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Accurately evaluating the distribution of genetic ancestry6

across geographic space is one of the main questions addressed7

by evolutionary biologists. This question has been commonly8

addressed through the application of Bayesian estimation pro-9

grams allowing their users to estimate individual admixture pro-10

portions and allele frequencies among putative ancestral pop-11

ulations. Following the explosion of high-throughput sequenc-12

ing technologies, several algorithms have been proposed to cope13

with computational burden generated by the massive data in14

those studies. In this context, incorporating geographic prox-15

imity in ancestry estimation algorithms is an open statistical16

and computational challenge. In this study, we introduce new17

algorithms that use geographic information to estimate ances-18

try proportions and ancestral genotype frequencies from pop-19

ulation genetic data. Our algorithms combine matrix factor-20

ization methods and spatial statistics to provide estimates of21

ancestry matrices based on least-squares approximation. We22

demonstrate the benefit of using spatial algorithms through ex-23

tensive computer simulations, and we provide an example of24

application of our new algorithms to a set of spatially refer-25

enced samples for the plant species Arabidopsis thaliana. With-26

out loss of statistical accuracy, the new algorithms exhibit run-27

times that are much shorter than those observed for previously28

developed spatial methods. Our algorithms are implemented29

in the R package, tess3r, which is available from https://30

github.com/BioShock38/TESS3_encho_sen.31

1. Introduction. High-throughput sequencing technologies have32

enabled studies of genetic ancestry for model and non-model species33

at an unprecedented pace. In this context, ancestry estimation algo-34
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2 K. CAYE ET AL.

rithms are important for demographic analysis, medical genetics, con-35

servation and landscape genetics (Pritchard, Stephens and Donnelly,36

2000; Tang et al., 2005; Schraiber and Akey, 2015; Segelbacher et al.,37

2010; François and Waits, 2016). With increasingly large data sets,38

Bayesian approaches to the inference of population structure, exem-39

plified by the computer program structure (Pritchard, Stephens and40

Donnelly, 2000), have been replaced by approximate algorithms that41

run several orders faster than the original version (Tang et al., 2005;42

Alexander and Lange, 2011; Frichot et al., 2014; Raj, Stephens and43

Pritchard, 2014). Considering K ancestral populations or genetic clus-44

ters, those algorithms estimate ancestry coefficients following two main45

directions: model-based and model-free approaches. In model-based ap-46

proaches, a likelihood function is defined for the matrix of ancestry47

coefficients, and estimation is performed by maximizing the logarithm48

of the likelihood function. For structure and derived models, model49

assumptions include linkage equilibrium and Hardy-Weinberg equilib-50

rium in ancestral populations. The first approximation to the original51

algorithm was based on an expectation-minimization algorithm (Tang52

et al., 2005), and more recent likelihood algorithms are implemented in53

the programs admixture and faststructure (Alexander and Lange,54

2011; Raj, Stephens and Pritchard, 2014). In model-free approaches,55

ancestry coefficients are estimated by using least-squares methods or56

factor analysis. Model-free methods make no assumptions about the bi-57

ological processes that have generated the data. To estimate ancestry58
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FAST INFERENCE OF INDIVIDUAL ADMIXTURE COEFFICIENTS 3

matrices, Engelhardt and Stephens (2010) proposed to use sparse fac-59

tor analysis, Frichot et al. (2014) used sparse non-negative matrix fac-60

torization algorithms, and Popescu et al. (2014) used kernel-principal61

component analysis. Least-squares methods accurately reproduce the62

results of likelihood approaches under the model assumptions of those63

methods (Frichot et al., 2014; Popescu et al., 2014). In addition, model-64

free methods provide approaches that are valid when the assumptions65

of likelihood approaches are not met. Model-free methods are generally66

faster than model-based methods.67

Among model-based approaches to ancestry estimation, an impor-68

tant class of methods have improved the Bayesian model of structure69

by incorporating geographic data through spatially informative prior70

distributions (Chen et al., 2007; Corander, Sirén and Arjas, 2008). Un-71

der isolation-by-distance patterns (Wright, 1943; Malécot, 1948), spa-72

tial algorithms provide more robust estimates of population structure73

than non-spatial algorithms which can lead to biased estimates of the74

number of clusters (Durand et al., 2009). Some Bayesian methods are75

based on Markov chain Monte Carlo algorithms which are computer-76

intensive (François and Durand, 2010). Recent efforts to improve the in-77

ference of ancestral relationships in a geographical context have mainly78

focused on the localization of recent ancestors (Baran et al., 2013; Lao79

et al., 2014; Yang et al., 2014). In these applications, spatial informa-80

tion is used in a predictive framework that assigns ancestors to putative81

geographic origins. While fast geographic estimation of individual an-82
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4 K. CAYE ET AL.

cestry proportions has been proposed previously (Caye et al., 2016),83

there is a growing need to develop individual ancestry estimation al-84

gorithms that reduce computational cost in a geographically explicit85

framework.86

In this study, we present two new algorithms for the estimation of87

ancestry matrices based on geographic and genetic data. The new al-88

gorithms solve a least squares optimization problem as defined by Caye89

et al. (2016), based on Alternating Quadratic Programming (AQP) and90

Alternating Projected Least Squares (APLS). While AQP algorithms91

have a well-established theoretical background (Bertsekas, 1995), this92

is not the case of APLS algorithms. Using coalescent simulations, we93

provide evidence that the estimates computed by APLS algorithms94

are good approximations to the solutions of AQP algorithms. In ad-95

dition, we show that the performances of APLS algorithms scale with96

the dimensions of modern data sets. We discuss the application of our97

algorithms to data from European ecotypes of Arabidopsis thaliana,98

for which individual genomic an geographic data are available (Horton99

et al., 2012).100
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FAST INFERENCE OF INDIVIDUAL ADMIXTURE COEFFICIENTS 5

2. New methods. In this section we present two new algorithms101

for estimating individual admixture coefficients and ancestral genotype102

frequencies assuming K ancestral populations. In addition to geno-103

types, the new algorithms require individual geographic coordinates of104

sampled individuals.105

Q and G-matrices. Consider a genotypic matrix, Y, recording data106

for n individuals at L polymorphic loci for a p-ploid species (common107

values for p are p = 1, 2). For autosomal SNPs in a diploid organism, the108

genotype at locus ` is an integer number, 0, 1 or 2, corresponding to the109

number of reference alleles at this locus. In our algorithms, disjunctive110

forms are used to encode each genotypic value as the indicator of a111

heterozygote or a homozygote locus (Frichot et al. 2014). For a diploid112

organism each genotypic value , 0, 1, 2 is encoded as 100, 010 and 001.113

For p-ploid organisms, there are (p + 1) possible genotypic values at114

each locus, and each value corresponds to a unique disjunctive form.115

While our focus is on SNPs, the algorithms presented in this section116

extend to multi-allelic loci without loss of generality. Moreover, the117

method can be easily extended to genotype likelihoods by using the118

likelihood to encode each genotypic value (Korneliussen, Albrechtsen119

and Nielsen, 2014).120

Our algorithms provide statistical estimates for the matrix Q ∈121

RK×n which contains the admixture coefficients, Qi,k, for each sam-122

pled individual, i, and each ancestral population, k. The algorithms123

also provide estimates for the matrix G ∈ R(p+1)L×K , for which the124
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6 K. CAYE ET AL.

entries, G(p+1)`+j,k, correspond to the frequency of genotype j at locus125

` in population k. Obviously, the Q and G-matrices must satisfy the126

following set of probabilistic constraints127

Q,G ≥ 0 ,
K∑
k=1

Qi,k = 1 ,

p∑
j=0

G(p+1)`+j,k = 1 , j = 0, 1, . . . , p,

for all i, k and `. Using disjunctive forms and the law of total probabil-128

ity, estimates of Q and G can be obtained by factorizing the genotypic129

matrix as follows Y=Q GT (Frichot et al., 2014). Thus the inference130

problem can be solved by using constrained nonnegative matrix factor-131

ization methods (Lee and Seung, 1999; Cichocki et al., 2009). In the132

sequel, we shall use the notations ∆Q and ∆G to represent the sets of133

probabilistic constraints put on the Q and G matrices respectively.134

Geographic weighting. Geography is introduced in the matrix factor-135

ization problem by using weights for each pair of sampled individuals.136

The weights impose regularity constraints on ancestry estimates over137

geographic space. The definition of geographic weights is based on the138

spatial coordinates of the sampling sites, (xi). Samples close to each139

other are given more weight than samples that are far apart. The com-140

putation of the weights starts with building a complete graph from the141

sampling sites. Then the weight matrix is defined as follows142

wij = exp(−dist(xi, xj)
2/σ2),

where dist(xi, xj) denotes the geodesic distance between sites xi and143
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FAST INFERENCE OF INDIVIDUAL ADMIXTURE COEFFICIENTS 7

xj, and σ is a range parameter. Values for the range parameter can be144

investigated by using spatial variograms (Cressie, 1993). To evaluate145

variograms, we extend the univariate variogram to genotypic data as146

follows147

(2.1) γ(h) =
1

2|N(h)|
∑

i,j∈N(h)

1

L

(p+1)L∑
l=1

|Yi,l − Yj,l|,

where N(h) is defined as the set of individuals separated by geographic148

distance h. In applications, computing and visualizing the γ function149

provides useful information on the level of spatial autocorrelation be-150

tween individuals in the data.151

Next, we introduce the Laplacian matrix associated with the geo-152

graphic weight matrix, W. The Laplacian matrix is defined as Λ =153

D − W where D is a diagonal matrix with entries Di,i =
∑n

j=1 Wi,j,154

for i = 1, . . . , n (Belkin and Niyogi, 2003). Elementary matrix algebra155

shows that (Cai et al., 2011)156

Tr(QTΛQ) =
1

2

n∑
i,j=1

wij‖Qi,. −Qj,.‖2 .

In our approach, assuming that geographically close individuals are157

more likely to share ancestry than individuals at distant sites is thus158

equivalent to minimizing the quadratic form C(Q) = Tr(QTΛQ) while159

estimating the matrix Q.160

Least-squares optimization problems. Estimating the matrices Q and161

G from the observed genotypic matrix Y is performed through solving162
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8 K. CAYE ET AL.

an optimization problem defined as follows (Caye et al., 2016)163

(2.2)

min
Q,G

LS(Q,G) = ‖Y −QGT‖2
F + α′

(p+ 1)L

Kλmax

C(Q),

s.t. Q ∈ ∆Q,

G ∈ ∆G.

The notation ‖M‖F denotes the Frobenius norm of a matrix, M. The164

regularization term is normalized by (p+1)L/Kλmax, where λmax is the165

largest eigenvalue of the Laplacian matrix. With this normalization,166

both terms of the optimization problem (2.2) are given the same order167

of magnitude. The regularization parameter α′ controls the regularity168

of ancestry estimates over geographic space. Large values of α′ imply169

that ancestry coefficients have similar values for nearby individuals,170

whereas small values ignore spatial autocorrelation in observed allele171

frequencies. In the rest of the article, we will use α′ = 1 and α = (p +172

1)L/Kλmax. Using the least-squares approach, the number of ancestral173

populations, K, can be chosen after the evaluation of a cross-validation174

criterion for each K (Alexander and Lange, 2011; Frichot et al., 2014;175

Frichot and François, 2015).176

The Alternating Quadratic Programming (AQP) method. Because the177

polyedrons ∆Q and ∆G are convex sets and the LS function is convex178

with respect to each variable Q or G when the other one is fixed,179

the problem (2.2) is amenable to the application of block coordinate180

descent (Bertsekas, 1995). The APQ algorithm starts from initial values181

for the G and Q-matrices, and alternates two steps. The first step182
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FAST INFERENCE OF INDIVIDUAL ADMIXTURE COEFFICIENTS 9

computes the matrix G while Q is kept fixed, and the second step183

permutates the roles of G and Q. Let us assume that Q is fixed and184

write G in a vectorial form, g = vec(G) ∈ RK(p+1)L. The first step185

of the algorithm actually solves the following quadratic programming186

subproblem. Find187

(2.3) g? = arg min
g∈∆G

(−2vTQ g + gTDQg) ,

where DQ = I(p+1)L ⊗QTQ and vQ = vec(QTY). Here, ⊗ denotes the188

Kronecker product and Id is the identity matrix with d dimensions.189

Note that the block structure of the matrix DQ allows us to decom-190

pose the subproblem (2.3) into L independent quadratic programming191

problems with K(p + 1) variables. Now, consider that G is the value192

obtained after the first step of the algorithm, and write Q in a vec-193

torial form, q = vec(Q) ∈ RnK . The second step solves the following194

quadratic programming subproblem. Find195

(2.4) q? = arg min
q∈∆Q

(−2vTG q + qTDGq) ,

where DG = In ⊗GTG + αΛ⊗ IK and vG = vec(GTYT ). Unlike sub-196

problem (2.3), subproblem (2.4) can not be decomposed into smaller197

problems. Thus, the computation of the second step of the AQP al-198

gorithm implies to solve a quadratic programming problem with nK199

variables which can be problematic for large samples (n is the sample200
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10 K. CAYE ET AL.

size). The AQP algorithm is described in details in Appendix A.1. For201

AQP, we have the following convergence result.202

Theorem 2.1. The AQP algorithm converges to a critical point of203

problem (2.2).204

Proof. The quadratic convex functions defined in subproblems (2.3)205

and (2.4) have finite lower bounds. The convex sets ∆Q and ∆G are not206

empty sets, and they are compact sets. Thus the sequence generated207

by the AQP algorithm is well-defined, and has limit points. According208

to Corollary 2 of Grippo and Sciandrone (2000), we conclude that the209

AQP algorithm converges to a critical point of problem (2.2).210

Alternating Projected Least-Squares (APLS). In this paragraph, we211

introduce an APLS estimation algorithm which approximates the so-212

lution of problem (2.2), and reduces the complexity of the AQP al-213

gorithm. The APLS algorithm starts from initial values of the G and214

Q-matrices, and alternates two steps. The matrix G is computed while215

Q is kept fixed, and vice versa. Assume that the matrix Q is known.216

The first step of the APLS algorithm solves the following optimization217

problem. Find218

(2.5) G? = arg min ‖Y −QGT‖2
F .

This operation can be done by considering (p + 1)L (the number of219

columns of Y) independent optimization problems running in parallel.220
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FAST INFERENCE OF INDIVIDUAL ADMIXTURE COEFFICIENTS 11

The operation is followed by a projection of G? on the polyedron of221

constraints, ∆G. For the second step, assume that G is set to the value222

obtained after the first step is completed. We compute the eigenvec-223

tors, U, of the Laplacian matrix, and we define the diagonal matrix ∆224

formed by the eigenvalues of Λ (The eigenvalues of Λ are non-negative225

real numbers). According to the spectral theorem, we have226

Λ = UT∆U .

After this operation, we project the data matrix Y on the basis of227

eigenvectors as follows228

proj(Y) = UY ,

and, for each individual, we solve the following optimization problem229

(2.6) q?i = arg min ‖proj(Y)i −GT q‖2 + αλi‖q‖2 ,

where proj(Y)i is the ith row of the projected data matrix, proj(Y),230

and λi is the ith eigenvalue of Λ. The solutions, qi, are then concate-231

nated into a matrix, conc(q), and Q is defined as the projection of the232

matrix UT conc(q) on the polyedron ∆Q. The complexity of step (2.6)233

grows linearly with n, the number of individuals. While the theoreti-234

cal convergence properties of AQP algorithms are lost for APLS algo-235

rithms, the APLS algorithms are expected to be good approximations236
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12 K. CAYE ET AL.

of AQP algorithms. The APLS algorithm is described in details in Ap-237

pendix A.2.238

Comparison with tess3. The algorithm implemented in a previous239

version of tess3 also provides approximation of of solution of (2.2).240

The tess3 algorithm first computes a Cholesky decomposition of the241

Laplacian matrix. Then, by a change of variables, the least-squares242

problem is transformed into a sparse nonnegative matrix factorization243

problem (Caye et al., 2016). Solving the sparse non-negative matrix fac-244

torization problem relies on the application of existing methods (Kim245

and Park, 2011; Frichot et al., 2014). The methods implemented in246

tess3 have an algorithmic complexity that increases linearly with the247

number of loci and the number of clusters. They lead to estimates that248

accurately reproduce those of the Monte Carlo algorithms implemented249

in the Bayesian method tess 2.3 (Caye et al., 2016). Like for the AQP250

method, the tess3 previous algorithms have an algorithmic complexity251

that increases quadratically with the sample size.252

Ancestral population differentiation statistics and local adaptation scans.253

Assuming K ancestral populations, the Q and G-matrices obtained254

from the AQP and from the APLS algorithms were used to compute255

single-locus estimates of a population differentiation statistic similar to256

FST (Martins et al., 2016), as follows257

FQ
ST = 1−

K∑
k=1

qk
fk(1− fk)

f(1− f)
,
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FAST INFERENCE OF INDIVIDUAL ADMIXTURE COEFFICIENTS 13

where qk is the average of ancestry coefficients over sampled individuals,258

qk =
∑n

i=1 qik/n, for the cluster k, fk is the ancestral allele frequency in259

population k at the locus of interest, and f =
∑K

k=1 qkfk (Martins et al.260

2016). The locus-specific statistics were used to perform statistical tests261

of neutrality at each locus, by comparing the observed values to their262

expectations from the genome-wide background. The test was based263

on the squared z-score statistic, z2 = (n−K)FQ
ST/(1−FQ

ST), for which264

a chi-squared distribution with K − 1 degrees of freedom was assumed265

under the null-hypothesis (Martins et al., 2016). The calibration of266

the null-hypothesis was achieved by using genomic control to adjust267

the test statistic for background levels of population structure (Devlin268

and Roeder, 1999; François et al., 2016). After recalibration of the null-269

hypothesis, the control of the false discovery rate was achieved by using270

the Benjamini-Hochberg algorithm (Benjamini and Hochberg, 1995).271

R package. We implemented the AQP and APLS algorithms in the R272

package tess3r, available from Github and submitted to the Compre-273

hensive R Archive Network (R Core Team, 2016).274

3. Simulated and real data sets.275

Coalescent simulations. We used the computer program ms to per-276

form coalescent simulations of neutral and outlier SNPs under spatial277

models of admixture (Hudson, 2002). Two ancestral populations were278

created from the simulation of Wright’s two-island models. The sim-279

ulated data sets contained admixed genotypes for n individuals for280
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14 K. CAYE ET AL.

which the admixture proportions varied continuously along a longitu-281

dinal gradient (Durand et al., 2009; François and Durand, 2010). In282

those scenarios, individuals at each extreme of the geographic range283

were representative of their population of origin, while individuals at284

the center of the range shared intermediate levels of ancestry in the two285

ancestral populations (Caye et al., 2016). For those simulations, the Q286

matrix, Q0, was entirely described by the location of the sampled in-287

dividuals.288

Neutrally evolving ancestral chromosomal segments were generated289

by simulating DNA sequences with an effective population size N0 =290

106 for each ancestral population. The mutation rate per bp and gener-291

ation was set to µ = 0.25×10−7, the recombination rate per generation292

was set to r = 0.25 × 10−8, and the parameter m was set to obtained293

neutral levels of FST ranging between values of 0.005 and 0.10. The294

number of base pairs for each DNA sequence was varied between 10k295

to 300k to obtain numbers of polymorphic locus ranging between 1k296

and 200k after filtering out SNPs with minor allele frequency lower than297

5%. To create SNPs with values in the tail of the empirical distribution298

of FST, additional ancestral chromosomal segments were generated by299

simulating DNA sequences with a migration rate ms lower than m.300

The simulations reproduced the reduced levels of diversity and the in-301

creased levels of differentiation expected under hard selective sweeps302

occurring at one particular chromosomal segment in ancestral popula-303

tions (Martins et al., 2016). For each simulation, the sample size was304
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varied in the range n = 50-700.305

We compared the AQP and APLS algorithm estimates with those ob-306

tained with the tess3 algorithm. Each program was run 5 times. Using307

K = 2 ancestral populations, we computed the root mean squared error308

(RMSE) between the estimated and known values of the Q-matrix, and309

between the estimated and known values of the G-matrix. To evaluate310

the benefit of spatial algorithms, we compared the statistical errors of311

APLS algorithms to the errors obtained with snmf method that re-312

produces the outputs of the structure program accurately (Frichot313

et al., 2014; Frichot and François, 2015). To quantify the performances314

of neutrality tests as a function of ancestral and observed levels of FST,315

we used the area under the precision-recall curve (AUC) for several316

values of the selection rate. Subsamples from a real data set were used317

to perform a runtime analysis of the AQP and APLS algorithms (A.318

thaliana data, see below). Runtimes were evaluated by using a single319

computer processor unit Intel Xeon 2.0 GHz.320

Application to European ecotypes of Arabidopsis thaliana. We used321

the APLS algorithm to survey spatial population genetic structure and322

to investigate the molecular basis of adaptation by considering SNP323

data from 1,095 European ecotypes of the plant species A. thaliana324

(214k SNPs, Horton et al. (2012)). The cross-validation criterion was325

used to evaluate the number of clusters in the sample, and a statis-326

tical analysis was performed to evaluate the range of the variogram327

from the data. We used R functions of the tess3r package to display328
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interpolated admixture coefficients on a geographic map of Europe (R329

Core team 2016). A gene ontology enrichment analysis using the soft-330

ware AMIGO (Carbon et al., 2009) was performed in order to evaluate331

which molecular functions and biological processes might be involved332

in local adaptation in Europe.333
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4. Results.334

Statistical errors. We used coalescent simulations of neutral polymor-335

phisms under spatial models of admixture to compare the statistical336

errors of the AQP and APLS estimates with those of the tess3 al-337

gorithm. The ground truth for the Q-matrix (Q0) was computed from338

the mathematical model for admixture proportions used to generate the339

data. For the G-matrix, the ground truth matrix (G0) was computed340

from the empirical genotype frequencies in the two population samples341

before an admixture event. The root mean squared errors (RMSE) for342

the Q and G estimates decreased as the sample size and the number of343

loci increased (Figure 1). For all algorithms, the statistical errors were344

generally small when the number of loci was greater than 10k SNPs.345

Those results provided evidence that the three algorithms produced346

equivalent estimates of the matrices Q0 and G0. The results also pro-347

vided a formal check that the APLS and tess3 algorithms converged348

to the same estimates as those obtained after the application of the349

AQP algorithm, which is guaranteed to converge mathematically.350

The benefit of including spatial information in algorithms. Using neu-351

tral coalescent simulations of spatial admixture, we compared the sta-352

tistical estimates obtained from a spatial algorithm (APLS) and a non-353

spatial algorithm (sNMF, Frichot et al. 2014). For various levels of an-354

cestral population differentiation, estimates obtained from the spatial355

algorithm were more accurate than for those obtained using non-spatial356

approaches (Figure 2). For the larger samples, much finer population357
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structure was detected with the spatial method than with the non-358

spatial algorithm (Figure 2).359

In simulations of outlier loci, we used the area under the precision-360

recall curve (AUC) for quantifying the performances of tests based on361

the estimates of ancestry matrices, Q and G. In addition, we computed362

AUCs for FST-based neutrality tests using truly ancestral genotypes. As363

they represented the maximum reachable values, AUCs based on truly364

ancestral genotypes were always higher than those obtained for tests365

based on reconstructed matrices. For all values of the relative selection366

intensity, AUCs were higher for spatial methods than for non-spatial367

methods (Figure 3, the relative selection intensity is the ratio of migra-368

tion rates at neutral and adaptive loci). For high selection intensities,369

the performances of tests based on estimates of ancestry matrices were370

close to the optimal values reached by tests based on true ancestral371

frequencies. These results provided evidence that including spatial in-372

formation in ancestry estimation algorithms improves the detection of373

signatures of hard selective sweeps having occurred in unknown ances-374

tral populations.375

Runtime and convergence analyses. We subsampled a large SNP data376

set for A. thaliana ecotypes to compare the convergence properties and377

runtimes of the tess3, AQP, and APLS algorithms. In those exper-378

iments, we used K = 6 ancestral populations, and replicated 5 runs379

for each simulation. For n = 100 − 600 individuals (L = 50k SNPs),380

the APLS algorithm required more iterations (25 iterations) than the381
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AQP algorithm (20 iterations) to converge to its solution (Figure 4).382

This was less than for tess3 (30 iterations). For L = 10− 200k SNPs383

(n = 150 individuals), similar results were observed. For 50k SNPs, the384

runtimes were significantly lower for the APLS algorithm than for the385

tess3 and AQP algorithms. For L = 50k SNPs and n = 600 individ-386

uals, it took on average 0.956 min for the APLS and 100 min for the387

AQP algorithm to compute ancestry estimates. For tess3, the runtime388

was on average 66.3 min. For L = 100k SNPs and n = 150 individuals,389

it took on average 0.628 min (8.97 min) for the APLS (AQP) algo-390

rithm to compute ancestry estimates. For tess3, the runtime was on391

average 1.27 min. For those values of n and L, the APLS algorithm im-392

plementation ran about 2 to 100 times faster than the other algorithm393

implementations.394

Application to European ecotypes of Arabidopsis thaliana. We used395

the APLS algorithm to survey spatial population genetic structure and396

perform a genome scan for adaptive alleles in European ecotypes of397

the plant species A. thaliana. The cross validation criterion decreased398

rapidly from K = 1 to K = 3 clusters, indicating that there were three399

main ancestral groups in Europe, corresponding to geographic regions400

in Western Europe, Eastern and Central Europe and Northern Scan-401

dinavia. For K greater than four, the values of the cross validation402

criterion decreased in a slower way, indicating that subtle substruc-403

ture resulting from complex historical isolation-by-distance processes404

could also be detected (Figure 5). The spatial analysis provided an ap-405
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proximate range of σ = 150km for the spatial variogram (Figure 5).406

Figure 6 displays the Q-matrix estimate interpolated on a geographic407

map of Europe for K = 6 ancestral groups. The estimated admixture408

coefficients provided clear evidence for the clustering of the ecotypes in409

spatially homogeneous genetic groups.410

Targets of selection in A. thaliana genomes. Tests based on the FQ
ST411

statistic were applied to the 241k SNP data set to reveal new targets412

of natural selection in the A. thaliana genome. A. thaliana occurs in a413

broad variety of habitats, and local adaptation to the environment is414

acknowledged to be important in shaping its genetic diversity through415

space (Hancock et al., 2011; Fournier-Level et al., 2011). The APLS416

algorithm was run on the 1,095 European lines of A. thaliana with417

K = 6 ancestral populations and σ = 1.5 for the range parameter.418

After controlling the FDR at the level 1%, the program produced a419

list of 12,701 candidate SNPs, including linked loci and representing420

3% of the total number of loci. The top 100 candidates included SNPs421

in the flowering-related genes SHORT VEGETATIVE PHASE (SVP),422

COP1-interacting protein 4.1 (CIP4.1) and FRIGIDA (FRI) (p-values423

< 10−300). These genes were detected by previous scans for selection424

on this dataset (Horton et al., 2012). We performed a gene ontology425

enrichment analysis using AmiGO in order to evaluate which biological426

functions might be involved in local adaptation in Europe. We found427

a significant over-representation of genes involved in cellular processes428

(fold enrichment of 1.06, p-value equal to 0.0215 after Bonferonni cor-429
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rection).430
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5. Discussion. Including geographic information on sample loca-431

tions in the inference of ancestral relationships among organisms is a432

major objective of population genetic studies (Malécot, 1948; Cavalli,433

Menozzi and Piazza, 1994; Epperson, 2003). Assuming that geographi-434

cally close individuals are more likely to share ancestry than individuals435

at distant sites, we introduced two new algorithms for estimating ances-436

try proportions using geographic information. Based on least-squares437

problems, the new algorithms combine matrix factorization approaches438

and spatial statistics to provide accurate estimates of individual ances-439

try coefficients and ancestral genotype frequencies. The two methods440

share many similarities, but they differ in the approximations they441

make in order to decrease algorithmic complexity. More specifically,442

the AQP algorithm was based on quadratic programming, whereas the443

APLS algorithm was based on the spectral decomposition of the Lapla-444

cian matrix. The algorithmic complexity of APLS algorithm grows lin-445

early with the number of individuals in the sample while the method446

has the same statistical accuracy as more complex algorithms.447

To measure the benefit of using spatial algorithms, we compared the448

statistical errors observed for spatial algorithms with those observed449

for non-spatial algorithms. The errors of spatial methods were lower450

than those observed with non-spatial methods, and spatial algorithms451

allowed the detection of more subtle population structure. In addition,452

we implemented neutrality tests based on the spatial estimates of the Q453

and G-matrices (Martins et al., 2016), and we observed that those tests454
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had higher power to reject neutrality than those based on non-spatial455

approaches. Thus spatial information helped improving the detection456

of signatures of selective sweeps having occurred in ancestral popu-457

lations prior to admixture events. We applied the neutrality tests to458

perform a genome scan for selection in European ecotypes of the plant459

species A. thaliana. The genome scan confirmed the evidence for selec-460

tion at flowering-related genes CIP4.1, FRI and DOG1 differentiating461

Fennoscandia from North-West Europe (Horton et al., 2012).462

Estimation of ancestry coefficients using fast algorithms that extend463

non-spatial approaches – such as structure – has been intensively464

discussed during the last years (Wollstein and Lao, 2015). In these im-465

provements, spatial approaches have received less attention than non-466

spatial approaches. In this study, we have proposed a conceptual frame-467

work for developing fast spatial ancestry estimation methods, and a468

suite of computer programs implements this framework in the R pro-469

gram tess3r. Our package provides an integrated pipeline for esti-470

mating and visualizing population genetic structure, and for scanning471

genomes for signature of local adaptation. The algorithmic complexity472

of our algorithms allow their users to analyze samples including hun-473

dreds to thousands of individuals. For example, analyzing more than474

one thousand A. thaliana genotypes, each including more than 210k475

SNPs, took less than a few minutes using a single CPU. In addition,476

the algorithms have multithreaded versions that run on parallel com-477

puters by using multiple CPUs. The multithreaded algorithm, which is478
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available from the R program, allows using our programs in large-scale479

genomic sequencing projects.480

APPENDIX A: ALGORITHMS

Algorithm A.1. AQP algorithm pseudo code. To solve optimiza-481

tion problem (2.2).482

Input: the data matrix Y ∈ {0, 1}n×(p+1)L, the Laplacian matrix
Λ ∈ Rn×n, the number of ancestral populations K, the
regularization coefficient α, the maximum number of
iteration itMax

Output: the admixture coefficients matrix Q ∈ Rn×K , the
ancestral genotype frequencies matrix G ∈ RK×(p+1)L

Initialize Q at random ;
for it = 1..itMax do

// G optimization step
for l = 1..L do

Y l ← Y.,(p+1)l..(p+1)l+d ;
DQ ← Ip+1 ⊗QTQ;
vQ ← V ec(QTY l);
g? ∈ arg ming∈∆G

−2vTQg + gTDQg ;

V ec(G(p+1)l..(p+1)l+d,.)← g? ;

end

// Q optimization step
DG ← Idn ⊗GTG + αΛ⊗ IK ;
vG ← V ec(GTYT ) ;
V ec(QT ) ∈ arg minq∈∆Q

−2vTGq + qTDGq;

end

483

Algorithm A.2. APLS algorithm pseudo code. To solve the op-484
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timization problem (2.2).485

Input: the data matrix Y ∈ {0, 1}n×(d+1)L, the eigen values and
vectors matrices U and ∆ such that Λ = UT∆U, the
number of ancestral populations K, the regularization
coefficient α, the maximum number of iteration itMax

Output: the admixture coefficients matrix Q ∈ Rn×K , the
ancestral genotype frequencies matrix G ∈ RK×(d+1)L

Initialize Q at random ;
proj(Y)← RY ;
for it = 1..itMax do

// G optimization step
for j = 1..(p+ 1)L do

g? ∈ arg ming∈RK ||Y.,j −Qg||2;

Gj,. ← g?;

end
Project G such that G ∈ ∆G ;

// Q optimization step
for i = 1..n do

g?i ∈ arg minq∈RK ||proj(Y)i,. −GT q||2 + α∆i,i||q||2;

proj(Q)i,. ← g?i ;

end
Q← UTproj(Q);
Project Q such that Q ∈ ∆Q ;

end

486
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Figure 1. Root Mean Squared Errors (RMSEs) for the Q and G601

matrix estimates. Simulations of spatially admixed populations. A-602

B) Statistical errors for APLS, AQP and tess3 estimates as a function603

of the sample size, n (L ∼ 104). C-D) Statistical errors for APLS, AQP604

and tess3 estimates as a function of the number of loci, L (n = 200).605
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Figure 2. Root Mean Squared Errors (RMSEs) for the Q esti-607

mates. Simulations of spatially admixed populations for several values608

of fixation index (FST) between ancestral populations. Ancestral popu-609

lations are simulated with Wright’s two-island models and the fixation610

index is defined as 1/(1 + 4N0m) where m is the migration rate and611

N0 the effective population size. The statistical errors for sNMF and612

APLS are represented as a function of FST.613
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Figure 3. Area under the precision-recall curve (AUC). Neu-615

trality tests applied to simulations of spatially admixed populations.616

AUCs for tests based on FST with the true ancestral populations, spa-617

tial ancestry estimates computed with APLS algorithms, non-spatial618

(structure-like) ancestry estimates computed with the snmf algo-619

rithm. The relative intensity of selection in ancestral populations, de-620

fined as the ratio m/ms, was varied in the range 1− 160.621
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622

Figure 4. Number of iterations and runtimes for the AQP,623

APLS and tess3 algorithm implementations. A-B) Total num-624

ber of iterations before an algorithm reached a steady solution. C-D)625

Runtime for a single iteration (seconds). The number of SNPs was kept626

fixed to L = 50k in A and C. The number of individuals was kept fixed627

to n = 150 in B and D.628
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Figure 5. Range σ and choice of K for the APLS algorithm.630

A) Empirical variogram for the A. thaliana data. The red vertical line631

shows the range value σ = 1.5. B) Cross validation error as function of632

the number of ancestral populations, K.633
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Figure 6. A. thaliana ancestry coeficients. Ancestry coefficient es-635

timates computed by the APLS algorithm with K = 6 ancestral pop-636

ulations and σ = 1.5 for the range parameter. A) Geographic map of637

ancestry coefficients. B) Barplot of ancestry coefficients.638

imsart-aoas ver. 2014/10/16 file: draft.tex date: October 7, 2016

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 12, 2016. ; https://doi.org/10.1101/080291doi: bioRxiv preprint 

https://doi.org/10.1101/080291
http://creativecommons.org/licenses/by-nc-nd/4.0/


FAST INFERENCE OF INDIVIDUAL ADMIXTURE COEFFICIENTS 35

639

640

Figure 7. Local adaptation in European lines of A. thaliana .641

Manhattan plot of − log(p-value). p-value were computed from popula-642

tion structure estimated by the APLS algorithm with K = 6 ancestral643

populations and σ = 1.5 for the range parameter.644
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