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Abstract 

Multiple pathogens have been detected in Alzheimer’s disease (AD) brains. A bioinformatics 

approach was used to assess relationships between pathogens and AD genes (GWAS), the AD 

hippocampal transcriptome and plaque or tangle proteins. Host/pathogen interactomes (C.albicans, 

C.Neoformans, Bornavirus, B.Burgdorferri, cytomegalovirus, Ebola virus, HSV-1, HERV-W, HIV-1, 

Epstein-Barr, hepatitis C, influenza, C.Pneumoniae, P.Gingivalis, H.Pylori, T.Gondii, T.Cruzi) 

significantly overlap with misregulated AD hippocampal genes , with plaque and tangle proteins and, 

except Bornavirus, Ebola and HERV-W, with AD genes. Upregulated AD hippocampal genes match 

those upregulated by multiple bacteria, viruses, fungi or protozoa in immunocompetent blood cells. 

AD genes are enriched in bone marrow and immune locations and in GWAS datasets reflecting 

pathogen diversity, suggesting selection for pathogen resistance. The age of AD patients implies 

resistance to infections afflicting the younger.  APOE4 protects against malaria and hepatitis C, and 

immune/inflammatory gain of function applies to APOE4, CR1, TREM2 and presenilin variants.  30/78 

AD genes are expressed in the blood brain barrier (BBB), which is disrupted by AD risk factors 

(ageing, alcohol, aluminium, concussion, cerebral hypoperfusion, diabetes, homocysteine, 

hypercholesterolaemia, hypertension, obesity, pesticides, pollution, physical inactivity, sleep 

disruption and smoking). The BBB and AD benefit from statins, NSAIDs, oestrogen, melatonin and the 

Mediterranean diet.  Polymicrobial involvement is supported by the upregulation of pathogen 
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sensors/defenders (bacterial, fungal, viral) in the AD brain, blood or CSF.  Cerebral pathogen invasion 

permitted by BBB inadequacy, activating a hyper-efficient immune/inflammatory system, beta-

amyloid and other antimicrobial defence may be responsible for AD which may respond to antibiotic, 

antifungal or antiviral therapy.   
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Introduction 

Multiple pathogens have been implicated in Alzheimer’s disease (AD) either via detection in the AD 

brain, or in epidemiological studies relating to serum antibodies.  Pathological burden 

(cytomegalovirus, Herpes simplex (HSV-1), Borrelia burgdorferi, Chlamydia pneumoniae and 

Helicobacter pylori) rather than any individual pathogen may also be associated with AD [1]. Many 

pathogens are able to increase beta-amyloid deposition and tau phosphorylation in animal models, 

in vitro or in vivo and beta-amyloid itself is an antimicrobial peptide active against bacteria and fungi 

[2,3]and the influenza[4] and herpes simplex viruses [5,6]. These effects are summarised in Table 1 

for a number of pathogens and for beta-amyloid. 

Previous studies have shown that the life cycles of several pathogens implicated in AD relate to AD 

susceptibility genes [7]. The proteins found in AD plaques and tangles are also enriched in those used 

by HSV-1 during its life cycle [8] and the HSV-1 or Toxoplasma Gondii host interactomes are also 

enriched in AD susceptibility genes [9,10]  

Similar studies have noted significant overlaps between the Epstein-Barr viral/host interactome and 

diseases in which the virus is implicated, including  B cell lymphoma [11]or multiple sclerosis [12] . 

The interactomes of oncogenic viruses also relate to cancer genes [13] suggesting important 

gene/environment interactions that may condition disease susceptilbility. 

In this study, the host pathogen interactomes of 17 fungal, bacterial, viral and parasite pathogens 

were analysed in relation to 78 AD genes derived from genome-wide association studies (GWAS). 

The anatomical location of these genes was also queried against proteomic /genomic datasets from 

multiple tissues.  

The host genes of the pathogen interactomes were also compared with the combined up and down-

regulated genes from a study of the AD hippocampus, post-mortem [14] and to the proteins found in 

plaques or neurofibrillary tangles. The upregulated genes from this AD hippocampal study were also 
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compared with upregulated genes from numerous infection microarray datasets (viral, bacterial, 

fungal and protozoan) housed at the Molecular signatures database [15] or the Gene Expression 

Omnibus [16].  

Pathogens have shaped human evolution, as the survivors of dangerous infections are endowed, via 

natural selection, with genes conveying resistance. The AD genes were also compared against a 

series of genome-wide association datasets related to general pathogen or protozoan diversity, viral 

diversity and the immune response to parasitic worms, across multiple human populations in 

different geographical locations. Such genes are likely to have been selected for pathogen resistance. 

[17-20].  

The results show that host genes related to pathogens are enriched in all these AD parameters and 

that many AD susceptibility genes also relate to pathogens, but more likely to pathogen resistance 

than susceptibility. The anatomical data point to an immune function of many AD genes, while 

others are localised in the blood-brain barrier, which is disrupted by other environmental risk factors 

associated with AD. 

Methods 

The host/pathogen interactomes of  two fungal species (Candida albicans, Cryptococcus 

Neoformans) , the Borna virus, human cytomegalovirus, Ebola virus, Herpes simplex (HSV-1), human 

endogenous retroviruses HERV-W, the human immunodeficiency virus (HIV-1) (the latter from the 

HIV-1, human interaction database [21] 

http://www.ncbi.nlm.nih.gov/genome/viruses/retroviruses/hiv-1/interactions , Epstein-Barr , 

hepatitis C and influenza A viruses, 3 bacterial species (Chlamydia Pneumoniae, Porphyromonas 

Gingivalis, Helicobacter Pylori) and 2 protozoans  (Toxoplasma Gondii and Trypanosoma Cruzi) were 

obtained by literature survey and from extant databases. These referenced interactomes can be 

accessed at   http://www.polygenicpathways.co.uk/HPI.htm  .  
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Genes misregulated in the AD hippocampus are those reported from a post-mortem microarray 

study [14]. Up- and downregulated genes (N=2879) were combined for comparison with the 

pathogen interactomes. These interactomes contain multiple types of interaction (protein/protein, 

viral microRNA, and effects on transcription etc.) and it is not possible to compare like with like for 

this aspect.  

The upregulated genes (N= 1690) from this AD hippocampal study contain the pathways relevant to 

pathogens and immune activation (inflammation, complement activation and the defence response) 

[14] and these were chosen for comparison with upregulated genes from infection datasets at the 

Molecular signatures database (MSigDB) http://software.broadinstitute.org/gsea/msigdb/index.jsp . 

MSigDB contains several thousand microarray gene sets which can be compared against the AD 

input [15]. Infection related datasets, and those related to Toll-like receptor ligands, were identified 

using search terms (e.g. infection, virus, bacteria, TLR1, lipopolysaccharide, etc.). Microarray viral 

infection datasets (upregulated gene sets) from the gene expression omnibus (GEO) [22] were also 

downloaded from the Harmonizome database http://amp.pharm.mssm.edu/Harmonizome/  from 

the Ma’ayan laboratory of computational systems. [23]. For the searched gene sets, most of the data 

outputs were restricted at source (by MSigDb or GEO) to the top upregulated genes (usually ~ 200-

300).  

The proteins found in plaques or neurofibrillary tangles are from two proteomics studies yielding 488 

proteins in plaques [24]  and 90 in tangles [25]. 

Seventy eight genes associated with Alzheimer’s disease (Reported genes) were obtained from the 

NHGRI-EBI Catalog of published genome-wide association studies (GWAS) [26], Available at: 

www.ebi.ac.uk/gwas . Accessed January, 2016, version 1.0 using studies labelled as “Alzheimer’s 

disease” or “Alzheimer’s disease late-onset”.  These genes and their relationships with pathogens or 

the immune system are catalogued in Supplementary Table 1.These genes are highlighted in bold 

throughout the text. 
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Genes related to general pathogen diversity , protozoan and viral diversity and to the immune 

response to parasitic worms are from a series of papers concerning evolutionary selection pressure 

relevant to pathogen resistance [17-20].    

The tissue and cellular distribution of the 78 AD genes were analysed using the functional 

enrichment analysis tool (FUNRICH) [27]. http://funrich.org/index.html . This tool derives proteomic 

and genomic distribution data from >1.5 million annotations. It provides the total number of genes in 

datasets from each region sampled and returns the significance of any enrichment for members of 

the uploaded AD genes, using the hypergeometric probability test, with p values corrected using the 

the Storey and Tibshirani method (Q values) [27]. AD gene enrichment was also analysed in a 

published blood brain barrier proteome dataset of mouse cerebral arteries (6620 proteins) [28]. 

The presence of the AD genes in exosomes, a means of transit through cells allowing intercellular 

communication[29,30],  was assessed using ExoCarta ( http://www.exocarta.org ) a manually 

curated database of exosomal proteins, RNA and lipids [31].The exosomal pathway is hijacked by 

several viruses, contributing to intercellular spread and immune evasion [32,33] . 

Assuming a human genome of 26846 coding genes and an interactome or other gene set of N genes 

one would expect N/26846 to exist in the comparator dataset. For example, when comparing 2879 

misregulated AD hippocampal genes against any pathogen interactome one would expect 

2879/26846 (10.7%) to figure in the pathogen interactome. This calculation was used to define 

expected values and the enrichment values (observed/expected) in relation to other datasets. 

Significance of the enrichment was calculated using the hypergeometric probability test. The 

resultant p values from each analysis series were corrected for false discovery (FDR) [34]. Nominally 

significant FDR corrected values are considered at P <0.05 and a corrected Bonferroni p value 

threshold is illustrated on each set of graphs. (Bonferroni P = 0.05/N, where N is the maximum 

number of possible comparisons for each situation (e.g. 78 AD genes or 1690 upregulated genes in 

the AD hippocampus).   
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Results 

The anatomical location of the AD genes (Fig 1) 

Fig 1: The distribution and enrichment of 78 AD genes in diverse proteomic and genomic datasets 

(Funrich and Exocarta data). The bars indicate the number of genes (from 78) in each tissue and the 

dotted line the corrected p value (q value). The maximum on this axis is set to q = 0.05. 

Observed/expected values, followed by the total number of genes expressed are appended after the 

identities of each sample. BBB refers to a separate blood brain barrier proteomics dataset. Cancer or 

cell line datasets are omitted and the data are limited to anatomical datasets containg more than 10 

AD genes (Not all data are shown).  

Figure 1 
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 The AD genes are most significantly enriched in the exosome and bone marrow datasets. As noted 

above, exosomes are hijacked by many viruses for intercellular spread. Exosomes are prevalent in 

plasma [35](also enriched in AD genes) and are also the means by which intracellulary generated 

beta-amyloid is conveyed to the extracellular space [36]. In this context, and in relation to the 

antimicrobial effects of beta-amyloid, APP and gamma-secretase are highly expressed in the immune 

dendritic cells that scout for invading pathogens [7].  The bone marrow is the hematopoietic source 

of red and white blood cells and platelets [37]. B cells in the bone marrow rapidly respond to 

infection [38] and the bone marrow is also a source of angiogenic cells that are involved in vascular 

endothelial repair, a process that is disrupted in Alzheimer’s disease [39,40]. The parathyroid gland 

expresses many AD genes and also plays a role in hematopoesis [41,42].  Other immune related 

areas enriched in AD genes include the appendix, spleen, tonsils, the lymph nodes and the bronchus 

and neutrophils. The appendix is an important component of mucosal immune function, particularly 

B cell-mediated immune responses and extrathymically derived T-lymphocytes [43]. The tonsils and 

nasopharynx, also enriched in AD genes, play an important role in the initial defence against 

respiratory pathogens [44].   

AD genes are enriched in the lateral ventricle, a site of the choroid plexus [45]. This provides 

cerebrospinal fluid (CSF) and is the location of the blood-CSF barrier, which is exploited by pathogens 

to gain access to the brain. The choroid plexus plays an important role in pathogen defence [46]. 

Post-mortem gene expression studies of the choroid plexus epithelium in AD patients show changes 

indicative of increased permeability of the blood-cerebrospinal fluid barrierand a reduction of 

macrophage recruitment [47], factors that woud favour pathogen entry and reduce their 

phagocytosis by macrophages. The hippocampus bulges into the temporal horn of the lateral 

ventricle [48] and this area, a keystone of AD pathology, is thus in close proximity to a major site of 
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cerebral pathogen entry. AD genes are also enriched in a separate BBB dataset from mouse cerebral 

arteries. This is discussed in greater detail below. Other barriers in intestinal and pulmonary tissues, 

also enriched in AD genes (Fig 1), might also be considered as potential sites of pathogen entry. 

Immune systems play an important role at barrier interfaces [49].  

Although AD genes are expressed in other sites, the main focus, in terms of enrichment, relates to 

immune and barrier systems.   

A number of the 78 AD genes (referenced in supplementary Table 1) are primarily concerned with 

immune function  (HLA-DRB1, HLA-DRB5, HMHA1, IGH ) while many others with diverse primary 

effects also possess relevant properties in relation to the immune system (ACE, ADAMTS20, AP2A2, 

BCL3, BIN1, CR1, CLU , CUGBP2 , DISC1, EPHA1, GAB2, INPP5D, MEF2C. MS4A3, MS4A4A, RIN3, 

SCIMP, SPPL2A, STK24, TREM2, TREML2, ZNF224) or pathogen defence (e.g. phagocytosis or 

autophagy) (ABCA7, APOC1, APOE, BCAM, CD2AP, CD33, CDON, CELF1, PAX2, PTK2B, SASH1, 

SQSTM1).  A number of the AD genes also act as primary receptors for pathogens. These include the 

poliovirus receptor PVR, the HSV-1 receptor PVRL2, and complement receptor (CR1), which binds 

to many opsonised pathogens but which may also act as an entry receptor for Plasmodium falciparum, 

Legionella pneumophila and Mycobacterium tuberculosis. CD33 binds to the HIV-1 gp120 protein 

and to diverse forms of sialic acid which coats many pathogens.  Others bind bacterial 

lipopolysaccharides (APOC1 and TREM2) or the Escherichia coli cytotoxic necrotizing factor 1 

(BCAM). Others (AP2A2, BIN1, CD2AP, and PICALM) are involved in endocytosis, an obligate 

requirement for pathogen entry following binding to cognate receptors (see supplementary Table 1 for 

references). 

 

Host/pathogen interactomes are enriched in AD genes (Fig 2). 
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Fig 2. The number of AD genes (of 78) overlapping with diverse host/pathogen interactomes, or with 

those implicated in pathogen, protozoan or viral diversity or with the immune response to parasitic 

worms (Helminth) (Bars). The identities on the X-axis (e.g. C. albicans (1471|5.2) are appended with 

the total number of genes in each interactome (1471 in this case) or genetics dataset followed by the 

enrichment ratio (5.2 fold).  The FDR-corrected p value for enrichment, derived from the 

hypergeometric distribution, is shown on the right hand axis (log scale) which is set to a maximum of 

0.05. Invisible points are above this value. The Bonferroni cut-off level (p=0.05/78) is also shown.The 

Burden data (lighter shaded bar) correspond to the combined interactomes and AD gene overlaps of 

the human cytomegalovirus (HCMV), HSV-1, Borrelia burgdorferi, Chlamydia pneumoniae and 

Helicobacter pylori. EBV= Epstein-Barr virus. 

Figure 2 
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All host/pathogen interactomes, with the exception of those of the Borna virus, Ebola virus and the 

HERV-W retrovirus were significantly enriched in AD genes (FDR p <0.05) with all but HIV-1, the 

cytomegalovirus and C. pneumoniae below the Bonferroni corrected value (P=6.41E-4). Pathogen 

burden (cytomegalovirus, HSV-1, B. burgdorferi, C. Pneumoniae and H. Pylori) has been associated 

with Alzheimer’s disease [1] and the pooled interactomes of these five pathogens (3922 host genes) 

were significantly enriched in AD genes (p= 7.3E-6). Given the variety of pathogens reported in AD 

brains (Table 1) other cumulative effects might be expected for various permutations. 

The most significant pathogens related to fungi (C. albicans and C. Neoformans), the gum disease 

pathogen P. Gingivalis and the Epstein-Barr and hepatitis C viruses.  Numerous fungal species, 

including C.albicans, have been detected in the AD brain (Table 1), although C. Neoformans was not 

one of the species studied. Two case reports have demonstrated virtually complete recovery from 

long-term (3 years) mis-diagnosed dementia/Alzheimer’s disease following antifungal treatment for 

C. Neoformans infection [50,51]. 

The Epstein-Barr virus has been associated with AD and hepatitis C associated with dementia (table 

1). In vivo studies for the Epstein-Barr and Hepatitis C viruses are however limited by their inability to 

infect rats or mice. Several of these pathogens including C. pneumoniae , HSV-1,  cytomegalovirus 

and the Epstein-Barr and hepatitis C viruses  or H. pylori and B. Burgdorferri [52-59], periodontitis 

and P.Gingivalis [57]have also been associated wiith atherosclerosis, an important endophenotype in 

AD [60]. 

Apart from APOE4 no AD genetic variants seem to have been studied in relation to effects on 

pathogens and it is impossible to note whether the variants favour or oppose their destructive 

potential. The apolipoprotein E (APOE4) variant protects against hepatitis C [61], but favours the 

cerebral entry of HSV-1 [62]and enhances the attachment of C. pneumoniae elementary bodies to host 

cells [63]. 
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AD genes overlap with those implicated in pathogen, protozoan or viral diversity or with the 

immune response to parasitic worms (Fig 2). 

The AD genes are enriched in a series of genome-wide and global-wide datasets related to general 

pathogen diversity , protozoan or viral diversity (the number of different pathogens in a geographic 

region) or with the immune response to parasitic worms, most significantly so for general pathogen 

and protozoan diversity (FDR p < 0.05). The overlaps in relation to viral diversity or the response to 

parasitic worms exceeded the Bonferroni cut-off.  

In evolutionary terms, these pathogen-related genes likely reflect pathogen resistance rather than 

susceptibility [17-20].  

It has also been noted that genes related to inflammatory diseases [64] or to the AD gene network 

[65]are subject to positive selection pressure. While many pathogens have been implicated in AD, 

the selection of AD genes for pathogen resistance rather than susceptibility seems logical in relation 

to several considerations, as already proposed [66,67].    Firstly, the old age of AD patients indicates 

survival from the many infectious diseases that are among the principal causes of death in adults and 

children. In the USA, the leading non-accidental causes of death in adults (2013 figures)  include  

heart disease; cancers; chronic lower respiratory diseases;  cerebrovascular diseases; Diabetes 

mellitus; Influenza and pneumonia; nephritis, nephrotic syndrome and nephrosis [68].   

Certain viruses, helminths and bacteria are oncogenic and it has been estimated that 15-20% of 

cancers are due to infections [69]. The inverse association between the incidence of cancer and 

Alzheimer’s disease [70] suggests that AD genes might well be cancer protective (but also that death 

due to cancer precludes AD).  Inflammatory heart diseases [71] and atherosclerosis, cerebrovascular 

disorders and stroke have also been linked to infection [72,73].  Enteroviruses have been implicated 

in Type 1 diabetes mellitus [74].  
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The leading non-accidental causes of infant deaths were congenital malformations, deformations 

and chromosomal abnormalities; disorders related to short gestation and low birth weight, not 

elsewhere classified; newborn affected by maternal complications of pregnancy; sudden infant death 

syndrome; newborn affected by complications of placenta, cord and membranes; bacterial sepsis of 

newborn; respiratory distress of newborn; diseases of the circulatory system; and neonatal 

haemorrhage. Again, many of these relate to infections. In evolutionary terms, pandemics and 

infectious diseases have been, and in poorer countries still are, associated with high mortality.    

In relation to Alzheimer’s disease, the apolipoprotein E (APOE4) variant protects against malaria [75] 

and hepatitis C [61], although APOE4 favours cerebral entry of the herpes simplex virus [62]and 

enhances the attachment of Chlamydia pneumoniae elementary bodies to host cells [63] . Malaria 

and hepatitis C are both associated with high mortality [76,77] and the protective effects of APOE4 

would encourage its maintenance in the population, to the detriment of infection by the less virulent 

agents.   

The APOE4 variant is also associated with enhanced immune/inflammatory responses. For example, 

Toll-like receptor activation (TLR3, 4) in microglia induces cyclooxygenase-2 (PTGS2), microsomal 

prostaglandin E synthase (PTGES), and prostaglandin E2, an effect exaggerated in APOE4/APOE4 

mice [78]. APOE4 is also associated with enhanced in vivo innate immune responses in human 

subjects. Whole blood from healthy APOE3/APOE4 volunteers induced higher cytokine levels on ex 

vivo stimulation with Toll-like receptor (TLR2, 4 or 5) ligands than blood from APOE3/APOE3 patients 

[79]. Gain of function also applies to AD variant forms of complement receptor CR1, which are better 

able to bind complement component C1q or C3B [80] . C1q and C3B are opsonins that interact with 

complement cell-surface receptors (C1qRp, CR1, CR3 and CR4) to promote phagocytosis (including 

that of infectious agents) and a local pro-inflammatory response [81] . TREM2 variants in AD are also 

associated with enhanced inflammatory responses (upregulation of proinflammatory cytokines) [82]. 

In presenilin (PSEN1) mutant knockin mice, microglial challenge with bacterial lipopolysaccharide 
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results in enhanced nitric oxide and inflammatory cytokine responses, relative to normal mice [83]. 

For these genes at least, this gain of immune/inflammatory function concords with selection for 

pathogen resistance.   

It has also been noted that unaffected offspring with a parental history of AD have an enhanced 

inflammatory response in lipopolysaccharide -stimulated whole blood samples, producing higher 

levels of interleukin 1beta, tumor necrosis factor alpha and interferon gamma in response to LPS. 

This effect was independent of the APOE4 variant [84] suggesting that other AD genes are also 

endowed with gain of function in relation to the immune/inflammatory system.   Monocyte-derived 

dendritic cells from Alzheimer’s disease patients also produce more interleukin 6 than those from 

healthy controls. AD monocytes stimulated with LPS also show a higher induced expression of the 

pro-inflammatory ICAM-1 adhesion molecule than controls [85].  Beta-amyloid also stimulates 

cytokine production in peripheral blood mononuclear cells (PBMC) and the production of the 

chemokines, RANTES, MIP-1beta, and eotaxin as well as that of CSF2 (colony stimulating factor 2 

(granulocyte-macrophage) ) and CSF3 (colony stimulating factor 3) is greater than controls in AD-

derived PBMC stimulated with beta-amyloid [86].  

Given the antimicrobial properties of beta-amyloid, any genetic variant that increase its production, 

at least in the periphery, might also be considered as desirable, in evolutionary terms, in relation to 

pathogen defence. A high percentage of AD GWAS genes are involved in APP processing [87]. The AD 

genetic variant of ABCA7 results in increased secretion of beta amyloid and raised beta-secretase 

activity in CHO- and HEK cells with the Swedish APP mutation [88], but the effects of late-onset AD 

variant genes on the beta-amyloid response to pathogens remain to be determined.  

Host/pathogen interactome enrichment in misregulated genes of the Alzheimer’s disease 

hippocampal transcriptome (Fig 3). 

Fig 3. The number of genes misregulated (combined up and down) in a microarray study of the AD 

hippocampus overlapping with diverse host/pathogen interactomes. The identities on the X-axis (e.g. 
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C. albicans (1471|5.2) are appended with the total number of genes in each interactome (1471 in 

this case) or genetics dataset followed by the enrichment ratio (5.2 fold).  The p value for 

enrichment, derived from the hypergeometric distribution, is shown on the right hand axis (log scale) 

which is set to a maximum of 0.05. The Bonferroni cut off (1.74E-05) is also shown. 

 

 

 

All pathogen interactomes, most notably relating to influenza, C. Neoformans and Hepatitis C were 

highly enriched in genes relating to this microarray dataset (combined up and downregulated genes). 

The significance level of the interactome enrichment for most pathogens was several orders of 

magnitude below the Bonferroni cut off (p=1.74E-05) (Fig 3). 14/78 AD genes appear in this 

microarray dataset (FDR p = 0.001). Two case reports have demonstrated virtually complete recovery 
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from long-term (3 years) mis-diagnosed dementia/Alzheimer’s disease following antifungal 

treatment for C. Neoformans infection [50,51]. Regarding the influenza data, bronchopneumonia, 

often caused by influenza, is a common final cause of death in dementia patients [89] and such 

recent infections close to death may well influence the data.   

Regardless of the rank order, it is clear that many diverse pathogen interactomes affect several 

hundred genes of the 2879 misregulated in the AD hippocampus and/or that these misregulated AD 

genes represent a substantial percentage of the individual pathogens’ interactomes (Fig 3).    

Kegg pathway analysis of these misregulated hippocampal genes using the consensus path database 

[90] showed that many infection-related pathways were also significantly enriched (FDR p < 0.05). 

These included (pathogen with N genes followed by the FDR corrected p value): Epstein-Barr virus 

infection (74,5.5E-7); Salmonella infection (36,0.0001); Tuberculosis (57,0.0009); Epithelial cell 

signaling in Helicobacter pylori infection (28,0.00097); Shigellosis (27,0.001); Influenza A (54,0.003); 

Herpes simplex infection (56,0.0036); Vibrio cholerae infection (21,0.0089) ;HTLV-I infection 

(71,0.0096); Toxoplasmosis (37,0.013); Hepatitis B (43,0.018); Pathogenic Escherichia coli infection 

(20,0.02); Bacterial invasion of epithelial cells (26,0.02); Measles (38,0.04). 

Upregulated genes in the AD hippocampus are enriched in genes upregulated by multiple viral, 

bacterial and fungal pathogens or Toll-like receptor ligands. 

Numerous infection-related microarray datasets exist in the Molecular signatures database or in the 

Gene expression omnibus (see methods), using blood cells taken from infected patients, or cells or 

tissues infected under laboratory conditions.  

Figure 4: The number of upregulated genes (bars) from the AD hippocampal transcriptome that 

overlap with upregulated genes in viral infection datasets from the Molecular signatures database or 

the Gene expression omnibus (see methods). The effects of the mimic poly(I:C) are also shown, as is 

the effect of interferon gamma on gene expression in microglial cells. For each datapoint, the name 
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of the virus is shown, followed by the cell type and the total number of upregulated genes in the viral 

datasets (limited by MSigDb or GEO). The significance of enrichment (right axis) represents the FDR 

corrected p value from the hypergeometric test. All values are below the Bonferroni corection 

(0.05/300 = 1.67E-04). Because the number of downloaded genes is mostly limited to 300, this is the 

maximum number of possible overlaps. The pale bar represents the microglial response to interferon 

gamma. 

Tissue/cell abbreviations; A549= adenocarcinomic human alveolar basal epithelial cells; ABL = Akata 

Burkitt's lymphoma cells; B2B/16HBE, BE(2)C or BEAS-2B = human bronchial epithelial cells; BroLav = 

human bronchial lavage; Calu-3 = Cultured Human Airway Epithelial Cells; DC = dendritic cells; GRE = 

glioma cell line; HAE = human airway epithelial cells; HBEC = Human Bronchial Epithelial Cells; HEK = 

human embryonic kidney cells; HeLa = cervical cancer cell line; HuH-7 = hepatocarcinoma cell line; 

Macro = macrophage; Mgli = microglia; Mono =monocytes; NES = human nasal epithelial scrapings; 

NK = natural killer cells; PBMC = peripheral blood mononuclear cells; PLC/PRF/5 cells = human liver 

hepatoma cells;  Trach epi = Tracheal epithelial cells 

Viral abbreviations (Reading from the left): HIV= human immunodeficiency virus, Cox B3 =Coxsackie 

B3 virus; RSV = respiratory syncytial virus; LCMV= Lymphocytic Choriomeningitis Virus; HMPV= 

Human metapneumovirus; Ebola= Ebola virus; Influenza = Influenza A virus; Sendai = Sendai virus, 

HCoV = human coronavirus; IFNG = interferon gamma; SARS = severe acute respiratory syndrome 

coronavirus; HCMV = human cytomegalovirus; MCMV = mouse cytomegalovirus;  Dhori = Dhori virus; 

EBV = Epstein-Barr virus; HepC = hepatitis C virus; KSHV= Kaposi's sarcoma-associated herpesvirus; 

HSV-1 = herpes simplex; Norwalk = Norwalk virus (Norovirus); Ad5 = adenovirus 5; SIV= Simian 

immunodeficiency virus; poly(I:C)= Polyinosinic:polycytidylic acid ( a viral mimic stimulating Toll-like 

TLR3 receptors); NDV = Newcastle disease virus; WestEq = Western equine encephalomyelitis virus; 

LASV = Lassa virus; dsRNA = double stranded RNA; HEV = hepatitis E virus.  
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Fig 5 

The number of upregulated genes (bars) from the AD hippocampal transcriptome that overlap with 

upregulated genes in bacterial (first batch), fungal (pale bar =C.albicans , C.Neoformans), nematode 

(B.Malayi) /trematode (S.Mansoni) , or protozoan microarray datasets (see methods). The effects 

Lipopolysaccharides and other Toll receptor ligands are also shown.  

For each datapoint, the name of the pathogen or ligand is shown, followed by the cell type and the 

total number of upregulated genes in the comparator datasets (limited by MSigDb or GEO). The 

significance of enrichment (right axis) represents the FDR corrected p value from the hypergeometric 

test. All values except for C.Neoformans are below the Bonferroni correction level.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 12, 2016. ; https://doi.org/10.1101/080333doi: bioRxiv preprint 

https://doi.org/10.1101/080333
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

 

Pathogen or ligand abbreviations (from left) L. monocytogenes = Listeria monocytogenes; endotoxin 

= gram-negative bacterial wall component; S.pneumoniae = Streptococcus pneumoniae; E.Coli =  

Escherichia coli; P. gingivalis = Porphyromonas gingivalis; A .phago = Anaplasma phagocytophilum; Y. 

enterocolitica =  Yersinia enterocolitica; M.Bovis = mycobacterium bovis; C.albicans = Candida 

albicans, C.Neoformans = Cryptococcus neoformans,  B.Malayi = Brugia malayi (filarial parasite 

causing elephantiasis); S.mansoni = Schistosoma mansoni; L. donovani = Leishmania donovani; C. 

parvum = Cryptosporidium parvum; L. Major = Leishmania major; T.Gondii = Toxoplasma Gondii; T. 

Cruzi = Trypanosoma Cruzi; LPS = lipopolysaccharide;  LPS O.Plank = Oscillatoria Planktothrix ( 

cyanobacteria lipopolysaccharide ) CpG oligo = CpG Oligodeoxynucleotide (TLR9 ligand); 

Gardiquimod = TLR7 ligand;  

Cell type abbreviations as for Fig 4. CNS = central nervous system; peyers = peyers patch; Int epi = 

intestinal epithelial cells;  
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The hippocampal genes upregulated in Alzheimer’s disease were significantly enriched in 

upregulated genes in datasets from multiple viral species and to double stranded RNA and the viral 

mimic/TLR3 agonist, Polyinosinic:polycytidylic acid (poly I:C) (Fig 4).  The viruses ranged from the 

benign (e.g. the rhinovirus that causes the common cold) to the highly malignant (e.g. the ebolavirus, 

rabies virus or HIV-1). They include common human infectious agents (e.g. adenovirus 5, influenza, 

Epstein-Barr virus, herpes simplex virus (HSV-1), measles or the Norwalk virus). Apart from HSV-1, 

the human cytomegalovirus, HIV-1 or hepatitis C (See Table 1) none of these have been implicated in 

Alzheimer’s disease or dementia. Most microarray experiments related to immunocompetent blood 

cells (B cells, T cells, dendritic cells, monocytes and macrophages) or to cultured cell lines. No 

infection-related datasets were found for microglia, the brain resident immunocompetent cells, but 

significant enrichment of the AD upregulated genes was observed for genes upregulated by 

interferon gamma in microglial cells (Fig 4). Interferon gamma plays an important role in the 

response to viral, bacterial and parasitic infections [91].  

The upregulated hippocampal genes in AD were also enriched in infection datasets for numerous 

bacteria as well as to fungal species (C. albicans and C.neoformans) and in those related to bacterial 

endotoxin or sepsis and to nematode/trematode or protozoan infection datasets (FDR p < 0.05) (Fig 

5). This also applied to diverse lipopolysaccharide datasets and responses to Toll-like receptor 

ligands, CpG oligonucleotide (a ligand for TLR9, which mediates cellular response to unmethylated 

CpG dinucleotides in bacterial DNA (definition from Refseq)) and R848 (a ligand for TLR7/TLR8 both 

of which recognize RNA released from pathogens that enter the cell by endocytosis [92]) (Fig). With 

the exception of H.Pylori, P.Gingivalis and Borrelia burgdorferi and C.albicans or C.Neoformans, none 

have been implicated in AD.  

Together these data suggest a significant parallel between the upregulated genes in the AD 

hippocampus and the responses to multiple and diverse infectious agents with little overall 
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discrimination between viral, bacterial, fungal or protozoan types of infection. Multiple pathogens 

have been detected in the AD brain (see Table 1) and the diversity of these infection related overlaps 

with the AD hippocampal transcriptome suggests that many other pathogens could induce similar 

pathological transcriptome changes. Microbiome studies in the AD brain and periphery will help to 

elucidate the role of multiple pathogens.   

Pathogen interactomes are enriched in the proteins found in AD amyloid plaques and 

neurofibrillary tangles (Fig 6). 

Fig 6. Host pathogen interactome enrichment in a set of 488 proteins isolated from amyloid plaques 

in the AD brain or from 90 proteins isolated from neurofibrillary tangles. The identities on the X-axis 

are appended with the total number of genes in each interactome followed by the enrichment ratio.  

The FDR p value for enrichment, derived from the hypergeometric distribution, is shown on the right 

hand axis (log scale) which is set to a maximum of 0.05.  

Figure 6 
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All pathogen interactomes were significantly enriched in proteins found in plaques and all except 

HERV-W and B.Burgdorferi interactomes significantly enriched in tangle proteins (below the 

Bonferroni cut-off level). The Borna virus and HIV-1 ranked highly in both cases. There is only one 

publication relating to Borna virus effects on beta-amyloid and none could be found for tangles. The 

microglial activation produced by the virus reduced brain parenchymal, but increased cerebral 

vascular beta-amyloid deposition, in APP transgenic mice [93]. The top agents relating to plaques 

were predominantly viral, while those relating to tangles were mostly viral, but included the 

parasites, T. Cruzi and T.Gondii. 

Beta-amyloid is an antibacterial, antifungal and antiviral agent (Table 1). It has been shown that it 

binds to C.albicans and S.Typhimurium [2] and presumably to other microbes. Such microbes may 

well have sequestered host proteins specific to their particular life cycles during their passage to the 

cell, and this would partly explain the interactome enrichment. In addition to the plaque proteins 

relating to pathogen life cycles (for example receptor binding , endocytosis and transport between 

intracellular compartments or nuclear entry and subsequent translation in the case of HSV-1) ,  the 

proteins found in plaques and tangles contain many related to the immune system, inflammation  

and autophagy, all of which play a general role in pathogen defence [8,24,25] as does beta-amyloid.  

Viruses are transported via the microtubule network [94], which is also exploited by C.Pneumoniae, 

T.Cruzi and T.Gondii to reorganise cellular organelles to the pathogens’ advantage [95,96].  

Phosphorylated tau is a hallmark of neurofibrillary tangles and is induced by many pathogens (Table 

1). Tau phosphorylation can also be induced by interferon gamma, an effect related to disinhibition 

of glycogen synthase kinase [97]. It is not clear whether or how such effects could influence the 

pathogens.   

AD genes are localised in the Blood brain barrier 

30/78 AD genes are expressed in the BBB proteome dataset of mouse cerebral arteries [28] (Fig 1). 

The list below indicates the 30 BBB genes, annotated with the number of pathogen interactomes 
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with which they overlap. Most BBB expressed genes interact with none or few pathogens (5 or less 

of the 17 studied), suggesting a subdivision of mainly BBB and mainly pathogen related. This could of 

course be confounded by missing data, as several of these genes are poorly characterised in terms of 

function.  These 30 genes (N interactomes in brackets) are:-  PCNX (0), ABCA7 (1), ADAMTS20 (1), 

ATXN7L1 (1), TREML2 (1), AP2A2 (2), BCAM (2), CNTNAP2 (2), ECHDC3 (2), FRMD4A (2), GRIN3B (2), 

PAX2 (2), PICALM (2), DISC1 (3), LUZP2 (3), RELN (3), TTLL7 (3), FERMT2 (4), HMHA1 (4), MSRA (4), 

PPP1R3B (4), SASH1 (4), BIN1 (5), SORL1 (5), PVRL2 (7), MMP12 (8), CLU (9), PTK2B (10), BCL3 (13), 

SQSTM1 (13). 

The BBB location of a high proportion of AD genes indicates an important function in relation to AD. 

Several studies have reported that disruption of the blood brain barrier is an important feature of AD 

[98-101]. Cerebral microbleeds and cortical siderosis (an increase in blood-derived iron deposition) 

are a feature related to BBB disruption in AD patients [102-104]. Many bacteria depend upon the 

availability of free iron and such effects may contribute to their sucessful colonisation in AD [105]. 

Other environmental risk factors in AD disrupt the blood-brain barrier and BBB integrity is 

maintained by beneficial factors. 

AD susceptibility genes might have been selected for pathogen resistance rather than susceptibility 

(see above). In which case, what are the factors, in the aged, that nevertheless permit the cerebral 

invasion of a large variety of pathogens? (See Table 1) Certain viruses (e.g. HSV-1) can enter the brain 

via the olfactory or other neural routes, exploiting an ability to use the axonal transport system [106] 

.  Some parasites [107] and bacteria (e.g. C. Pneumoniae [108,109]) have also found ways to 

circumvent the barrier systems that usually protect the brain.    

Aging itself leads to blood brain barrier dysfunction [110] and immunosenescence is also a feature of 

ageing and AD. However, while immunosenescence can increase susceptibility to pathogens due to 

immunodefficiency, it is also accompanied by an increase in the pro-inflammatory activity of 

monocytes and macrophages which can lead to chronic low grade inflammation, termed 'inflamm-
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ageing”[111,112]. This increased inflammatory function also applies to microglia, the macrophage-

like cells in the brain [113]. Certain AD gene variants are associated with enhanced pro-inflammatory 

responses (see above) and cerebral pathogen entry would thus be met with a doubly vigorous 

inflammatory response related to both immunosenescence and genetic variation. Persistently 

activated monocyte/macrophages have been observed in the blood of patients with early AD [114] 

and increased activation of microglia/macrophages, colocalized with the area of heavy beta-amyloid 

concentration, is also observed in the brains of AD patients [115]. 

Apart from pathogens, many other environmental risk factors have been reported in AD. These 

include diabetes, midlife hypertension or obesity, smoking and physical inactivity [116]. Other 

contributory factors include previous head injury [117], exposure to toxic metals (aluminium 

[118,119] or copper[120] ), pesticides (organochlorine and organophosphate insecticides) [121,122], 

industrial chemicals (flame retardants) and air pollutants (particulate matter and ozone [123-126]). 

High levels of cholesterol or homocysteine [127-130]and low levels of folic acid [131,132] have also 

been associated with AD. In relation to cholesterol, atherosclerosis of the carotid arteries or of 

leptomeningeal vessels and in the circle of Willis has also been observed in AD. Such atherosclerotic 

effects can lead to chronic cerebral hypoperfusion [60,133,134].Sleep disruption or obstructive sleep 

apnoea are also associated with AD risk [135,136].   

Factors reported to be of benefit, or that reduce the incidence of AD include the use of non-steroidal 

anti-inflammatories (NSAIDs) [137,138], and the early use of statins [139-141] . Statins also have 

antimicrobial effects against oral microorganisms including Aggregatibacter actinomycetemcomitans 

and P. Gingivalis, and against most dental plaque bacteria, including Streptococcus mutans. They 

possess antiviral properties against the human cytomegalovirus, HSV-1, hepatitis B and C viruses, and 

antifungal properties against Candida albicans, Aspergillus fumigatus, and Zygomycetes species 

[142].  
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 Beneficial dietary factors in AD include caffeine [130], chocolate (versus cognitive decline in the non-

demented aged)[143]) and the Mediterranean diet [144-146]  . Melatonin [147,148], estrogen [149-

151]and memantine [152,153] also have reported benefits in AD.  

The environmental risk factors associated with AD disrupt the BBB, and BBB integrity is maintained 

by the beneficial factors (Table 2). While infections are random uncontrollable events, many of the 

other environmental risk factors are modifiable by lifestyle changes, for example diet, obesity, 

smoking and exercise, and it has been estimated that addressing such modifiable risk factors might 

result in a significant reduction in the incidence of AD [116]. Amelioration of BBB disruption has 

already been proposed as a potential therapy in AD, and several drugs including angiotensin receptor 

blockers, etodolac (NSAID),  granisetron (5HT3 serotonin receptor antagonist) or beclomethasone 

(corticosteroid) [154,155] as well as other NSAIDS, statins and other drugs referenced in Table 2 

might be considered as suitable candidates.  

Diverse pathogen sensors and defenders relating to bacteria, viruses, parasites and fungi are 

upregulated in the AD brain, blood or CSF. 

We have evolved numerous pathogen detectors whose activation leads to stimulation of the 

immune system and to the production of defensive mechanisms, including inflammation and free 

radical attack.  Multiple pattern recognition receptors including Toll-like  receptors , C-type lectin 

receptors  and nucleotide-binding oligomerization domain-like receptors (NOD-like) sense  motifs in 

bacterial, viral, fungal and parasite proteins or other compounds or respond to foreign bacterial or 

viral DNA or RNA in cellular locations where host DNA or RNA should not exist [156-159].  

Infection also activates inflammasomes, which trigger the maturation of proinflammatory cytokines, 

activating innate immune defences [160]. 

In addition to this, a large number of defensins and other antimicrobial peptides exist, targeting 

bacteria, fungi, parasites and viruses [161]. Beta-amyloid is one such [3]. 
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EIF2AK2 (eukaryotic translation initiation factor 2 alpha kinase 2) better known as pkr, is activated by 

viral double stranded RNA and to bacterial RNA. This phosphorylates eif2alpha, leading to the arrest 

of the protein translation that is needed for viral replication. Pkr stimulation also leads to the 

production of interferon and to activation of the inflammasome [162-165].  Other viral RNA-sensors 

include RIG-I (coded by retinoic acid-inducible gene 1= DDX58) , MDA5 (Melanoma Differentiation-

Associated protein ; coded by IFIH1) and LGP2 (coded by DEXH-box helicase 58= DHX58) [92].    

Indoleamine 2,3-dioxygenase 1 (IDO1) diverts tryptophan metabolism to N-formyl-kynurenine, (away 

from serotonin production) .IDO1 upregulation is an important defence mechanism against 

pathogenic bacteria, many of which rely on host tryptophan. It is involved in antimicrobial defence 

and immune regulation, and its effects are not restricted to bacteria This IDO1 response is also 

deleterious to other pathogens and parasites, including T.Gondii, and to a number of viruses, 

including herpes simplex virus and other herpes viruses [166]. Kynurenine and kynurenic acid 

produced by IDO1 activation, are ligands for the aryl hydrocarbon receptor (AHR), which plays an 

important role in antimicrobial defence and immune regulation [167]. 

The function of these players with respect to the main pathogens studied above is reviewed in 

Supplementary Table 2, which also reports expression data in the Alzheimer’s disease brain, blood or 

CSF. Data derived from this table are illustrated in Figs 7 (viral) and 8 (bacteria, fungi and parasites). 

Fig 7 and 8. Viral (Fig 7) and fungal or bacterial (Fig 8) defenders and sensors and their expression (^ 

= upregulated; down = downregulated) in the brain, blood or cerebrospinal fluid of Alzheimer’s 

disease patients. CP = choroid plexus; CSF= cerebrospinal fluid; GVS= granulovacuolar degeneration; 

HPC = hippocampus; lympho = lymphocytes; macro = macrophages; mcyt=monocytes; mgli = 

microglia; PBMC = peripheral blood mononuclear cells; Plaq = amyloid plaques; Ser = serum; tang = 

tangles;  

αdefs or βdefs= unspecified alpha or beta defensins: AGER= advanced glycosylation end product-

specific receptor (also known as RAGE); APCS= amyloid P component, serum ; CAMP = cathelicidin 
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antimicrobial peptide (LL-37); Calpro= Calprotectin  (S100A8/S100A9 dimer);CHI3L1 = chitinase 3 like 

1  (aka YKL-40); C-type lectin = CLEC’s; CRP = C-reactive protein; DEAD box proteins = DDX’s; 

Defensins = DEFA’s, DEFB’s: EIF2AK2 = eukaryotic translation initiation factor 2 alpha kinase 2 (pkr); 

ELANE = elastase, neutrophil expressed ; IAPP = islet amyloid polypeptide (Amylin); IDO1= 

indoleamine 2,3-dioxygenase 1; Interferons = IFNA1, IFNA5, IFNB1, IFNG; LCN2 = lipocalin 2; LGALS3 

= lectin, galactoside binding soluble 3; LTF = lactotransferrin; MAC = membrane attack complex 

(complement components C5b-C9); MRC1 = mannose receptor, C type 1; NAIP = NLR family, 

apoptosis inhibitory protein ; NLRP1 and 3 = NLR family pyrin domain containing  1 and 3; NOD1 and 

NOD2 = nucleotide binding oligomerization domain containing (1 and 2) ;  RARRES2 and 3 = retinoic 

acid receptor responder (2 and 3) : S100’s= S100 calcium binding protein ;Toll-like receptors = TLR1 

to 10; ZBP1 Z-DNA binding protein 1. Gene = gene related to the respective pathogen in association 

studies or with Alzheimer’s disease (Gene AD). mod sens = modified senstitivity; The strikethrough’s 

(e.g. TLR1) represent a pathogen’s ability to inhibit or overcome the combative effects of the 

defensive or sensor protein. ? = unknown 

Borna = Borna virus; CMV = human cytomegalovirus; EBV = Epstein-Barr virus; HepC = Hepatitis C; 

HSV-1= Herpes simplex; Influ= Influenza A virus; Borrel= Borrelia burgdorferi; C.Alb= Candida 

albicans; C.Neo = Cryptococcus neoformans; C. Pneu = Chlamydia pneumoniae; H.Pyl= Helicobacter 

pylori; P.Ging = Porphyrymonas gingivalis; T.Gon = Toxoplasma Gondii 

Those shaded in black are those most implicated in Alzheimer’s disease (Table 1) 
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Figure 7: Viruses:  
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Figure 8: Bacteria, fungi and T.Gondii 
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These figures show that sensors and defenders relating to multiple pathogens are upregulated in the 

AD brain, blood or CSF. These involve reactions to many different classes (bacteria, viruses, fungi and 

parasites) and there appears to be no discrimination, or focus on any particular type.  This would 

concord with the multiple and diverse pathogen species that have been detected in the AD brain 

(Table 1) and with the relationship between the AD genes or the hippocampal transcriptome with 

multiple pathogen species. 

Caveats:  

This analysis is based on overlapping gene symbols rather than on specific polymorphisms. There is 

thus no indication of the physiological weight or importance of any gene/pathogen interaction, some 

of which will be more important than others. Pathogen effects may also be strain-dependent, and 

the size of the interactomes also varies widely. Within any large interactome there will be 

deleterious, neutral and beneficial effects. While HSV-1 infection causes beta-amyloid deposition and 

neurodegeneration [168], in its latent form, the virus can have neuroprotective effects. For example 

the viral latency transcript inhibits apoptosis and promotes neurite sprouting in neuroblastoma cells 

[169], protects neuronal C1300 and Neuro2A cells from granzyme B-induced apoptosis and CD8 T-

Cell killing [170] and also protects  trigeminal neurones from apoptosis [171] . The Bornavirus is 

capable of promoting hippocampal degeneration in Man [172]. In rats Borna virus infection 

decreases choline acetyltransferase activity in the cerebral cortex, horizontal diagonal band of Broca 

, hippocampus and amygdala [173] a situation  similar to that observed in Alzheimer’s disease [174]  

but the inflammation and microglial activation it produces can also reduce beta-amyloid 

immunoreactivity in the brain parenchyma of Tg2576 mutant beta-amyloid mice  [93]. Chronic, adult 

acquired T. Gondii infection causes neurologic and behavioural abnormalities secondary to 

inflammation and neuronal loss, in a strain-dependent manner [175]. T.Gondii infection in BALB/C 

mice induces neuroinflamation and learning and memory deficits. It also potentiates the toxic effects 
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of low doses of intracerebrally administered beta-amyloid[176],  but chronic infection can also 

increase beta-amyloid phagocytosis and clearance by recruited monocytes [177].  

Dementia or neurodegeneration, in the absence of amyloid plaques is, by current clinical definition, 

not considered as Alzheimer’s disease, but as already noted, there is no  inherent biological reason 

for this [178,179].  Such divergent effects might also be relevant to findings relating to the presence 

of amyloid plaques in the absence of dementia, as observed in the Nun study [180,181] or to 

diagnosed Alzheimer’s disease in the absence of beta-amyloid. A recent report showed that ~15% of 

patients clinically diagnosed with AD do not have amyloid deposits as indexed by positron emission 

tomography [182]. While some amyloid-negative patients could be re-diagnosed (~50%), the clinical 

follow-up using other criteria in other amyloid-negative patients continued to support the definition 

of Alzheimer’s disease.  

There are also many inter-pathogen interactions relevant to this relatively small sample of the 

potential microbiome. For example HSV-1 infection activates replication of the Epstein-Barr virus, 

[183]. Gingipains or other proteases secreted by P. Gingivalis degrade multiple complement 

components [184] as well as alpha- and beta defensins [185],immunoglobulins, IgG1 and IgG3 [186] 

and interleukin-12, preventing its ability to stimulate interferon production [187]. Such effects 

enable the pathogen to counteract immune defence and would also impinge on the viability of many 

other pathogens.   

HIV-1 is immunosuppressant and has been associated with many opportunistic pathogens including 

tuberculosis, toxoplasmosis, cytomegalovirus encephalitis and Cryptococcal brain invasion [188,189].  

The human cytomegalovirus is also immunosuppressant via an ability to target MHC class I molecules 

for degradation [190]and to inhibit MHC class II antigen presentation [191]. Parasites, which 

maintain a long-term, if unwelcome presence in the host have also developed immunosuppressant 

and anti-defensive strategies[192,193]. In addition, the success of most pathogens depends upon 

their ability to subvert the defensive armoury of the host in some way.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 12, 2016. ; https://doi.org/10.1101/080333doi: bioRxiv preprint 

https://doi.org/10.1101/080333
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 

 

[33] 

 

The AD genes affect human processes relevant to the disease itself, but given that they are also part 

of pathogen interactomes, polymorphisms therein are also likely to affect pathogen life cycles or the 

ability of pathogens to promote diverse effects within the host. Apart from APOE4 there are no 

studies relating to the effects of the AD gene variants on pathogens or their effects.    

For these and many other reasons, it is perhaps unwise to rank the pathogens by order of 

importance in relation to their enrichment or p value in any of the data described above. Suffice it to 

say that diverse pathogens have been detected in the AD brain and all of the bioinformatics data 

presented above, whether related to genes, transcriptomes, plaques or tangles implicate multiple 

species of pathogens across viral, bacterial, fungal and protozoan classes.  

While there are statistical limitations to this type of analysis, correction for false discovery followed 

by the Bonferroni correction has been conservatively applied. The relationship of AD to pathogens is 

supported by experimental observation (Table 1) and by the antimicrobial effects of beta-amyloid. 

This study also relies on multiple and diverse in silico bioinformatic analyses linking AD GWAS genes, 

plaques and tangles as well as the hippocampal transcriptome to multiple pathogen interactomes, 

and the upregulated AD hippocampal genes to multiple infection datasets from diverse pathogen 

species. Polymicrobial involvement is also supported by the diversity of bacterial, viral and fungal 

sensors and defenders that are upregulated in the AD brain, blood or CSF.  Each comparison relates 

to single pathogens but given the diversity of pathogens detected in AD such effects are likely to be 

cumulative. 

Discussion 

Multiple and diverse pathogens (bacteria, viruses, fungi and spirochetes) have been detected in the 

AD brain and many cause neurodegeneration, increase beta-amyloid deposition and tau 

phosphorylation or are killed/incapacitated by beta-amyloid, an antimicrobial peptide that is part of 

the innate immune defence system.  Representatives of these pathogens target multiple AD GWAS 

genes, and their interactomes are enriched in genes related to the AD hippocampal transcriptome 
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and to the proteins found in AD plaques and tangles. The upregulated genes of the AD hippocampal 

transcriptome also correspond to those upregulated by multiple species of viral, bacterial, fungal and 

protozoan pathogens or by interferon gamma and Toll-like receptor ligands.  

The AD genes are preferentially localised in the bone marrow and other immunocompetent tissues, 

and in exosomes that are hijacked by pathogens for intercellular spread. They are also localised in 

the lateral ventricle and the hippocampus which abuts this area, a prime site of pathogen invasion 

via the choroid plexus and the blood/csf barrier. 

The AD genes are enriched in global GWAS datasets relating to pathogen diversity, suggesting that 

some have been selected for pathogen resistance rather that susceptibility. This is supported by the 

old age of AD patients, indicating survival from the many infections that contribute to mortality in 

the younger population. APOE4 variants protect against malaria and hepatitis C, and 

immune/inflammatory gain of function applies to APOE4, CR1, TREM2 and presenilin variants, 

supporting this contention.  Logically, any gene variant increasing the production of the anti-

microbial peptide beta-amyloid in response to pathogens might also be considered as beneficial in 

these evolutionary terms. Apart from APOE4, there is however little data examining the effects of AD 

gene variants on pathogen life cycles or that relate specifically to pathogen responses.    

Many AD genes are also localised in the blood brain barrier. This should provide an effective shield 

against many infections but it is disrupted by multiple environmental risk factors implicated in 

Alzheimer’s disease and protected by several factors reported to be beneficial in relation to 

Alzheimer’s disease, including NSAIDs, statins, oestrogen, memantine, melatonin, and components 

of the Mediterranean diet.  

The relationship between pathogens and Alzheimer’s disease has a long history coupled with a 

degree of scepticism, perhaps related to an inability to fulfil Koch’s postulate. For example, the same 

pathogen is not always found in all AD brains, or in different laboratories. Laboratory confirmation in 

animal models may be impossible for certain pathogens, for example the Epstein-Barr or hepatitis C 
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virus, that do not infect rodents. Nevertheless, the diversity of pathogens able to promote 

neurodegeneration, beta-amyloid deposition or to mimic the effects observed in the hippocampal 

AD transcriptome suggests that many candidates, alone or severally, could be involved in the 

pathogenesis of AD.  A polymicrobial involvement seems likely given the multiple species detected in 

the AD brain. Evidently, this could be assessed by microbiome studies in the periphery or in post-

mortem brains.  

Recent work suggests that the production of the antimicrobial/antiviral peptide beta-amyloid is an 

expected consequence of infection in general [2,3].   In the context of the amyloid hypothesis [194], 

this places pathogens upstream of the production of this toxic peptide, and logically as causal, both 

in terms of beta-amyloid production and in relation to Alzheimer’s disease.  

Two separate case reports have shown remission from dementia or mis-diagnosed Alzheimer’s 

disease in patients subsequently diagnosed with and treated for Cryptococcus neoformans infection 

[50,51]. 

In a Greek study, H. Pylori-infected AD patients receiving the triple eradication regime (omeprazole, 

clarithromycin and amoxicillin) showed improved cognitive and functional status parameters where 

bacterial eradication was successful [195].H. Pylori eradication in AD patients with peptic ulcer was 

also associated with a decreased risk of AD progression in a Taiwanese study [196]. 

Taking all of the above into consideration the combined data suggest that polymicrobial brain 

invasion, enabled by environmentally-induced blood-brain barrier defects may be responsible for 

Alzheimer’s disease. This could essentially be mediated via activation of a hyper-efficient 

inflammatory network, including the call-up of beta-amyloid that, as a consequence, causes massive 

neuronal destruction in a tissue incapable of regeneration. The role of the innate immune system 

and the inflammatory response in neurotoxicity has recently been reviewed, and innate surveillance 

mediated cell death has been suggested as a plausible common pathogenic pathway responsible for 

many neurodegenerative diseases, including AD [197].  
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It is therefore not unreasonable to suggest that antibiotic, antifungal and antiviral agents, possibly in 

combination, tailored to the individual, might be able to halt, delay or perhaps even provide 

remission in patients with Alzheimer’s disease.  
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Table 1: The effects of diverse pathogens on beta-amyloid deposition, tau phosphorylation and their 

relationships with Alzheimer’s disease.  

 Effects on  beta-

amyloid 

deposition or 

Tau 

phosphorylation 

Presence in Alzheimer’s disease 

brain  

Antibodies in 

Alzheimer’s disease 

blood and other 

analyses  

Viruses 

Borna virus In transgenic mice 

expressing an APP 

mutant (Tg2576) 

infection of cortical 

and limbic brain 

areas is 

characterized by  

T-cell infiltrates, 

high cytokine 

expression and a 

massive microglial 

activation in the 

hippocampus and 

neocortex.The 

inflammatory 

effects and 

microglial 

               ? Associates with a 

rare form of 

hippocampal 

degeneration but 

not specifically with 

Alzheimer’s disease 

[172] 
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activation were 

linked to a 

decrease of 

parenchymal beta-

amyloid deposits 

but an increase of 

beta-amyloid 

deposits in the 

walls of cerebral 

vessels [93]. 

Epstein-Barr virus: 

human 

herpesvirus 4 

No reports The virus has been detected in a 

small percentage of AD brains (6%).  

In aged individuals followed for 5 

years EBV-positive or HHV-6-positive 

peripheral blood leukocytes 

increased  in those who developed 

clinical AD [198] 

Viral IgG levels are 

increased in 

Alzheimer’s patients 

with the IRF7 GG 

genotype (interferon 

regulatory factor7) 

[199] 

HSV-1 (herpes 

simplex) 

HSV-1 induces 

beta-amyloid and 

tau 

phosphorylation in 

cell culture or in 

mice, effects that 

can be attenuated 

by acyclovir in cell 

Numerous studies have reported the presence of HSV-1 in 

Alzheimer’s disease brains or an association with HSV-1 

seropositivity (reviewed in [200]).  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 12, 2016. ; https://doi.org/10.1101/080333doi: bioRxiv preprint 

https://doi.org/10.1101/080333
http://creativecommons.org/licenses/by-nc-nd/4.0/


72 

 

[72] 

 

culture [200]  

HSV-2 Herpes 

simplex virus 2 

Increases beta-

amyloid deposition 

and tau 

phosphorylation in 

human SK-N-MC 

neuroblastoma 

cells[201] 

Present at relatively low frequency in 

brains of both control (20%) and 

Alzheimer’s  patients (13%) [202] 

? 

Human 

cytomegalovirus : 

human 

herpesvirus-5 

Beta-amyloid 

production is 

increased by 

cytomegalovirus 

infection in human 

foreskin fibroblasts 

: Seropositivity 

associated with the 

presence of brain 

neurofibrillary 

tangles in post-

mortem human 

brain [203] 

               ? Seropositivity 

associated with 

Azheimer’s disease 

and with cognitive 

decline in the aged 

[204]. Infectious 

burden  consisting of 

cytomegalovirus , 

HSV-1, B. 

burgdorferi, C. 

Pneumoniae and H. 

Pylori is associated 

with Alzheimer’s 

disease [1]  

HHV-6 Human 

herpesvirus 6 

No reports found  Present in a higher proportion of the 

AD than of age-matched normal 

brain(70 vs 40%) [202] 

Viral DNA detected 

in a higher 

proportion of 
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Alzheimer’s disease 

peripheral blood 

leukocytes [198] and 

high seropositivity 

observed in some 

Alzheimer’s patients 

[205] . The Epstein-

Barr virus and HHV-6 

were noted as risk 

factors for 

Alzheimer’s disease 

in genetically 

susceptible elderly 

patients [199] 

Hepatitis C No reports found                 ? Infection associated 

with dementia [206] 
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Influenza A No reports found                 ? No association 

between past 

infections and 

Alzheimer’s disease 

in a large study 

[207] Previous 

vaccination against 

influenza, 

diphtheria, tetanus 

or the poliovirus  

has been associated 

with a lower risk for 

Alzheimer's disease 

[208]. A particular 

strain 

(A/Vietnam/1203/04 

H5N1 virus) can 

enter the mouse 

brain from the 

periphery, causing 

neurodegeneration 

and alpha-synuclein 

(SNCA) 

accumulation: Cell 

death primarily 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 12, 2016. ; https://doi.org/10.1101/080333doi: bioRxiv preprint 

https://doi.org/10.1101/080333
http://creativecommons.org/licenses/by-nc-nd/4.0/


75 

 

[75] 

 

affects the 

substantia nigra but  

aggregated alpha-

synuclein was 

observed in the 

hippocampus ,cortex 

and brainstem [209] 
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HIV-1: human 

immunodeficiency 

virus 

Amyloid plaques found in the brains of HIV-1 patients and 

beta-amyloid deposition predicts neurocognitive disorders 

in HIV-1 infected APOE4 carriers [210,211].CSF beta-

amyloid and tau levels correlate with AIDS associated 

dementia[212] 

As treatment for 

AIDS has improved 

dementia associated 

with AIDS 

(NeuroAIDS) has 

increased in the 

ageing population 

[213,214]  

 

Bacteria 

Chlamydia 

pneumoniae 

C. Pneumoniae 

infection produces 

beta-amyloid 

deposition in the 

brains of BALB/C 

mice which 

resolves as the 

bacterial antibody 

titre decreases 

[215,216].  

Detected in the Alzheimer’s brain in 

apposition to plaques and tangles  

[217-222]  

Meta-analysis : 

Evidence for C. 

Pneumoniae 

infection (Odds ratio 

= 5.66) [223] 

Helicobacter 

pylori 

H. pylori infection 

in rats increases 

cerebral beta-

amyloid deposition 

via upregulation of 

               ? A recent meta-

analysis has 

reported a 

significant 

association between 
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[77] 

 

presenilin 2 , and 

impairs learning 

and memory [224] 

and increases tau 

phosphorylation in 

cell culture (mouse 

neuroblastoma 

N2a cells) or in vivo 

(rats) via glycogen 

synthase kinase 

beta[225].  

H. Pylori infection 

and dementia (Odds 

ratio= 1.71) [226] . 

Cognitive function 

and survival rates 

have been reported 

to be improved 

following H. Pylori 

eradication in 

Alzheimer’s disease 

patients [195,227]. 

Progression of 

dementia has also 

been reported to be 

reduced in 

Alzheimer’s patients 

with peptic ulcer 

following H. Pylori 

eradication [196] 

Propionibacterium 

acnes 

? Propionibacterium acnes was 

identified in frontal cortex biopsy 

specimens in three of four AD 

patients. The bacterium was 

cultivated from frontal cortical 

biopsy specimens [228,229]. 
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Spirochetes    

Borrelia 

burgdorferi 

Beta-amyloid 

deposition and tau 

phosphorylation 

induced by the 

spirochete in 

cocultured 

mammalian 

glial/neuronal cells 

[230] 

Detected in the Alzheimer’s disease 

brain[231]. 

Detected in 14 AD brains and not in 

any of 13 control brains. Spirochetes 

were also found in AD blood and CSF 

[232]. Beta-amyloid and bacterial 

DNA are components of pure 

bacterial biofilms and of senile 

plaques in AD [233,234] 

Meta-analysis : 

Evidence for 

Spirochetal infection 

associated with 

Alzheimer’s disease 

(Odds ratio = 10.61) 

[223] 

Fungal/yeast species detected in the AD brain include: - Saccharomyces cerevisiae; Malassezia globosa; 

Malassezia restricta; Penicillium Phoma, Candida albicans, Candida ortholopsis, Candida tropicalis, 

Cladosporium, Neosartorya hiratsukae, Sclerotinia borealis [235,236]. Filamentous micro-organisms, 

possibly relating to actinomycetes have been found in control and AD brains with a four to five-fold 

higher frequency in Alzheimer's disease [237]. C. famata, C. albicans or C. glabrata antigens have been 

found in AD cerebrospinal fluid[238]. 

Antibodies to Candida famata, Candida albicans. Syncephalastrum racemosum and Phoma betae stain 

corpora amylacea in the brains of Alzheimer’s disease patients [239].  

Two case reports indicated virtually complete recovery from long-term (3 years) mis-diagnosed 

dementia/Alzheimer’s disease following antifungal treatment for C. Neoformans infection [50,51]. 

Periodontal pathogens: Periodontitis has been associated with Alzheimer’s disease and with cognitive 

decline in AD patients [240-242].  Periodontal disease has been associated with increased beta-amyloid 

load in patients in vivo [243]. 

Actinomyces 

naeslundii 

? 

 

? Serum IgG levels 

associated with 
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increased risk of AD 

[244] 

Porphyromonas 

gingivalis 

     ? P. Gingivalis lipopolysaccharide 

detected in 4/10 Alzheimer’s brains 

post-mortem  [245] 

? 

Fusobacterium 

nucleatum 

? ? Antibody levels to F. 

nucleatum and P. 

intermedia 

increased in 

Alzheimer’s disease 

serum [246] 

Prevotella 

intermedia 

? ? 

Treponemes (oral pathogens) detected in the brains of AD patients using species specific PCR  

T. pectinovorum, T. amylovorum, T. lecithinolyticum, T. maltophilum, T. medium, T. socranskii, T. 

denticola, T. vincenti [234,247]. 

Treponema pallidum causes syphilis. Syphilitic dementia is associated with the pathological features of 

AD [248] 

Parasites 
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Toxoplasma 

gondii  

T. Gondii infection 

has been reported 

to inhibit 

neurodegeneration 

in transgenic mice 

(Tg2576) 

expressing the 

Swedish APP 

mutation [249] and 

to reduce amyloid 

plaque deposition 

in 5xFAD mice, 

effects attributed 

to  immune 

activation, via 

recruitment of 

Ly6C(hi) 

monocytes and by 

enhancement of 

phagocytosis and 

degradation of 

soluble beta-

amyloid [177]. 

Chronic infection in 

mice does produce 

neuroinflammation 

and neuronal 

injury , including 

hippocampal areas

               ? A high 

seroprevalence for 

the Toxoplasma 

gondii parasite has 

also been reported 

in one study of 

Alzheimer’s disease 

patients [250], but 

not confirmed in 

others [251,252] 
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Leishmania 

amazonensis 

Increased tau 

phosphorylation in 

the brains of 

infected mice 

[253]. 

               ? ? 

Trypanosoma 

Cruzi (causes 

Chagas disease)  

? ? Isolated cases of 

central nervous 

system involvement 

can include 

dementia, 

confusion, chronic 

encephalopathy and 

sensory and motor 

deficits [254] 

Plasmodium 

berghei (causes 

malaria in 

rodents) 

Cerebral 

accumulation of 

beta-amyloid in 

infected malaria-

susceptible mice 

(CBA/J and 

C57BL/6) [255]. 

 Not applicable 
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Beta-amyloid: 

Antimicrobial effects of beta-amyloid have been noted against Candida albicans, Escherichia coli; 

Staphylococcus epidermidis; Streptococcus pneumoniae; Staphylococcus aureus; Listeria 

monocytogenes ;Enterococcus faecalis ; Streptococcus agalactia . It also protects against Salmonella 

typhinurim meningitis in transgenic (5XFAD) mice expressing human beta-amyloid and in nematodes (C. 

elegans). Beta-amyloid binds to C. albicans and S. typhimurium. In transgenic (5XFAD) mice,  S. 

typhimurium infection increases beta-amyloid deposition and bacteria are embedded within beta-

amyloid deposits in the brain [2,3]. Beta-amyloid has antiviral effects against the influenza[4] and 

herpes simplex [5,6]viruses.  

However, beta-amyloid can stimulate the infection of target cells expressing CD4 and an appropriate 

coreceptor by HIV-1, not allowing infection in cells lacking these receptors. It also stimulated infection 

by amphotrophic Moloney leukemia virus, herpes simplex virus, and vesicular stomatitis virus, a 

phenomenon also observed with other synthetic fibril-forming peptides [256]. 
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Table 2. The effects of Alzheimer’s disease environmental risk factors and beneficial agents on blood 

brain barrier function. 

Alzheimer’s disease risk factor Effects on blood brain barrier 

Ageing Aging leads to barrier dysfunction and vascular 

hyperpermeability in peripheral and blood-brain barriers [110]  

Air pollution Long-term air pollution disrupts the BBB in children and young 

adults and causes neuroinflammation, an altered brain innate 

immune response, and accumulation of beta-amyloid and alpha-

synuclein starting in childhood [123] 

Alcohol abuse Alcohol(ism) has deleterious effects on the BBB[257,257,258] 

Aluminium Aluminium increases BBB permeability in rats [259] 

Beta-amyloid Beta-amyloid disrupts BBB integrity in mice [260] 

Brain trauma (concussion) Mild traumatic brain injury produces early disruption of the BBB 

in animal models and in Man [261,262]. 

Cerebral 

hypoperfusion/ischaemia 

(carotid/leptomeningeal.circle of 

Willis atherosclerosis)  

Cerebral hypoperfusion reduces oxygen, glucose and other 

nutrient supply to the brain, damaging parenchymal cells, and 

the blood-brain barrier [263]. 

Copper/aluminium Nanoparticles from aluminium, silver or copper increase spinal 

cord pathology after trauma, an effect correlated with 

breakdown of the blood-spinal cord barrier [264] 

Diabetes mellitus BBB dysfunction plays a role in diabetes-associated neurological 

complications (stroke, vascular dementia and cognitive deficits) 

[265] 

Homocysteine Hyperhomocysteinemia increases permeability of the blood-
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brain barrier via N-methyl-D-aspartate (NMDA) receptor 

activation [266] 

Hypercholesterolaemia High cholesterol disrupts the blood brain barrier, an effect 

blocked by simvastatin [267]  

Hypertension Hypertension causes blood-brain barrier breakdown via 

mechanisms involving inflammation, oxidative stress, and 

vasoactive circulating molecules [268] 

Obesity Obesity induces systemic inflammation and blood-brain barrier 

disruption in mice, an effect augmented by age [269] 

Pesticides Several pesticides are able to disrupt the BBB in animal models 

[270-272] 

Physical inactivity Exercise in animal models of cerebral ischaemia/stroke , 

diabetes, and brain metastasis has been shown to improve BBB 

function [273]. Physical activity counters the negative influence 

of PICALM, BIN1, and CLU risk alleles on episodic memory 

functioning in a dementia-free population [274](all of these are 

expressed in the BBB proteome dataset)[275-277] 

Poor sleep Sleep disruption or sleep apnoea are both associated with 

impaired blood-brain barrier function [278,279]. 

Smoking Nicotine and smoking disrupt brain microvasculature and the 

blood brain barrier[280]  

Viruses capable of disrupting the 

blood brain barrier  

Viruses infecting humans known to cause disruption of the BBB 

or endothelial junctions include HIV-1, human T-cell leukemia 

virus, lymphocytic choriomeningitis virus and the West Nile virus 

[281]. Bacterial lipopolysaccharide is disruptive in BBB models 
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[282]. 

Beneficial effects 

Anti-inflammatories Aspirin and celecoxib prevent disruption of the BBB in Vesicular 

Stomatitis Virus-infected mice [283]. Dexamethasone and 

methylprednisolone as well as NSAID's (ibuprofen and 

indomethacin) reduce vascular permeability in a rat glioma 

model [284]. Nimesulide ( a selective cyclooxygenase-2 inhibitor) 

attenuates blood-brain barrier disruption in animal models of 

cerebral ischaemia [285] 

Caffeine  Caffeine is effective against BBB disruption in animal models of 

Alzheimer’s or Parkinson’s disease [286]. 

Chocolate (caffeine, 

theobromine and resveratrol) 

Theobromine is a phosphodiesterase inhibitor and 

downregulates PDE4 in a glioma cell line [287]. PDE4 inhibition 

(rolipram) reduces BBB damage in ischaemic stroke in mice 

[288]. Caffeine and theobromine are adenosine receptor 

antagonists [289]. Extracellular adenosine increases BBB 

permeability and adenosine receptor antagonism blocks the 

entry of inflammatory cells and soluble factors into the brain 

[290]. 

Folic acid Vitamin B12-B6-folate treatment improves BBB function in 

patients with hyperhomocysteinaemia and mild cognitive 

impairment [291] . Folic acid decreases BBB leakage and reactive 

astrogliosis following seizures in pregnant and prepubertal rats 

[292]. 

Melatonin Melatonin protects BBB integrity by downregulating matrix 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 12, 2016. ; https://doi.org/10.1101/080333doi: bioRxiv preprint 

https://doi.org/10.1101/080333
http://creativecommons.org/licenses/by-nc-nd/4.0/


86 

 

[86] 

 

metalloprotease activity  (MMP9) [293] 

Memantine Memantine (approved for use in dementia patients) [152] blocks 

the deleterious effects of homocysteine on the blood-brain 

barrier [266].  

Oestrogen Oestrogen protects against BBB breakdown in animal models of 

stroke or following lipopolysaccharide challenge and maintains 

barrier integrity [294-297] 

Components of the 

Mediterranean diet 

Omega-3 fatty acids reduce BBB disruption in hypoxic/ischaemic 

brain injury [298].Fish oil reduces BBB disruption in  a rat model 

of juvenile traumatic brain injury [299]. Virgin olive oil reduces 

BBB permeability following middle cerebral artery occlusion in 

rats [300]. Aged garlic extract protects against BBB disruption 

caused by a high saturated fatty acid diet in mice [301] . 

Resveratrol, a component of grape and red fruit skins, and red 

wine[302], maintains the integrity of the BBB after cerebral 

ischemia reperfusion in rats [303]. 

Statins Statins have been reported to ameliorate BBB dysfunction 

produced by high cholesterol [267] , oxidised low-density 

lipoprotein [304], sepsis, intracerebral haemorrhage [305,306] or 

cerebral malaria [307] 
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[1] 

 

Supplementary table 1:  

Definitions of the Alzheimer’s disease susceptibility genes studied. While many other 

functions are recognised, for example relating to beta-amyloid, cholesterol, lipid and glucose 

metabolism or diabetes, inter alia  [1-4], the properties isolated in this table focus specifically 

on immune and pathogen-related effects. The relationship between AD genes, the immune 

system  and inflammation has also previously emphasised [5] and in a recent study from the 

Alzheimer’s Disease Neuroimaging Initiative, another subset of Alzheimer’s disease genes 

showed genetic overlap between Alzheimer’s disease and immune-mediated diseases [6] . 

Gene 

Symbol 

Name Immune or pathogen related properties 

ABCA7 ATP-binding cassette, sub-family A 

(ABC1), member 7 

Plays a prominent role in phagocytosis 

by macrophages (demonstrated with 

Staphylococcus aureus). This is an 

important line of general host defence 

against pathogens [7]. Overexpression 

of ABCA7 in HeLa cells resulted 

increases intracellular and cell surface 

ceramide and intracellular 

phosphatidylserine levels [8].   

Ceramide reactivates the herpes 

simplex virus from latency [9] and is 

also incorporated into C.Pneumoniae 

inclusions [10]. APOA1 and APOE are 

substrates for ABCA7, and in cultured 
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[2] 

 

HEK-293 cells, plasma membrane-

situated ABCA7 increases the efflux of 

phosphatidylcholine and 

sphingomyelin efflux to APOA1 and 

APOE, with no effect on cholesterol 

efflux[11] . Sphingomyelin is enriched 

in extracellular herpes simplex viral 

membranes [12] . It is a receptor for the 

Helicobacter toxin VacA [13] and is 

also incorporated into inclusion bodies 

in C.Pneumoniae infected cells [14]. 

Phosphatidylcholine plays an important 

role in the fusion of herpes simplex 

glycoproteins B and H with the host 

cell lipid membrane, a process used in 

viral entry [15]. Phosphatidylcholine is 

also able to trigger capsular 

enlargement in C.Neoformans infection 

[16]. 

Cholesterol efflux to lipid-laden 

APOE, but not to lipid free APOE, is 

increased by ABCA7 expression in 

HEK-293 cells [17].  

ACE angiotensin I converting enzyme Modifies the C termini of peptides for 
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[3] 

 

presentation by major 

histocompatibility complex class I 

molecules, which increases the 

efficiency of antigen-specific CD8+ T 

cell priming [18]. 

 

ADAMTS20 ADAM metallopeptidase with 

thrombospondin type 1 motif, 20 

Cleaves the chondroitin sulfate 

proteoglycan, versican[19] which 

interacts with myeloid and lymphoid 

cells promoting their adhesion and the 

production of inflammatory cytokines: 

Inflammatory agents, such as double-

stranded viral RNA mimetics, stimulate 

stromal cells, smooth muscle cells and 

fibroblasts, to produce fibrillar 

extracellular matrices enriched in 

versican and hyaluronan that promote 

the adhesion of leukocytes [20]  

AP2A2 adaptor-related protein complex 2, 

alpha 2 subunit 

Induces the renewal and maintenance 

of hematopoietic stem cells [21]. 

Required for binding of human 

immunodeficiency virus type 1 Nef and 

cooperative assembly of a CD4-Nef-
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[4] 

 

AP-2 complex [22]. 

APOC1 apolipoprotein C-I APOC1 binds to lipopolysaccharide 

(LPS), an outer-membrane component 

of gram-negative bacteria and is 

involved in the presentation of LPS to 

macrophages. This improves the 

inflammatory response , thus protecting 

against infection [23]. APOC1 is a 

component of  high density lipoprotein: 

Herpes simplex is present in all 

lipoprotein blood fractions in blood  

(VLDL, LDL and HDL)  and the lipid 

component of these lipoproteins binds 

to viral glycoprotein B [24] 

APOE apolipoprotein E APOE4 favours cerebral access of 

HSV-1 in mice [25] and enhances 

C.pneumoniae adherence to host cells 

[26] and HIV-1 cell entry in vitro [27],  

but is protective against chronic 

hepatitis C virus infection [28]. The 

allele relates to increased viral load in 

HHV-6 infected epilepsy patients [29]. 

Hepatitis B pathology has a more 

benign course in ApoE2-E4 carriers 
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[30]. 

ATXN7L1 ataxin 7-like 1 None found 

BCAM basal cell adhesion molecule 

(Lutheran blood group) 

Adhesion molecule involved in red 

blood cell adhesion to the vascular 

endothelium [31] Also plays a role in 

abnormal red blood cell adhesion in 

sickle cell disease (c.f. malaria) [32]. 

Acts as a receptor for Escherichia coli 

cytotoxic necrotizing factor 1, a toxin 

found in E.coli strains causing 

meningitis [33] 

BCL3 B-cell CLL/lymphoma 3 BCL3 is essential for the development, 

survival and activity of adaptive 

immune cells. BCL3-deficient mice are 

more susceptible to bacterial and 

parasitic infection [34]. 

BIN1 bridging integrator 1 BIN1 negatively controls the 

expression of indoleamine 2,3-

dioxygenase IDO1 in cancer cells [35]. 

IDO1 activation diverts tryptophan 

metabolism to N-formyl-kynurenine, 

(away from serotonin production) 

.IDO1 upregulation is an important 
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defence mechanism against pathogenic 

bacteria, many of which rely on host 

tryptophan. It is involved in 

antimicrobial defence and immune 

regulation, and its effects are not 

restricted to bacteria This IDO1 

response is also deleterious to other 

pathogens and parasites, including 

T.Gondii, and to a number of viruses, 

including herpes simplex virus and 

other herpes viruses [166]. Kynurenine 

and kynurenic acid produced by IDO1 

activation, are ligands for the aryl 

hydrocarbon receptor (AHR), which 

plays an important role in antimicrobial 

defence and immune regulation [167]. 

 A BIN1isoform is required for 

macrophage phagocytosis, a key 

mechanism in the destruction of many 

pathogens [36]   

CASS4 Cas scaffolding protein family 

member 4 

One of a member of scaffold proteins 

are regulated by and mediating cell 

attachment, growth factor, and 

chemokine signalling [37] 
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CD2AP CD2-associated protein CD2AP and other endocytosis-

associated proteins play a role in 

enteropathogenic Escherichia coli 

pedestal formation [38]: Also required 

for late endosomal trafficking of the H. 

pylori VacA toxin [39]. Clathrin and 

related proteins including CD2AP  are 

involved in the recruitment of proteins 

that promote actin polymerization at 

the interface of T cells and antigen 

presenting cells [40]. Decreased 

CD2AP expression enhances the 

production of type I interferons in 

human plasmacytoid dendritic cells 

which secrete type I interferons  in 

response to microbial stimuli [41] 

CD33 CD33 molecule A member of the sialic acid binding 

Immunoglobulin g-like lectin 

(SIGLEC) family.  CD33-related 

SIGLEC’s regulate adaptive immune 

responses and are also important as 

macrophage pattern recognition 

receptors for sialylated pathogens, 

including enveloped viruses [42].   
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CD33 binds to alpha 2-3- or alpha2-6-

linked sialic acids (N-acetyl neuranimic 

acid) [43]. These residues bind to the 

influenza virus and the reovirus [44] 

and these particular sialic acids are 

expressed on the surface envelope 

glycoproteins (B, D and H) of the 

herpes simplex virion, and are required 

for viral entry into cells [45].  N-acetyl 

neuranimic acid is expressed by 

C.Neoformans and is involved in 

fungal adhesion to macrophages [46] 

and is also a component of the cell wall 

of B.Burgdorferi [47] while  

Helicobacter pylori adhesins also bind 

to this particular form of sialic acid 

[48,49] as does P.Gingivalis[50]. CD33 

binds to sialic acid acquired by P. 

aeruginosa and to the HIV-1 gp120 

protein [51] .   

CDON cell adhesion associated, oncogene 

regulated 

A gene associated with the acquisition 

of Staphylococcus aureus bacteraemia 

[52] 

CEACAM16 carcinoembryonic antigen-related The CEACAM family are docking sites 
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cell adhesion molecule 16 for pathogenic bacteria [53] but this 

particular protein has not been 

characterised in relation to this effect   

CELF1 CUGBP, Elav-like family member 1 A downstream effector of interferon 

beta signalling in macrophages [54]. 

CLU clusterin Inhibits the membrane attack complex, 

composed of complement components 

C5 to C9. This is deposed on the 

bacterial surface forming channels that 

cause bacterial lysis [55,56] . 

CNTNAP2 contactin associated protein-like 2 None found 

CR1 complement component (3b/4b) 

receptor 1 (Knops blood group) 

Many pathogens are recognised by the 

complement system and coated with 

complement components C1q, C3b and 

iC3b. This “opsonisation” prepares the 

microbe for phagocytosis via binding 

of the complement components to 

complement receptors, including CR1  

[57]. Receptor for the malaria pathogen 

Plasmodium falciparum [58], 

Legionella pneumophila [59], 

Mycobacterium tuberculosis[60]  and 

Cryptococcus neoformans  
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CUGBP2 

(changed to 

CELF2) 

CUGBP, Elav-like family member 2 CUGBP2 silences the expression of 

cyclo-oxygenase 2 (PTGS2), thus 

regulating inflammatory processes [61]  

CUGBP2 is regulated in response to T-

cell signalling and  increased CELF2 

expression drives a network of 

activation-induced alternative splicing 

events in Jurkat cells [62]. 

DISC1 disrupted in schizophrenia 1 DISC1 has many functions relevant to 

the psychiatric diseases in which it is 

implicated, among which is control of 

the intracellular traffic of mRNAs, 

neurotransmitter receptors, vesicles and 

mitochondria along the microtubule 

network [63,64] . Although DISC1 has 

not been related to any particular virus 

or pathogen, the microtubule network 

provides a set of railway tracks used by 

many viruses during their life cycles 

[65-67]. Such traffic is also important 

in the regulation of the immunological 

synapse and in the building of 

functional phagosomes [68] 

ECHDC3 enoyl CoA hydratase domain Expressed in whole blood cells and 
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containing 3 

 

platelets, but no functional data 

available  [69,70] .One of several genes 

downregulated by Trypanosoma Cruzi 

in mouse macrophages  [71] 

EPHA1 EPH receptor A1 Suppresses T cell activation and Th2 

cytokine expression, while preventing 

activation-induced cell death in the 

lung [72]. Upregulated in dendritic 

antigen-presenting cells in response to 

the human papillomavirus E7 peptide 

[73] . Mice infected with M. 

tuberculosis displayed higher 

expression of EPHA1 and EPHA2 in 

monocytes as well as ephrinA1[74] 

EXOC3L2 exocyst complex component 3-like 

2 

None found 

FAM113B 

(now 

C5orf64) 

chromosome 5 open reading frame 

64 

This locus is considered non-coding by 

other groups due to a lack of 

experimental support for the protein, 

but NCBI annotates the protein because 

it meets minimal RefSeq quality 

criteria for representation. The coding 

status remains uncertain. [19 Nov 
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2014](Refseq) 

FANCD2OS FANCD2 opposite strand No functional publications  

FERMT2 fermitin family member 2 None found 

FLJ37543 

(now 

C5orf64) 

chromosome 5 open reading frame 

64 

None found 

FRMD4A FERM domain containing 4A None found 

GAB2 GRB2-associated binding protein 2 An adaptor protein involved in multiple 

receptor tyrosine kinase signalling 

pathways: phosphorylated by 

stimulation with growth factors-, 

cytokines-, Immunoglobulin  Fc-  and 

antigen receptors [75] Gab2 knockout 

mice show reduced inflammatory 

cytokine levels in, and are relatively 

protected against Mycobacterium  

tuberculosis infection[76]. 

GRIN3B glutamate receptor, ionotropic, N-

methyl-D-aspartate 3B 

None found 

HLA-DRB1 major histocompatibility complex, 

class II, DR beta 1 

Bind to pathogen antigens and present 

them to T-cells [77]. 
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HLA-DRB5 major histocompatibility complex, 

class II, DR beta 5 

HMHA1 histocompatibility (minor) HA-1 When HA-1 peptide was added to 

mixtures of plasmacytoid DC dendritic 

cells and T cells, bystander suppression 

of the response to a colocalized recall 

Epstein-barr viral antigen occurred 

primarily via indolamine-2,3-

dioxygenase (IDO1) production. 

Bystander suppression is a process 

whereby Antigen-specific (adaptive) T 

regulatory cells  inhibit the T effector 

cell response both to specific antigen 

and to a colocalized third-party antigen 

[78]: minor histocompatibility antigens 

refer to immunogenic peptides which, 

when complexed with MHC, can 

generate an immune response after 

recognition by specific T-cells. The 

peptides are derived from polymorphic 

intracellular proteins, which are 

cleaved by normal pathways of antigen 

processing (Definition from Uniprot). 

HS3ST1 heparan sulfate (glucosamine) 3-O- Heparan sulfate biosynthetic enzymes 
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sulfotransferase 1 are key components in generating a 

myriad of distinct heparan sulfate fine 

structures that carry out multiple 

biologic activities. The enzyme 

encoded by this gene is a member of 

the heparan sulfate biosynthetic 

enzyme family. It possesses both 

heparan sulfate glucosaminyl 3-O-

sulfotransferase activity, anticoagulant 

heparan sulfate conversion activity, and 

is a rate limiting enzyme for synthesis 

of anticoagulant heparan. This enzyme 

is an intraluminal Golgi resident 

protein. [provided by RefSeq, Jul 

2008]. Heparan sulphates act as 

attachment sites for many viruses  

[79,80] 

IGH immunoglobulin heavy locus Forms the heavy chain of multiple 

antibodies [77]. 

INPP5D inositol polyphosphate-5-

phosphatase, 145kDa 

Phosphatidylinositol (PtdIns) 

phosphatase that specifically 

hydrolyses the 5-phosphate of 

phosphatidylinositol-3,4,5-

trisphosphate (PtdIns(3,4,5)P3) to 
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produce PtdIns(3,4)P2, thereby 

negatively regulating the PI3K 

(phosphoinositide 3-kinase) pathways. 

Acts as a negative regulator of B-cell 

antigen receptor signalling. Mediates 

signalling from the FC-gamma-RIIB 

receptor (FCGR2B), playing a central 

role in terminating signal transduction 

from activating immune/hematopoietic 

cell receptor systems. Acts as a 

negative regulator of myeloid cell 

proliferation/survival and chemotaxis, 

mast cell degranulation, immune cells 

homeostasis, integrin alpha-IIb/beta-3 

signalling in platelets and JNK 

signalling in B-cells. Regulates 

proliferation of osteoclast precursors, 

macrophage programming, 

phagocytosis and activation and is 

required for endotoxin tolerance. 

Involved in the control of cell-cell 

junctions, CD32a signalling in 

neutrophils and modulation of EGF-

induced phospholipase C activity. Key 

regulator of neutrophil migration, by 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 12, 2016. ; https://doi.org/10.1101/080333doi: bioRxiv preprint 

https://doi.org/10.1101/080333
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

 

[16] 

 

governing the formation of the leading 

edge and polarization required for 

chemotaxis. Modulates FCGR3/CD16-

mediated cytotoxicity in NK cells. 

Mediates the activin/TGF-beta-induced 

apoptosis through its Smad-dependent 

expression. May also hydrolyse 

PtdIns(1,3,4,5)P4, and could thus affect 

the levels of the higher inositol 

polyphosphates like InsP6.2 (Definition 

from Uniprot) 

LUZP2 leucine zipper protein 2 None found 

MEF2C myocyte enhancer factor 2C MEF2C orchestrates early B-cell 

development [81] and is also involved 

in  the activation induced cell death of 

macrophages after priming with 

Salmonella typhimurium, type 5 

adenovirus or Interferon-gamma [82]. 

Also a risk gene for periodontitis [83], 

a known risk factor for Alzheimer’s 

disease [84] 

MMP12 matrix metallopeptidase 12 

(macrophage elastase) 

Degrades elastin, a matrikine derived 

from extracellular matrix proteins: 

These are implicated in inflammation, 
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immune responses, organ development, 

wound repair, angiogenesis, 

atherosclerosis, tumor progression and 

metastasis due to their ability to alter 

cellular migration, chemotaxis, and 

mitogenesis.[85] . Aging and various 

inflammatory diseases such as 

atherosclerosis, abdominal aortic 

aneurysms, chronic obstructive 

pulmonary diseases, cancer and type 2 

diabetes are characterized by the 

destruction of elastin fibres [86] 

MMP3 matrix metallopeptidase 3 

(stromelysin 1, progelatinase) 

PolyI:C treatment (viral DNA mimic) 

increases the expression levels of 

Mmp3 mRNA and protein in 

astrocytes, but not microglia [87]. 

MPZL1 myelin protein zero-like 1 Present in CD133(+) precursors 

(CD133= hematopoietic precursor 

antigen) and endothelial cells, and 

mainly  in mesenchymal and 

committed myelomonocytic progenitor 

cells, and in erythroid precursor cell 

lines [88]. 
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MS4A3 membrane-spanning 4-domains, 

subfamily A, member 3 

(hematopoietic cell-specific) 

Modulates cell cycle progression in 

hematopoietic cells [89] 

MS4A4A membrane-spanning 4-domains, 

subfamily A, member 4A 

Localised in Hematopoietic cells [89]: 

Expressed in lung mast cells  Silencing 

MS4A4 promotes mast cell 

proliferation and migration. Mast cells 

express Toll receptors and play an 

important role in pathogen recognition 

and in acquired immunity against 

parasitic infections [90,91]. 

MS4A4E membrane-spanning 4-domains, 

subfamily A, member 4E 

None found 

MS4A6A membrane-spanning 4-domains, 

subfamily A, member 6A 

Localised in Lymphoid tissues, Kidney 

Colon and Wilm’s tumor cells [89] 

MSRA methionine sulfoxide reductase A 

Catalyses two reactions (from 

KEGG) 

(1) peptide-L-methionine + 

thioredoxin disulfide + H2O = 

peptide-L-methionine (S)-S-oxide + 

thioredoxin; 

Could have an important function as a 

repair enzyme for proteins that have 

been inactivated by oxidation. 

Catalyzes the reversible oxidation-

reduction of methionine sulfoxide in 

proteins to methionine (From Uniprot). 
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(2) L-methionine + thioredoxin 

disulfide + H2O = L-methionine 

(S)-S-oxide + thioredoxin  

MTHFD1L methylenetetrahydrofolate 

dehydrogenase (NADP+ dependent) 

1-like Catalyses the reaction 

(KEGG) 

ATP + formate + tetrahydrofolate = 

ADP + phosphate + 10-

formyltetrahydrofolate 

The protein encoded by this gene is 

involved in the synthesis of 

tetrahydrofolate (THF) in the 

mitochondrion. THF is important in the 

de novo synthesis of purines and 

thymidylate and in the regeneration of 

methionine from homocysteine 

(Refseq) 

NDUFAF6 NADH dehydrogenase (ubiquinone) 

complex I, assembly factor 6 

None found 

NME8 NME/NM23 family member 8 The NME8 locus has been associated 

in a genome-wide study with the 

bacterial disease periodontitis [92] also 

a known risk factor for Alzheimer’s 

disease [84]. 

PAX2 paired box 2 PAX2 negatively regulates  beta 

defensin-1, an antimicrobial peptide 

implicated in the resistance of 

epithelial surfaces to microbial 

colonization [93]. 
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PCDH11X protocadherin 11 X-linked None found 

PCNX1 pecanex homolog (Drosophila) None found 

PICALM phosphatidylinositol binding 

clathrin assembly protein 

Involved in clathrin-mediated 

endocytosis, a process used by many 

viruses to gain entry to the cell [94] 

(AP2A2 and BIN1 are also involved in 

this process)see KEGG pathway (red 

text genes) 

http://www.genome.jp/kegg-

bin/show_pathway?hsa04144+274+161  

POLN polymerase (DNA directed) nu POLN can perform translesion 

synthesis past thymine glycol, a 

common endogenous and radiation-

induced product of reactive oxygen 

species damage to DNA. Thymine 

glycol blocks DNA synthesis by most 

DNA polymerases, but POLN was 

particularly adept at efficient and 

accurate translesion synthesis past a 

5S-thymine glycol [95]. 

PPP1R37 protein phosphatase 1, regulatory 

subunit 37 

No publications  
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PPP1R3B protein phosphatase 1, regulatory 

subunit 3B 

None found 

PTK2B protein tyrosine kinase 2 beta Involved in Toll-like receptor 

signalling (pathogen recognition 

receptors)(TLR2, TLR4) in 

macrophages  [96]. Involved in the 

natural killer cell cytotoxic pathway 

[97] and in the microglial production of 

nitric oxide produced by 

lipopolysaccharide and interferon 

gamma [98] 

PVR poliovirus receptor Mediates entry of the poliovirus and 

binds to  NECTIN1 ( a receptor for 

HSV-1 and 2) [99] and NECTIN3 ( a 

receptor for HSV-1) [100] [101,102] 

PVRL2 poliovirus receptor-related 2 

(herpesvirus entry mediator B) 

Entry receptor for HSV-1 [103]. 

RELN reelin Reelin plays a prominent role in the 

brain but also in the intestine where the 

reeler mutation down-regulates genes 

related to the immune response, 

inflammation, and tumor development 

[104] . Reelin deposits in the  
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hippocampus are a conserved 

neuropathological feature of aging, and 

such deposits are  accelerated in adult 

wild-type mice prenatally exposed to a 

viral-like infection [105]. 

RFC3 replication factor C (activator 1) 3, 

38kDa 

The elongation of primed DNA 

templates by DNA polymerase delta 

and DNA polymerase epsilon requires 

the accessory proteins proliferating cell 

nuclear antigen (PCNA) and replication 

factor C (RFC).RFC3 is one of 5 

subunits of this complex (Refseq). Host  

nuclear DNA processing factors are 

also recruited to viral genomes, RFC3 

is one of many recruited to the HSV-1 

viral genome [106] 

RIN3 Ras and Rab interactor 3 RIN 3 inhibits mast cell migration 

toward stem cell factor, which recruits 

mast cells to sites of infection or injury, 

where they release pro-inflammatory 

substances [107]. 

SASH1 SAM and SH3 domain containing 1 Scaffold molecule involved in Toll 

receptor (TLR4) signalling, a receptor 

involved in the recognition of bacterial 
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lipopolysaccharides[108].   

SCIMP SLP adaptor and CSK interacting 

membrane protein 

SCIMP is expressed in B cells and 

other antigen-presenting cells and is 

involved in major histocompatibility 

complex class II signalling [109]. 

SLC24A4 solute carrier family 24 

(sodium/potassium/calcium 

exchanger), member 4 

None found 

SLC4A1AP solute carrier family 4 (anion 

exchanger), member 1, adaptor 

protein 

None found 

SORL1 sortilin-related receptor, L(DLR 

class) A repeats containing 

None found 

SPPL2A signal peptide peptidase like 2A SPPL2A is a protease that cleaves 

CD74, the invariant chain of the 

MHCII complex, and an important 

chaperone regulating antigen 

presentation for the immune response. 

[110].  

SQSTM1 sequestosome 1 Autophagy can either promote or 

restrict viral replication. SQSTM1is an 

autophagy receptor involved in the life 
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cycles of the Chikungunya virus[111],  

Coxsackievirus[112], Dengue virus 

[113], the encephalomyocarditis virus 

[114], enterovirus 71[115], hepatitis B 

[116] , HIV-1[117], Herpes simplex 

(HSV-1) [118], Kaposi's sarcoma virus 

[119], measles [120], Varicella zoster 

[121] and the  West Nile virus [122] 

STK24 serine/threonine kinase 24 Important regulator of neutrophil 

degranulation which results in the 

releases of proteases and other 

cytotoxic agents, including matrix 

metalloproteinases and 

myeloperoxidase  These granule 

contents are antimicrobial, but can also 

cause tissue damage [123]  

TOMM40 translocase of outer mitochondrial 

membrane 40 homolog (yeast) 

The influenza viral protein PB1-F2 

translocates into mitochondria via 

TOMM40 channels and impairs innate 

immunity [124]. TOMM40 is required 

for replication of the African swine 

fever virus [125]  

TREM2 triggering receptor expressed on A receptor for bacterial 

lipopolysaccharide that acts as a 
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myeloid cells 2 phagocytic receptor for bacteria. It also 

inhibits the production of inflammatory 

cytokines induced by Toll like 

receptors [126-128].   

TREML2 triggering receptor expressed on 

myeloid cells-like 2 

TREML2 (Triggering receptor 

expressed on myeloid cells (TREM)-

like transcript 2) is expressed on T cells 

and regulates interleukin-2 and 

interferon-gamma production [129]. 

 

TRIP4 thyroid hormone receptor interactor 

4:  

None found: This protein is localized in 

the nucleus and contains an E1A-type 

zinc finger domain, which mediates 

interaction with transcriptional 

coactivators and ligand-bound nuclear 

receptors, such as thyroid hormone 

receptor and retinoid X receptor alpha, 

but not glucocorticoid receptor 

(Refseq). 

TTLL7 tubulin tyrosine ligase-like family, 

member 7 

None found 

ZCWPW1 zinc finger, CW type with PWWP 

domain 1 

None found 
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ZNF224 zinc finger protein 224 Wilms tumor 1 (WT1) recruits ZNF224 

to the interferon regulatory factor 8 

(IRF8) promoter [130] 

The IRF family proteins bind to the 

IFN-stimulated response element 

(ISRE) and regulate expression of 

genes stimulated by type I IFNs, 

namely IFN-alpha and IFN-beta. IRF 

family proteins also control expression 

of IFN-alpha and IFN-beta-regulated 

genes that are induced by viral 

infection. [provided by RefSeq, Jul 

2008] 
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Supplementary Table 2: A survey of the roles of diverse microbial sensors and defensive 

proteins. Their expression levels in the Alzheimer’s disease brain, blood, cerebrospinal 

fluid or other defined cells etc. are also reviewed.  

Gene Function Alzheimer’s disease 

AGER advanced Recognizes advanced Increases in protein levels 
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glycosylation end product-

specific receptor (more 

commonly known as RAGE)  

glycosylation end products, 

members of the  S100 protein 

family, beta-amyloid and 

amyloid fibrils, HMGB1, and 

β-integrin macrophage 1 

antigen (Mac-1) [1]. 

Receptor for S100B , 

S100A4, 6,11,12,13, S100P 

[2], Expressed on endothelial 

cells macrophages, 

neutrophils, dendritic cells, T 

cells, B cells, alveolar type II 

cells and alveolar epithelial 

cells[3]. AGER(-/-) mice 

were relatively protected 

from influenza virus induced 

mortality showing improved 

viral clearance , enhanced 

cellular T cell response and 

activation of neutrophils [4]. 

AGER activation enhances 

the ability of neutrophils to 

eradicate bacteria (E.Coli) in 

vitro and in vivo via 

activation of NADPH 

and in the percentage of 

AGER expressing microglia 

in the Alzheimer’s disease 

brain linked with disease 

severity[10].Plasma protein 

levels increased in 

Alzheimer’s disease  [11] but 

decreased levels of a soluble 

isoform [12,13] 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 12, 2016. ; https://doi.org/10.1101/080333doi: bioRxiv preprint 

https://doi.org/10.1101/080333
http://creativecommons.org/licenses/by-nc-nd/4.0/


47 

 

[47] 

 

oxidase[5]. 

Involved in the adhesion of 

Helicobacter pylori to gastric 

epithelial cells [6]. P. 

gingivalis infection  enhances 

AGER expression in Murine 

aortic endothelial cells [7]. 

Bacteria produce, metabolize 

and accumulate AGEs 

.Escherichia coli cells secret 

AGEs [8]. Influenza A viral 

pneumonia is associated with 

enhanced AGER expression 

on endothelium and de novo 

expression on bronchial 

epithelium in mice[4]. The 

Epstein Barr viral protein 

LMP1 binds to the AGER 

promoter [9] 

βAmyloid Antimicrobial peptide with 

broad spectrum activity 

against bacterial 

(Enterococci, E.Coli, 

streptococci, staphylococci, 

pseudomonas, listeria) and 

Key component of amyloid 

plaques  
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fungal (Candida albicans) 

species {Soscia, Kirby, et al. 

2010 1912 /id} . It also has 

antiviral effects against 

Herpes simplex (HSV-1) 

{Bourgade, Le Page, et al. 

2016 10595 /id}{Bourgade, 

Garneau, et al. 2015 10596 

/id} and the influenza virus 

{White, Kandel, et al. 2014 

8740 /id}. Borna virus 

infection induced microglial 

activation can reduce plaque 

formation in Tg2576 APP 

mutant transgenic mice [14] 

APCS amyloid P component, 

serum (commonly known as 

SAP) 

Binds to several bacterial 

lipopolysaccharides  (S. 

pyrogens and rough strains of 

E. coli)  preventing 

complement activation[15]. 

Increased levels of APCS in 

the atherotic plaques of 

C.Pneumoniae infected mice 

fed an atherogenic diet [16] . 

Binds avidly to C. Albicans 

Protein levels elevated in the 

AD brain and associated with 

plaques, but low levels in 

plaques were seen in 

individuals with AD 

pathology without dementia 

[18] .  
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when amyloid is formed in 

fungal cell walls [17]  

CAMP cathelicidin 

antimicrobial peptide (LL-

37) 

In addition to its 

antibacterial, antifungal, and 

antiviral activities, the 

encoded protein functions in 

cell chemotaxis, immune 

mediator induction, and 

inflammatory response 

regulation. [provided by 

RefSeq, Sep 2014]. 

[19]Antiviral versus 

influenza  

Kills P.Gingivalis [20] but 

degraded by a P.gingivalis 

secreted protease (gingipain) 

[21]. DEFB1 and CAMP 

(cathelicidin/LL-37) kill 

H.pylori [22]. Borrelia 

burgdorferi is killed by 

human polymorphonuclear 

leukocyte granule 

components ( elastase 

ELANE, CAMP, 

bactericidal/permeability-

None found 
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increasing protein (BPI), and 

human neutrophil peptide-

1)[23]. 

CD163 CD163 molecule Functions as an acute phase-

regulated receptor involved 

in the clearance and 

endocytosis of 

hemoglobin/haptoglobin 

complexes by macrophages, 

and may thereby protect 

tissues from free 

hemoglobin-mediated 

oxidative damage. This 

protein may also function as 

an innate immune sensor for 

bacteria and inducer of local 

inflammation. [provided by 

RefSeq, Aug 2011] 

Upregulated in the gastric 

mucosa of H. pylori infected 

children [24]. Upregulated by 

P.Gingivalis in periodontal 

ligament cells [25]. Kupffer 

cell/macrophage activation 

indicated by increased 

Upregulated in the AD 

hippocampus [29]. 

Parenchymal microglia were  

immunoreactive for CD163 

in all of 31 AD cases often 

associated with amyloid 

plaques [30] 
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CD163 is found in the livers 

of hepatitis C infected 

patients [26]. The 

cytomegalovirus encoded 

IL10 chemokine mimic 

upregulates CD163 in 

macrophages [27]. serum 

levels of soluble CD163 in 

Epstein-Barr virus positive 

children positively correlate 

with EBV-DNA copies [28] 

CHI3L1 chitinase 3 like 1  

(aka YKL-40) 

Chitinases catalyze the 

hydrolysis of chitin, which is 

an abundant glycopolymer 

found in insect exoskeletons 

and fungal cell walls. The 

protein lacks chitinase 

activity and is secreted by 

activated macrophages, 

chondrocytes, neutrophils 

and synovial cells. The 

protein is thought to play a 

role in the process of 

inflammation and tissue 

remodeling. [provided by 

CSF levels of CHI3L1 are 

associated with Alzheimer’s 

disease [33-35]. Plasma 

levels are also increased and 

the protein is found in 

astrocytes near a subset of 

amyloid plaques 

(immunohistochemistry) [36] 
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RefSeq, Sep 2009] 

CHI3L1 is induced by fungal 

infection (Candida albicans) 

and induces  the 

antimicrobial peptides beta-

defensin 3 and  cathelicidin 

(CAMP) [31]. In transgenic 

mice expressing the Epstein-

Barr virus LMP1 protein 

CHI3L1is induced in the 

epidermis and is secreted and 

autoantibodies to CHI3L1 are 

generated  [32] 

CLEC2B C-type lectin 

domain family 2 member B 

CLEC-2 is a HIV-1 

attachment factor and 

platelets capture and transfer 

infectious HIV-1 via DC-

SIGN and CLEC-2 [37]. 

Expression induced by 

infection of Akata cells [38] 

Upregulated in the AD 

hippocampus [29] 

CLEC2D  C-type lectin 

domain family 2 member D 

Expression upregulated by 

respiratory syncytial virus 

(RSV) infection, in the 

BEAS-2B respiratory 

epithelial cell line and 

Upregulated in the AD 

hippocampus [29] 
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[53] 

 

primary human bronchial 

epithelial cells [39]. 

Expression is induced in B 

cells and inflamed tonsils 

following  viral infection ( 

Epstein-Barr virus or HIV 

infection) and in inflamed 

tonsils [40]. 

CLEC4M C-type lectin 

domain family 4 member M 

(L-SIGN) 

…………recognizes 

numerous evolutionarily 

divergent pathogens ranging 

from parasites to viruses, 

with a large impact on public 

health……..[provided by 

RefSeq, Feb 2009] CD209 

(DC-SIGN) and CLEC4M 

(L-SIGN) are endocytic 

receptors for influenza A 

virus  entry and infection, 

and for the Hepatitis C virus , 

HIV-1, Sindbis  virus,  and 

act as cofactors for cellular 

entry by Ebola virus. 

CLEC4M also a receptor for  

Mycobacterium tuberculosis, 

Upregulated in the AD 

hippocampus [29] 
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[54] 

 

Schistosomes and  

Leishmania infant [41-46] 

CLEC7A C-type lectin 

domain family 7 member A 

(Dectin 1) 

Functions as a pattern-

recognition receptor that 

recognizes a variety of beta-

1,3-linked and beta-1,6-

linked glucans from fungi 

and plants, and in this way 

plays a role in innate immune 

response………. [provided 

by RefSeq, Jul 

2008].Activated by 

C.albicans, and 

Mycobacterium bovis [47] 

 

Upregulated in the AD 

hippocampus [29] 

CRP C-reactive protein, 

pentraxin-related 

Involved in several host 

defence related functions 

based on its ability to 

recognize foreign pathogens 

and damaged cells of the host 

and to initiate their 

elimination by interacting 

with humoral and cellular 

effector systems in the blood. 

Consequently, the level of 

High serum levels associated 

with AD (dependent on 

methodology) [54], but levels 

of CRP in a mild and 

moderate dementia subgroup 

were significantly lower than 

that in the control group [55]. 

A recently developed high-

sensitivity (Hs) test reported 

high serum levels of Hs-CRP 
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this protein in plasma 

increases greatly during acute 

phase response to tissue 

injury, infection, or other 

inflammatory stimuli. 

[provided by RefSeq, Sep 

2009]. Chlamydial 

lipopolysaccharide serum 

levels in coronary syndrome 

correlate with CRP levels 

[48].High CRP levels 

observed in H.Pylori and  

C.Pneumoniae infection [49]. 

High antibody response to 

multiple pathogens 

(cytomegalovirus, herpes 

simplex virus-1, Hepatitis A 

virus, Helicobacter pylori and 

Chlamydia pneumoniae) 

associated with CRP in 

atherosclerosis patients [50]. 

Antibodies to P. gingivalis 

associate with high levels of 

SAA and high concentrations 

of CRP in periodontitis 

in AD patients[56]. CRP 

staining of the hippocampal 

CA1/2 region correlates with 

Aβ staining in the AD brain 

[57]. 
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[56] 

 

patients[51]. Serum CRP 

elevated in fungal esophagitis 

or enterocolitis due to 

C.albicans  [52]. High serum 

levels of CRP found in 

numerous bacterial or viral 

infections  : (Dengue virus , 

Cytomegalovirus , Epstein 

Barr virus, Parvovirus B19 , 

HSV-1 and -2  and Influenza 

A and B: [53] 

DDX1 DEAD/H-box 

helicase 1 

DDX1, DDX21, and DHX36 

helicases form a complex 

with the adaptor molecule 

TRIF to sense double 

stranded viral RNA, 

including Influenza and Poly-

IC in dendritic cells 

[58].Binds to hepatitis C 

biotinylated RNA [59] 

Down regulated in the AD 

hippocampus [29] 

DDX18 DEAD-box helicase 

18 

 

Few publications Upregulated in the AD 

hippocampus [29] 

DDX21 DEAD-box helicase 

21 

DDX1, DDX21, and DHX36 

helicases form a complex 

Upregulated in the AD 

hippocampus [29] 
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[57] 

 

with the adaptor molecule 

TRIF to sense double 

stranded viral RNA a in 

dendritic cells [58]. DDX21 

inhibits replication of the 

influenza virus [60].Interacts 

with a Borna virus protein 

[61] 

DDX27 DEAD-box helicase 

27 

? Upregulated in the AD 

hippocampus [29] 

DDX39A  DEAD-box 

helicase 39A 

Needed for the expression of 

Kaposi sarcoma-associated 

herpesvirus ORF57 [62]. The 

UL69 gene product of the 

human cytomegalovirus 

belongs to a family of 

regulatory proteins conserved 

among all herpesviruses and 

binds to DDX39A  [63]. Mx 

proteins exert their antiviral 

activity against the influenza 

virus  by interfering with the 

function of the RNA 

helicases DDX39B and 

DDX39A [64] . 

Upregulated in the AD 

hippocampus [29] 
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DDX42 DEAD-box helicase 

42 

The expression of N-terminal 

DDX42 binds to the NS4A 

protein of the Japanese 

encephalitis virus  and 

DDX42 is able to overcome 

antagonism of interferon  

responses by the virus [65]. 

Also a potential target of an 

Epstein-Barr viral  

microRNA [66] . The 

Japanese encephalitis virus 

encodes for interferon 

antagonist proteins, one of 

which , NS4A, binds to 

DDX42 [65] 

Upregulated in the AD 

hippocampus [29] 

DDX47 DEAD-box helicase 

47 

Interacts with the E1E4 

protein of human 

papillomavirus type 16 [67] 

Down regulated in the AD 

hippocampus [29] 

DDX5 DEAD-box helicase 5 This gene encodes a DEAD 

box protein, which is a RNA-

dependent ATPase, and also 

a proliferation-associated 

nuclear antigen, specifically 

reacting with the simian virus 

40 tumor antigen………. 

Down regulated in the AD 

hippocampus [29] 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 12, 2016. ; https://doi.org/10.1101/080333doi: bioRxiv preprint 

https://doi.org/10.1101/080333
http://creativecommons.org/licenses/by-nc-nd/4.0/


59 

 

[59] 

 

[provided by RefSeq, Feb 

2016] DDX3,5 and 6 play a 

role in hepatitis C viral 

replication [68]. DDX5 

interacts with the SARS 

coronavirus [69] 

DDX58 DEXD/H-box 

helicase 58 ()commonly 

known as RIG-1) 

DEAD box proteins, 

characterized by the 

conserved motif Asp-Glu-

Ala-Asp (DEAD), are 

putative RNA helicases 

which are implicated in a 

number of cellular processes 

involving RNA binding and 

alteration of RNA secondary 

structure. This gene encodes 

a protein containing RNA 

helicase-DEAD box protein 

motifs and a caspase 

recruitment domain (CARD). 

It is involved in viral double-

stranded (ds) RNA 

recognition and the 

regulation of immune 

response. [provided by 

Expression increased  in the 

temporal cortex and plasma 

of mild cognitive impairment 

patients with pathologic 

evidence of senile plaques 

and neurofibrillary tangles  

[71] 
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[60] 

 

RefSeq, Jul 2008] The 

DDX58 -activating 5' 

triphosphate group is 

removed post-

transcriptionally by a viral 

function and modified 

DDX58 does not bind the 

RNAs of Hantaan virus, 

Crimean-Congo hemorrhagic 

fever virus or the Borna 

disease virus [70]. 

DDX6 DEAD-box helicase 6 The protein is an RNA 

helicase found in P-bodies 

and stress granules, and 

functions in translation 

suppression and mRNA 

degradation. It is required for 

microRNA-induced gene 

silencing. Multiple 

alternatively spliced variants, 

encoding the same protein, 

have been identified. 

[provided by RefSeq, Mar 

2012]. It also controls gene 

expression in RNA viruses 

Upregulated in the AD 

hippocampus [29] 
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[61] 

 

[72]. 

DDX3,5 and 6 play a role in 

hepatitis C viral replication 

[68]. Binds to a Dengue virus 

RNA [73] 

DEFA1 defensin alpha 1 Found in the microbicidal 

granules of neutrophils and 

likely plays a role in 

phagocyte-mediated host 

defence. (from Refseq) 

Defends against S. aureus , E. 

coli and E. aerogenes [74] 

anthrax toxin, C,Difficile 

toxin B, diphtheria toxin, and 

Pseudomonas exotoxin A 

[75-77] and also inhibit the 

adenovirus,  BK polyoma 

virus and HIV-1 [78-80]. 

Binds to P.Gingivalis [81]. 

Defensins alpha1 and 2 (now 

coded only by DEFA1) are 

upregulated in Alzheimer’s 

disease blood cells [84]; 

DEFA1/DEFA1B , DEFA3 

and DEFB4A increased in 

sera and CSF of AD patients 

[85] 
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Antiviral versus Influenza A 

[82].Alpha-defensin 

transcription activated by the 

hepatitis C core protein 

(specific  gene symbol not 

possible) [83] 

DEFA1B defensin alpha 1B The protein encoded by this 

gene, defensin, alpha 1, is 

found in the microbicidal 

granules of neutrophils and 

likely plays a role in 

phagocyte-mediated host 

defense. Several alpha 

defensin genes are clustered 

on chromosome 8. This gene 

differs from defensin, alpha 3 

by only one amino acid (from 

Refseq). Binds to 

P.Gingivalis [81]. Release 

induced by H.Pylori [86]. 

Borrelia burgdorferi is killed 

by human 

polymorphonuclear 

leukocyte granule 

components ( elastase 

DEFA1/DEFA1B , DEFA3 

and DEFB4A increased in 

sera and CSF of AD patients 

[85] 
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ELANE, CAMP, 

bactericidal/permeability-

increasing protein (BPI), and 

human neutrophil peptide-

1(DEFA1))[23] 

DEFA3 defensin alpha 3 Found in the microbicidal 

granules of neutrophils and 

likely plays a role in 

phagocyte-mediated host 

defense. (from Refseq) 

Defends (relatively weakly) 

against S. aureus , E. coli and 

E. aerogenes [74] 

DEFA1/DEFA3/ DEFB4A 

elevated in the serum and 

cerebrospinal fluid of AD 

patients [84] 

DEFA4 defensin alpha 4 Found in neutrophils; it 

exhibits corticostatic activity 

and inhibits corticotropin 

stimulated corticosterone 

production. [provided by 

RefSeq, Oct 2014]. Potent 

killer of Escherichia coli, 

Streptococcus faecalis, and 

Candida albicans [87]. 

Upregulated in the 

hippocampus [29] 

DEFA5 defensin alpha 5 The protein encoded by this 

gene, defensin, alpha 5, is 

highly expressed in the 

? 
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secretory granules of Paneth 

cells of the ileum. [provided 

by RefSeq, Oct 2014]Kills 

H.Pylori [88]. Unmethylated 

CpG motifs in Toxoplasma 

gondii DNA induce TLR9- 

and IFN-β-dependent 

expression of DEFA5  in 

intestinal epithelial cells.[89] 

DEFA6 defensin alpha 6 The protein encoded by this 

gene, defensin, alpha 6, is 

highly expressed in the 

secretory granules of Paneth 

cells of the small intestine, 

and likely plays a role in host 

defense of human bowel. 

[provided by RefSeq, Oct 

2014] Kills H.Pylori [88] 

? 

DEFB1 defensin beta 1 A gene associated with HSV-

1 and cytomegalovirus 

seropositivity in children 

with acute lymphoblastic 

leukaemia [90] ,as well as 

with H.Pylori or  chlamydial 

infections [91,92], also 

Upregulated in the 

Alzheimer’s disease choroid 

plexus and in  

granulovacuolar degeneration 

structures [95] 
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endowed with antimicrobial 

activity against 

C.Neoformans and other 

pathogens [93].DEFB1 and 

CAMP (cathelicidin/LL-37) 

kill H.pylori [22]. Protects 

mice from influenza 

pathogenesis with a 

mechanism other than 

inhibition of viral replication. 

plasmacytoid dendritic cells  

and monocytes increased 

production of DEFB1 peptide 

and mRNA as early as 2 h 

following infection of 

purified cells and peripheral 

blood mononuclear cells with 

influenza , HSV-1, and 

Sendai virus[94]. 

DEFB103A defensin beta 

103A 

An antibiotic peptide which 

is induced by bacteria and 

interferon gamma, and which 

displays antimicrobial 

activity against S. aureus, S. 

pyogenes, P. aeruginosa, E. 

? 
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coli, and C. albicans. 

[provided by RefSeq, Oct 

2014] .  

DEFB103B defensin beta 

103B 

This gene encodes defensin, 

beta 103, which has broad 

spectrum antimicrobial 

activity and may play an 

important role in innate 

epithelial defense. [provided 

by RefSeq, Oct 2014]Kills 

H.Pylori [96].Binds to 

P.Gingivalis [81]. Antiviral 

versus Influenza A [97]  

? 

DEFB4A defensin beta 4A This gene encodes defensin, 

beta 4, an antibiotic peptide 

which is locally regulated by 

inflammation. [provided by 

RefSeq, Jul 2008]. Has 

potent antimicrobial activity 

against Gram-negative 

bacteria and Candida, but not 

Gram-positive 

Staphylococcus aureus 

[98].kills H.Pylori [99] Also 

involved in defence  against 

DEFA1/DEFA3/ DEFB4A 

elevated in the serum and 

cerebrospinal fluid of AD 

patients [84] 
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Varicella zoster,  human 

respiratory syncytial virus, 

HIV-1 and the Human 

papillomavirus [100-103]. 

Binds to P.Gingivalis [81]. 

slow-replicating type II and 

III T.Gonidii induce high 

levels of DEFB4A gene 

expression in human 

intestinal epithelial cells 

[104] 

Defensins A large number of antimicrobial peptides (almost 2000 

animal derived peptides, 112 from Homo Sapiens) target 

bacteria, parasites, fungi or viruses [105]. Beta-amyloid can 

be considered as one such [106] 

. 

DHX58 DEXH-box helicase 

58 

Detects double stranded viral 

RNA and activates antiviral 

reponses [107,108]. 

Upregulated in total brain 

and frontal lobe of AD 

patients [109] 

EIF2AK2 eukaryotic 

translation initiation factor 2 

alpha kinase 2 (commonly 

known as PKR) 

Several stimuli including 

TNF and other cytokines, 

double stranded viral RNA  

or bacterial ligands acting via 

Toll receptors activate 

EIF2AK2 resulting in the 

Upregulated in the AD 

hippocampus [29] and CSF 

[121] and activated in AD 

lymphocytes [122] 
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inhibition of protein 

synthesis necessary for viral 

replication. Activation also 

results in the production of 

interferons alpha and beta    

[110]. Activated by 

lipopolysaccharide or 

bacterial RNA or by the 

mycotoxin deoxynivalenol, 

shiga toxin, and ricin [111-

115]. Activated by HCMV, 

but the virus possesses 

proteins able to antagonise 

EIF2AK2 [116]. Activated 

by HSV-1 which is also able 

to evade EIF2AK2 activation 

[117]and by hepatitis C and 

influenza viruses [118]. 

Epstein-Barr virus-encoded 

small RNAs bind the protein 

PKR and inhibit its activation 

[119]. Not activated by the 

Borna virus, suggesting an 

evasive strategy to abolish 

antiviral activities [120] 
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ELANE elastase, neutrophil 

expressed 

Following activation, this 

protease hydrolyzes proteins 

within specialized neutrophil 

lysosomes, called azurophil 

granules, as well as proteins 

of the extracellular matrix. 

The enzyme may play a role 

in degenerative and 

inflammatory diseases 

through proteolysis of 

collagen-IV and elastin. This 

protein also degrades the 

outer membrane protein A 

(OmpA) of E. coli as well as 

the virulence factors of such 

bacteria as Shigella, 

Salmonella and Yersinia. 

[provided by RefSeq, Jan 

2016] . Kills Borrelia 

burgdorferi [23]. H. pylori 

extract-activated human 

neutrophils result in 

endothelial cell detachment 

from human umbilical vein 

endothelial cells monolayers 

Increased expression in the 

vessel wall of leptomeningeal 

vessels in AD . Arterial 

elastin degradation was 

observed from Braak stage 

III onward and correlated 

with Braak tau pathology 

[126]. 

In the brain parenchyma 

elastase immunoreactivity is 

restricted to neurons and is 

markedly elevated in a 

proportion of neurofibrillary 

tangle-bearing neurons [127]. 
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which can be blocked by an 

elastase antibody. The 

bacterium also inhibits 

elastase [123]. Elevated 

serum levels in patients with 

influenza virus-associated 

encephalopathy [124]. 

Periodontain, a protease 

secreted by P.Gingivalis, 

inactivates the human serpin, 

alpha1-proteinase inhibitor, 

the primary endogenous 

regulator of human 

neutrophil elastase, which 

may be responsible for 

increased elastase activity in 

periodontitis [125] .   

Gamma-secretase Localised in dendritic cells that scout for invading 

pathogens. Cleaves receptors for many pathogens including 

those for adenoviruses, C.Neoformans, cytomegalovirus, 

Epstein-Barr virus, Hendra virus, hepatitis C, HHV-6, HIV-1, 

HSV-1, influenza,  rhinovirus, measles, Nipah virus, 

Papilloma virus,  P.Gingivalis, rabies,  S.Aureus and 

streptococci, Vaccinia and other pox viruses [128].  

IAPP islet amyloid Commonly found in Accumulates intraneuronally 
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polypeptide (Amylin) pancreatic islets of patients 

suffering diabetes mellitus 

type II, or harboring an 

insulinoma. Studies suggest 

that this protein, like the 

related beta-amyloid (Abeta) 

associated with Alzheimer's 

disease, can induce apoptotic 

cell-death in particular 

cultured cells, an effect that 

may be relevant to the 

development of type II 

diabetes. This protein also 

exhibits a bactericidal, 

antimicrobial activity. 

[provided by RefSeq, Sep 

2014]. Inhibits the growth of  

Staphylococcus  aureus  and 

Escherichia coli  [129]  

in brains of Alzheimer's 

disease patients, particularly 

in  those with type-2 diabetes 

[130].See review for 

common links between 

bacteria, diabetes and 

Alzheimer’s disease [131] 

IDO1 indoleamine 2,3-

dioxygenase 1 

Catalyses the production of 

N-formylkynurenine from 

tryptophan. Expression is 

stimulated by interferon 

gamma and other 

inflammatory cytokines.  

IDO1 expression is increased 

in the AD hippocampus and 

is associated with amyloid 

plaques and neurofibrillary 

tangles. Quinolinic acid 

immunoreactivity is localised 
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This diverts tryptophan 

metabolism away from 

serotonin production, 

towards kynurenines and can 

lead to overproduction of the 

kynurenic acid and quinolinic 

acid, N-methyl-D-aspartate 

receptor antagonist and 

agonist respectively. The 

subsequent depletion of 

tryptophan is deleterious to 

many microbes that depend 

upon this metabolite [132]. 

Diversion to the kynurenine 

pathway also produces 

metabolites activating the 

aryl hydrocarbon receptor 

which also plays a role in 

antimicrobial defence and 

immune activation. This 

pathway is relevant to anti-

bacterial and antiviral 

effects[133].  Involed in 

C.albicans defence [134] and 

in the response to B. 

in microglial and astrocytic 

cells around amyloid plaques 

and in the vicinity of 

neurofibrillary tangles [145-

147]. 
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Burgdorferi [135].Restricts 

C.Pneumoniae replication in 

dendritic cells [136].Induced 

by HSV-1 [137], Influenza 

and hepatitis C infection 

[138,139] . Induced by 

C.Albicans at sites of 

infection and in dendritic 

cells and effector neutrophils 

[140]. IDO1 activation 

restricts HCMV replication, 

but the virus is able to  

counteract this block [141]. 

Expression increased by a 

DPG3 strain of P.Gingivalis 

[142] . Activated by T.Gondii 

infection in the mouse spleen 

[143] . Indiced by the 

Epstein-Barr virus in human 

macrophages [144] 

IFNA1 interferon, alpha 1 The protein encoded by this 

gene is produced by 

macrophages and has 

antiviral activity. This gene is 

intronless and the encoded 

The NK cell activity induced 

by either interferon-alpha 

(IFN-alpha) or interleukin-2 

(IL-2) in DAT was also 

significantly lower than in 
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protein is secreted. [provided 

by RefSeq, Sep 2011] 

Orthologs 

a 

the normal controls [148] 

white matter microglia were 

intensely labeled for alpha-

IFN [149] 

IFNB1 Interferon beta 1 The protein encoded by this 

gene belongs to the type I 

class of interferons, which 

are important for defense 

against viral infections. In 

addition, type I interferons 

are involved in cell 

differentiation and anti-tumor 

defenses. Following secretion 

in response to a pathogen, 

type I interferons bind a 

homologous receptor 

complex and induce 

transcription of genes such as 

those encoding inflammatory 

cytokines and chemokines. 

Overactivation of type I 

interferon secretion is linked 

to autoimmune diseases. 

Mice deficient for this gene 

display several phenotypes 

Increased cytotoxic response 

by NK cells to IL-2 (mean 

increase +102%) and IFN-

beta (mean increase +132%) 

in SDAT patients [151]. 
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including defects in B cell 

maturation and increased 

susceptibility to viral 

infection. [provided by 

RefSeq, Sep 2015]The Borna 

virus  nucleoprotein inhibits 

type I IFN expression by 

interfering with the IRF7 

pathway [150] . 

IFNG Interferon Gamma  The active protein is a 

homodimer that binds to the 

interferon gamma receptor 

which triggers a cellular 

response to viral and 

microbial infections. 

Mutations in this gene are 

associated with an increased 

susceptibility to viral, 

bacterial and parasitic 

infections and to several 

autoimmune diseases. 

[provided by RefSeq, Dec 

2015]. A P.Gingivalis 

protease, (gingipain) cleaves 

interleukin-12, reducing its 

Increased spontaneous and 

IL-2-induced release of IFN-

gamma and TNF-alpha from 

NK cells were found in DAT 

patients compared to healthy 

subjects. [154]: IFN-γ and 

TNF-α levels, in peripheral 

blood mononuclear cells, 

assessed in patients with AD 

in mild and severe stages, 

respectively, are higher than 

those observed in patients 

with moderate stage and MCI 

[155]. Increased IL2 and 

IFNG  secretion from 

mononuclear cells observed 
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ability to stimulate IFNG 

production [152]  . 

Upregulated in the brains of 

Borna virus infected cats 

[153]. 

in AD patients in the 

moderately severe stage of 

the disease [156]  : IFNG 

levels increased in peripheral 

blood mononuclear cells 

[157]. No increase in plasma 

[158] 

or CSF levels [159] : higher 

levels of IL-1beta 

(interleukin 1beta) (P < 

.001), IL-1beta to IL-1ra 

ratio (P < .001), tumor 

necrosis factor alpha (P = 

.008), IL-6 (P = .04), and 

interferon gamma (P = .01) 

in the non-afflicted offspring 

of patients with AD [160]. 

All participants with Apo 

ε3/ε4 or ε4/ε4 alleles showed 

a distinct biochemical profile 

characterized by low C-

reactive protein and ApoE 

levels and by high cortisol, 

interleukin 13, apolipoprotein 

B, and gamma interferon 
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levels[161] . CSF interferon γ 

was only detected in 

cytomegalovirus seropositive 

subjects and was 

significantly associated with 

neurofibrillary tangles [162] . 

Higher levels of IL-6 and 

IFN-γ were found more in 

the cultured T lymphocytes 

of the AD patients [163]. 

IFNA5 and IFNG 

upregulated in the AD 

hippocampus [29]. Infectious 

burden and IFNG levels 

associated with AD (HCMV, 

HSV-1, B. burgdorferi, C. 

pneumoniae and H. pylori) 

[164] 

LCN2 lipocalin 2 This gene encodes a protein 

that belongs to the lipocalin 

family. Members of this 

family transport small 

hydrophobic molecules such 

as lipids, steroid hormones 

and retinoids. The protein 

Lcn2 levels are decreased in 

CSF of patients with mild 

cognitive impairment and 

AD and increased in brain 

regions associated with AD 

pathology in human 

postmortem brain tissue 
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encoded by this gene is a 

neutrophil gelatinase-

associated lipocalin and plays 

a role in innate immunity by 

limiting bacterial growth as a 

result of sequestering iron-

containing siderophores. 

Mice lacking this gene are 

more susceptible to bacterial 

infection than wild type 

mice. [provided by RefSeq, 

Sep 2015] involved in host 

defence against 

C.Pneumoniae possibly by 

limiting the availability of 

iron to the pathogen [165]. 

Upregulated in the gastric 

mucosa of H.Pylori infected 

patients [166] 

[167] .Plasma levels are 

increased in mild cognitive 

impairment [168]. 

LGALS3 lectin, galactoside 

binding soluble 3 

The protein exhibits 

antimicrobial activity against 

bacteria and fungi..[provided 

by RefSeq, Oct 2014} 

LGALS3 knockout mice are 

more susceptible to 

Serum levels increased in 

AD [172] 
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C.Albicans infection [169]. 

Plays an important role in 

innate immunity to infection 

and colonization of H. pylori 

[170]. HSV-1 infection 

increases the carbohydrate 

binding activity and the 

secretion of cellular LGALS3 

[171] 

LTF lactotransferrin Antimicrobial, antiviral, 

antifungal and antiparasitic 

activity has been found for 

this protein and its peptides. 

Alternatively spliced 

transcript variants encoding 

different isoforms have been 

found for this gene. 

[provided by RefSeq, Sep 

2014]. Kills T.Gondii and 

C.Albicans [173]. 

lactoferricin is generated by 

gastric pepsin cleavage of 

lactoferrin and kills albicans, 

C. tropicalis and C. 

neoformans[174].Neutralises 

expression up-regulated in 

both neurons and glia in 

affected AD tissue [181] 
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HSV-1 amd prevents 

replication [175]. Inhibits 

P.Gingivalis proteases [176]. 

Effective versus H.Pylori 

[177]. Inhibits influenza virus 

hemagglutination [178]. 

Antiviral versus hepatitis C 

[179].Inhibits Epstein Barr 

virus infection [180] 

MAC:  Membrane attack 

complex: A complex 

composed of complement 

components C5b to C9 that 

attaches to bacteria, creating 

pores that kill by lysis [182].    

Activated by C.Albicans but 

secreted fungal proteases 

degrade C5 and can  inhibit 

MAC formation [183,184]. 

Activated by P.Gingivalis 

which is also able to degrade 

C5 [185,186].Kills H.Pylori 

in vitro but the pathogen 

evades MAC by binding to 

CD59, and inhibitor of MAC 

formation [187]. Attacks 

Borrelia burgdorferi , which 

retaliates via a protein 

(CspA) which binds C7 and 

C9 and blocks MAC 

assembly and membrane 

The complement system is 

activated in the AD brain and 

MAC is abundantly present 

and associated with 

neurofibrillary tangles, in the 

neuronal cytoplasm, 

lipofuscin granules, 

lysosomes,  dystrophic 

neurites within neuritic 

plaques, and neuropil threads 

[190-192] 
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insertion [188]. HSV-1 

infected neuronal or skin 

cells activate complement 

and though initially resistant 

to MAC deposition the skin 

cells eventually succumb to 

MAC deposition. Neuronal 

Paju cells are more resistant 

but MAC is deposited on 

~10% of these [189].      

MRC1 mannose receptor, C 

type 1 

The protein encoded by this 

gene is a type I membrane 

receptor that mediates the 

endocytosis of glycoproteins 

by macrophages. The protein 

has been shown to bind high-

mannose structures on the 

surface of potentially 

pathogenic viruses, bacteria, 

and fungi so that they can be 

neutralized by phagocytic 

engulfment.[provided by 

RefSeq, Sep 2015]. 

Recognises C.Albicans  

[193]. Higher fungal burdens 

mRNAs for TNF, AGI, 

MRC1 and CHI3L1; CHI3L2 

were significantly increased 

in the AD brain  [195] 
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for C.Neoformans in MRC1 

knockout mice [194] 

NAIP NLR family, apoptosis 

inhibitory protein 

Senses bacterial flagellin 

[196] and type III secretion 

system needle proteins from 

several bacterial pathogens, 

including Salmonella 

typhimurium, 

enterohemorrhagic 

Escherichia coli, Shigella 

flexneri, and Burkholderia 

species [197]. Inhibits  

Legionella pneumophila 

infection [198].  

Upregulated in the AD 

hippocampus [29] 

NLRP1 NLR family pyrin 

domain containing 1 

Activated by Bacillus 

anthracis lethal toxin, 

Toxoplasma gondii, muramyl 

dipeptide (a constituent of 

both Gram-positive and 

Gram-negative bacteria) 

[199]. NLRP1 and NLRP3 

both activated by T.Gondii 

[200] 

Monocyte expression of 

NLRP1, NLRP3, PYCARD, 

caspases 1, 5 and 8) and 

downstream effectors (IL-1β, 

IL-18) up-regulated in severe 

and mild AD [201] 

NLRP3 NLR family pyrin 

domain containing 3 

Activated by Staphylococcus 

aureus , Candida albicans and 

The NLRP1 and NLRP3 

inflammasomes are both 
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the influenza virus as well as 

beta-amyloid [202].Activated 

by C.Neoformans [203], 

C.Pneumoniae [204], 

H.Pylori [205] and by 

P.Gingivalis LPS [206] but 

also subject to proteolysis by 

the bacterium [207].  

Activated and subsequently 

inhibited by HSV-1 

[208].Activated by the 

Hepatitis C virus [209] and 

by the Influenza a virus in 

dendritic cells [210]. An 

Epstein-Barr virus micro 

RNA can be secreted from 

infected B cells via exosomes 

to inhibit the NLRP3 

inflammasome [211] 

activated in AD monocytes 

[201] 

NOD1 nucleotide binding 

oligomerization domain 

containing 1 

This protein is an 

intracellular pattern-

recognition receptor (PRR) 

that initiates inflammation in 

response to a subset of 

bacteria through the detection 
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of bacterial diaminopimelic 

acid. Multiple alternatively 

spliced transcript variants 

differring in the 5' UTR have 

been described, but the full-

length nature of these 

variants has not been 

determined. [provided by 

RefSeq, Oct 2009]. 

P. gingivalis outer membrane 

vesicles induce strong TLR2 

and TLR4-specific responses 

and moderate responses in 

TLR7, TLR8, TLR9, NOD1 

and NOD2 expressing-HEK-

Blue cells [212]. Nod1(-/-) 

and Nod2(-/-) mice show 

delayed bacterial clearance of 

C. pneumoniae  [213]. H. 

pylori   activates the 

intracellular NOD1, NOD2, 

and NLRP3 [214] 

NOD2 nucleotide binding 

oligomerization domain 

containing 2 

The protein is primarily 

expressed in the peripheral 

blood leukocytes. It plays a 
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role in the immune response 

to intracellular bacterial 

lipopolysaccharides (LPS) by 

recognizing the muramyl 

dipeptide (MDP) derived 

from them and activating the 

NFKB protein. Mutations in 

this gene have been 

associated with Crohn 

disease and Blau syndrome. 

Alternatively spliced 

transcript variants encoding 

distinct isoforms have been 

found for this gene. 

[provided by RefSeq, Jun 

2014] 

P. gingivalis outer membrane 

vesicles induce strong TLR2 

and TLR4-specific responses 

and moderate responses in 

TLR7, TLR8, TLR9, NOD1 

and NOD2 expressing-HEK-

Blue cells [212] 

RARRES2 retinoic acid 

receptor responder 2:  

The active protein has several 

roles, including that as an 

Upregulated in the 

hippocampus [29] 
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adipokine and as an 

antimicrobial protein with 

activity against bacteria and 

fungi. [provided by RefSeq, 

Nov 2014] 

Antimicrobial effects against 

E. coli ,S. aureus P. 

aeruginosa and C. albicans 

[215]. 

RARRES3 retinoic acid 

receptor responder 3 

Viral RNA detector [216-

220] 

Upregulated in the 

hippocampus [29] 

S100A4 S100 calcium 

binding protein A4 

Dimerises with S100A9 and 

stimulates AGER and TLR4  

[221] 

Upregulated in the 

hippocampus [29] 

Calprotectin = 

S100A8+S100A9 

TLR4 agonist that is secreted 

during the stress response of 

phagocytes. Involved in 

promoting the inflammatory 

response to infections and a 

potent amplifier of 

inflammation [222].  

Cytoplasmic calprotectin 

inhibits C.Neoformans 

growth [223]. Restricts 

H.Pylori growth [224]. Kills 

Faecal levels increased in 

AD patients [227] . S100B, 

S100A9 and S100A12, but 

not S100A8, were 

consistently associated with 

the neuropathological 

hallmarks of AD in post-

mortem brains [228] 
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Candida Spp Escherichia 

coli, Klebsiella spp, 

Staphylococcus aureus, and 

Staphylococcus epidermidis 

[225]. Confers resistance to 

P.Gingivalis [226]. 

S100A8 S100 calcium 

binding protein A8 

See Calprotectin S100B, S100A9 and 

S100A12, but not S100A8, 

were consistently associated 

with the neuropathological 

hallmarks of AD in post-

mortem brains [228] 

S100A9 S100 calcium 

binding protein A9 

See Calprotectin 

S100A9 is also required for 

the maturation of TLR3 , 

which recognises viral 

double standed RNA in the 

endosomal compartment of  

macrophages [229].  

Low CSF S100A9 and beta-

amyloid levels in AD 

correlate with each other 

[230]  

S100A11 S100 calcium 

binding protein A11 

Expression increased in the 

blood of infectious 

myocarditis patients  

(staphylococcal IE and 

streptococcal) [2,231] 

Upregulated in the 

hippocampus [29] 

S100A12 S100 calcium S100A12 has antifungal S100B, S100A9 and 
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binding protein A12 activity against Candida 

albicans, C. krusei, C. 

glabrata and C. tropicalis and 

Listeria monocytogenes but 

not Escherichia coli K-12 or  

Pseudomonas 

aeruginosa[232]. Induced in 

response to H. pylori 

infection and inhibits 

bacterial growth by binding 

nutrient zinc [224]. 

S100A12, but not S100A8, 

were consistently associated 

with the neuropathological 

hallmarks of AD in post-

mortem brains [228] 

Upregulated in the 

hippocampus [29]. 

S100B S100 calcium binding 

protein B 

Pathogenic bacteria increase 

S100B expression in human 

enteric glial cells where 

S100B integrates bacteria-

induced Toll-like receptor 

signalling [233]. Forms 

complexes with TLR2 

ligands, particularly fungal 

RNA and inhibits TLR2 via 

AGER (advanced 

glycosylation end product-

specific receptor), dampening 

pathogen-induced 

inflammation. In addition, 

Low serum S100B levels in 

AD patients [237]. 

S100B, S100A9 and 

S100A12, but not S100A8, 

were consistently associated 

with the neuropathological 

hallmarks of AD in post-

mortem brains [228] 
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upon binding to nucleic 

acids, S100B activates 

intracellular toll receptors 

which feedback to inhibit 

S100B transcription [234]. 

Low blood levels of S100B 

are a marker for invasive 

aspergillosis [235]. S100B 

expression is reduced in 

Borna virus-infected brains 

and no upregulation of the 

expression of S100B, or 

RAGE, was observed in the 

persistently infected brains 

even when incited with 

several inflammatory stimuli, 

including lipopolysaccharide 

[236]. 

TLR1 toll like receptor 1 Recognises peptidoglycan , a 

component of bacterial cell 

walls and acylated 

lipoproteins  

as a heterodimer with 

TLR2[238,239]. 

cotransfection of TLR2-

Upregulated in the 

hippocampus [29] 
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TLR1 or TLR2-TLR6 

required for the activation 

induced by H. pylori LPS 

preparations [240]. agonists 

of TLR1/2, TLR3, TLR4 and 

TLR9 increase the 

phagocytosis of encapsulated 

Cryptococcus neoformans 

[241].P.Gingivalis fimbriae 

use TLR1 or TLR6 for 

cooperative TLR2-dependent 

activation of transfected cell 

lines while the bacterial 

lipopolysaccharide prefers 

TLR1 [242].TLR1/TLR2 

dimers recognise Borrelia 

burgdorferi [243]. Borna 

disease virus nucleoproteins 

and host  NFKB1 share a 

common ankyrin-like motif. 

When THP1-CD14 cells 

were pre-treated with the 

viral nucleoprotein, NFKB1 

activation by Toll-like 

receptor ligands was 
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suppressed (for TLR1/2; 

TLR4; TLR2/6; TLR2; 

TLR7/8). [244]. 

TLR10 toll like receptor 10 Involved in the response to 

influenza infection [245]. A 

TLR2/TLR10 heterodimer 

functions in H. pylori 

lipopolysaccharide and 

Listeria monocytogenes 

recognition[246,247] . 

Upon Aβ stimulation, AD 

PBMCs generally down-

regulated TLR ratios, 

whereas control PBMCs up-

regulated TLR ratios. TLR3, 

TLR4, TLR5, TLR7, TLR8, 

TLR9, and TLR10 ratios 

exhibited the greatest 

difference between patients 

and control subjects [248] 

TLR2 toll like receptor 2 TLR2 and TLR4, acting via 

the adapter protein MyD88, 

signal responses to 

Cryptococcus neoformans, 

Aspergillus fumigatus and 

Candida albicans [249]. 

TLR2 and TLR4 are 

activated by H.Pylori [250]. 

Activated by herpes simplex 

(HSV-1) and Listeria 

monocytogenes in microglial 

cells [251,252] Activated by 

TLR2 and TLR4 expression 

are increased in AD 

peripheral blood 

mononuclear cells [266] 
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Porphyromonas gingivalis 

[253]. Stimulated by the 

hepatitis C core protein 

[254]. TLR2 is induced by 

Haemophilus influenza 

(bacterium) [255] . TLR2 and 

TLR9 synergistically 

stimulate innate antiviral 

activities, thereby protecting 

against HSV infection in the 

brain[256]: TLR2 TLR4 and 

TLR9 ligands promote the 

microglial uptake of beta-

amyloid [257] . Amyloids 

from bacterial curli fibrils 

(from E. coli, Salmonella, 

and some Enterobacteriales 

)activate TLR2 [258]: TLR2 

recognizes many microbial 

components. including 

lipoproteins/lipopeptides 

from various pathogens, 

peptidoglycan and 

lipoteichoic acid from Gram-

positive bacteria, 
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lipoarabinomannan from 

mycobacteria, 

glycosylphosphatidylinositol 

anchors from Trypanosoma 

cruzi, modulin from 

Staphylococcus epidermis, 

zymosan from fungi and 

glycolipids from Treponema 

maltophilum, and 

lipopolysaccharides 

preparations from Leptospira 

interrogans, Porphyromonas 

gingivalis and Helicobacter 

pylori [259]. HSV-1 

glycoprotein B activates NF-

κB activation through 

TLR2/TLR6 but not with 

TLR1 although it 

coimmunoprecipitates with 

TLR1,2 and 6[260] Activated 

by C.Pneumoniae which also 

activates TLR4 but to a lesser 

extent [261,262]. the 

production of tumor necrosis 

factor (TNF) α by 
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macrophages in response to 

Toxoplasma gondii 

glycosylphosphatidylinositols 

require the expression of both 

Toll-like receptors TLR2 and 

TLR4 [263]. Recognises 

HCMV [264]. Epstein-Barr 

virus activates TLRs, 

including TLR2, TLR3, and 

TLR9 [265]. 

TLR3 toll like receptor 3 Recognises double stranded 

viral RNA [267]. Antiviral 

against HSV-1 and 

upregulated by the virus in 

neural stem cells, resulting in 

beta-interferon induction 

[268]. TLR3 and TLR4 

activate cholesterol-25-

hydroxylase producing 25-

hydroxycholesterol [269], 

which along with 27-

hydroxycholesterol inhibits 

the replication of enveloped 

and non-enveloped viruses 

[270]. TLR3 and TLR9 

TRL3- and TLR8-expressing 

Monocytes/macrophages are 

increased in Alzheimer’s 

disease patients and in mild 

cognitive impairment [272] 
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recognise HCMV  [271] 

TLR4 toll like receptor 4 Lipopolysaccharide [273] 

leptospiral LPS 

Campylobacter jejuni [274] 

Helicobacter pylori [250] 

C.Neoformans 

glucuronoxylomannan [275] 

 

TLR2 and TLR4 activation 

reduce Hepatitis B infection  

[276] 

TLR4 896 A>G increased 

risk for all parasitic 

infections (ORG 1.59; 

95%CI 1.05-2.42), malaria 

(1.31; 95%CI 1.04-1.66), 

brucellosis (2.66; 95%CI 

1.66-4.27), cutaneous 

leishmaniasis (7.22; 95%CI 

1.91-27.29), 

neurocysticercosis (4.39; 

95%CI 2.53-7.61), 

Streptococcus pyogenes 

tonsillar disease (2.93; 

95%CI 1.24-6.93) , typhoid 

TLR2 and TLR4 expression 

are increased in AD 

peripheral blood 

mononuclear cells [266]. 

TLR4 expression increased 

in the Alzheimer’s disease 

brain in regions of beta-

amyloid deposition[283] 
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fever (2.51; 95%CI 1.18-

5.34) and adult urinary tract 

infections (1.98; 95%CI 

1.04-3.98), but was 

protective for leprosy (0.36; 

95%CI 0.22-0.60). TLR4 

1196 C>T effects were 

similar to TLR4 896 A>G for 

brucellosis, cutaneous 

leishmaniasis, leprosy, 

typhoid fever and S. 

pyogenes tonsillar disease, 

and was protective for 

bacterial vaginosis in 

pregnancy (0.55; 95%CI 

0.31-0.98) and Haemophilus 

influenzae tonsillar disease 

(0.42; 95%CI 0.17-1.00). The 

majority of significant 

associations were among 

predominantly Asian 

populations and significant 

associations were rare among 

European populations. 

Hepatitis C viral protein 
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NS5A downmodulates 

NKG2D on natural killer 

cells via the TLR4 pathway 

[254]. TLR2 and TLR4 

activated by HSV-1 in 

astrocytes [277].P. gingivalis 

GroEL protein may 

contribute to cardiovascular 

disorders by increasing TLR4 

expression [278]. P. 

gingivalis outer membrane 

vesicles induce strong TLR2 

and TLR4-specific responses 

and moderate responses in 

TLR7, TLR8, TLR9, NOD1 

and NOD2 expressing-HEK-

Blue cells [212]. Senses the 

C.Pneumoniae heat shock 

protein [279] and a bacterial 

phospholipase D [280]. 

Phagocytosis of B. 

burgdorferi by microglia 

increases expression of 

TLR1, -2, 4 and 5 [281]. 

Induced by HCMV [282] 
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TLR5 toll like receptor 5 Recognises bacterial flagellin 

[284]. Microglia and 

astrocytes respond to B. 

burgdorferi through TLR1/2 

and TLR5. Phagocytosis of 

B. burgdorferi by microglia 

increases expression of 

TLR1, -2, 4 and 5 [281]. 

Toxoplasma gondii- derived 

profilin triggers human 

TLR5-dependent cytokine 

production [285]. HCMV 

infection potentiates TLR5 

ligand-stimulated cytokine 

production [286]. 

Upregulated relative to aged 

controls in the AD 

hippocampus and superior 

frontal gyrus [287] 

TLR6 toll like receptor 6 TLR2/TLR6 dimers 

recognise bacterial 

lipoproteins (from Refseq) 

but are also activated in 

response to viral infection 

(Dengue virus, hepatitis C, 

HIV-1, influenza, inter alia ) 

[288-291]. HSV-1 

glycoprotein B activates NF-

κB activation through 

NF 
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TLR2/TLR6 but not with 

TLR1 although it 

coimmunoprecipitates with 

TLR1,2 and 6[260]. 

P.Gingivalis fimbriae use 

TLR1 or TLR6 for 

cooperative TLR2-dependent 

activation of transfected cell 

lines [242]. Involved in 

responses to B .Burgdorferi 

outer surface protein A 

lipoprotein[292]. 

TLR7 toll like receptor 7 Senses single stranded RNA 

viruses in endosomes [293]. 

TLR7 and TLR8 act as 

endosomal recognition 

receptors for a number of 

ssRNA viruses including 

influenza, HIV-1, VSV, 

Sendai virus, coxsackie B 

virus, coronaviruses (mouse 

hepatitis virus and severe 

acute repiratory syndrome 

coronavirus), and flaviviruses 

(HCV, dengue virus and 

Upregulated relative to aged 

controls in the AD superior 

frontal gyrus [287] 
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West Nile virus) [294]. P. 

gingivalis outer membrane 

vesicles induce strong TLR2 

and TLR4-specific responses 

and moderate responses in 

TLR7, TLR8, TLR9, NOD1 

and NOD2 expressing-HEK-

Blue cells [212]. Borrelia 

burgdorferi induces the 

production of type I 

interferons by human 

dendritic cells via TLR7 and 

TLR9. Indoleamine 2,3-

dioxygenase (IDO1) 

induction and kynurenine 

production were mediated by 

the same TLR7-dependent 

recognition process [135]. 

TLR7 stimulates the 

expression of Epstein-Barr 

virus latent membrane 

protein 1in infected cells 

[295].Epstein-Barr virus 

inhibits the stimulatory effect 

of TLR7/8 and TLR9 
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agonists in human B 

lymphocytes enabling 

evasion of the immune 

system [296] 

TLR8 toll like receptor 8 An endosomal receptor that 

recognizes single stranded 

RNA viruses such as 

Influenza, Sendai, and 

Coxsackie B viruses. Also 

recognises bacterial RNA 

from streptococci [297] and 

Staphylococcus aureus [298]. 

P. gingivalis outer membrane 

vesicles induce strong TLR2 

and TLR4-specific responses 

and moderate responses in 

TLR7, TLR8, TLR9, NOD1 

and NOD2 expressing-HEK-

Blue cells [212]. TLR8 is 

activated by Borrelia 

burgdorferi RNA in the 

phagosome of human 

monocytes[299] . 

TRL3- and TLR8-expressing 

Monocytes/macrophages are 

increased in Alzheimer’s 

disease patients and in mild 

cognitive impairment [272] 

TLR9 toll like receptor 9 This gene is preferentially 

expressed in immune cell 

The rs187084 variant 

homozygote GG was 
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rich tissues, such as spleen, 

lymph node, bone marrow 

and peripheral blood 

leukocytes. Studies in mice 

and human indicate that this 

receptor mediates cellular 

response to unmethylated 

CpG dinucleotides in 

bacterial DNA to mount an 

innate immune response. 

[provided by RefSeq, Jul 

2008]. TLR3, TLR7, TLR8, 

and TLR9 also detect distinct 

forms of viral nucleic acids 

[294].TLR2 and TLR9 

protect against HSV-1 

infection in the mouse brain 

[256]  P. gingivalis outer 

membrane vesicles induce 

strong TLR2 and TLR4-

specific responses and 

moderate responses in TLR7, 

TLR8, TLR9, NOD1 and 

NOD2 expressing-HEK-Blue 

cells [212]. Unmethylated 

significantly associated with 

a decreased AD risk in a 

Chinese study. This 

protective variant related to 

increased TLR9 expression 

in peripheral blood 

monocytes [301] . 

Transcription of TLR3, 

TLR4, TLR5, TLR7, TLR8, 

TLR9, and TLR10 following 

beta-amyloid stimulation is 

depressed in mononuclear 

cells of AD patients [248] 
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CpG motifs in Toxoplasma 

gondii DNA induce TLR9- 

and IFN-β-dependent 

expression of DEFA5  in 

intestinal epithelial 

cells.[89].Upregulated in 

dendritic cells by 

C.Pneumoniae nasal 

infection [300]  

ZBP1 Z-DNA binding 

protein 1 

This gene encodes a Z-DNA 

binding protein. The encoded 

protein plays a role in the 

innate immune response by 

binding to foreign DNA and 

inducing type-I interferon 

production. Alternatively 

spliced transcript variants 

encoding multiple isoforms 

have been observed for this 

gene. [provided by RefSeq, 

Dec 2011]. ZBP1 recognises 

foreign DNA in the cytosol 

and inhibits HSV-1 

replication[302].HCMV 

induces the interferon 

ZBP1 was identified as an 

Alzheimer’s disease 

susceptibility gene using  

hippocampal atrophy as a 

quantitative Trait [304] 
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response via  ZBP1[303]. 
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