𝑛𝑖
𝑋𝑖𝑛𝑖

+ 𝜖𝑖𝑡 . In this scenario, 

there are no cis- to trans-gene mediation effects. We let the parameters in the above models vary across 

the 1000 trios with similar parameter specification as before. 

 

We compared the results based on the following methods: 1) Oracle adjustment, which correctly adjusts 

for the true confounders in the mediation test in this scenario; 2) The GMAC algorithm; and 3) No 

adjustment, which incorrectly adjusts for no confounders in the mediation test. Table 3B showed that 

failure to adjust for confounding leads to an inflated type I error rates.  In contrast, our proposed GMAC 

algorithm well controls the type I error rates. And 1761 out of 1847 generated confounders across the 

1000 mediation trios are correctly selected in the above simulation setup.  

 

Comparison with other methods under the alternative in the presence of intermediate variables 

 We consider another scenario in which there is one intermediate variable for each cis-trans relationship 

(Figure 1D). For each mediation trio, we simulated the genetic locus and the cis-gene transcript as before 
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and further simulated a child variable, 𝑊𝑖of the cis-gene transcript. The trans-gene transcript, 𝑇𝑗 is then 

simulated to be affected by 𝑊𝑖, according to 𝑇𝑗 =  𝛽𝑖0𝑡 + 𝛽𝑖1𝑡 𝐿𝑖 + 𝛾𝑖𝑊𝑖 + 𝜖𝑖𝑡. Therefore, the cis- affects 

the trans-gene transcript via the intermediate variable𝑊𝑖, and the mediation effects from cis to trans gene 

transcript is non-zero in this scenario.  

 

We compared the results based on the following methods: 1) Oracle adjustment, which correctly adjusts 

for zero variables in H in the mediation test in this scenario; 2) The GMAC algorithm; and 3) Adjustment 

for intermediate variable, which incorrectly adjusts for the corresponding intermediate variable in the 

mediation test. Table 3C shows that when the power to detect mediation is high (by Oracle and GMAC), 

incorrectly adjusting for an intermediate variable reduces the power to detect mediation. In comparison, 

GMAC correctly filters out most of the true intermediate variables in the mediation tests, and maintains 

power comparable to oracle adjustment. 

 

Comparison with other methods under the alternative in the presence of confounders 

To compare with the existing approach that adjusts for a universal set of variables, we consider a scenario 

in which the dimensionality of candidate variables H is 100.  For each trio, up to five candidate variables 

are randomly selected to confound the cis trans gene relationship.  We set the effect of cis transcript on 

trans transcript to be 0.1, i.e., non-zero mediation effects.  

 

We compared the results based on the following methods: 1) Oracle adjustment, which correctly adjusts 

for the true confounders in the mediation test; 2) The GMAC algorithm; and 3) Universal adjustment, 

which adjusts for all variables in H in the mediation tests for all trios. Table 3D shows that GMAC has 

comparable or even better power than oracle adjustment in this scenario. This is because that the 

unidentified and therefore unadjusted confounders (2908 out of 3023 generated confounders across the 

1000 mediation trios are correctly selected in the above simulation setup)  may generate a positive 
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association between Ci and Tj. That could strengthen the positive link from Ci to Tj and could result in 

higher power to detect mediation. In comparison, adjusting for all variables in the pool of confounders is 

inefficient and reduces power to detect mediation. 

 

 

DISCUSSION 

In this paper, we have developed the GMAC algorithm for conducting mediation analysis to identify cis-

transcripts that mediate the effects of trans-eQTLs on distant genes.  We address a central problem in 

mediation analysis, “mediator-outcome confounding”, by developing an algorithm that can a) search a 

very large pool of variables (surrogate and/or measured) for variables likely to have confounding effects 

and b) adaptively adjust for such variables in each mediation test conducted.  Analyses of simulated data 

show that the GMAC algorithm improves the power to detect true mediation compared with existing 

methods, while controlling the true false discovery rate.  We have applied this method to gene expression 

data from 44 human tissues from the GTEx Project, allowing us to identify genes that mediate the effects 

of trans-eQTLs in multiple tissue types.  Over 20% of cis-mediators we observe appear to mediate the 

effects of a trans-eQTL on multiple genes, but the vast majority of these cis-hubs are either tissue-specific 

(i.e., mediating multiple trans-genes in a single tissue type) or have unique trans targets in each tissue type. 

We provided one example of a biologically plausible multi-tissue cis-hub, whereby a cis-mediator of a 

trans-eQTLs appears to have common trans targets across multiple tissue types.  The cis-hub identified 

(IFI44L) has potential relevance for neurological and psychological disorders, particularly those with 

etiologies related to immune function, demonstrating the potential value of our approach for 

understanding disease-relevant pathways.   

 

One innovative aspect of this work is our algorithm that rigorously addresses the problem of “mediator-

outcome confounding” in the context of genomic mediation analysis.  In eQTL-based mediation analysis, 

potential confounders of the cis-trans association include demographic and environmental factors, as well 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 30, 2016. ; https://doi.org/10.1101/078683doi: bioRxiv preprint 

https://doi.org/10.1101/078683
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 | P a g e  
 

as a wide array of biological phenomenon, such as expression of specific genes or other biological 

processes that may be represented by the expression of sets of genes.  Neglecting to control for such 

confounding variables can lead to substantial bias in estimates of mediation, resulting in spurious findings, 

as we have described previously [1].  Considering the complexity of the biological systems under study, 

as well as the diversity of the GTEx donors, a careful control for such confounding variables is critically 

important. 

 

Most existing methods control for confounding variables by constructing a set of variables that represent 

the largest components of variation in the transcriptome and adjusting for the selected set for all tests 

conducted. In contrast, GMAC adaptively selects a set of confounding variables for each mediation trio,  

enabling large-scale genomic mediation analyses adjusting only for the confounding variables that could 

potentially bias a specific mediation estimate.  The strategy of selecting only potential confounders for 

adjustment purposes is important (as opposed to adjusting for all known covariates) for three reasons: 1) 

Adjusting fewer variables (i.e., fewer degrees of freedom; see Supplementary Table 2) increases power; 2) 

The number of variables from which one selects covariates could be extremely large (e.g., all expressed 

genes), making adjustment for all covariates impossible, and 3) inadvertently adjusting for “common 

child” or intermediate variables can result in substantial biases.  In this work we select potential 

confounders from all expression PCs, but one could also select from among transcripts that are not well-

represented by PCs.  By efficiently selecting confounders from a very large pool of potential variables, 

GMAC improves both power and precision in mediation analyses. 

 

There are several limitations of our approach and its application to GTEx data. First, when working with 

real genomic data, we can never be sure that we have measured and accounted for all possible mediator-

outcome confounding. Potential confounders include participant characteristics, environmental factors, 

tissue micro-environmental factors, as well as a wide array of biological factors which may or may not be 

captured by the expression data being analyzed.  Second, in the analysis presented here, we only consider 
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the trios with both strong cis- and trans-eQTL effects. For any given tissue type we are analyzing, the 

sample size is small for robust genome-wide detection/analysis of trans-eQTLs. As such, the mediation 

trios we considered are only a subset of the true mediation trios in the genome. And the small sample 

sizes may also result in underpowered mediation tests.  As the sample size of GTEx increases, future 

studies will have increased power to identify cis-mediators using GMAC.  Third, for some of the trios we 

analyze for mediation, the causal variant for the cis-eQTL may not be the causal variant underlying the 

trans-eQTL.  Rather the causal variants may be in close proximity to one another and in LD.  In these 

cases, the power to detect mediation could be low compared to analyses of the true causal variant.  Fourth, 

we did not consider the full complexity of gene isoforms and splice variants in this work; future studies 

should consider the possibility of mediation relationships that are isoform-specific. Lastly, some trans-

eQTLs may not be mediated by variation in the expression of a cis-gene.  Other potential mediating 

mechanism could include variation in coding sequence, physical inter-chromosomal interaction, or 

variation in non-coding RNA.  Our work is not intended to identify and analyze such trans-eQTLs, as we 

perform trans-eQTL analyses using only SNPs known to be cis-eSNPs.   

 

It is important to note that our expectation is that most trans-eQTLs are fully-mediated by a transcript that 

is regulated in cis by the causal trans-eQTL variant.  We did not observe “complete mediation” (i.e., % 

mediation = 100%) for the majority of the significant mediation P values we observed.  However, as we 

have explained and demonstrated previously [1], full mediation will be observed as partial mediation in 

the presence of mediator measurement error and/or imperfect LD between the causal variant and the 

variant used for analysis purposes.  Thus, considering RNA quantification is not error free and causal 

variants are often unknown, we expect to often observe partial mediation when full mediation is present.  

 

We also demonstrate that it is critical to consider mappability for both cis and trans genes involved in 

mediation analysis. For genes containing sequences that do not uniquely map to the human transcriptome, 

it is possible that gene expression measures may be comprised of signals coming from multiple genes, 
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which can produce false positives in mediation analysis, including spurious detection of cis-hubs and 

cross-tissue cis-mediators.  

 

We have developed R GMAC package to perform the proposed genomic mediation analysis with adaptive 

selection of confounding variables. It tests for mediation effects for a set of user specified mediation trios 

or all the (eQTL, cis and trans gene) trios in the genome; it considers either a user provided pool of 

potential confounding variables, real or constructed by other methods, or all the PCs based on expression 

data as the potential confounder pool; and it returns mediation p-values and provides diagnostic checks of 

model assumptions. The software will be available through R CRAN. 

 

Our application of the GMAC algorithm to the multi-tissue expression data from GTEx provides a unique 

cross-tissue perspective on cis-mediation of trans-regulatory relationships across human tissues.  This 

mutli-tissue perspective is important because observing mediation relationships that are consistent across 

multiple tissues provides confidence that a significant mediation P-value reflects a true instance of 

mediation.  For the “cis-hub” genes and genes that appear to be cis-mediators in multiple tissues, further 

investigation is warranted, as these genes may have many regulatory relationships that we are not 

powered to detect in this work.  Thus, a multi-tissue mediation analysis approach has the potential to 

increase power to identify true mediators while controlling for false positives. In future work, attempts at 

joint analyses of multiple tissue types may provide a more complete picture of the cross-tissue and tissue-

specific trans-regulatory mechanisms.  The GMAC approach described here will be a valuable tool for 

such studies, as well any future studies that aims to understand the relationships among cis- and trans-

eQTLs and characterize the biological mechanisms and networks involved in human disease biology.   
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METHODS 

Bio-specimen collection and processing of GTEx data 

A total of 7,051 tissues samples were obtained from 44 distinct tissue types from 449 post-mortem tissue 

donors.  Among donors, 65.6% were male and 34.4% were female. They were from multiple ethnicity 

groups with 84.3% white, 13.7% African American, 1% Asian, and 1% unreported ethnicity. Those 

donors spanned a wide age range (20-70 years). More than half of the donors died from traumatic injury 

and these individuals tended to be of younger ages. Donor enrollment and consent processes have been 

described elsewhere [10, 11]. Biospecimen collection and processing has been described previously in 

detail [10, 11]. Briefly, each tissue sample was preserved in PAXgene tissue kit and the stored as both 

frozen and paraffin embedded tissue.  Total RNA was isolated from PAXgene fixed tissues samples using 

the PAXgene Tissue mRNA kit.   For whole blood, Total RNA was isolated from samples collected and 

preserved in PAXgene blood RNA tubes.    

 

Blood samples were used as the primary source of DNA.  Genotyping was conducted using the Illumina 

Human Omni5-Quad and Infinium ExomeChip arrays.  Standard QC procedures were performed using 

the PLINK software [29] and genotype imputation was performed using the IMPUTE2 software [30] and 

reference haplotypes from the 1000 Genomes Project.   Principal components (PC) analysis was used to 

generate variables representing ancestry [16].  The first three PCs were included as covariates in all 

analyses, and these were sufficient to represent the major population groups present in the GTEx dataset 

(Caucasian, African American, and Asian individuals).   

 

Quantification of gene expression levels 

RNA-seq data was generated for RNA samples with a RIN value of 6 or greater.  Non-strand specific 

RNA sequencing was performed using an automated version of the Illumina TruSeq RNA sample 
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preparation protocol.   Sequencing was done on an Illumina HiSeq 2000, to a median depth of 78M 76 bp 

paired-end reads per sample.   

 

RNA-seq data was aligned to the human genome using Tophat.  Gene-level and exon-level expression 

was estimated in RPKM units using RNA-SeQC.  Only gene-level expression values were used for this 

work.  RNA-seq expression samples that passed various quality control measures (as previously described) 

were included in the final analysis dataset.   

 

Mappability of transcripts 

Because non-uniquely mapping reads can result in false positive eQTLs, we use the mappability of each 

gene as a quality control filter, as described in Jo et al (the GTEx “trans paper”).  The mappability was 

calculated as follows: Mappability of all k-mers in the reference human genome (hg19) computed by 

ENCODE [31] was downloaded from the UCSC genome browser (accession: wgEncodeEH000318, 

wgEncodeEH00032) [32]. The exon- and UTR-mappability of a gene was computed as the average 

mappability of all k-mers in exons and UTRs, respectively. We used k=75 for exonic regions, as it is the 

closest to GTEx read length among all possible k's. UTRs are generally quite small, so k=36 was used, the 

smallest among all possible k's. Mappability of a gene was computed as the weighted average of its exon-

mappability and UTR-mappability, with the weights being proportional to the total length of exonic 

regions and UTRs, respectively.  

 

The selection of trios for mediation tests 

In the genomic mediation analysis presented in this work, we consider only the trios with evidence of cis 

and trans- associations, 𝐿𝑖 → 𝐶𝑖 and 𝐿𝑖 → 𝑇𝑗. We allow the eQTL to affect the trans-gene transcript via 

other pathways independent of the cis gene.  Figure 1B illustrates the type of mediation relationship we 

would like to detect. Since genetic loci are ‘Mendelian randomized’ [33], without loss of generality we 

assume the confounders are not associated with Li.  
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For each GTEx tissue type, we used the gene-level RPKM (from RNA-SeQC) as the gene expression 

values for each gene. We identified the cis-eQTLs using standard methods, restricting to genes for which 

at least 10 samples had RPKM > 0.1 and raw read counts >6 (cite Aguet et al. 2016, GTEx companion 

paper, unpublished) [10]; the complete cis-eQTL list is available through dbGaP.  For genes with 

significant evidence of a cis-eQTL, we then selected one cis-eSNP for each gene (i.e., the high-quality 

SNP with the smallest P-value) and only those cis-eSNPs were included in the subsequent trans-eQTL 

and mediation analyses, as we require the presence of both cis- and trans- associations for testing 

mediation. For each tissue, we conducted genome-wide trans-eQTL analyses restricting to the cis-eSNPs 

described above and examining association for all genes located at least 1Mb away from the cis-eSNPs.  

For mediation analyses, we only considered the pairs of eQTL and trans transcript with suggestive trans-

associations at the p-values threshold of 10
-5

 in the specific tissue type.  While some false positives trans-

eQTLs will pass this threshold, it will also allow for mediation analysis of true trans-eQTLs that cannot 

be detected at more stringent thresholds due to our limited sample size.  

 

In both the cis- and trans-eQTL analyses, for the tissue types with sample sizes greater than 250, thirty-

five tissue-specific PEER factors were constructed and adjusted; for the tissue types with sample sizes 

between 150 to 250, thirty PEER factors were adjusted; and for the tissue types with sample size less than 

150, fifteen PEER factors were adjusted. To identify trans-eQTLs, we estimated the association for each 

cis-eSNP with expression of all genes at least 1 Mb away from the SNP using  the Matrix eQTL software 

[19]. 

 

Adaptive filtering to eliminate variables from the pool of potential confounders  

Let H be the pool of candidate confounding variables (constructed or real variables). Unlike SVA [17], 

PCA [16] or PEER factor analysis [18] that use the top constructed variables, here we consider a full set 

of confounder variables and the dimensionality of H may exceed the sample size (for example, when 
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there are a large number of real covariates or we may consider others genes in the genome as potential 

confounders for each trio).  

 

For each trio (Li, Ci, Tj), we propose to first filter out potential common child variables, Zij, of Ci and Tj, 

and intermediate variables, Wij, from Ci to Tj. The confounding variables, common child variables and 

intermediate variables share a commonality --- they are correlated with both Ci and Tj. However, adjusting 

common child variables in mediation analyses would ‘marry’ Ci and Tj and make Ci appearing to be 

regulating Tj even if there is no such effect (i.e., “collider bias”) [28] increasing the false positive rate for 

detecting mediation. Adjusting for intermediate variables in a test for mediation would prevent the 

detection of the true mediation effect from Ci to Tj and hurt the power to detect true mediation. Existing 

methods to select confounders are often based on the correlation between each candidate variable and 

gene expression levels (pairs of cis- and trans-genes or the expression data matrix), which would not 

distinguish confounders and common child/intermediate variables.  

 

We argue that it is possible to filter common child and intermediate variables by utilizing the randomness 

in the inheritance of genetic loci.  Given the cis-association (Li  Ci), both common child and 

intermediate variables are affected by the cis-gene transcript, and as such are associated with the locus, Li. 

On the other hand, the confounders are assumed to be not associated with Li, since the genotypes are 

Mendelian randomized [33]. Therefore, for each trio we propose to filter the variables that are associated 

with Li, at a liberal significance threshold of 10% FDR [20] from the pool H, and only consider the 

retained variables in the subsequent adaptive adjustment and mediation test.   

 

Adaptive selection of potential confounding variables 

Different mediation trios may be affected by a different subset of variables in H. We propose to 

adaptively select the confounder sets for each trio using a stratified FDR approach [34]. 
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Specifically, for each trio, we first obtain the p-values of association for each candidate variable to the 

pair of expression levels, Ci and Tj. Here the candidate variables are the ones retained after filtering child 

and intermediate variables specific to the trio. We use a linear regression with each candidate variable as 

the response and Ci and Tj as predictors, and obtain the p-value of the overall F-test for testing whether 

the candidate variable is associated with at least one of the cis and the trans-gene expression levels.  

 

For each candidate confounding variable we then apply a predefined FDR threshold (5%) to the p-values 

corresponding to the joint associations of this variable to all the potential mediation trios, and we select 

the significant ones. We repeat this procedure for all candidate variables. Note that a confounder would be 

associated with both the cis- and trans-gene transcript. By using an F-test to test the joint association to 

either cis- or trans-gene, we obtain a superset of the confounder set.  In calculating the FDR, a key 

parameter to be estimated is 𝜋0, the proportion of true null hypotheses. For real variables, we estimate 𝜋0 

using the R qvalue package [20]. For PCA analysis, we estimated 𝜋0 as one minus the percentage of 

variation each PC explained in the overall expression matrix.  

 

As shown in Figure 1E, by applying the same FDR threshold to each candidate confounding variable to 

all trios, we identified the significant “pair”-wise associations of candidate confounders to mediation trios 

for all variables and all trios. It can be shown that under pertinent assumptions (confounders being 

independent of each other), the overall FDR is controlled at the FDR significance level.  When 

performing the mediation test for each trio, we propose to consider only the subsets in H that are 

significantly associated with that trio. 

 

Mediation test and p-value calculation 

In our genomic mediation analysis, we consider only the trios with evidence of both a cis- and trans-

eQTL associations. Consider one potential mediation trio, (Li, Ci, Tj) with the adaptively selected set of 

potential confounding variables for this trio, Xij. Here Xij is a subset of variables in H, often with much 
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lower dimensionality. Those variables are significantly associated with at least one of Ci and Tj (i.e., the 

ones checked in the row corresponding to the trio in Figure 1E.)   

 

Given cis- and trans-associations, we propose to test for non-zero mediation effects from the cis-gene 

transcript to the trans-gene transcript based on the following regression: 

Tj  = β0 + β1 Ci + β2 Li + Γ Xij + ɛ                     (1) 

We are interested in testing non-zero mediation effects captured by β1. Under the null hypothesis, after 

adjusting for confounders, there is no mediation effect given the effect from Li to Ci and the direct effect 

from Li to Tj. Under the alternative, in the presence of effect from Li to Ci  and the potential direct effect 

from Li to Tj (the dashed arrow in Figure 1B), the effect from Ci to Tj is non-zero, (i.e., β1 ≠ 0). We can 

obtain the Wald statistic for testing β1 from the regression as the mediation test statistic. 

 

To calculate the p-value for mediation for each trio, we propose to permute the cis-gene expression levels 

within each genotype group and obtain the null mediation statistics based on the trios with the same locus 

and trans- gene but permuted cis-expression levels, (Li, Ci0, Tj).  We assume that confounding effects have 

been well adjusted. Given cis- and trans-associations, under the null there is no mediation. By permuting 

the cis-gene expression levels within each genotype group, one maintains the cis-associations while 

breaks the potential mediation effects from the cis- to the trans-gene transcript. That is, conditioning on 

the genetic locus, the permuted cis-gene expression is not correlated with the trans-gene expression levels, 

i.e., no mediation. Figure 1F shows the expression variation patterns of a hypothetical mediation 

relationship Li Ci Tj on the left panel, and a null relationship entailed by (Li, Ci0, Tj) with Li Ci0 and 

Li Tj but no mediation. A p-value of mediation is calculated for each trio by comparing the observed 

statistic versus the null ones. 
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A summary of the GMAC algorithm 

In summary, in order to identify cis-mediators of trans-eQTLs across the entire genome, we propose the 

GMAC algorithm. Specifically, 

 Step 0. We focus on only the trios (Li, Ci, Tj) in the genome showing both cis- and trans-eQTL 

associations, i.e., Li Ci and Li Tj. 

 Step 1. Filter common child and intermediate variables. Given a pool of candidate variables H 

consisting of either real covariates, constructed surrogate variables, or both, for each trio (Li, Ci, 

Tj) we calculate the marginal associations of variables in H to Li and filter the ones with 

significant associations at the 10% FDR level. As shown in Figure 1B-D, common child and 

intermediate variables are directly associated with Li, while confounders are assumed to be 

unassociated with Li. Let Hij denote the retained pool of candidate variables specific to the trio (Li, 

Ci, Tj). 

 Step 2. Adaptively select confounders. For each trio and each of its potential confounding 

variables in Hij, we calculate the p-value of the F-test to assess the association of the variable to at 

least one of the cis- and trans- transcripts. Considering the p-values for one potential confounding 

variable to all trios as one stratum, we apply a 5% FDR significance threshold to each stratum 

(each column in Figure 1E). The significant variables corresponding to a trio (each row in Figure 

1E) will be selected in the mediation analyses as the adaptively selected confounders specific to 

that trio. Let Xij denote the list of adaptively selected confounder variables for the trio, (Li, Ci, Tj). 

 Step 3.Test for mediation. For each trio and its adaptively selected confounder set, we calculate 

the mediation statistic as the Wald statistic for testing the indirect mediation effect H0: β1 = 0 

based on the regression entailed by equation (1). We perform within-genotype group permutation 

on the cis-gene transcript at least 10,000 times and re-calculate each null mediation statistic based 

on the locus, a permuted cis-gene transcript, and the trans-gene transcript, (Li, Ci0, Tj). We 

calculate the p-value of mediation for the trio (Li, Ci, Tj) by comparing the observed mediation 

statistic with the null statistics. 
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The proposed algorithm is superior to existing approaches for mediation analysis that adjust a universal 

set of variables for all trios.  GMAC avoids the adjustment of common child variables, intermediate 

variables and unrelated variables in genomic mediation analysis, and it is able to search a much larger 

pool of variables for potential confounders, not just those captured by the top few surrogate variables or 

PCs.   
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Tables 

 

Table 1. A description of GTEx tissue types and the number of significant instances of mediation 

(i.e., SNP-cis-trans trios) identified by GMAC (Genomic Mediation Analysis with adaptive 

Confounder adjustment). 

 

Tissue name 
Tissue 

sample size 

# Trios 

tested 

# Trios with 

suggestive 

mediation 

(P <0.05) 

# Trios 

significant at 

5% FDR 

Muscle Skeletal 361 2387 496 264 

Whole Blood 338 2274 508 281 

Skin Sun Exposed Lower leg 302 3273 629 330 

Adipose Subcutaneous 298 3332 640 325 

Artery Tibial 285 2699 527 281 

Lung 278 2762 543 323 

Thyroid 278 3894 696 376 

Cells Transformed fibroblasts 272 3000 642 340 

Nerve Tibial 256 3812 677 326 

Esophagus Mucosa 241 2640 465 242 

Esophagus Muscularis 218 2431 447 230 

Artery Aorta 197 2009 368 186 

Skin Not Sun Exposed Suprapubic 196 1961 365 177 

Heart Left Ventricle 190 1290 242 115 

Adipose Visceral Omentum 185 1410 257 125 

Breast Mammary Tissue 183 1422 254 126 

Stomach 170 1153 235 107 

Colon Transverse 169 1585 309 161 

Heart Atrial Appendage 159 1221 243 103 

Testis 157 3896 607 267 

Pancreas 149 1270 208 102 

Esophagus Gastroesophageal Junction 127 857 148 74 

Adrenal Gland 126 981 185 94 

Colon Sigmoid 124 968 220 108 

Artery Coronary 118 874 191 95 

Cells EBV-transformed lymphocytes 114 856 152 78 

Brain Cerebellum 103 1295 187 84 

Brain Caudate basal ganglia 100 763 139 61 

Liver 97 496 87 41 

Brain Cortex 96 754 134 45 

Brain Nucleus accumbens basal ganglia 93 592 97 43 
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Brain Frontal Cortex BA9 92 595 102 52 

Brain Cerebellar Hemisphere 89 1072 222 116 

Spleen 89 825 157 68 

Pituitary 87 732 132 61 

Prostate 87 474 101 54 

Ovary 85 469 95 43 

Brain Putamen basal ganglia 82 481 94 35 

Brain Hippocampus 81 343 93 47 

Brain Hypothalamus 81 342 74 41 

Vagina 79 248 58 25 

Small Intestine Terminal Ileum 77 434 82 39 

Brain Anterior cingulate cortex BA24 72 365 81 29 

Uterus 70 287 62 25 
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Table 2.  Frequency of cis-genes that mediate the effect of a trans-eQTL on multiple trans-genes or in 

multiple tissue types  

 

Observed number of trans targets for each 

cis-gene 

Number of tissues for which each cis-gene is a 

mediator 

Number of trans targets Cis-gene count Number of Tissues Cis-gene count 

1 2,510 1 2,637 

2 482 2 420 

3 123 3 91 

4 33 4 16 

5-6 12 5 3 

7-14 8 6 1 
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Table. 3. Comparison of the Type I error rate and power of GMAC compared to other methods for 

mediation analysis under the null (A and B) and the alternative (C and D) hypotheses, based on simulated 

data  

 

 

A. Type I error in the Presence of a Common Child 
 

B. Type I error in the Presence of Confounders 

Significance Level 
Oracle 

Adjustment 

GMAC 

Algorithm 

Child 

Adjustment  
Significance Level 

Oracle 

Adjustment 

GMAC 

Algorithm 

No 

Adjustment 

0.01 0.011 0.010 0.287  0.01 0.007 0.008 0.459 

0.05 0.049 0.050 0.413 
 

0.05 0.045 0.048 0.585 

         

C. Power in the Presence of an Intermediate  variable 
 

D. Power in the Presence of Confounders 

Significance Level 
Oracle 

Adjustment 
GMAC 

Algorithm 

Adjusting 

Intermediate 

variable 
 

Significance Level 
Oracle 

Adjustment 
GMAC 

Algorithm 
Adjusting 

All 

0.01 0.999 0.868 0.006  0.01 0.231 0.260 0.158 

0.05 0.999 0.871 0.041 
 

0.05 0.459 0.486 0.341 
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Figures 

 

 

Figure 1. Graphical illustrations of (A) a summary of the GMAC algorithm; (B) a mediation relationship 

among an eQTL, Li, its cis-gene transcript, Ci, and a trans-gene transcript, Tj, with confounders, Xij, 

allowing Li to affect Tj via a pathway independent of Ci; (C) a mediation trio where Ci, and Tj, have 

common child variable(s), Zij; (D) a mediation trio where Ci, affects Tj, through intermediate variable(s), 

Wij. (E) The adaptive confounder selection procedure: Based on the p-value matrix for the association of 

each potential confounder variable to at least one of the cis- or the trans-gene transcript, we apply a 

stratified FDR approach by considering the p-values for each potential confounder (each column) as a 

stratum, with the significant ones indicated by a check mark (√). When conducting the mediation test for 

each trio, we only adjust for the significant confounding variables (the ones with with √ in each row). (F) 

A mediation trio 𝐿𝑖 → 𝐶𝑖 → 𝑇𝑗 (left) and a trio under the null with both cis-linkage and trans-linkage but 
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no mediation (right). Within-genotype permutation of the cis-gene expression levels maintains the cis- 

and trans-linkage (different mean levels) while breaks the potential correlation between the cis- and trans-

expression levels within each genotype group. 
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Figure 2. Plots of negative log base 10 of mediation p-values versus the percentage of reduction in trans-

effects after accounting for cis-mediation, based on (A) mediation tests without adjusting for hidden 

confounders (B) mediation tests by GMAC considering all PCs as potential confounders. The percentage 

of reduction in trans-effects is calculated by (𝛽2
𝑚 − 𝛽2)/𝛽2

𝑚, where 𝛽2
𝑚is the marginal trans-effect of the 

eQTL on the trans-gene expression levels, and 𝛽2 is the trans-effect in equation (1) which is adjusted for a 

potential cis-mediator. For trios with true cis-mediations, we expect the trans-effects to be substantially 

reduced after adjusting for the true cis-mediator. That is, we expect the trios with very significant 

mediation p-values to have positive % reduction in trans-effects. For results based on no adjustment of 

hidden confounders (A), we observed many trios with significant mediation p-values but the percentages 

of reduction in trans-effects are often negative. Those are suspected false positives. P-values are truncated 

at 10
-16

. The plots are based on the results from the Adipose Subcutaneous tissue. 
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Figure 3. A biologically interpretable example of a cis-eGene (IFI44L) that appears to mediate the 

effects of trans-eSNPs in multiple tissues.  IFI44L (Panel A) resides <5kb away from IFI44 (B), and 

expression of these genes is associated with a common cis-eQTL that also impacts the expression of 

multiple genes in trans in multiple tissues.  Both IFI44 and IFI44L show statistical evidence of mediation 

for a similar set of interferon-related genes.  Thus, based on this evidence, we infer that at least one of 

these genes is a cis-mediator, although cannot know which is (or if both are) the true mediator.  
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