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Aim: Although there is a vast body of literature on the causes of variation in species composition in ecological communities,
less effort has been invested in understanding how interactions between these species vary. Since interactions are crucial to
the structure and functioning of ecological communities, we need to develop a better understanding of their spatial distribution.
Here, we investigate whether species interactions vary more in response to different climate variables, than individual species
do. Location: Eurasia. Time period: 2000s. Major taxa: Animalia. Methods: We used a measure of Local Contribution to
Beta-Diversity to evaluate the compositional uniqueness of 51 host—parasite communities of rodents and their ectoparasitic
fleas across Eurasia, using publicly available data. We measured uniqueness based on the species composition, and based
on potential and realized biotic interactions (here, host-parasite interactions). Results: We show that species interactions vary
more, across space, than species do. In particular, we show that species interactions respond to some climatic variables
that have no effect on species distributions or dissimilarity. Main conclusions: Species interactions capture some degree of
variation which is not apparent when looking at species occurrences only. In this system, this appeared as hosts and parasites
interacting in different ways as a reponse to different environments, especially the temperature and dryness. We discuss the
implications of this finding for the amount of information that should be considered when measuring community dissimilarity.
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Ecological communities are made of species, but also of the in-
teractions among them. Understanding how community struc-
ture changes requires addressing the variability of these two
components. Biogeography has developed a very strong cor-
pus of theory and empirical evidence pertaining to the fact that
species occur at different locations because of random chance,
favourable habitat (environmental filtering), and the ability of
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these species to establish the biotic interactions they require
to persist. Yet the spatial distribution of species interactions
has been comparatively less looked at. Poisot er al. (2015)
suggested that species interactions, at any given location, can
vary because of neutral effects (species abundance), functional
effects (species traits), or the effect of a suite of other unspeci-
fied factors. Interactions are known to react in stochastic ways
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to population abundances (Canard et al., 2014), and are there-
fore inherently more variable. One of the possible factors that
has not been evaluated is the effect of environmental condi-
tions on the existence of interactions. If interactions respond to
the environment, then ecological communities will vary across
space. Here we investigate whether knowledge of environmen-
tal conditions helps to explain species interaction variability
across space.

One way to investigate the variability of ecological communi-
ties is through the use of spatially replicated systems: by de-
scribing the presence/absence of species originating from the
same regional pool at different localities and documenting their
interactions, it is possible to compare these communities to
gain insights about why and how ecological communities vary.
Because this is done within a shared regional species pool, this
approach reveals the role of other factors than species com-
positional changes on the variation of community structure.
Information about both species and their interactions can be
efficiently represented using ecological networks, and the re-
cent years saw the development of approaches to quantify the
variation of these networks (Poisot et al., 2012). In parallel,
advances in the quantification of f-diversity allow the iden-
tification of hotspots of variation, i.e. localities that through
their unique composition, have a high contribution to the over-
all p-diversity (Legendre & De Céceres, 2013; Legendre, 2014;
Legendre & Gauthier, 2014). In this manuscript, we bring
these families of approaches together, describing the variation
of community structure across space, and identifying the mech-
anisms and environmental variables responsible for this varia-
tion.

Understanding species within their communities, and by exten-
sion communities themselves, can be done through a quantifi-
cation of the species’ Grinnellian and Eltonian niches (Devic-
tor et al., 2010). To summarize, species contribute to com-
munity structure first by being present within the commu-
nity (which assumes that the local environmental conditions
are amenable to their persistence), and second by fulfilling a
functional role within this community, which is in part de-
fined by the way they interact with other species (Coux et
al., 2016). Communities therefore differ it two complemen-
tary ways: first, because they harbour different species; sec-
ond because whichever species they share might interact in
different ways (Poisot et al., 2015). This dissimilarity in both
species composition and species interactions, over space and
time, has raised increasing empirical attention in recent years
(Carstensen et al., 2014; Vizentin-Bugoni et al., 2014; Olito
& Fox, 2015; Trgjelsgaard et al., 2015). Although the drivers
of species distributions have been well elucidated in the past
decades, there is virtually no knowledge (nor hypotheses) re-
garding how species interactions should be distributed in space.
Most of the earliest datasets on ecological interactions repli-
cated across space (e.g. Havens, 1992) assume that interac-
tions are constant: two species will always interact if they are
found in the same location, environment, etc. Because empiri-
cal data (most of which stems from host-parasite interactions,
but also from mutualistic systems) contradict this assumption,
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there is an urgent need to revise our understanding of how com-
munity structure should be defined at both the local and global
scale (Trgjelsgaard & Olesen, 2016). Specifically, we need to
do so in a way that accounts simultaneously for the variability
of species occurrences, and for the variability of species inter-
actions.

Building on the framework put forth by Poisot et al. (2015),
it is possible to develop quantitative hypotheses regarding the
variation of species presences, interactions, and the relation-
ship between them. An interaction between any pair of species
is only possible when the two species of this pair co-occur.
Therefore, because two species may co-occur but not interact
(whereas the opposite is impossible), the dissimilarity of inter-
actions is greater than or exactly equal to the dissimilarity of
species composition; it cannot be smaller if the two dissimi-
larities are measured from the same community data (Poisot ef
al., 2012). There are two important consequences to this fact.
First, species composition across multiple localities should be
less dissimilar than species interactions. Second, interaction
dissimilarity will produce a clearer picture of how communities
differ, because the distribution of interactions is intrinsically
more variable than that of species: even when two species are
found together, they may not interact locally. Most importantly,
species are nested within interactions (at least from a purely
mathematical standpoint), whereby nodes/species are embed-
ded into edges/interactions — therefore, describing interactions
is a more informative way of depicting community structure,
which not only includes but actually supersedes the usual ap-
proach of communities-as-lists-of-species.

We will test whether species interactions respond to environ-
mental conditions, using interaction data on rodents and fleas
in Eurasia (Hadfield et al., 2013). Host-parasite systems offer
an exceptional natural laboratory to investigate these questions.
First, parasites require an interaction with their hosts to persist,
so that we except a strong matching in the distribution of para-
sites and their hosts (Poulin et al., 2011). Second, the effect of
the parasite on its hosts fitness is not strong enough to trigger
large mortality events (Krasnov et al., 2002), so we do not an-
ticipate repulsion of parasites and hosts in space. Third, fleas
being macro ecto-parasites, they experience the same environ-
ment as their hosts, and therefore measuring their response to
the same environmental conditions is justified. Finally, this
rodents-fleas system has a very broad spatial distribution in
Eurasia, covering a range of climatic regions. Because of all of
these characteristics, this is a perfectly suitable system in which
we can test the effect of environmental conditions on species
interactions in space.

This study demonstrates how, within a biogeographic perspec-
tive, species interactions reveal another dimension in which
ecological communities vary; importantly, species interactions
not only capture the variability of species distributions, but also
capture another layer of environmental conditions. In particu-
lar, we show that (i) species interactions are more variable, and
allow the identification of more sites with unique contributions
to p-diversity, than species only; and (ii), species interactions
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react to climatic variables of their own, in addition to capturing
most of the climatic variables acting on species distributions.
We discuss these results in the light of our current definition
of ecological communities, and highlight ways of refining this
definition in order to make more accurate and realistic predic-
tions about community structure.

MATERIALS AND METHODS

We measure how species composition and species interactions
in host—parasite communities vary across environmental gradi-
ents. Specifically, we use novel methods to quantify the com-
positional uniqueness of localities based on different defini-
tions of community structure (Legendre & De Céceres, 2013),
then identify the climatic variables involved in driving the dis-
similarity between localities. An interactive document allow-
ing to reproduce all analyses (including downloading all data
from their source) is available as supplementary information
(Appendix S2 in supporting information); it requires the knitr
package to be compiled from R into HTML or into the PDF pre-
sented as Appendix S1 in supporting information.

Species interaction data The species interaction data were
taken from Hadfield er al. (2013). They describe species
interactions between rodents (121 species) and ecto-parasites
(206 species of fleas) at 51 locations throughout Eurasia. This
system is species-rich, and likely originates from successive
co-speciation events within pairs of interacting species (Had-
field et al., 2014). These data were collected by combing a
large number of individual rodents, then identifying the fleas
that were collected (Krasnov et al., 2004). The data were
downloaded from the mangal database [Poisot et al. (2016a);
http://mangal.io/data/dataset/4/]. The communities
(where “community” is defined as the species and interactions
detected at one location) have between 3 and 27 (median 11)
hosts, 7 and 40 (median 19) parasites, and 12 and 226 (median
63) interactions between them. Out of 326 species, 94 were
observed only once, and 43 were observed at more than 10 lo-
cations.

For every location, we define two levels of analysis. First,
the realized interactions; this corresponds to interactions that
where reported to occur within individual locations in the orig-
inal data. Second, the potential interactions; this corresponds
to the interactions that could happen given the information con-
tained in the entire dataset. For example, if parasite P; and host
H,, do not interact locally, but interact in at least one other loca-
tion, there will be an interaction between them in the potential
interaction network. These two levels encapsulate hypotheses
about the filtering of species and interactions: potential inter-
actions are what is expected if species vary in their spatial dis-
tribution, but interactions are entirely fixed; conversely, real-
ized interactions are the interactions observed at each location,
and therefore account for the spatial variability of interactions
in addition to that of species (Poisot ef al., 2012). For a given
location, the realized and potential interaction networks have
an equal number of species, but the realized network has as
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many or fewer interactions than the potential one. The extent
to which the realized and potential interactions differ is mea-
sured using ﬁ’o s (Poisot et al., 2012); in brief, this measure
is, for every community, the pairwise dissimilarity between R
and Q. Values close to 0 mean that all potential interactions
are realized (weak interaction filtering), whereas values close
to unity indicate that most potential interactions have been fil-
tered out (strong interaction filtering).

This distinction between realized and potential interactions, as
we detail below, is of great importance. There are many causes
to the variation of species interactions, ranging from the distri-
bution of functional traits (Olesen et al., 2011), expressed at
macro-ecological scales, to neutral and random-chance events
(Canard et al., 2014), expressed at the micro-ecological scale.
Rodents in particular are known to change part of their phenol-
ogy in response to climate (Bozinovic & Rosenmann, 1989;
Aars & Ims, 2002), and this in turn can affect the reproduc-
tive success of parasites. In short, we argue that potential in-
teractions are more likely to reflect the evolutionary history
of the species pairs (this is evidenced in this system by the
strong phylogenetic signal in species interactions — Hadfield
et al. (2014)), while the realized interactions are more likely
to reflect how this species pairs reacts to a set of local envi-
ronmental conditions; specifically, changes in local conditions
may, through their impact on species or on the interaction di-
rectly, prevent potential interactions from being realized. From
a species distribution point of view, potential interactions offer
the possibility to look at the co-distribution of interacting pairs
of species. Indeed, any effect of environmental variables on
the spatial distribution of potential interactions is highly sug-
gestive of the fact that species that interact also distribute non-
randomly. Local factors affecting species interactions can blur
whatever signal exists due to species co-distribution: this re-
quires to estimate this effect through the statistical signal of the
models describing the effect of the environmental variables on
both realized and potential interactions.

Climatic variables data We downloaded the 19 BioCLIM
data (Hijmans et al., 2005) at a geographic resolution of 5 arc
minutes. The data for each location were then extracted using
the GPS coordinates of the sampling location. Since the pre-
cise spatial extent that was sampled around each location is un-
known, we deemed more conservative to use a relatively coarse
spatial resolution to capture the general environmental condi-
tions around each site. Preliminary analyses revealed that the
results are qualitatively unchanged when using different reso-
lutions for the climatic data.

Quantification of species and interactions variation Our
approach is represented in Figure 1. We use the method put
forth by Legendre & De Caceres (2013), where the overall
p-diversity between sites of a spatially replicated sampling is
measured as the variance of a community data matrix Y, and
noted fy. Y is a binary matrix with locations as rows and items
on which to measure the dissimilarity as columns. These ma-
trices are defined such that Y (/, i), that is the value in row / and
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Figure 1 lllustration of the construction of the four community
data matrices. The networks observed at every location are
sampled from a regional pool of species (hosts a, b; parasites
A, B, C), pictured at the top left. The two locations vary because
they do not have the same species, nor do the shared species
interact in the same way. The four matrices corresponding to
this simplified situation are on the right side. Note that the in-
teraction between host b and parasite A is 1 in the matrix of
potential interactions for location 2; we know from the regional
pool that it can happen, even though it was not observed at this
location.

column i of matrix Y, is 1 if item i is found at location /, and O
otherwise. For site by species matrices, the row sums give the
richness at the locations, and the column sums give the number
of occurrences of the species. We define four community data
matrices, which are special cases of Y. H has host species in
columns, and P has parasite species in columns. These first two
matrices will generate a baseline estimate for the dissimilarity
of localities based on species composition. Finally, we also
define R, with realized interactions in columns, and Q with
potential interactions in columns.

As per the recommendations in Legendre & Gallagher (2001),
we applied the Hellinger transformation to the Y matrices. The
dissimilarity matrices (Dg, Dp, Dy, and DQ) were computed
using the Euclidean distance on transformed data (Legendre
& De Céaceres, 2013). The transformed matrices were then
analysed to measure the Local Contributions to Beta-Diversity
(LCBD). LCBD is a quantification of how much every location
(row of the Y matrix) contributes to the overall dissimilarity,
presented as a vector ly. We interpret this value as a measure
of the originality of a location: a large contribution to beta-
diversity indicates that the location has a set of species or in-
teractions that is different from the overall species pool. The
values of LCBD are tested for statistical significance under a
permutation scheme, specifically by re-distributing species or
interactions across locations. This tests whether LCBD val-
ues are larger than expected from random variations in species
composition (H, P) or species interactions (Q, R). We assume
that LCBDs larger than expected by chance indicate that the lo-
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cality is unique with regard to the species or interactions found
therein. We used the default significance threshold of « = 0.05
(after Holm-Bonferroni correction), with 9999 random permu-
tations of each column of the four community data matrices.

To summarize, for each community data matrix Y representing
hosts, parasites, potential, and realized interactions, we mea-
sure the f-diversity (fy), the matrix of pairwise distance be-
tween sites (Dy), the extent to which each location contributes
to fy (ly), and the statistical significance of each element Iy (i).

Ordination and variable selection We investigated the ex-
tent to which the dissimilarity among communities was driven
by climatic variables using RDA (see Appendix SI in support-
ing information; Legendre & Legendre, 2012). The 19 bioClim
variables were put in a matrix E with one location per row. To
identify the most significant climatic variables, we used step-
wise model building using forward variable selection and AIC-
like statistics over 9999 replicate runs for each matrices. This
approach yields four models of the form RDA(Y ~ E) (that is,
we explain the structure of the Y matrix using the environmen-
tal conditions at each site as predictors), for which we extract
ey, i.e. a vector of significant climatic variables to explain the
structure of Y. In each model, we also record the rank of each
climatic variable; variables selected early have a stronger con-
tribution to the structure of community composition.

Interpretation Taking a step back from the statistical analy-
sis, we anticipate three possible outcomes with regard to the
effect of environmental conditions on species and species in-
teractions dissimilarity. In the first situation, environmental
conditions have an impact on species, but not on their inter-
actions: this would suggest that interactions are fully predicted
by species traits or properties that are independent from envi-
ronmental conditions (or that the suite of bioclimatic variables
used did not contain the relevant information). In the second
situation, species and interactions react to the same set of en-
vironmental predictors: this would suggest that species and
interactions share environmental drivers, and that interactions
covary very strongly with species co-distribution. Finally, the
alternative situation is one where interactions and species have
some unique predictors: this would indicate that interactions
are responding to aspects of the local environment that have no
linear effect on species.

The difference in how realized and potential interactions re-
spond to the environment will allow us to delineate the role
of co-distribution versus local drivers of interactions. Specif-
ically, unless the realized interactions are affected by drivers
that have no impact on potential interactions, we will conclude
that most of the variation in interactions over space is tied to
species co-distribution rather than local variation driven by the
environment. If drivers are shared between realized and poten-
tial interactions, especially if they are not shared with species,
these environmental variables affect interactions at both scales.

RESULTS
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Figure 2 Distribution of g/ . across the entire dataset. Local
communities tend to keep a majority of the regional interac-
tions, as evidenced by dissmilarity values going down to 0, with
nevertheless some variability.

Species and interactions vary across space In Figure 2,
we show that the 51 locations have realized interactions that are
not the same as those found at the regional level — if interactions
where perfectly conserved from the potential to realized steps,
all locations would have fio¢ = 0 (no dissimilarity). Although
the strength of interactions varies across space, ﬂ’o  measures
whether their presence varies too, i.e. they are realized at one
location, but not at another. Specifically, the mode of the distri-
bution of ﬂé)  is around 0.3, indicating that the filtering of in-
teractions from the regional pool to local communities is com-
parable to other rodents—parasite communities (Poisot et al.,
2013 reported values between 0.2 and 0.4 in a central European
system). Using the Legendre & De Céceres (2013) approach
reveals that interactions vary more than species. Specifically,
Pr ~ 094, By ~ 0.90, fy ~ 0.80, and fp ~ 0.79. That the
variation in R is larger than that in Q is expected, as the real-
ized interactions represent the action of additional ecological
mechanisms involved in the filtering of potential interactions.
That localities in this dataset exhibit different interactions, and
have varying strengths of filtering from the potential to the re-
alized interactions, raises the question of identifying which of
these localities have the strongest contribution to f-diversity.

Species and interactions contribute differently to site
uniqueness Using the LCBD approach, we measure the ex-
tent to which each location contributes to the beta-diversity
of hosts, parasites, local, and potential interactions. These
results are presented in Figure 3. For each distance matrix,
we clustered the locations using partition around the medoids
(Kaufman & Rousseeuw, 1990), and selecting the number of
medoids that gave the smallest silhouette. This yielded respec-
tively three clusters for the hosts (east; north west; south west),
and two for the parasites; that hosts and parasites have differ-
ent clusters suggest that they do not perfectly co-distribute. The
same three clusters are found for the potential interactions, and
the realized interactions (north; south); this is expected since
interactions are constrained by species composition, and so the
finer division of host communities is also observed when using
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interactions as the proxy for community structure.

Overwhelmingly, the locations with significant contributions
to beta-diversity are located in the southernmost half of the
dataset, in more desertic areas (i.e. Turkestan, Taklamakan,
and Gobi deserts). These locations have environmental con-
ditions that vary from what is found in the remainder of the
dataset (see next section). There are 8 host locations with sig-
nificant contributions to beta diversity and 12 for parasites, i.e.
locations that have unique species compositions. In contrast,
there are 23 locations with unique realized interactions and 25
for potential interactions. With six exceptions, realized and po-
tential interactions agree on which locations are unique.

Beta-diversity of species and interactions is structured
by the environment In Figure 4, we present the results of
db-RDA analyses of the four beta-diversity matrices, using
the bioClim variables as predictors (additional informations
such as number of constrained axes and inertia are given in
the Supplementary Material). As in Figure 3 (and because
environmental variables tend to be spatially autocorrelated),
locations from the same cluster, and locations with signifi-
cant contributions to beta-diversity, tend to occupy the same
area of the space defined by the canonical axes. This sug-
gests two things. First, clustering of communities as a func-
tion of their species or interaction composition does indeed
reflect that some species/interactions assemblages are spe-
cific to some combinations of environmental conditions. Sec-
ond, locations with significant contributions to beta-diversity
are unique because their local environmental conditions se-
lect unique species, and within this local species pool promote
unique interaction assemblages.

Finally, in Table 1, we present the variables that have been
retained during stepwise model building. The most impor-
tant variables are the minimum temperature during the cold-
est month (bio06), and the minimum temperature during
the wettest and coldest quarters (bio08 and bio10). Some
precipitation-related variables were associated with hosts and
interactions, but not parasites. Meanwhile, a number of vari-
ables where associated with parasites only (and, surprisingly,
not to interactions). Finally, two variables (bio04, seasonal-
ity of temperature; bio11, mean temperature of warmest quar-
ter) where associated with interactions only. From Figure 4,
it appears that the locations with the most significant unique
assemblages (in all matrices) also have low values of tempera-
ture during the wettest quarter (bio08), whereas locations with
non-significant assemblages have high values of this variable.

DISCUSSION

The f diversity of interactions was higher than the g-diversity
of species. Although notable, this is not a surprising result for
at least two reasons. First, in any community there are many
more interactions than species, and therefore interactions cap-
ture more of the variation of community structure than species
do. Second, interactions are probabilistic events (Poisot et al.,
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Figure 3 The beta-diversity matrices were divided in clusters (indicated by different symbols). Black-filled symbols have significant
Local Contribution to Beta Diversity (LCBD) values. The size of each symbol is proportional to its LCBD value. Note that there is no
correspondance between the symbols used to denote cluster identity across the four panels.

2016Db) that can vary even if the two species involved are con-
sistently co-occurring. Here, we show that part of this variabil-
ity happens independently of species traits or attributes, and is
instead driven by local environmental conditions. Since the in-
formation in species presence/absence is by definition included
in the information about species interactions, it stands to reason
that we would more adequately describe community structure
and variation by systematically considering species interac-
tions. This is emphasized by the fact that measuring LCBD in-
dices based on interactions revealed more (over twice as many)
unique sites than measuring the LCBD of species (Figure 3).
Quantifying the f-diversity of communities as based only on
their species composition (i) consistently underestimates f-
diversity and (ii) consistently underestimates the uniqueness of
localities in the dataset. A species-centered vision of diversity,
in short, does artificially homogenize the structure of commu-
nities by missing important sources of variation.

An additional result of our study is that, although species and
their interactions in this system do share a lot of their biocli-
matic predictors, interactions (R and Q) responded to two vari-
ables that had no bearing on species (P and H) composition
(Table 1). We recognize that this can, in part, stem from the
mismatch of scales between the observation of species inter-
actions and the observation of climatic variables; in itself, this
is an intriguing question: what is the scale at which ecological
interactions are affected by the environment? Methods such
as Moran Eigenvector Maps (Legendre & Gauthier, 2014) can
help pinpoint the right scale at which each environmental vari-
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able is acting on the system — yet they are not applicable here, as
they would require the measurement of the environmental con-
ditions that happen directly where and when interactions are
sampled, and not to be extracted from interpolated bioclimatic
data. Nevertheless, our results highlight a challenge for current
efforts to add biotic interactions to species distribution models
(Boulangeat et al., 2012; Aradjo & Rozenfeld, 2014; Blois ef
al., 2014): from additional predictors, species interactions be-
come variables that must first be predicted themselves based on
local environmental conditions. This is in addition to interac-
tions requiring first and foremost the presence of both species
(Gravel et al., 2011) to be realized. Nevertheless, this problem
may prove less complicated based on the observation that there
is little difference (besides their relative importance) in the pre-
dictors of potential and realized interactions. What this sug-
gests is that climatic variables act on the distribution of species
pairs that can interact, and the signal at the level of realized
interactions is inherited from the co-distribution of potential
interaction partners. Or in other words, the signal of potential
interactions is a predictor of the co-occurrence of interacting
species. As suggested in Poisot et al. (2015), interactions are
filtered after the two species involved have co-distributed — it
therefore stands to reason that environmental conditions that
do not affect the co-distribution of the two species can affect
the realization of the interaction locally.

The results we present here echo previous empirical evidence
on rodent-parasite interactions. In particular, we report that
communities close to desertic areas tend to have unique inter-
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Table 1

List of bioclim variables retained during the model selection (also used in Figure 4). Numbers identify the rank in the forward-

selected model. Variables 4 and 11 (in bold) are unique to interactions. Hosts, H; parasites, P; realized interactions, R; potential

interactions, Q.

bioclim variable Explanation H P R Q
06 Min temp. cold. month 1 1 1 1

08 Mean temp. of wettest quarter 2 3 2 2
10 Mean temp. of coldest quarter 5 4 6 5

13 Precipitation of wettest month 4 5 9 4
01 Annual mean temp. 3 3 3

18 Precipitation of warmest quarter 6 5 6
15 Precip. seasonality 7 4 8

19 Precipitation of coldest quarter 8 10 7

17 Precipitation of driest quater 9 9

02 Mean diurnal range 2

05 Max temp. warm. month 6

12 Annual precip. 8

14 Precipitation of wettest month 7

04 Temp. seasonality 7 10
11 Mean temp. of warmest quarter 8 11
03 Isothermality

07 Temp. ann. range

09 Mean temp. of driest quarter

16 Precipitation of wettest quater

actions, more so than they have unique species assemblages.
Rosenzweig & Winakur (1969) identified micro-habitat fea-
tures, like soil’s resistance to sheer stress that, through their
effect on vegetation cover, modified the rules for competition
between rodents species in deserts. Similarly, Kotler & Brown
(1988) suggested that because deserts are not as resource-rich
environments as the usual rodents habitats, many rules of for-
aging are modified. This includes increased among-patch mo-
bility by hosts, and the overlap between diets of co-occurring
species — these two facts have the potential to modify the rules
of intra and inter-specific transmission of ectoparasites thereby
creating unique communities in deserts. Kotler (1984) also
identified an increase in predation risk in deserts, which are
open habitats: this too changes the way rodents behave, and no-
tably the moments of the day where they are active. The joint
constraints of finding food and avoiding predation can very
well have cascading effects on the way hosts are exposed to
parasites and the way parasites are transmitted. More recently,
Bordes et al. (2015) examined the idea that habitat fragmenta-
tion (which in rodents was modelled by the intensity of defor-
estation, reducing the amount of trees with a dense canopy in
favour of more open shrubs and grasses) can change the host-
ectoparasite interaction networks. They found that increasingly
open environments had increasingly different network struc-
tures (without looking into the detail of how interactions are
organized within these networks). There is, in effect, a series
of empirical evidence pointing to the fact that rodent-parasite
interactions can be affected by the environment. Therefore, al-
though our results should lead to consider interaction networks
as inherently dynamical objects that respond to the environ-
ment around them, they are not entirely surprising from an eco-
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logical point of view.

Across the entire spatial extent of the dataset, variables associ-
ated with interactions only capture warm temperatures (bio11)
and temperature seasonality (bio04); this is an interesting con-
trast to the most important variables for all matrices, that are
associated with colder temperatures — this may suggest that in-
teractions respond to modifications of host phenology when ex-
posed to warmer temperatures, despite this aspect of the envi-
ronment having no impact on host/parasite species occurrence.
Krasnov et al. (2004) previously reported that temperature and
precipitation had an impact on the specificity of fleas in this
system. Our present study greatly expands this result: not only
does it pick up the contributions of variables to species distri-
bution in addition to species interactions, our approach works
at the scale of each interaction (as opposed to the specificity,
which aggregates across all interactions for a parasite). We are
therefore confident that this method will allow researchers to
study into greater detail, for a variety of systems, the way in-
teractions respond to the environment.

The results of this study highlight two important notions that
we hope will be debated by biogeographers. First, interactions
contain intrinsically more information than species; second, in-
teractions react to climatic variables in ways that seem to have
no bearing on the concerned species. Taken together with the
fact that the information on species occurrence is by defini-
tion nested within the information on species interactions, this
points to the idea that we should be cautious when defining
what a “community” is. In particular, we show that while de-
scribing the presence and absence of species at different lo-
cations is important, it misses a lot of information by system-
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atically under-estimating the variability and the uniqueness of
these locations. For these reasons, we believe that the more de-
sirable way of representing community structure is to describe,
not only the species, but also their interactions. Although this
demands a much larger sampling effort, it is the correct ap-
proach not to neglect an entire aspect of what is community
structure: species, not being independent entities, are orga-
nized in non-random ways through their interactions. Species
interactions do also capture some information on species traits
(Bartomeus et al., 2016; Coux et al., 2016), and adding traits
as a key component of our definition of community is indeed
another obvious next step (McGill ez al., 2006). As recent con-
tributions expanded the framework of community dissimilar-
ity to account for species traits (Laliberté & Legendre, 2010;
De Caceres et al., 2013), and the present contribution shows
that same work is possible with interactions, we hope that the
method presented here is a solid enough methodological basis
to start investigating whether for any system, traits or interac-
tions hold the most relevant information.

Supporting information

Appendix S1 — Supplementary material

Appendix S2 — Document and code source to generate the sup-
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Figure 4 Ordinations of the four distance matrices, based on the scaled bioclimatic variables. Shape represents the cluster to which
each location belongs, symbol size scales with LCBD, and filled symbols have significant LCBD. The ordination diagrams where
produced using the capscale function in vegan, hence the axes are labelled CAP1 and CAP2.
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