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Sequencing costs have dropped much faster than

Moore’s law in the past decade, and sensitive se-

quence searching has become the main bottleneck

in the analysis of large metagenomic datasets. We

developed the parallelized, open-source software MM-5

seqs2 (mmseqs.org), which improves on current search

tools over the full range of speed-sensitivity trade-o↵,

achieving sensitivities better than PSI-BLAST at

> 400 times its speed. MMseqs2 o↵ers great potential

to better exploit large-scale (meta)genomic data.10

Sequencing costs have decreased 104-fold since 2007, outpac-
ing the drop in computing costs by three orders of magni-
tude. As a result, many large-scale metagenomic projects with
applications in medical, biotechnological, microbiological, and15

agricultural research are being performed, each producing ter-
abytes of sequences[1–4]. A central step in the computational
analysis is the annotation of open reading frames by search-
ing for similar sequences in the databases from which to infer
their functions. In metagenomics, computational costs now20

dominate sequencing costs [5–7] and protein searches typically
consume > 90% of computational resources[7], even though
the sensitive but slow BLAST [8] has mostly been replaced by
much faster search tools[9–12]. But the gains in speed are paid
by lowered sensitivity. Because many species found in metage-25

nomics and metatranscriptomics studies are not closely related
to any organism with a well-annotated genome, the fraction of
unannotatable sequences is often as high as 65% to 90% [2, 13],
and the widening gap between sequencing and computational
costs quickly aggravates this problem.30

To address this challenge, we developed the open-source
software suite MMseqs2. Compared to its predecessor
MMseqs[14], it is much more sensitive, supports iterative
profile-to-sequence and sequence-to-profile searches and o↵ers
much enhanced functionality (Supplementary Table S I).35

MMseqs2 searching is composed of three stages (Fig. 1a):
a short word (”k-mer”) match stage, vectorized ungapped
alignment, and gapped (Smith-Waterman) alignment. The
first stage is crucial for the improved performance. For a
given query sequence, it finds all target sequences that have40

two consecutive inexact k-mer matches on the same diagonal
(Fig. 1b). Consecutive k-mer matches often lie on the same
diagonal for homologous sequences (if no alignment gap occurs
between them) but are unlikely to do so by chance. Whereas
most fast tools detect only exact k-mer matches[9–12], MM-45

seqs2, like MMseqs and BLAST, finds inexact k-mer matches
between similar k-mers. This inexact matching allows MM-
seqs2 to use a large word size k = 7 without loosing sensitiv-
ity, by generating a large number of similar k-mers, ⇠ 600
to 60 000 per query k-mer depending on the similarity setting50

(Fig. 1b, orange frame). Importantly, its innermost loop 4
needs only a few CPU clock cycles per k-mer match using a
trick to eliminate random memory access (last line in magenta
frame, Supplementary Fig. S1).

MMseqs2 is parallelized on three levels: time-critical parts55

are manually vectorized, queries can be distributed to multi-
ple cores, and the target database can be split into chunks
distributed to multiple servers. Because MMseqs2 needs no
random memory access in its innermost loop, its runtime scales
almost inversely with the number of cores used (Supplemen-60

tary Fig. S2).
MMseqs2 requires 13.4 GB plus 7B per amino acid to store

the database in memory, or 80 GB for 30.3 M sequences of
length 342. Large databases can be searched with limited main
memory by splitting the database among servers, at very mod-65

erate loss of speed (Supplementary Fig. S3).
We developed a benchmark with full-length sequences con-

taining disordered, low-complexity and repeat regions, because
these regions are known to cause false-positive matches, par-
ticularly in iterative profile searches. We annotated UniProt70

sequences with structural domain annotations from SCOP [15],
6370 of which were designated as query sequences and 3.4M
as database sequences. We also added 27 M reversed UniProt
sequences, thereby preserving low complexity and repeat struc-
ture [16]. The unmatched parts of query sequences were scram-75

bled in a way that conserved the local amino acid composition.
A benchmark using only unscrambled sequences gives similar
results (Supplementary Figs. S4, S5, S6, S7). We defined
true positive matches to have annotated SCOP domains from
the same SCOP family, false positives match a reversed se-80

quence or a sequence with a SCOP domain from a di↵erent
fold. Other cases are ignored.

Figure 2a shows the cumulative distribution of search sen-
sitivities. Sensitivity for a single search is measured by the area
under the curve (AUC) before the first false positive match,85

i.e., the fraction of true positive matches found with better
E-value than the first false positive match. MMseqs2-sensitive
reaches BLAST’s sensitivity while being 36 times faster. Inter-
estingly, MMseqs2 is as sensitive as the exact Smith-Waterman
aligner SWIPE[17], compensating some unavoidable loss of90

sensitivity due to its heuristic prefilters by e↵ectively sup-
pressing false positive matches between locally biased segments
(Fig. 2d, Supplementary Fig. S4). This is achieved by
correcting the scores of regions with biased amino acid com-
position or repeats, masking such regions in the k-mer index95

using TANTAN [18], and reducing homologous overextension
of alignments with a small negative score o↵set (Fig. 2d, Sup-
plementary Fig. S7). All tools except MMseqs2 and LAST
report quite inaccurate (i.e. too optimistic) E-values (Sup-
plementary Fig. S8).100

In a comparison of AUC sensitivity and speed (Fig. 2b),
MMseqs2 with four sensitivity settings (red) shows the best
combination of speed and sensitivity over the entire range of
sensitivities. Similar results were obtained with a benchmark
using unscrambled or single-domain query sequences (Supple-105

mentary Figs. S4, S5, S6, S7, S9, S10).
Searches with sequence profiles are generally much more sen-

sitive than simple sequence searches, because profiles contain
detailed, family-specific preferences for each amino acid at each
position. We compared MMseqs2 to PSI-BLAST (Fig. 2b) us-110
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Figure 1. MMseqs2 searching in a
nutshell. (a) Three increasingly sensi-
tive search stages find similar sequences
in the target database. (b) The short
word (”k-mer”) match stage detects con-
secutive inexact k-mer matches occurring
on the same diagonal. The diagonal of
a k-mer match is the di↵erence between
the positions of the two similar k-mers
in the query and in the target sequence.
The pre-computed index table for the tar-
get database (blue frame) contains for
each possible k-mer the list of the tar-
get sequences and positions where the
k-mer occurs (green frame). Query se-
quences/profiles are processed one by one
(loop 1). For each overlapping, spaced
query k-mer (loop 2), a list of all sim-
ilar k-mers is generated (orange frame).
The similarity threshold determines the
list length and sets the trade-o↵ between
speed and sensitivity. For each similar
k-mer (loop 3) we look up the list of
sequences and positions where it occurs
(green frame). In loop 4 we detect con-
secutive double matches on the same di-
agonals (magenta and black frames).

ing two to four iterations of profile searches through the target
database. As expected, MMseqs2 profile searches are much
faster and more sensitive than BLAST sequence searches. But
MMseqs2 is also considerably more sensitive than PSI-BLAST,
despite being 433 times faster at 3 iterations. This is partly115

owed to its e↵ective suppression of high-scoring false positives
and more accurate E-values (Fig. 2d, Supplementary Fig.

S7).
The MMseqs2 suite o↵ers workflows for various standard

use cases of sequence and profile searching and clustering of120

huge sequence datasets and includes many utility scripts. We
illustrate its power with three example applications.

In the first example, we tested MMseqs2 for annotating pro-
teins in the Ocean Microbiome Reference Gene Catalog (OM-
RGC) [1]. The speed and quality bottleneck is the search125

through the eggNOGv3 database [19]. The BLAST search
with E-value cuto↵ 0.01 produced matches for 67% of the
40.2M OM-RGC genes [1]. We replaced BLAST with three
MMseqs2 searches of increasing sensitivity (Supplementary

Fig. S11). The first MMseqs2 search in fast mode detected130

matches for 59.3% of genes at E  0.1. (E  0.1 corresponds
to the same false discovery rate as E  0.01 in BLAST, Fig.
2d). The sequences without matches were searched with de-
fault sensitivity, and 17.5% had a significant match. The last
search in sensitive search mode found matches for 8.3% of the135

remaining sequences. In total we obtained at least one match
for 69% sequences in OM-RGC, 3% more than BLAST, in 1%
of the time (1 520 vs. 162 952 CPU hours; Shini Sunagawa,
personal communication).

In the second example, we sought to annotate the remain-140

ing 12.3M unannotated sequences using profile searches. We
merged the UniProt database with the OM-RGC sequences
and clustered this set with MMseqs2 at 50% sequence identity
cut-o↵. We built a sequence profile for each remaining OM-

RGC sequence by searching through this clustered database145

and accepting all matches with E  0.001. With the result-
ing sequence profiles we searched through eggNOG, and 3.5M
(28.3%) profiles obtained at least one match with E < 0.1.
This increased the fraction of OM-RGC sequences with signif-
icant eggNOG matches to 78% with an additional CPU time150

of 900 hours. In summary, MMseqs2 matched 78% sequences
to eggNOG in only 1.5% of the CPU time that BLAST needed
to find matches for 67% of the OM-RGC sequences[1].
In the third example, we annotated a non-redundant set of

1.1 billion hypothetical proteins sequences with Pfam[20] do-155

mains. We predicted these sequences of average length 323 in
⇠ 2200 metagenome/metatranscriptome datasets [21]. Each
sequence was searched through 16 479 Pfam31.0 sequence pro-
files held in 16 GB of memory of a single 2⇥14-core server
using sensitivity setting -s 5. Supplementary Fig. S12 ex-160

plains the adaptations to the k-mer prefilter and search work-
flow. The entire search took 8.3 hours, or 0.76 ms per query
sequence per core and resulted in 370M domain annotations
with E-values below 0.001. A search of 1100 randomly sam-
pled sequences from the same set with HMMER3[22] through165

Pfam took 10.6 s per seqeunce per core, almost 14 000 times
longer, and resulted in 514 annotations with E < 0.001, in
comparison to 415 annotations found by MMseq2. A sensitiv-
ity setting of -s 7 brings the number of MMseqs2 annotations
to 474 at 4000 times the speed of HMMER3.170

In summary, MMseqs2 closes the cost and performance gap
between sequencing and computational analysis of protein se-
quences. Its sizeable gains in speed and sensitivity should open
up new possibilities for analysing large data sets or even the
entire genomic and metagenomic protein sequence space at175

once.
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Figure 2. MMseqs2 pushes the
boundaries of sensitivity-speed
trade-o↵. a Cumulative distribu-
tion of Area under the curve (AUC)
sensitivity for all 6370 searches
with UniProt sequences through
the database of 30.4 M full-length
sequences. Higher curves signify
higher sensitivity. Legend: speed-
up factors relative to BLAST, mea-
sured on a 2⇥8 core 128 GB RAM
server using a 100 times dupli-
cated query set (637 000 sequences).
Times to index the database have
not been included. MMseqs2 index-
ing takes 11 minutes for 30.3M se-
quences of avg. length 342. b Av-
erage AUC sensitivity versus speed-
up factor relative to BLAST. White
numbers in plot symbols: number
of search iterations. c Same anal-
ysis as in a, for iterative profile
searches. d False discovery rates for
sequence and profile searches. Col-
ors: as in a (top) and c (bottom).
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ONLINE METHODS

Overview. MMseqs2 (Many-against-Many sequence
searching) is a software suite to search and cluster huge
protein sequence sets. MMseqs2 is open source GPL-licensed
software implemented in C++ for Linux and Mac OS. At the5

core of MMseqs2 is its sequence search module. It searches
and aligns a set of query sequences against a set of target
sequences. Queries are processed in three consecutive stages
of increasing sensitivity and decreasing speed (Fig. 1a): (1)
the fast k-mer match stage filters out 99.9 % of sequences, (2)10

the ungapped alignment stage filters out a further 99 %, and
(3) the accurate, vectorized Smith-Waterman alignment thus
only needs to align ≥ 10≠5 of the target sequences.

MMseqs2 builds on our MMseqs software suite[7], designed
for fast sequence clustering and searching of globally alignable15

sequences. The k-mer match stage of MMseqs2, which is cru-
cial for its improved sensitivity-speed trade-o�, has been devel-
oped from scratch, profile-to-sequence and sequence-to-profile
searching capabilities have been developed, and many other
powerful features and utilities have been added (see Supple-20

mental Table S1 for an overview of di�erences).
The software is designed to run on multiple cores and servers

and exhibits nearly linear scalability. It makes extensive use of
single instruction multiple data (SIMD) vector units which are
part of modern Intel and AMD CPUs. For older CPUs with-25

out AVX2 support, MMseqs2 falls back to SSE4.1 instructions
throughout with minimal speed loss.

k-mer match stage. Most fast methods follow a seed-
and-extend approach: a fast seed stage searches for short-word
(“k-mer“) matches which are then extended to a full, gapped30

alignment. Since the k-mer match stage needs to work on
all sequences, it needs to be much faster than the subsequent
stages. Its sensitivity is therefore crucial for the overall search
sensitivity. In contrast to BLAST and SWORD [20], most
fast methods index the database k-mers instead of the query35

sequences, using hashes or su�x arrays, and a few index both
to streamline random memory access during the identification
of k-mer matches [2, 8, 12]. To increase the seeds’ sensitivity,
some methods allow for one or two mismatched positions [8,
11], others employ reduced alphabets [2, 8, 19, 22]. Many40

use spaced k-mer seeds to reduce spatial clustering of chance
matches [2, 8].

Whereas most other tools use only single, exact k-mer
matches as seeds, the k-mer match stage of MMseqs2 detects
double, consecutive, similar-k-mer matches occurring on the45

same diagonal i≠ j. i is position of the k-mer in the query and
j is the position of the matching k-mer in the target sequence.
This criterion very e�ectively suppresses chance k-mer matches
between nonhomologous sequences as these have a probability
of only ≥ 1/(L

query

+ L
target

) to have coinciding diagonals. In50

contrast, consecutive k-mer matches between homologous se-
quences lie on the same diagonal if no alignment insertion or
deletion occurred between them. A similar criterion is used in
the earlier, two-hit 3-mer seed strategy of BLAST [1]. (The
new version reverts to a single-hit strategy but uses 6-mers on55

a reduced size-15 alphabet instead of 3-mers.[16].)
Query sequences are searched one by one against the tar-

get set (Fig. 1b, loop 1). For each k-mer starting position
in the query (loop 2) we generate a list of all similar k-mers

(orange frame) with a Blosum62 similarity above a threshold60

score. Lower threshold scores (option --k-score <int>) result
in higher average numbers of similar k-mers and thereby higher
sensitivity and lower speed. The similar k-mers are generated
with a linear-time branch-and-bound algorithm[6].

For each k-mer in the list of similar k-mers (loop 3), we65

obtain from the index table (blue frame) the list of target se-
quence identifiers target_ID and the positions j of the k-mer
(green frame). In the innermost loop 4 we go through this list
to detect double k-mer matches by comparing the current diag-
onal i≠j with the previously matched diagonal for target_ID.70

If the previous and current diagonals agree, we store the diago-
nal i≠j and target_ID as a double match. Below, we describe
how we carry out this computation within low-level, fast CPU
cache without random memory access.

Minimizing random memory access. Due to the in-75

crease in the number of cores per CPU and the stagnation in
main memory speeds in the last decade, main memory access is
now often the chief bottleneck for compute-intensive applica-
tions. Since it is shared between cores, it also severely impairs
scalability with the number of cores. It is therefore paramount80

to minimize random memory accesses.
We want to avoid the random main memory access to read

and update the value of diagonal_prev[target_ID] in the
innermost loop. We therefore merely write target_ID and the
diagonal i≠j serially into an array matches for later processing.85

Because we write linearly into memory and not at random
locations, these writes are automatically bu�ered in low-level
cache by the CPU and written to main memory in batches with
minimal latency. When all k-mers from the current query have
been processed in loop 2, the matches array is processed in90

two steps to find double k-mer matches. In the first step, the
entries (target_ID, i≠j) of matches are sorted into 2B arrays
(bins) according to the lowest B bits of target_ID, just as in
radix sort. Reading from matches is linear in memory, and
writing to the 2B bins is again automatically bu�ered by the95

CPU. In the second step, the 2B bins are processed one by one.
For each k-mer match (target_ID, i≠j), we run the code in
the magenta frame of Fig. 1b. But now, the diagonal_prev

array fits into L1/L2 CPU cache, because it only needs ≥N/2B

entries, where N is the number of target database sequences.100

To minimize the memory footprint, we store only the lowest
8 bits of each diagonal value in diagonal_prev, reducing the
amount of memory to ≥N/2B bytes. For example, in the 256
KB L2 cache of Intel Haswell CPUs we can process a database
of up to 256K ◊ 2B sequences. To match L2 cache size to the105

database size, MMseqs2 sets B = ceil(log2(N/L2_size)).
Index table generation. For the k-mer match stage we

preprocess the target database into an index table. It consists
of a pointer array (black frame within blue frame in Fig. 1b)
and k-mer entries (green frame in Fig. 1b). For each of the110

21k k-mers (the 21st letter X codes for "any amino acid") a
pointer points to the list with target sequences and positions
(target_ID, j) where this k-mer occurs. Prior to index gener-
ation, regions of low amino acid compositional complexity are
masked out using TANTAN (see Masking low-complexity re-115

gions). Building the index table can be done in multithreaded
fashion and does not require any additional memory. To that
end, we proceed in two steps: counting of k-mers and filling
entries. In the first step each thread counts the k-mers, one
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sequence at a time. All threads add up their counts using120

the atomic function __sync_fetch_and_add. In the second
step, we allocate the appropriately sized array for the k-mer
entries. We then assign roughly equal sized k-mer-ranges to
every thread and initialise their pointers at which they start
filling their part of the entry array. Now each thread processes125

all sequence but only writes the k-mers of the assigned range
linearly into the entry array. Building the index table file for
3 ◊ 107 sequences takes about 11 minutes on 2 ◊ 8 cores.

Memory requirements. The index table needs 4 + 2
bytes for each entry (target_ID, j), and one byte per residue130

is needed to store the target sequences. For a database of
NL residues, we therefore require NL ◊ 7 B. The pointer ar-
ray needs another 21k ◊ 8 B. The target database set can be
split into arbitrary chunk sizes to fit them into memory (see
Parallelization).135

Ungapped alignment stage. A fast, vectorized algo-
rithm computes the scores of optimal ungapped alignments on
the diagonals with double k-mer matches. Since it has a linear
time complexity, it is much faster than the Smith-Waterman
alignment stage with its quadratic time complexity. The algo-140

rithm aligns 32 target sequences in parallel, using the AVX2
vector units of the CPU. To only access memory linearly we
precompute for each query sequence a matrix with 32 scores
per query residue, containing the 20 amino acid substitution
scores for the query residue, a score of ≠1 for the letter X (any145

residue), and 11 zero scores for padding. We gather bundles
of 32 target sequences with matches on the same diagonal and
also preprocess them for fast access: We write the amino acids
of position j of the 32 sequences consecutively into block j of 32
bytes, the longest sequence defining the number of blocks. The150

algorithm moves along the diagonals and iteratively computes
the 32 scores of the best alignment ending at query position
i in AVX2 register S using S = max(0, S

match

+ S
prev

). The
substitution scores of the 32 sequences at the current query po-
sition i in AVX2 register S

match

are obtained using the AVX2155

(V)PSHUFB instruction, which extracts from the query pro-
file at position i the entries specified by the 32 bytes in block
j of the target sequences. The maximum scores along the 32
diagonals are updated using S

max

= max(S
max

, S). We sub-
tract from S

max

the log
2

of the length of the target sequence.160

Alignments above 15 bits are passed on to the next stage.
Vectorized Smith-Waterman alignment stage. We

extended the alignment library of Mengyao et al. [21], which
is based on Michael Farrar’s stripe-vectorized alignment algo-
rithm [3], by adding support for AVX2 instructions and for se-165

quence profiles. To save time when filtering matches, we only
need to compute the score and not the full alignment. We
therefore implemented versions that compute only the score
and the end position of the alignment, or only start and end
position and score.170

Amino acid local compositional bias correction.
Many regions in proteins, in particular those not forming a
stable structure, have a biased amino acid composition that
di�ers considerably from the database average. These regions
can produce many spurious k-mer matches and high-scoring175

alignments with non-homologous sequences of similarly biased
amino acid distribution. Therefore, in all three search stages
we apply a correction to substitution matrix scores developed
for MMseqs[7], assigning lower scores to the matches of amino

acids that are overrepresented in the local sequence neighbor-180

hood. Query sequence profile scores are corrected in a simi-
lar way: The score S(i, aa) for amino acid aa at position i is
corrected to S

corr

(i, aa) = S(i, aa) ≠ 1

40

qi+20

j=i≠20,j ”=i S(j, aa) +
1

Lquery

qLquery
j=1

S(j, aa).
Masking low-complexity regions. The query-based185

amino acid local compositional bias correction proved e�ective,
particularly for sequence-to-sequence searches. However, for
iterative profile sequence searches a very low level of false dis-
covery rate is required, as false positive sequences can recruit
more false positives in subsequent iterations leading to mas-190

sively corrupted profiles and search results in these instances.
We observed that these cases were mainly caused by biased
and low-complexity regions in the target sequences. We there-
fore mask out low-complexity regions in the target sequences
during the k-mer matching and the ungapped alignment stage.195

We use TANTAN[4] with a threshold of 0.9% probability for
low complexity.

Iterative profile searching The first iteration of the pro-
file search is a straightforward MMseqs2 sequence-to-sequence
search. We then realign all matched sequences with E-values200

below the specified threshold (option --E-profile <value>)
with a score o�set of ≠0.1 bits per matched residue pair (added
to the scores of the substitution matirx) to avoid "homologous
overextentions" of the alignments, a serious problem causing
many false positives in iterative profile searches [4, 5]. In all205

further iterations, we remove previously accepted sequences
from the prefilter results and align only the newly found se-
quence matches. From the search results we construct a simple
star multiple sequence alignment (MSA) with the query as the
master sequence. We filter the multiple sequence alignment210

with 90% maximum pairwise sequence identity and pick the
100 most diverse sequences using C++ code adapted from our
HH-suite software package[14]. As in HH-suite, we compute
position-specific sequence weights[1], which ensure that MSAs
with many matched segments that stretch only part of the215

query sequence, as occurs often for multidomain proteins, are
treated appropriately. We add pseudocounts to the amino acid
counts of each profile column as described for HHsearch [17].

Profile-to-sequence search mode. To enable searching
a target profile database, we made four changes to the search220

workflow (Supplementary Fig. S11): (1) We generate a k-
mer index table for the target database by looping over all
profiles and all k-mer positions and adding all k-mers to the
index that obtain a profile similarity score above the thresh-
old. Lower score thresholds lead to more k-mers and higher225

sensitivity. (2) We only look for the exact query k-mers in the
index table. The former loop 3 is omitted. (3) The ungapped
alignment for each matched diagonal is computed between the
query sequence and the target profile’s consensus sequence,
which contains at each column the most frequent amino acid.230

(4) The previous step produced for each query sequence s a
list of matched profiles p with score Ssp > 15bit. However, the
gapped alignment stage can only align profiles with sequences
and not vice versa. We therefore transpose the scores Ssp in
memory and obtain for each profile p all matched sequences,235

{s : Sps > 15bit}, which we pass to the gapped alignment
stage. Finally, the results are transposed again to obtain for
each query sequence a list of matched profiles.
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Algorithmic novelty in MMseqs2. MMseqs2 builds
upon many powerful previous ideas in the sequence search field,240

such as inexact k-mer matching [1], finding two k-mers on the
same diagonal [1], or spaced k-mers [12]. In addition to care-
fully engineering every relevant piece of code for maximum
speed, we introduce with MMseqs2 several novel ideas that
were crucial to the improved performance: (1) the algorithm245

to find two consecutive, inexact k-mer matches (Fig. 1b); (2)
the avoidance of random memory accesses in the innermost
loop of the k-mer match stage (Supplementary Fig. S1);
(3) the use of 7-mers, which is only enabled by the fast genera-
tion of similar k-mers (≥ 60 000 per k-mer in sensitive mode);250

(4) iterative profile-sequence search mode including profile-to-
sequence vectorized Smith-Waterman alignment; (5) sequence-
to-profile search mode; (6) the introduction of a fast, vector-
ized ungapped-alignment step (Fig. 1a); (7) a fast amino acid
compositional bias score correction on the query side that sup-255

presses high-scoring false positives.
Parallelization. Due to the stagnation in CPU clock rates

and the increase in the number of cores per CPU, vectoriza-
tion and parallelisation across multiple cores and servers is of
growing importance for highly compute-intensive applications.260

Besides careful vectorization of time-critical loops, MMseqs2
is e�ciently parallelized to run on multiple cores and servers
using OpenMP and message passing interface (MPI).

OpenMP threads search query sequences independently
against the target database and write their result into sepa-265

rate files. After all queries are processed, the master thread
merges all results together.

To parallelize the time-consuming k-mer matching and gap-
less alignment stages among multiple servers, two di�erent
modes are available. In the first, MMseqs2 can split the tar-270

get sequence set into approximately equal-sized chunks, and
each server searches all queries against its chunk. The results
from each server are automatically merged. Alternatively, the
query sequence set is split into equal-sized chunks and each
server searches its query chunk against the entire target set.275

Splitting the target database is less time-e�cient due to the
slow, IO-limited merging of results. But it reduces the mem-
ory required on each server to NL ◊ 7B/#chunks + 21k ◊ 8 B
and allows users to search through huge databases on servers
with moderate memory sizes. If the number of chunks is larger280

than the number of servers, chunks will be distributed among
servers and processed sequentially. By default, MMseqs2 au-
tomatically decides which mode to pick based on the available
memory on the master server.

MMseqs2 software suite. The MMseqs2 suite consists285

of four simple-to-use main tools for standard searching and
clustering tasks, 37 utility tools, and four core tools ("ex-
pert tools"). The core tool mmseqs prefilter runs the first
two search stages in Fig. 1a, mmseqs align runs the Smith-
Waterman alignment stage, and mmseqs clust o�ers various290

clustering algorithms. The utilities comprise format conver-
sion tools, multiple sequence alignment, sequence profile cal-
culation, open reading frame (ORF) extraction, 6-frame trans-
lation, set operations on sequence sets and results, regex-based
filters, and statistics tools to analyse results. The main tools295

are implemented as bash-scripted workflows that chain to-
gether core tools and utilities, to facilitate their modification
and extension and the creation of new workflows.

Design of sensitivity benchmark. Some recent new se-
quence search tools were only benchmarked against short se-300

quences, using BLAST results as the gold standard [2, 8, 9, 22].
Short matches require fairly high sequence identities to become
statistically significant, making BLAST matches of length 50
relatively easy to detect. (For a sequence match to achieve an
E≠value < 0.01 in a search through UniProt requires a raw305

score of ≥ 40 bits, which on 50 aligned residues translates to a
sequence identity & 40%). Because long-read, third-generation
sequencing technologies are becoming widespread, short-read
technologies are improving read lengths, and ORFs and pu-
tative genes in metagenomics are commonly predicted from310

assembled contigs, we constructed a benchmark set using full-
length queries and database sequences, not just sequences of
structured domains as usually done. Including disordered re-
gions, membrane helices, and other low-complexity regions is
important since they often give rise to false-positive sequence315

matches, particularly in iterative sequence searches.
Because we cannot use BLAST or SWIPE[15] as gold stan-

dard if we want to compare other tools with them, we use
evolutionary relationships that have been determined on the
basis of structures as gold standard. SCOP [13] is a database of320

protein domains of known structure organised by evolutionary
relationships.

We defined true positive matches to have annotated SCOP
domains from the same SCOP family, false positives match a
reversed sequence. In the first benchmark version matches to325

a sequence with a SCOP domain from a di�erent fold except
the beta propellers (which are known to be homologous [18])
are also conside--red false positives. Other cases are ignored.
-- The false discovery rate (FDR) For a single search is com-
puted as FDR = FP/(FP + TP), where TP and FP are the330

numbers of true and false positive matches below a cuto� score
in that search. To prevent a few searches with many false pos-
itives from dominating the FDR, we computed the FDR for
all searches as arithmetic mean over the single-search FDRs.

We measure the sensitivity of search tools using a receiver335

operating characteristic (ROC) analysis [18]. We search with
a large set of query sequences through a database set (see
next paragraph) and record for each query the fraction of true
positive sequences detected up to the first false positive. This
sensitivity is also called area under the curve 1 (AUC1). We340

then plot the cumulative distribution of AUC1 values, that
is, the fraction of query sequences with an AUC1 value larger
than the value on the x-axis. The more sensitive a search
tools is the higher will its cumulative distribution trace lie.
We do not analyse only the best match for every search in345

order to increase the number of matches and to thereby reduce
statistical noise.

Benchmark set. The SCOP/ASTRAL (v. 1.75) database
was filtered to 25% maximum pairwise sequence identity (7616
sequences), and we searched with each SCOP sequence through350

the UniRef50 (06/2015) database, using SWIPE [15] and, for
maximum sensitivity, also three iterations of HHblits. To con-
struct the query set, we chose for each of the 7616 SCOP se-
quences the best matching UniRef50 sequence for the query set
if its SWIPE E-value was below 10≠5, resulting in 6370 query355

sequences with 7598 SCOP-annotated domains. In the first
version of the benchmark (Fig. 2), query sequences were shuf-
fled outside of annotated regions within overlapping windows
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of size 10. This preserves the local amino acid composition
while precluding true positive matches in the shu�ed regions.360

In the second version of the benchmark, query sequences were
left unchanged (Supplementary Fig. S3, S4, S5, S6).

To construct the target database, we selected all UniRef50
sequences with SWIPE or HHblits E≠value < 10≠5 and anno-
tated them with the corresponding SCOP family, resulting in365

3 374 007 annotations and a median and average number of se-
quences per SCOP family of 353 and 2150, respectively. Since
the speed measurements are only relevant and quantitative on
a database of realistic size, we added the 27 056 274 reversed
sequences from a 2012 UniProt release. Again, the reversion370

preserves the local amino acid composition while ruling out
true positive matches [10]. We removed the query sequences
from the target database and removed queries with no correct
matches in the target database from the query set.

Benchmarking. We evaluated results up to the 4000th375

match per query (ranked by E-value) and, for tools with an
upper limit on the number of reported matches, set this limit
via command line option to 4000. The maximum E-value was
set to 10 000 to detect at least one false positive and to avoid

biases due to slightly di�erent E-value calculations. Because380

the MMseqs2 prefilter is already very sensitive and returns
proper E-values, the Smith-Waterman alignment stage is not
needed in the "fast" and "faster" versions. Program versions
and calls are found in the Supplemental Table S2.

All benchmarks were run on a single server with two Intel385

Xeon E5-2640v3 CPUs (2◊8 cores, 2.6 GHz) and 128GB mem-
ory. Run times were measured using the Linux time command,
with the target database (70 GB, 30.4 M sequences) on local
solid state drives. Since some search tools are speed-optimized
not only for large target databases but also for large query390

sets, we duplicated the query set 100 times for the runtime
measurements, resulting in 637 000 query sequences. For the
slowest tools, SWIPE, BLAST and RAPsearch2, we scaled up
the runtime for the original query dataset 100-fold.

Data availability. Parameters and scripts for bench-395

marking are deposited at https://bitbucket.org/martin_

steinegger/mmseqs-benchmark.
Code availability. The source code and binaries of the

MMseqs2 software suite can be download at https://mmseqs.

org.400
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