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Abstract 
Summary: In metagenomic studies, fast and effective tools are on wide demand to implement taxon-
omy classification for upto billions of reads. Herein, we propose deSPI, a novel read classification 
method that classifies reads by recognizing and analyzing the matches between reads and reference 
with de Bruijn graph-based lightweight reference indexing. deSPI has faster speed with relatively 
small memory footprint, meanwhile, it can also achieve higher or similar sensitivity and accuracy.  
Availability: the C++ source code of deSPI is available at https://github.com/hitbc/deSPI 
Contact: ydwang@hit.edu.cn 
Supplementary information: Supplementary data are available at Bioinformatics online. 

 
 

1 Introduction  
Metagenome sequencing is ubiquitously applied to comprehensively 

study environmental samples (The Human Microbiome Project Consor-
tium, 2012; Gilbert et al., 2014). In metagenomic studies, a fundamental 
task is to recognize the composition of the microbial community of the 
sequenced sample. With the ever-increasing number of sequenced ge-
nomes, it is feasible to accomplish this task by using the libraries of 
assembled genomes (e.g., RefSeq (Pruitt et al., 2014)) as reference to 
implement the taxonomy classification of sequencing reads. A common 
approach is to align the reads against the reference (Altschul et al., 1990; 
Huson et al., 2007); however, this is not viable to handle large amount 

(upto terabases) of metagenomic reads due to low processing speed.  
Recent efforts have been made to “pseudo-alignment” approaches 

(Wood and Salzburg, 2014; Ounit et al., 2015; Menzel et al., 2016; Kim 
et al., 2016), i.e., using short token matches between reads and reference 
to infer the taxonomy of the reads. In these approaches, the reference is 
indexed with specifically designed data structures, such as hash table or 
FM-index (Ferragina and Manzini, 2000) to recognize short token 
matches. The matches are then used for determining the taxonomy of the 
reads with pre-defined rules. These methods are fast. However, one of 

the disadvantages is that some of the methods are not space cost-

effective. This may be a bottleneck to integrate many genomes into 
reference to further improve the classification. Other methods, e.g., Kaiju 
(Menzel et al., 2016) and Centrifuge (Kim et al., 2016), greatly reduced 
the cost of memory; however, their performance could be lower than the 
methods using more memory, e.g., Kraken (Wood and Salzburg, 2014).   

2 Methods 
Herein, we propose deSPI, a novel short-token match-based 
metagenomic read classification method, which has higher speed and 
affordable memory cost with higher or equal sensitivity and accuracy. 
deSPI innovatively recognizes and analyzes the short-token matches 
between the reads and the reference sequences through de Bruijn graph 
framework. It mainly handles the reads with two key techniques.  

1) Indexing: deSPI constructs the de Bruijn graph of the reference 
with a user-defined k-mer size (default: k = 31), and indexes the unitigs 
of the de Bruijn graph with a FM-index; taxonomic labels are also as-
signed to the indexed unitigs for further processing. 

2) Classification: deSPI retrieves the maximal exact matches longer 
than l bp (default: l = 30) between a read and the unitigs (termed as U-
MEMs). The labels of the U-MEMs (which are derived from the 
matched unitigs) are used to infer a few paths on the taxonomy tree as 
evidence to classify the read. 
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One advantage of the method is that, with the property of de Bruijn 
graph, multiple l-mer matches having same taxonomic labels can be 
implicitly recognized and merged by FM-index retrieving with lower 
cost than that of straightforwardly retrieving all l-mer matches. Moreover, 
with the low space complexity of FM-index, the tool also has a relatively 
low memory footprint. A more detailed description and discussion on the 
deSPI method is in Supplementary Notes. 

3 Results and conclusion 
We benchmarked deSPI with two ‘pseudo’ real metagenome datasets 
respectively produced by Illumina HiSeq and MiSeq platforms. Each of 
them consists of 20 datasets (50,000 reads per dataset). Among the 20 
HiSeq (MiSeq) datasets, 2(2) of them are from the species whose ge-

nomes are in RefSeq database, 14(10) of them are from the species 
whose genomes are homologues of RefSeq genomes, and 3 (8) of them 
are from the species which have at least one RefSeq genome in the same 
genus. Moreover, we also used the RefSeq genomes (including 1562 
bacterial, 144 archaea and 36 viral genomes) to simulate 1 million 
Illumina-like reads with Mason simulator, to assess the ability of deSPI 
to handle reads from a wide variety of species.  

In the benchmarking, the RefSeq genomes were used as reference. 
The speed, memory footprint, sensitivity and accuracy were assessed, 

like that of previous studies (Wood and Salzberg, 2014). Four state-of-
the-art methods, i.e., Kraken, CLARK, Kaiju and Centrifuge, were com-
pared. All the benchmarks were conducted on a server with an Intel 
Xeon E4820 CPU and 1 TB RAM, running Linux Ubuntu 14.04.  (More 
detailed information about the datasets and the implementation of the 
benchmarking is in Supplementary Table 1 and Supplementary Notes).  

The results suggest that deSPI has fastest processing speed. It is about 
1.3 folds as fast as the tools having large memory footprints, i.e., Kraken 
and CLARK. Comparing to the more memory efficient tools, deSPI is 

about 1.5 and 3.8 folds as fast as Centrifuge and Kaiju, respectively. 
Meanwhile, deSPI also has affordable memory footprint with the FM-
index-based reference indexing, i.e., it costs about 11 gigabytes when 
using RefSeq genomes as reference, which is feasible to run on most of 
modern PCs. Moreover, deSPI also has good scalability in parallel com-
puting. We assessed the speed of deSPI on the HiSeq dataset with 2, 4 
and 8 threads, and observed that deSPI achieved a gradually speedup 
(Supplementary Table 2). Comparing to Centrifuge, the advantage of 
deSPI on speed is more obvious with multiple threads. 

deSPI and CLARK achieved best accuracies on the real sequencing 
and simulated datasets, respectively, indicating that reads can be handled 
by the two methods with less errors, while deSPI outperformed CLARK 

on sensitivity for all the datasets. deSPI also achieved highest sensitivi-
ties on the HiSeq and simulated datasets, indicating that it is effective to 
handle the reads having high sequencing quality. For the MiSeq datasets, 
the sensitivity of deSPI is a little lower but still comparable to the best 
one (Centrifuge). This is likely due to that the sequencing error rate of 
MiSeq reads is higher. Under this circumstance, less U-MEMs could be 
found with the relatively large threshold (e.g., l = 30). We assessed the 

results of deSPI with other configurations (Supplementary Table 3), and 
observed that, with lower thresholds (e.g. , l = 26), the sensitivity of 
deSPI (60.78%) can be much closer to Centrifuge on MiSeq reads with 
still higher accuracy (82.97%) and speed (720.9K reads/m).  

Overall, considering the speed, memory footprint, sensitivity and ac-
curacy, deSPI can provide efficient and effective taxonomy classification 
for metagenomic reads. It is suited to be integrated into many 
metagenomics pipelines to handle large amount of reads.  
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Table 1. The benchmarking results 

Method HiSeq (20 datasets) MiSeq (20 datasets) Simulation (from RefSeq genomes) Memory 

(GB) K reads/m Sen% Acc% K reads/m Sen% Acc% K reads/m Sen% Acc% 

Kraken 987.3 48.90% 88.39% 471.4 60.51% 83.78% 1036.5 92.21% 97.85% 74 

CLARK 921.2 51.99% 90.05% 506.2 57.49% 83.34% 891.8 96.66% 98.38% 55 

Kaiju 342.9 48.51% 78.90% 203.4 59.09% 81.36% 299.7 81.80% 92.83% 4 

Centrifuge 923.1 50.34% 86.08% 451.1 61.66% 81.62% 771.8 92.34% 97.97% 3 

deSPI 1342.3 52.27% 90.15% 724.2 58.78% 84.73% 1113.8 97.54% 97.68% 11 

‘HiSeq’, ‘MiSeq’ and ‘Simulation’ respectively indicate the datasets produced by Illumina platform and MiSeq platforms, and Mason simulator. ‘K reads/m’ indicates 
the number of thousands of reads processed per minute (in a single thread). ‘Sen%’ and ‘Acc%’ respectively indicate the sensitivity and the accuracy of the classifica-
tion, which are respectively calculated as �� ��⁄  and �� ��� � ����⁄  a, where ��, ��, �� and ��� are respectively the numbers of the correctly classified reads (at 
genus level), all of the reads, the reads classified with the labels under or at genus level, and the resads classified with incorrect labels which are above genus level. 
Only the primary classification of the read is considered. The definition of sensitivity and accuracy are similar to that of the previous study (Wood and Salzberg, 2014). 
‘Memory’ indicates the memory footprints (in gigabytes). 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 12, 2016. ; https://doi.org/10.1101/080200doi: bioRxiv preprint 

https://doi.org/10.1101/080200
http://creativecommons.org/licenses/by/4.0/

