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6 Accurately evaluating the distribution of genetic ancestry
7 across geographic space is one of the main questions addressed
8 by evolutionary biologists. This question has been commonly
9 addressed through the application of Bayesian estimation pro-
10 grams allowing their users to estimate individual admixture pro-
1 portions and allele frequencies among putative ancestral pop-
12 ulations. Following the explosion of high-throughput sequenc-
13 ing technologies, several algorithms have been proposed to cope
14 with computational burden generated by the massive data in
15 those studies. In this context, incorporating geographic prox-
16 imity in ancestry estimation algorithms is an open statistical
17 and computational challenge. In this study, we introduce new
18 algorithms that use geographic information to estimate ances-
19 try proportions and ancestral genotype frequencies from pop-
20 ulation genetic data. Our algorithms combine matrix factor-
21 ization methods and spatial statistics to provide estimates of
22 ancestry matrices based on least-squares approximation. We
23 demonstrate the benefit of using spatial algorithms through ex-
24 tensive computer simulations, and we provide an example of
25 application of our new algorithms to a set of spatially refer-
26 enced samples for the plant species Arabidopsis thaliana. With-
27 out loss of statistical accuracy, the new algorithms exhibit run-
28 times that are much shorter than those observed for previously
29 developed spatial methods. Our algorithms are implemented
30 in the R package, tess3r, which is available from https://
31 github.com/BioShock38/TESS3_encho_sen.
2 1. Introduction. High-throughput sequencing technologies have

;3 enabled studies of genetic ancestry for model and non-model species

s at an unprecedented pace. In this context, ancestry estimation algo-
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55 rithms are important for demographic analysis, medical genetics, con-
s servation and landscape genetics (Pritchard, Stephens and Donnelly,
;7 2000; Tang et al., 2005; Schraiber and Akey, 2015; Segelbacher et al.,
;s 2010; Frangois and Waits, 2016). With increasingly large data sets,
5 Bayesian approaches to the inference of population structure, exem-
w plified by the computer program structure (Pritchard, Stephens and
s Donnelly, 2000), have been replaced by approximate algorithms that
2 run several orders faster than the original version (Tang et al., 2005;
i Alexander and Lange, 2011; Frichot et al., 2014; Raj, Stephens and
s Pritchard, 2014). Considering K ancestral populations or genetic clus-
55 ters, those algorithms estimate ancestry coefficients following two main
s directions: model-based and model-free approaches. In model-based ap-
s proaches, a likelihood function is defined for the matrix of ancestry
s coefficients, and estimation is performed by maximizing the logarithm
s of the likelihood function. For structure and derived models, model
so assumptions include linkage equilibrium and Hardy-Weinberg equilib-
si1 rium in ancestral populations. The first approximation to the original
2 algorithm was based on an expectation-minimization algorithm (Tang
s3 et al., 2005), and more recent likelihood algorithms are implemented in
s+ the programs admixture and faststructure (Alexander and Lange,
ss 2011; Raj, Stephens and Pritchard, 2014). In model-free approaches,
ss ancestry coefficients are estimated by using least-squares methods or
s factor analysis. Model-free methods make no assumptions about the bi-

ss ological processes that have generated the data. To estimate ancestry
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FAST INFERENCE OF INDIVIDUAL ADMIXTURE COEFFICIENTS 3

s9 matrices, Engelhardt and Stephens (2010) proposed to use sparse fac-
o tor analysis, Frichot et al. (2014) used sparse non-negative matrix fac-
o torization algorithms, and Popescu et al. (2014) used kernel-principal
&2 component analysis. Least-squares methods accurately reproduce the
63 results of likelihood approaches under the model assumptions of those
s« methods (Frichot et al., 2014; Popescu et al., 2014). In addition, model-
e free methods provide approaches that are valid when the assumptions
s of likelihood approaches are not met. Model-free methods are generally
o7 faster than model-based methods.

68 Among model-based approaches to ancestry estimation, an impor-
s tant class of methods have improved the Bayesian model of structure
70 by incorporating geographic data through spatially informative prior
7 distributions (Chen et al., 2007; Corander, Sirén and Arjas, 2008). Un-
722 der isolation-by-distance patterns (Wright, 1943; Malécot, 1948), spa-
73 tial algorithms provide more robust estimates of population structure
72 than non-spatial algorithms which can lead to biased estimates of the
75 number of clusters (Durand et al., 2009). Some Bayesian methods are
7 based on Markov chain Monte Carlo algorithms which are computer-
77 intensive (Frangois and Durand, 2010). Recent efforts to improve the in-
s ference of ancestral relationships in a geographical context have mainly
79 focused on the localization of recent ancestors (Baran et al., 2013; Lao
so et al., 2014; Yang et al., 2014). In these applications, spatial informa-
&1 tion is used in a predictive framework that assigns ancestors to putative

&2 geographic origins. While fast geographic estimation of individual an-
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4 K. CAYE ET AL.

g3 cestry proportions has been proposed previously (Caye et al., 2016),
s there is a growing need to develop individual ancestry estimation al-
ss  gorithms that reduce computational cost in a geographically explicit
s framework.

87 In this study, we present two new algorithms for the estimation of
ss ancestry matrices based on geographic and genetic data. The new al-
g0 gorithms solve a least squares optimization problem as defined by Caye
o et al. (2016), based on Alternating Quadratic Programming (AQP) and
o Alternating Projected Least Squares (APLS). While AQP algorithms
2 have a well-established theoretical background (Bertsekas, 1995), this
o3 is not the case of APLS algorithms. Using coalescent simulations, we
w provide evidence that the estimates computed by APLS algorithms
o5 are good approximations to the solutions of AQP algorithms. In ad-
o dition, we show that the performances of APLS algorithms scale with
o7 the dimensions of modern data sets. We discuss the application of our
e algorithms to data from European ecotypes of Arabidopsis thaliana,
oo for which individual genomic an geographic data are available (Horton

w00 et al., 2012)
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101 2. New methods. In this section we present two new algorithms
12 for estimating individual admixture coefficients and ancestral genotype
03 frequencies assuming K ancestral populations. In addition to geno-
14 types, the new algorithms require individual geographic coordinates of

105 sampled individuals.

ws ) and G-matrices. Consider a genotypic matrix, Y, recording data
w7 for n individuals at L polymorphic loci for a p-ploid species (common
s values for p are p = 1,2). For autosomal SNPs in a diploid organism, the
1w genotype at locus £ is an integer number, 0, 1 or 2, corresponding to the
no number of reference alleles at this locus. In our algorithms, disjunctive
m  forms are used to encode each genotypic value as the indicator of a
12 heterozygote or a homozygote locus (Frichot et al. 2014). For a diploid
u3 organism each genotypic value ,0, 1,2 is encoded as 100, 010 and 001.
us  For p-ploid organisms, there are (p + 1) possible genotypic values at
us each locus, and each value corresponds to a unique disjunctive form.
us  While our focus is on SNPs; the algorithms presented in this section
ur  extend to multi-allelic loci without loss of generality. Moreover, the
us  method can be easily extended to genotype likelihoods by using the
uo likelihood to encode each genotypic value (Korneliussen, Albrechtsen
1o and Nielsen, 2014).

121 Our algorithms provide statistical estimates for the matrix Q €

122 RKX n

which contains the admixture coefficients, Q;, for each sam-
123 pled individual, i, and each ancestral population, k. The algorithms

124 also provide estimates for the matrix G € RPHVIXK for which the
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s entries, Gpq1)e4jk, correspond to the frequency of genotype j at locus
12s £ in population k. Obviously, the ) and G-matrices must satisfy the

127 following set of probabilistic constraints

Q7GZO7 Zsz_l ZGerlerjk ) j:0717"'ap7

s for all 7, k and £. Using disjunctive forms and the law of total probabil-
129 ity, estimates of Q and G can be obtained by factorizing the genotypic
150 matrix as follows Y=Q GT (Frichot et al., 2014). Thus the inference
11 problem can be solved by using constrained nonnegative matrix factor-
13 ization methods (Lee and Seung, 1999; Cichocki et al., 2009). In the
133 sequel, we shall use the notations Ag and A¢ to represent the sets of

134 probabilistic constraints put on the Q and G matrices respectively.

s Geographic weighting. Geography is introduced in the matrix factor-
136 ization problem by using weights for each pair of sampled individuals.
137 The weights impose regularity constraints on ancestry estimates over
s geographic space. The definition of geographic weights is based on the
10 spatial coordinates of the sampling sites, (z;). Samples close to each
1o other are given more weight than samples that are far apart. The com-
11 putation of the weights starts with building a complete graph from the

12 sampling sites. Then the weight matrix is defined as follows

w;; = exp(—dist(z;, x;)%/0?),
us where dist(z;,x;) denotes the geodesic distance between sites z; and
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FAST INFERENCE OF INDIVIDUAL ADMIXTURE COEFFICIENTS 7

us 2, and o is a range parameter. Values for the range parameter can be
s investigated by using spatial variograms (Cressie, 1993). To evaluate
s variograms, we extend the univariate variogram to genotypic data as

17 follows

(p+1)L

TV X T ZIY

7]EN(h

(2.1) v(h) =

s where N (h) is defined as the set of individuals separated by geographic
1o distance h. In applications, computing and visualizing the v function
10 provides useful information on the level of spatial autocorrelation be-
151 tween individuals in the data.

152 Next, we introduce the Laplacian matriz associated with the geo-
153 graphic weight matrix, W. The Laplacian matrix is defined as A =
155 D — W where D is a diagonal matrix with entries D;; = z;l:1 W, ;,
55 for i =1,...,n (Belkin and Niyogi, 2003). Elementary matrix algebra
15 shows that (Cai et al., 2011)

TH(QTAQ) = Z wyl| Qi — Q..
1,j=1
157 In our approach, assuming that geographically close individuals are

158 more likely to share ancestry than individuals at distant sites is thus
159 equivalent to minimizing the quadratic form C(Q) = Tr(QTAQ) while

10 estimating the matrix Q.

w1 Least-squares optimization problems. Estimating the matrices Q and

12 G from the observed genotypic matrix Y is performed through solving
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163 an optimization problem defined as follows (Caye et al., 2016)

. _ _ T2 (p+1)L
Iél’lél LS(Q7 G) - HY QG HF + o K>\max C(Q)7
(22) st. Qe AQ,
G e Ag.

¢ The notation ||M||r denotes the Frobenius norm of a matrix, M. The
165 regularization term is normalized by (p+1)L/K Apax, where Apay is the
166 largest eigenvalue of the Laplacian matrix. With this normalization,
167 both terms of the optimization problem (2.2) are given the same order
s of magnitude. The regularization parameter o/ controls the regularity
10 of ancestry estimates over geographic space. Large values of o’ imply
o that ancestry coefficients have similar values for nearby individuals,
i whereas small values ignore spatial autocorrelation in observed allele
2 frequencies. In the rest of the article, we will use o/ =1 and o = (p +
w3 1)L/ K Apax. Using the least-squares approach, the number of ancestral
s populations, K, can be chosen after the evaluation of a cross-validation
s criterion for each K (Alexander and Lange, 2011; Frichot et al., 2014;
s Frichot and Frangois, 2015).

wr - The Alternating Quadratic Programming (AQP) method. Because the
s polyedrons Ag and Ag are convex sets and the LS function is convex
e with respect to each variable Q or G when the other one is fixed,
180 the problem (2.2) is amenable to the application of block coordinate
1 descent (Bertsekas, 1995). The APQ algorithm starts from initial values

12 for the G and @Q-matrices, and alternates two steps. The first step
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FAST INFERENCE OF INDIVIDUAL ADMIXTURE COEFFICIENTS 9

183 computes the matrix G while Q is kept fixed, and the second step
1a  permutates the roles of G and Q. Let us assume that Q is fixed and
s write G in a vectorial form, ¢ = vec(G) € RX®PTDL The first step
16 of the algorithm actually solves the following quadratic programming

157 subproblem. Find

(2.3) g" = argmin(—2v5 g + ¢' Dgg),
9EAG

e where Dg = Ijpi1y, ® QTQ and vg = vec(QTY). Here, ® denotes the
189 Kronecker product and I; is the identity matrix with d dimensions.
wo Note that the block structure of the matrix D¢ allows us to decom-
11 pose the subproblem (2.3) into L independent quadratic programming
102 problems with K(p + 1) variables. Now, consider that G is the value
13 obtained after the first step of the algorithm, and write Q in a vec-
10s torial form, ¢ = vec(Q) € R™. The second step solves the following

15 quadratic programming subproblem. Find

(2.4) ¢" = argmin(—2v5 ¢ + ¢' Day) ,
qGAQ

1ws where Dg =1, ® GTG + aA @ Ix and vg = vec(GTYT). Unlike sub-
w7 problem (2.3), subproblem (2.4) can not be decomposed into smaller
s problems. Thus, the computation of the second step of the AQP al-
199 gorithm implies to solve a quadratic programming problem with nk

200 variables which can be problematic for large samples (n is the sample
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10 K. CAYE ET AL.

21 size). The AQP algorithm is described in details in Appendix A.1. For

202 AQP, we have the following convergence result.

203 THEOREM 2.1.  The AQP algorithm converges to a critical point of

200 problem (2.2).

20s  PROOF. The quadratic convex functions defined in subproblems (2.3)
206 and (2.4) have finite lower bounds. The convex sets Ag and Ag are not
207 empty sets, and they are compact sets. Thus the sequence generated
28 by the AQP algorithm is well-defined, and has limit points. According
20 to Corollary 2 of Grippo and Sciandrone (2000), we conclude that the

20 AQP algorithm converges to a critical point of problem (2.2).

an Alternating Projected Least-Squares (APLS). In this paragraph, we
a2 introduce an APLS estimation algorithm which approximates the so-
23 lution of problem (2.2), and reduces the complexity of the AQP al-
a1 gorithm. The APLS algorithm starts from initial values of the G and
215 (Q-matrices, and alternates two steps. The matrix G is computed while
26 Q is kept fixed, and wvice versa. Assume that the matrix Q is known.
217 The first step of the APLS algorithm solves the following optimization

218 problem. Find

(2.5) G* = argmin |Y — QG”|%.

20 This operation can be done by considering (p + 1)L (the number of

20 columns of Y) independent optimization problems running in parallel.
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FAST INFERENCE OF INDIVIDUAL ADMIXTURE COEFFICIENTS 11

o1 The operation is followed by a projection of G* on the polyedron of
222 constraints, Ag. For the second step, assume that G is set to the value
23 obtained after the first step is completed. We compute the eigenvec-
24 tors, U, of the Laplacian matrix, and we define the diagonal matrix A
»s formed by the eigenvalues of A (The eigenvalues of A are non-negative

26 real numbers). According to the spectral theorem, we have

A =UTAU.

27 After this operation, we project the data matrix Y on the basis of

28 eigenvectors as follows

proj(Y) =UY,

29 and, for each individual, we solve the following optimization problem

(2.6) g; = argmin ||proj(Y); — G"q|]*> + i q|*,

20 where proj(Y); is the ith row of the projected data matrix, proj(Y),
2 and J; is the ith eigenvalue of A. The solutions, g;, are then concate-
22 nated into a matrix, conc(q), and Q is defined as the projection of the
2 matrix UTconc(q) on the polyedron Ag. The complexity of step (2.6)
2 grows linearly with n, the number of individuals. While the theoreti-
235 cal convergence properties of AQP algorithms are lost for APLS algo-

236 rithms, the APLS algorithms are expected to be good approximations
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2 of AQP algorithms. The APLS algorithm is described in details in Ap-

238 pendix A2

230 Comparison with tess3. The algorithm implemented in a previous
20 version of tess3 also provides approximation of of solution of (2.2).
an The tess3 algorithm first computes a Cholesky decomposition of the
a2 Laplacian matrix. Then, by a change of variables, the least-squares
23 problem is transformed into a sparse nonnegative matrix factorization
24 problem (Caye et al., 2016). Solving the sparse non-negative matrix fac-
25 torization problem relies on the application of existing methods (Kim
26 and Park, 2011; Frichot et al., 2014). The methods implemented in
27 tess3 have an algorithmic complexity that increases linearly with the
2s  number of loci and the number of clusters. They lead to estimates that
29 accurately reproduce those of the Monte Carlo algorithms implemented
250 in the Bayesian method tess 2.3 (Caye et al., 2016). Like for the AQP
»s1 method, the tess3 previous algorithms have an algorithmic complexity

2 that increases quadratically with the sample size.

3 Ancestral population differentiation statistics and local adaptation scans.
s Assuming K ancestral populations, the ¢ and G-matrices obtained
»s  from the AQP and from the APLS algorithms were used to compute
6 single-locus estimates of a population differentiation statistic similar to

7 Fgr (Martins et al., 2016), as follows

1_
FsQTzl_Zkfk fk7
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FAST INFERENCE OF INDIVIDUAL ADMIXTURE COEFFICIENTS 13

s where ¢y, is the average of ancestry coefficients over sampled individuals,
s Q= y .y ¢ik/n, for the cluster k, fy is the ancestral allele frequency in
%0 population k at the locus of interest, and f = Zszl qr.fr (Martins et al.
261 2016). The locus-specific statistics were used to perform statistical tests
»2  of neutrality at each locus, by comparing the observed values to their
%3 expectations from the genome-wide background. The test was based
2 on the squared z-score statistic, 22 = (n — K)F& /(1 — F&.), for which
»s a chi-squared distribution with K — 1 degrees of freedom was assumed
6 under the null-hypothesis (Martins et al., 2016). The calibration of
»7  the null-hypothesis was achieved by using genomic control to adjust
28 the test statistic for background levels of population structure (Devlin
20 and Roeder, 1999; Francois et al., 2016). After recalibration of the null-
o0 hypothesis, the control of the false discovery rate was achieved by using

on the Benjamini-Hochberg algorithm (Benjamini and Hochberg, 1995).

o2 R package. We implemented the AQP and APLS algorithms in the R
o3 package tess3r, available from Github and submitted to the Compre-

2 hensive R Archive Network (R Core Team, 2016).

275 3. Simulated and real data sets.

o Coalescent simulations. We used the computer program ms to per-
o7 form coalescent simulations of neutral and outlier SNPs under spatial
2s models of admixture (Hudson, 2002). Two ancestral populations were
o0 created from the simulation of Wright’s two-island models. The sim-

0 ulated data sets contained admixed genotypes for n individuals for
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»s1 which the admixture proportions varied continuously along a longitu-
2 dinal gradient (Durand et al., 2009; Frangois and Durand, 2010). In
283 those scenarios, individuals at each extreme of the geographic range
2 were representative of their population of origin, while individuals at
s the center of the range shared intermediate levels of ancestry in the two
26 ancestral populations (Caye et al., 2016). For those simulations, the @
27 matrix, Qp, was entirely described by the location of the sampled in-
28 dividuals.

289 Neutrally evolving ancestral chromosomal segments were generated
200 by simulating DNA sequences with an effective population size Ny =
201 10 for each ancestral population. The mutation rate per bp and gener-
22 ation was set to = 0.25 x 1077, the recombination rate per generation
203 was set to r = 0.25 x 1078, and the parameter m was set to obtained
204 neutral levels of Fgp ranging between values of 0.005 and 0.10. The
205 number of base pairs for each DNA sequence was varied between 10k
26 to 300k to obtain numbers of polymorphic locus ranging between 1k
27 and 200k after filtering out SNPs with minor allele frequency lower than
28 5%. To create SNPs with values in the tail of the empirical distribution
200 of Fgr, additional ancestral chromosomal segments were generated by
s00 simulating DNA sequences with a migration rate m, lower than m.
sn The simulations reproduced the reduced levels of diversity and the in-
;2 creased levels of differentiation expected under hard selective sweeps
33 occurring at one particular chromosomal segment in ancestral popula-

3¢ tions (Martins et al., 2016). For each simulation, the sample size was

imsart-aoas ver. 2014/10/16 file: draft.tex date: October 7, 2016


https://doi.org/10.1101/080291
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/080291; this version posted October 12, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

FAST INFERENCE OF INDIVIDUAL ADMIXTURE COEFFICIENTS 15

ss  varied in the range n = 50-700.

306 We compared the AQP and APLS algorithm estimates with those ob-
so7  tained with the tess3 algorithm. Each program was run 5 times. Using
s K = 2 ancestral populations, we computed the root mean squared error
30 (RMSE) between the estimated and known values of the @Q-matrix, and
s between the estimated and known values of the G-matrix. To evaluate
sn the benefit of spatial algorithms, we compared the statistical errors of
sz APLS algorithms to the errors obtained with snmf method that re-
a3 produces the outputs of the structure program accurately (Frichot
ae et al., 2014; Frichot and Francois, 2015). To quantify the performances
a5 of neutrality tests as a function of ancestral and observed levels of Fgr,
ns we used the area under the precision-recall curve (AUC) for several
siz - values of the selection rate. Subsamples from a real data set were used
us to perform a runtime analysis of the AQP and APLS algorithms (A.
a0 thaliana data, see below). Runtimes were evaluated by using a single

;20 computer processor unit Intel Xeon 2.0 GHz.

s Application to European ecotypes of Arabidopsis thaliana. We used
322 the APLS algorithm to survey spatial population genetic structure and
23 to investigate the molecular basis of adaptation by considering SNP
24 data from 1,095 European ecotypes of the plant species A. thaliana
»s (214k SNPs, Horton et al. (2012)). The cross-validation criterion was
a6 used to evaluate the number of clusters in the sample, and a statis-
a7 tical analysis was performed to evaluate the range of the variogram

»s from the data. We used R functions of the tess3r package to display

imsart-aoas ver. 2014/10/16 file: draft.tex date: October 7, 2016


https://doi.org/10.1101/080291
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/080291; this version posted October 12, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

16 K. CAYE ET AL.

20 interpolated admixture coefficients on a geographic map of Europe (R
;0 Core team 2016). A gene ontology enrichment analysis using the soft-
s ware AMIGO (Carbon et al., 2009) was performed in order to evaluate
32 which molecular functions and biological processes might be involved

;33 in local adaptation in Europe.
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334 4. Results.

s Statistical errors.  We used coalescent simulations of neutral polymor-
16 phisms under spatial models of admixture to compare the statistical
337 errors of the AQP and APLS estimates with those of the tess3 al-
18 gorithm. The ground truth for the @-matrix (Qp) was computed from
139 the mathematical model for admixture proportions used to generate the
s data. For the G-matrix, the ground truth matrix (Gy) was computed
s from the empirical genotype frequencies in the two population samples
s2 before an admixture event. The root mean squared errors (RMSE) for
s the Q and G estimates decreased as the sample size and the number of
s loci increased (Figure 1). For all algorithms, the statistical errors were
us  generally small when the number of loci was greater than 10k SNPs.
us  Those results provided evidence that the three algorithms produced
a7 equivalent estimates of the matrices Qg and Ggy. The results also pro-
us vided a formal check that the APLS and tess3 algorithms converged
u  to the same estimates as those obtained after the application of the

0 AQP algorithm, which is guaranteed to converge mathematically.

1 The benefit of including spatial information in algorithms. Using neu-
;2 tral coalescent simulations of spatial admixture, we compared the sta-
53 tistical estimates obtained from a spatial algorithm (APLS) and a non-
s« spatial algorithm (sNMF, Frichot et al. 2014). For various levels of an-
35 cestral population differentiation, estimates obtained from the spatial
16 algorithm were more accurate than for those obtained using non-spatial

s approaches (Figure 2). For the larger samples, much finer population
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;8 structure was detected with the spatial method than with the non-
30 spatial algorithm (Figure 2).

360 In simulations of outlier loci, we used the area under the precision-
;0 recall curve (AUC) for quantifying the performances of tests based on
2 the estimates of ancestry matrices, Q and G. In addition, we computed
33 AUCs for Fgp-based neutrality tests using truly ancestral genotypes. As
s they represented the maximum reachable values, AUCs based on truly
s ancestral genotypes were always higher than those obtained for tests
w6 based on reconstructed matrices. For all values of the relative selection
sz intensity, AUCs were higher for spatial methods than for non-spatial
s methods (Figure 3, the relative selection intensity is the ratio of migra-
10 tion rates at neutral and adaptive loci). For high selection intensities,
s the performances of tests based on estimates of ancestry matrices were
sn close to the optimal values reached by tests based on true ancestral
sz frequencies. These results provided evidence that including spatial in-
;3 formation in ancestry estimation algorithms improves the detection of
s signatures of hard selective sweeps having occurred in unknown ances-

a5 tral populations.

sts Runtime and convergence analyses. We subsampled a large SNP data
sir - set for A. thaliana ecotypes to compare the convergence properties and
sws  runtimes of the tess3, AQP, and APLS algorithms. In those exper-
;0 iments, we used K = 6 ancestral populations, and replicated 5 runs
;0 for each simulation. For n = 100 — 600 individuals (L = 50k SNPs),

s the APLS algorithm required more iterations (25 iterations) than the
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sz AQP algorithm (20 iterations) to converge to its solution (Figure 4).
33 This was less than for tess3 (30 iterations). For L = 10 — 200k SNPs
3« (n = 150 individuals), similar results were observed. For 50k SNPs, the
;s runtimes were significantly lower for the APLS algorithm than for the
6 tess3 and AQP algorithms. For L = 50k SNPs and n = 600 individ-
se7 uals, it took on average 0.956 min for the APLS and 100 min for the
s AQP algorithm to compute ancestry estimates. For tess3, the runtime
;9 was on average 66.3 min. For L = 100k SNPs and n = 150 individuals,
w0 it took on average 0.628 min (8.97 min) for the APLS (AQP) algo-
s rithm to compute ancestry estimates. For tess3, the runtime was on
s average 1.27 min. For those values of n and L, the APLS algorithm im-
33 plementation ran about 2 to 100 times faster than the other algorithm

s implementations.

w5 Application to Furopean ecotypes of Arabidopsis thaliana. We used
36  the APLS algorithm to survey spatial population genetic structure and
37 perform a genome scan for adaptive alleles in European ecotypes of
s the plant species A. thaliana. The cross validation criterion decreased
30 rapidly from K =1 to K = 3 clusters, indicating that there were three
w0 Mmain ancestral groups in Europe, corresponding to geographic regions
w1 in Western Europe, Eastern and Central Europe and Northern Scan-
w2 dinavia. For K greater than four, the values of the cross validation
w3 criterion decreased in a slower way, indicating that subtle substruc-
w4 ture resulting from complex historical isolation-by-distance processes

ws could also be detected (Figure 5). The spatial analysis provided an ap-
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ws proximate range of o = 150km for the spatial variogram (Figure 5).
w7 Figure 6 displays the ()-matrix estimate interpolated on a geographic
we map of Europe for K = 6 ancestral groups. The estimated admixture
w0 coefficients provided clear evidence for the clustering of the ecotypes in

a0 spatially homogeneous genetic groups.

am Targets of selection in A. thaliana genomes. Tests based on the FSQT
a2 statistic were applied to the 241k SNP data set to reveal new targets
a3 of natural selection in the A. thaliana genome. A. thaliana occurs in a
sa  broad variety of habitats, and local adaptation to the environment is
a5 acknowledged to be important in shaping its genetic diversity through
ne space (Hancock et al., 2011; Fournier-Level et al., 2011). The APLS
n7 algorithm was run on the 1,095 European lines of A. thaliana with
ns K = 6 ancestral populations and ¢ = 1.5 for the range parameter.
no  After controlling the FDR at the level 1%, the program produced a
20 list of 12,701 candidate SNPs, including linked loci and representing
w2 3% of the total number of loci. The top 100 candidates included SNPs
22 in the flowering-related genes SHORT VEGETATIVE PHASE (SVP),
23 COPl-interacting protein 4.1 (CIP4.1) and FRIGIDA (FRI) (p-values
oo < 1073%9), These genes were detected by previous scans for selection
»s on this dataset (Horton et al., 2012). We performed a gene ontology
w6 enrichment analysis using AmiGO in order to evaluate which biological
227 functions might be involved in local adaptation in Europe. We found
w8 a significant over-representation of genes involved in cellular processes

20 (fold enrichment of 1.06, p-value equal to 0.0215 after Bonferonni cor-
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a0 rection).
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431 5. Discussion. Including geographic information on sample loca-
s tions in the inference of ancestral relationships among organisms is a
i3 major objective of population genetic studies (Malécot, 1948; Cavalli,
s¢  Menozzi and Piazza, 1994; Epperson, 2003). Assuming that geographi-
s35  cally close individuals are more likely to share ancestry than individuals
s36  at distant sites, we introduced two new algorithms for estimating ances-
s try proportions using geographic information. Based on least-squares
18 problems, the new algorithms combine matrix factorization approaches
130 and spatial statistics to provide accurate estimates of individual ances-
mo try coefficients and ancestral genotype frequencies. The two methods
s share many similarities, but they differ in the approximations they
w2 make in order to decrease algorithmic complexity. More specifically,
w3 the AQP algorithm was based on quadratic programming, whereas the
s APLS algorithm was based on the spectral decomposition of the Lapla-
ws clan matrix. The algorithmic complexity of APLS algorithm grows lin-
ms early with the number of individuals in the sample while the method
w7 has the same statistical accuracy as more complex algorithms.

448 To measure the benefit of using spatial algorithms, we compared the
s statistical errors observed for spatial algorithms with those observed
s0 for non-spatial algorithms. The errors of spatial methods were lower
1 than those observed with non-spatial methods, and spatial algorithms
»s2  allowed the detection of more subtle population structure. In addition,
53 we implemented neutrality tests based on the spatial estimates of the ()

ise and G-matrices (Martins et al., 2016), and we observed that those tests
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ss5  had higher power to reject neutrality than those based on non-spatial
sss approaches. Thus spatial information helped improving the detection
s7 of signatures of selective sweeps having occurred in ancestral popu-
s lations prior to admixture events. We applied the neutrality tests to
0 perform a genome scan for selection in European ecotypes of the plant
w0 species A. thaliana. The genome scan confirmed the evidence for selec-
w1 tion at flowering-related genes CIP/.1, FRI and DOG1 differentiating
w2 Fennoscandia from North-West Europe (Horton et al., 2012).

463 Estimation of ancestry coefficients using fast algorithms that extend
w4 non-spatial approaches — such as structure — has been intensively
a5 discussed during the last years (Wollstein and Lao, 2015). In these im-
w6 provements, spatial approaches have received less attention than non-
w7 spatial approaches. In this study, we have proposed a conceptual frame-
s work for developing fast spatial ancestry estimation methods, and a
w0 suite of computer programs implements this framework in the R pro-
s gram tess3r. Our package provides an integrated pipeline for esti-
«n  mating and visualizing population genetic structure, and for scanning
a2 genomes for signature of local adaptation. The algorithmic complexity
a3 of our algorithms allow their users to analyze samples including hun-
s dreds to thousands of individuals. For example, analyzing more than
as one thousand A. thaliana genotypes, each including more than 210k
s SNPs, took less than a few minutes using a single CPU. In addition,
a7 the algorithms have multithreaded versions that run on parallel com-

s puters by using multiple CPUs. The multithreaded algorithm, which is
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available from the R program, allows using our programs in large-scale

genomic sequencing projects.

APPENDIX A: ALGORITHMS

ALGORITHM A.1. AQP algorithm pseudo code. To solve optimiza-

tion problem (2.2).

Input: the data matrix Y € {0, 1}"*®*+DL the Laplacian matrix
A € R™" the number of ancestral populations K, the
regularization coefficient o, the maximum number of
iteration it Max

Output: the admixture coefficients matrix Q € R™*¥ | the

ancestral genotype frequencies matrix G € RE*®+)L

Initialize Q at random ;
for it = 1..itMax do

// G optimization step

for | =1..L do

YV Y iy o yind 5

Do + 1,11 ® Q"Q;

vg + Vec(QTYY);

g* € argmingcn, —2v49 + 9" Dy ;
Ved(Gpin.priyiva.) < 9"

end

// Q optimization step

D¢ + Id, @ GTG + aA @ I ;

vg < Vec(GTYT) ;

Vec(QT) € arg Mmingea, —20%q + ¢"Dgg;
end

ArLcoriTHM A.2. APLS algorithm pseudo code. To solve the op-
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s timization problem (2.2).

Input: the data matrix Y € {0, 1}l the eigen values and
vectors matrices U and A such that A = UTAU, the
number of ancestral populations K, the regularization
coefficient «, the maximum number of iteration it Max

Output: the admixture coefficients matrix Q € R™¥_ the

ancestral genotype frequencies matrix G € RE* @+

Initialize Q at random ;

proj(Y) « RY ;

for it = 1..itMax do

// G optimization step

for j=1.(p+1)L do

g* € argmin px |[Y ; — Qg[*;
Gj,. < g%

end

Project G such that G € Ag ;

486

// Q optimization step

for:=1..ndo

gi € argmin cpx llproj(Y):. — GTq||? + aA||ql|?;
proj(Q)i. < g5

end

Q + U'proj(Q);

Project Q such that Q € Ag ;

end
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Figure 1. Root Mean Squared Errors (RMSEs) for the Q and G
matrix estimates. Simulations of spatially admixed populations. A-
B) Statistical errors for APLS, AQP and tess3 estimates as a function
of the sample size, n (L ~ 10%). C-D) Statistical errors for APLS, AQP

and tess3 estimates as a function of the number of loci, L (n = 200).
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o Figure 2. Root Mean Squared Errors (RMSEs) for the ) esti-
se Mmates. Simulations of spatially admixed populations for several values
s00 of fixation index (Fsr) between ancestral populations. Ancestral popu-
s10 lations are simulated with Wright’s two-island models and the fixation
e index is defined as 1/(1 + 4Ngm) where m is the migration rate and
s12 Ny the effective population size. The statistical errors for sNMF and

s13 APLS are represented as a function of Fyr.
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as Figure 3. Area under the precision-recall curve (AUC). Neu-
16 trality tests applied to simulations of spatially admixed populations.
s17 AUCs for tests based on Fgr with the true ancestral populations, spa-
sis  tial ancestry estimates computed with APLS algorithms, non-spatial
s0 (structure-like) ancestry estimates computed with the snmf algo-
s20 rithm. The relative intensity of selection in ancestral populations, de-

ez fined as the ratio m/myg, was varied in the range 1 — 160.
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622

e23 Figure 4. Number of iterations and runtimes for the AQP,
s2 APLS and tess3 algorithm implementations. A-B) Total num-
e ber of iterations before an algorithm reached a steady solution. C-D)
26 Runtime for a single iteration (seconds). The number of SNPs was kept
sz fixed to L = 50k in A and C. The number of individuals was kept fixed
e ton =150 in B and D.
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Figure 5. Range o and choice of K for the APLS algorithm.
A) Empirical variogram for the A. thaliana data. The red vertical line
shows the range value o = 1.5. B) Cross validation error as function of

the number of ancestral populations, K.
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s3s Figure 6. A. thaliana ancestry coeficients. Ancestry coefficient es-
36 timates computed by the APLS algorithm with K = 6 ancestral pop-
e ulations and o = 1.5 for the range parameter. A) Geographic map of

e ancestry coefficients. B) Barplot of ancestry coefficients.
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s Figure 7. Local adaptation in European lines of A. thaliana .
s> Manhattan plot of — log(p-value). p-value were computed from popula-
sa3  tion structure estimated by the APLS algorithm with K = 6 ancestral

saa  populations and o = 1.5 for the range parameter.
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