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Abstract

Protein-protein interactions (PPI) are crucial for protein function. There

exist many techniques to identify PPIs experimentally, but to determine the

interactions in molecular detail is still difficult and very time-consuming.

The fact that the number of PPIs is vastly larger than the number of indi-

vidual proteins makes it practically impossible to characterize all interac-

tions experimentally. Computational approaches that can bridge this gap

and predict PPIs and model the interactions in molecular detail are greatly

needed. Here we present InterPred, a fully automated pipeline that predicts

and model PPIs from sequence using structural modelling combined with

massive structural comparisons and molecular docking. A key component

of the method is the use of a novel random forest classifier that integrate sev-

eral structural features to distinguish correct from incorrect protein-protein

interaction models. We show that InterPred represents a major improvement

in protein-protein interaction detection with a performance comparable or

better than experimental high-throughput techniques. We also show that our

full-atom protein-protein complex modelling pipeline performs better than

state of the art protein docking methods on a standard benchmark set. In

addition, InterPred was also one of the top predictors in the latest CAPRI37

experiment.

InterPred source code can be downloaded from http://wallnerlab.org/InterPred

1 Introduction

Protein-protein interactions (PPI) are crucial for many cellular functions, such as

signal transduction, transport, metabolism, and transcription. Since knowledge
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of PPIs is important to understand both basic biology and human disease at the

molecular level [1], major efforts have been devoted to experimentally character-

ize PPIs from the level of detecting interactions to exact molecular details of the

interaction [2].

Detection and identification of protein interactions can be experimentally per-

formed using high-throughput (HT) techniques such as yeast two-hybrid [3] and

affinity purification [4]. But these methods have inherent limitations resulting in

many false positives and negatives [5]. Novel methods using proximity-ligation

techniques like BioID [6] are promising, but are limited to finding proteins that

are part of the same complex and not necessarily in direct physical interaction.

Characterization of the quaternary structure of proteins in molecular detail can

still only be performed for individual protein complexes, using regular structural

biology methods like x-ray crystallography, NMR or cryo-EM.

Complementing the experimental methods, several computational approaches

have also been derived to predicted if proteins interact from the amino acid se-

quence [7, 8, 9], using co-evolution [10], gene co-expression [11], and phyloge-

netic profiles [12] or by combining different sources of information [13].

Similarly, there are many methods for predicting the quaternary structures

of proteins, however still mostly restricted to dimers. These methods can be

categorized as template-based or template-free methods. Template-based mod-

elling methods identify complex structure templates by aligning the amino acid

sequences [14, 15, 16] or structural models [17, 18] of the target chains against

solved complex structures in the PDB (Protein Data Bank) or libraries of the com-

plex interface [19, 20, 21, 22]. In template-free methods complex structures are

constructed by assembling known or modelled monomers using protein-protein
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docking [23, 24, 25, 26].

Both categories of methods have their advantages and disadvantages. Template-

free modelling methods have the advantage that they can be applied to any protein

pair given that the monomer structures are known or can be modelled. But in

general, the quality of the prediction cannot be guaranteed in particular if the

monomer structures change upon binding [27]. A further limitation is that many

thousands of docking models must be sampled to find at least one correct docking

model [28], making them unsuitable for genome-wide applications.

Template-based methods have in general higher accuracy if there are homol-

ogous complex templates available. The accuracy depends heavily on the evo-

lutionary distance between the target and template, and drops rapidly when the

sequence identity approaches the twilight-zone (i.e. when the sequence iden-

tity is around 30%). However, it has been shown that protein-protein interfaces

are degenerate and that in distantly and even unrelated proteins often are simi-

lar [29, 30, 31]. This means that template-based modelling could potentially be

expanded using analogous protein complex template structures.

Since structure is more conserved than sequence, methods that compare struc-

tural models, as opposed to sequences, against a template library should have a

higher chance of finding analogous templates. Indeed, by conducting the struc-

tural search more broadly to find similar interfaces from proteins not necessarily

homologous, combined with features extracted from structural alignments with

non-structural clues in a Bayesian classifier has enabled the identification of PPIs

on a genome-wide scale (human, yeast) with accuracy that is comparable to HT

experimental techniques [32]. Other methods have also reported improved per-

formance in docking model quality using structural alignment searches [18, 22].
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However, despite the seemingly large number of available methods for template-

based docking using structural alignments [18, 22, 33, 34, 35], none of them, to

the best of our knowledge, is available for practical large-scale use outside the lab

they were developed.

In this study, we present InterPred, a computational pipeline to predict and

model protein-protein interactions using structural modelling combined with mas-

sive structural comparisons and molecular docking. A key component of the

method is the use of a random forest classifier to integrate several structural fea-

tures to distinguish correct from incorrect protein interaction models. The method

is open source and available as a stand-alone download.

2 Methods

The aim of InterPred is two-fold: 1) to decide if two proteins interact and 2) If so,

predict the molecular details of the interaction.

In short, the InterPred pipeline consists of three steps (Figure 1): (1) target

homology modelling, (2) template search including interaction modelling/scoring,

and (3) refinement.

In the first step, the sequences of the protein targets, whose interaction is in-

vestigated, are used to build structural models using homology modelling. Next,

structural alignments are used to find close and distant structural similarities to

the two models in the Protein Data Bank (PDB) [36]. Whenever the structures

similar to the two models also form a complex in the PDB, it defines an inter-

action template for modelling the interaction. An interaction model is then built

by superimposing the representative structures to their corresponding structural
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homologs in the interaction template. Based on the interaction model a set of fea-

tures are calculated and used as input to a random forest classifier trained to sift

out the more promising models that will go through to the final refinement step.

Each step is described in detail below.

2.1 Structural Modelling of Target Sequences

The construction of structural models for the target sequences is a crucial step to-

wards the search for structural templates, since without any models it is not possi-

ble to run InterPred at all. The target sequences are used in a homology modelling

system combining HHblits [37] from the HHpred suite for the template search

and MODELLERv9.13 [38] to build full-atom 3D models. The Hidden Markov

Model (HMM) profiles are built by searching the uniprot20 2013 03 database

bundled in the HHpred suite, using two iterations of HHblits with Expect value

(E-value) cut-off 10−2 and maximum pairwise identity 90%. The HMM profile

was then used to search against the HHpred PDB database clustered at 70% se-

quence identity (September 6, 2014) with the same settings. Models were con-

structed using the template with the lowest E-value and for each non-overlapping

template with E<10−3 using MODELLER. If different templates cover different

regions of the target sequence, models are built separately for each region. This

is particular useful when building models of multi-domain proteins where no ho-

mology model can be found spanning across all domains. This way, additional

domains that would otherwise be overlooked will still be used in the template

search step. Moreover, it is preferable to run the structural template search with

single domain structures rather than a large multi-domain structure. Because the
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size difference between two domains during the structural search could cause a

bias towards templates that are similar to the larger domain and potentially useful

templates for the smaller domain could be missed.

2.2 Template Search and Interaction Modelling

To model the interaction, potential interaction templates are identified by first

defining the space of similar structures for each of the structures from the tar-

get modelling step, and then by searching for overlaps between spaces, i.e. cases

were the same experimental structure occurs in both spaces.

The space of similar structures is defined as structures with maximum TM-

score>0.5 (normalized by the shortest length) using structural alignments with

TM-align [39], against every chain in the PDB using both biological and asym-

metric unit. In addition, to avoid random hits occupying the spaces we employ a

threshold on minimum length of the structural alignment (L>10). It was observed

that some (5%) alignments passing these thresholds still had a large Root Mean

Square Deviation (RMSD>4Å) of the aligned positions. Since it has been shown

that docking success rate drops significantly for models with RMSD>4Å [40], we

decided to also filter these alignments out. positions.

For each potential interaction template, a coarse interaction model is obtained

in the interaction modelling step, by superimposing the structural representatives

of the targets onto the interaction template, thereby transferring the positional

relationship of the template to the targets. However, it is important to note that not

all of the interaction models constructed in this way will be correct. And given

multiple interaction models for the same targets, a ranking method is needed to
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select those that are potentially better given the features at hand.

2.3 Ranking Interaction Models

To construct a ranking of plausible interaction models, a random forest classifier

was trained to predict the likelihood of interaction based on the series of features

(Table 1). All features are only based on properties that can be calculated from

the model itself. There is other useful information that could potentially improve

performance, co-expression levels, gene ontology similarity, functional similar-

ity and phylogenetic profiles, or whether the two proteins are essential for sur-

vival [13]. However, none of these features will be specific to the 3D coordinates

of a particular interaction model making them unsuitable for ranking interaction

models. Another problem with using these type features is how to deal with cases

when information is missing, which is the most likely scenario. Thus, to avoid

these problems we chose to train the random forest classifier only on structural

information at this stage. The structural features are described in detail below.

Interface features describe the similarity between the interface of the template

and the interface of the model. The interface between two molecules is all residue

pairs from each molecule in the complex, for which any heavy atom is within a

certain distance cutoff. Common cutoffs found in the literature are the sum of

the van der Waals radii of the atoms plus a threshold of 0.5Å [41], 4.5 Å [19],

5.0Å [42]. While this works well when dealing with native structures, the inter-

acting chains in coarse models can sometimes be placed further apart than those

in the corresponding template. Using such stringent thresholds will, then, often

cause the interface in the coarse model to be “empty”, i.e. no residues between
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the two chains are within the cutoff. To avoid this, we empirically increment the

cutoff to 6.5Å.

The interface features are described by the size of the interface in the tem-

plate complex, model complex, and the number of residues that overlaps when

the model is superimposed on the template (Figure 2). The number overlapping

residues are calculated similarly to how it was done in [40], although as an abso-

lute number rather than normalized by the number of total interacting residues.

Structural alignment features describe the quality of the structural alignment

between the two target structures and their structural templates using the RMSD

for the superposition, TM-score normalized by the length of target, and TM-score

normalized by the length of the template, for the two targets separately.

Model quality features describe the quality of the sequence alignment used

to build the target structures from the sequence input and was represented by the

sequence identity between the sequence templates and the target sequences for the

two models.

We also tried using the sequence similarity of the target-template structural

alignment as a feature, but it did not improve performance (data not shown)

2.4 Interaction Model Refinement

As the interaction models are based purely on superpositions, they might contain

severe clashes and sub optimal interactions. To produce all-atom models with no

clashes and optimized interactions, interaction models were refined using Roset-

taDock [43] with the perturbation flag (−dock pert) set to “5 12”, for the standard

deviations in Angstrom and degrees for the initial translation and rotation pertur-
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bation, respectively. 10,000 decoys were generated and ranked using interface

RMSD (IRMSD) to the starting conformation, i.e. the decoys that changed their

interface least were selected.

2.5 Data sets

For training and testing various aspects of InterPred four different protein-protein

interaction sets were used. A binary protein-protein interaction set (1), a binary

interaction model set (2), an interaction set from a recent benchmark of protein-

protein interaction experiments (3), and finally a 3D interaction set was used to

assess the refinement and the ability to predict the 3D structure of the interaction

models (4).

2.5.1 Binary protein-protein interaction set

The binary protein-protein interaction set consist of positive and negative interac-

tions and was constructed in a similar way to [13]: the set of interacting pairs, or

positive set, is composed of yeast and human protein pairs that have been shown to

interact by at least two separate publications. The set of non-interacting pairs, or

negative set, consists of human and yeast protein pairs from different cellular com-

partments according to Gene Ontology [44]. To make absolutely sure that none

of the pairs are interacting, we were strict in picking proteins that are located in

one and only one of the following compartments: membrane, mitochondria, endo-

plasmic reticulum, and nucleoplasm. The resulting positive set contained 30,247

interacting pairs and the negative set contained 13,121 non-interacting pairs.
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2.5.2 Binary interaction model set

To train the random forest classifier, a binary interaction model set consisting of

correct and incorrect structural interaction models were constructed by running

the first (homology modelling) and second (template search and interaction mod-

elling) steps of the pipeline on the binary protein-protein interaction set, generat-

ing on average one to two thousand interaction models per protein pair, in total

64-million models for the positive and 14-million models for the negative pairs.

The interaction models based on the negative sets are all incorrect and can thus all

be used as negative interaction models. However, for the interaction models based

on the positive set it cannot be assumed that all 64-million possible interaction

models are correct. In fact, most of them will be incorrect, since the total num-

ber of possible interaction is much higher that the subset of correct interactions.

To make sure that positive interaction models are correct only the 4,162 protein

pairs for which obvious homologous interaction templates could be found using

sequences alone were included in the correct interaction model set. This was done

by searching for sequence homologs in the PDB for each protein in the positive

protein-protein interaction set using HHblits and construct interaction models for

those pairs which shared sequence templates from the same PDB. The final set

used for training consisted of 14-million incorrect and 80,921 correct interaction

models.

2.6 Cross-validation

To prepare the sets for 10-fold cross-validation during random forest training,
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the full set of sequences from binary protein-protein interaction set were clustered

using BLASTCLUST [45] and divided into 10 parts in such a way that no pair of

targets from two different folds shared more than 50% sequence similarity at 90%

coverage. The exact BLASTCLUST parameters are not crucial, since the training

is not performed directly on sequences, but on a rather limited set of features

calculated from the interaction models. The aim of the clustering was to ensure

that no two sets of features from two different folds were identical.

2.6.1 Braun benchmark set

The performance of InterPred to predict protein-protein interactions was com-

pared to several high-throughput methods on a benchmark set developed by Braun

et al. (Braun benchmark set) consisting of 92 interacting and 92 non-interacting

protein pairs [46].

2.6.2 BM4: Docking model quality benchmark

To test the capability of InterPred to produce and dock interaction models, a set of

protein-protein complexes from the docking Benchmark 4.0 [47] was used (BM4).

This benchmark consists of 176 bound targets and the corresponding unbound

interactors.

2.7 Random forest classifier

The random forest classifier in the TreeBagger class from Matlab’s Statistics and

Machine Learning Toolbox (version R2014b) were used. An ensemble of 100

decision trees per forest was trained to recognize correct and incorrect interac-
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tions. The fraction of decision trees predicting a positive interaction determines

the InterPred score. To find the best combination of features, several versions

of the classifier were trained using different combinations of input features. The

trainings were performed on the binary interaction model set using 10-fold cross-

validation as described above. The final testing was performed on protein pairs

from the full binary protein-protein interaction set using the same cross-validation

sets. The InterPred score for a protein-protein pair was the highest InterPred score

for any interaction model generated from that pair.

2.8 Performance measures

To measure the detection performance, receiver operating characteristic (ROC)

curves showing True Positive Rate (TPR) against False Positive Rate (FPR), were

used

FPR is defined as:

FPR =
FP

N
=

FP

TN + FP
. (1)

TPR is defined as:

TPR =
TP

P
=

TP

TP + FN
. (2)

where P is the number of positive examples in the set (e.g. number of inter-

acting pairs), N the number of negative examples, TP the number of correctly

identified positives and FP the number of incorrectly identified positives.

The Likelihood Ratio (LR) is then defined as:
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LR =
TPR

FPR
. (3)

where TPR and FPR are defined above.

2.8.1 IS-score

To assess the quality of refined and coarse interaction models in the docking qual-

ity benchmark, each model is compared to its corresponding native structure using

the Interface Similarity score (IS-score) [48], which outputs a score from 0 to 1,

where 0 represents a completely incorrect model and 1 a perfect model. Two

thresholds (0.12 and 0.17) are applied to IS-score to distinguish between “Bad”,

“Acceptable” and “Near-native” models, as done previously for the development

of the PRISM method [34]. It is important to note that this classification differs

from the one used in CAPRI [42], but it has been shown that IS-score correlates

well with the measures that are used to calculate the CAPRI classification [34].

2.9 PRISM

PRISM is a widely used method based on structural templates [22] available

through a web interface. The structural template search on PRISM is performed

with rigid-body structural comparisons of target proteins to known template protein-

protein interfaces, then a set of thresholds is employed to sift out the most promis-

ing interfaces before the refinement, based both on structural similarity and evo-

lutionary conservation of putative binding residues step [49]. Contrarily to the

approach used in InterPred, no machine learning techniques are used to rank the
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templates.

For comparisons to PRISM, BM4 targets were submitted to the PRISM server,

and the refined models were downloaded and ranked according to the Fiberdock

energy scores reported on the results page.

2.10 ZDOCK

ZDOCK [50] is a template-free method for docking two partner proteins using

fast fourier transform correlation to exhaustively explore the translation degree of

freedom, limiting the search to the rotational degrees of freedom between the two

partners. ZDOCK3.0.2 was shown to be the best among 18 template-free methods

in a recent benchmark using the BM4 set [28].

For comparisons to ZDOCK3.0.2, a set of interaction decoys generated by

ZDOCK3.0.2 for the targets in the BM4 set were downloaded from the ZDOCK

webpage [51]. This decoy set contains 3,600 ranked predictions covering the ro-

tational degree of freedom in all possible relative docking orientation at 15 degree

resolution for each test case.

3 Results and Discussion

In this work, we have developed InterPred, a method that predicts if two proteins

interact and if so also produce a three-dimensional interaction model. The exact

details of the different parts of InterPred are described in Methods. Here, we give

the main results and provide a benchmark to existing methods, both in terms of

the ability to detect protein-protein interactions and to model the interaction in

molecular detail.

15
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3.1 Detection: Training of the Random Forest

The random forest classifier was trained on the binary interaction model set (see

Methods). Features were calculated from the interaction models and several

random forests were trained using different combinations of features. The impact

of the different features used in the training on the ability to correctly identify

interacting protein-protein pairs in the full binary protein-protein interaction set

was measured using a Receiver Operating Characteristic (ROC) curve (Figure 3),

where the FPR (Eq. 1) is plotted against the TPR (Eq. 2) by varying the cutoff

on the InterPred score. As more features are considered, the area under the ROC

curves increases, the increase is most prominent in the low FPR region (inset in

Figure 3). This is important since the number of non-interacting pairs will be

several orders of magnitude larger than the number of interacting pairs. Thus, it is

then vital that a system designed to detect and predict interactions will can do so

at very low FPRs. Clearly, at FPR<0.005 the additional features enables detection

of 50%-70% more true interactions compared to a classifier only using TM-score,

e.g. 4,537 predicted true positives vs. 7,561 at FPR=0.0025.

3.2 Detection: Homology modelling

The first step in the InterPred pipeline is to use homology modelling to build 3D

structures from the input sequences (see Methods). It is important to model as

much as possible of the input sequence, since the pipeline is based on structural

comparisons. This step also models additional domains that were not covered

by the best template into separate structures. No attempt is made to model the

complete multi-domain protein, instead a model built from each template is used
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as a separate input to the pipeline.

The binary protein-protein interaction set of 43,368 target pairs contained

24,237 different proteins. For 23,397 of these at least one domain could be mod-

elled. Modelling additional domains not covered by the best template an addi-

tional 7,960 (34%) domains could be modelled. These additional domains effec-

tively almost double the number of interactions models, indicating the importance

of model as much as possible of the target sequence.

It is well known that the quality of homology models depends to high degree

on the sequence similarity to known structural templates. We included the se-

quence identity between the two target sequences and their respective templates

at the homology modelling stage among the features for the prediction. The ROC

curve in Figure 3 shows that the predictions are more accurate if this features are

included, especially at low FPRs.

To assess how homology model quality influence the ability to detect correct

protein-protein interactions, the binary protein-protein interaction set is split into

three subsets, depending on the sequence similarity between the targets and tem-

plates used to build the models: hard (<20%), medium (20%-40%), and easy

(> 40%). We calculated the Likelihood Ratio (LR, see Methods) for different

InterPred score thresholds over the whole set and for each of the three subsets

(Figure 4). Overall, the LR for the hard cases are not so much different from the

LR for the easy cases. Indicating that there is still possible to make good predic-

tions even using models based on remote homologs. In fact, for the medium cases

there are no false positives for InterPred score >0.9. Also, the fact that we are us-

ing the model quality feature in the random forest predictor might help balancing

the performance over the three sets.
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3.3 Detection: Braun benchmark results

We compare InterPred to a battery of four complementary, high-throughput pro-

tein interaction assays: Yeast two-hybrid (Y2H) [52], mammalian protein-protein

interaction trap (MAPPIT) [53], luminescence-based mammalian interactome (LU-

MIER) [54], protein complementation assay (PCA) [55] and a modified version

of the nucleic acid programmable protein array (wNAPPA) [56]. The comparison

was performed on the Braun benchmark set [46] (see Methods).

To ensure a fair comparison, we removed any pair from the training set of

InterPred where both partners have sequence identity ≥ 50% to any target pair in

the Braun benchmark set and retrained InterPred. To avoid self-hits, e.g. target

pairs for which the complex structure has already been experimentally resolved,

we removed any structure in the PDB library that has sequence identity ≥ 90% to

any target in the benchmark.

The resulting ROC curves (Figure 5), show that InterPred performs consid-

erably better than any single high-throughput method at all FPR ranges. In par-

ticular, it correctly predicts the interaction for 25% more targets than the best

high-throughput method with no false positives (39 of 92 interacting couples de-

tected at FPR=0). We also report the performance of a consensus approach that

combines all the previous experimental assays (pink circle in Figure 5), where a

maximum of 55 out of the 92 interactions from the positive set could be detected

at <10% FPR [46]. Our results show that InterPred performs at the same level

of the consensus approach, correctly detecting the same amount of interactions at

the same FPR. It is also important to know that the combined result of the exper-

imental assays has been obtained by picking thresholds for each method so that
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the highest TPR could be obtained while keeping a low FPR, which would not be

possible in a blind test.

3.4 Coarse modelling: Impact of using structure instead of se-

quence

A common technique to construct models of protein-protein interactions is to use

template-based docking. It is conceptually similar to the InterPred pipeline, but

with the important difference that only the sequence is used to find remote ho-

mologous structures. Here, we use the sequence to build a 3D model and search

with the structure to find not only remote homologous but also similar structural

interfaces.

To measure the added value of using structural information, we performed

a “template reduction”, by removing template pairs at different thresholds from

90% to 20% sequence similarity, and finally templates that cannot be detected at

all by PSI-BLAST (NA, E-value > 0.1). Figure 6 shows the percentage of targets

from the BM4 set (see Methods) that could be correctly modelled, i.e. coarse in-

teraction model with Interface Similarity score (IS-score) [48] ≥ 0.12, at different

sequence similarity thresholds; by requiring that only one template (yellow) or

both templates (blue) to be under the sequence similarity threshold. In reality the

first case is probably most realistic, since to properly model an interaction both

templates needs to be found. The results show that approximately a quarter (26%)

of the targets could be modelled even when all templates found by PSI-BLAST

are removed (“NA” bars). In the twilight zone, around 30% sequence similarity,

InterPred can find structural templates for up to 40% of the targets in the bench-
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mark. Thus, the added value of using structural information is the ability to model

about 26%-40% of the proteins that would not be modelled otherwise.

3.5 Coarse modelling: Evaluating the InterPred score

Next, we wanted to evaluate how well the InterPred score correlates with the effec-

tive quality of the coarse models that are produced when no obvious templates are

available. To this end, we filtered out all templates with >30% sequence identity

to any of the target pairs in BM4.

InterPred was used to construct coarse interaction models that were scored

using the random forest. For each target, the top 10 coarse models by InterPred

score were compared to the native complex using IS-score. In Figure 7 we show

the percentage of targets that can be modelled with at least one acceptable model

(IS-score ≥ 0.12) among the top 10 for different InterPred score thresholds. Each

bin contains a subset of targets for which InterPred could find a model at a given

InterPred score. To compare, we also used models generated with ZDOCK 3.0.2

using 15 degree sampling, downloaded from the ZDOCK webpage (see Methods).

ZDOCK is a template-free method for docking, it is still one of the most

widely used rigid-body docking methods that are currently available for academic

use. Moreover, template-free docking is usually the obvious choice when no ob-

vious templates are available for a given complex such as in this case, where all

templates with >30% sequence identity have been removed.

The fraction of acceptable models for InterPred increases from 45% for the

lowest thresholds to around 80% for the highest. Thus, it is clear that the higher

the InterPred score, the higher is the chance that the interaction model is correct.
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If we compare InterPred and ZDOCK, the two methods perform similar up

to InterPred score 0.4. But for InterPred score > 0.4 it progressively becomes

more and more advantageous to use InterPred, as the fraction of correctly pre-

dicted targets peaks at 78% when at least one model with InterPred score ≥ 0.9

is available. The performance of ZDOCK remains roughly constant around 45%

across all thresholds, meaning that the performance is stable across the targets.

3.6 Docking Refinement

In the final step of the InterPred pipeline the coarse interaction models are

used as starting points for docking using the RosettaDock low and high-resolution

protocol. To assess this step the 176 test cases in BM4 were used as input to

InterPred. In this case, the inputs to the InterPred pipeline are the X-ray structures

of the unbound targets as listed in the benchmark, thus there is no need to run the

first homology modelling step of the pipeline. After the structural template search

step, and removal of self-hits, the coarse models were ranked by InterPred score

and the top 10 coarse models were selected for refinement.

Each selected coarse interaction model was used as a starting structure in a

docking simulation using RosettaDock (see Methods). For each starting struc-

ture 10,000 decoys were generated (e.g. up to 100,000 decoys per test case if 10

coarse models are available) and their quality was evaluated using IS-score (see

Methods).

We investigated several measures to rank the docked models (decoys), includ-

ing the Rosetta energy score, interface score (Isc), IRMSD and RMSD between
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the docked model and the corresponding starting model. In Figure 8 we show a

scatter plot with IS-score before and after docking, for models selected by Rosetta

Score, IRMSD, and as comparison also the best docked model. In most cases the

best docked model is better than the starting model. However, it is clear that nei-

ther the Rosetta energy score nor interface score (data not shown) is able to select

these good models. In fact, the best measure we came up with is to select the

models whose interface changes the least, i.e. the models with the lowest IRMSD

to the starting structure.

The quality of the docked models was benchmarked against PRISM [41] and

ZDOCK [50]. PRISM is most similar to InterPred in that it is also using structural

templates (see Methods). ZDOCK is one of the leading ab initio methods using

rigid-body docking. The results showing the percentage of test cases for which at

least one Acceptable or Near-native model is produced among the top 1 to 1,000

models is shown in Figure 9.

PRISM never reported more than 20 models for any of the targets, thus the

performance is only evaluated for the top 1 and top 10 ranked models. Compared

to PRISM, InterPred performs considerably better having 85 out of 174 (49%)

targets with an at least Acceptable model for top 1, compared to 72 (41%) Ac-

ceptable targets for PRISM. For top 10 the numbers are 113 (65%) for InterPred

vs. 86 (50%) For PRISM. The difference is smaller when considering the Near-

native quality models, as all Acceptable model by PRISM are also Near-native.

For top 1 it is 75 (43%) vs. 72 (41%), for top 10 increasing to 106 (61%) vs. 86

(50%), for InterPred and PRISM, respectively.

The results for ZDOCK, being and ab initio method is obviously worse con-

sidering the top 1 and top 10 ranked models. However, starting from rank 50
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ZDOCK performs better. The reason for this is that while the InterPred models

are docked locally around a given starting point, ZDOCK samples the whole con-

formational space among its 3,600 predictions. This means that by considering

lower ranked docked models you will almost always find a correct model. How-

ever, we would argue that it is not really realistic to consider more than the top 10

ranked models.

3.7 CAPRI37: Blind predictions

CAPRI (Critical Assessment of PRediction of Interactions) is a community-wide

experiment on the comparative evaluation of protein-protein docking for structure

prediction [42]. In 2016, the 37th round of CAPRI was held in collaboration with

the 12th edition of CASP (Critical Assessment of protein Structure Prediction).

Ten target multimeric complexes were released to the prediction community be-

fore the structure was solved experimentally, thus the predictions are completely

blind predictions. A total of 17 different target interfaces were evaluated, since

some of the target complexes included trimers, tetramers and octamers.

InterPred participated in CAPRI37 with a slightly modified version. Instead of

running the first step of the pipeline (Homology Modelling), the server models of

the target sequences were downloaded from the CASP webpage (http://predictioncenter.org)

and evaluated by the Model Quality Assessment Program (MQAP) method Pcomb [57].

The top ranked models were then used in the structural template search.

The results for CAPRI37 are summarized in Table 2, following the CAPRI

criteria that classify a docked model as either Incorrect, Acceptable, Medium, or

High Quality, depending on the fraction of correctly predicted interfacial residues

(FNat), RMSD of the model ligand to the native upon superposition of the recep-
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tors (LRMSD) and RMSD of the interfacial residues (IRMSD) [42].

As it is done in the CASP experiments, only the rank 1 model is considered

for each target. InterPred (group name: Wallner) correctly predicted the most

interactions, 8 “Acceptable or better“ models out of 17 target interfaces, along

with groups of Kihara and Vakser.

3.8 Computational Cost

The two steps in the InterPred pipeline that are most computational expensive

are the structural template search and the final docking step. Both these steps are

trivial to parallelize, since they carry out many independent calculations. However

to get some idea of the computational cost, we report the actual timings when

run on a 16 core 2.2GHz with 32GB RAM Linux node using some typical size.

Structural template search using a 400 residues target take on average 23 minutes

(46 minutes for a target couple in total). The final docking step take around 180

minutes to generate 10,000 docking decoys for each coarse model. Thus, total

time for a typical query would be 50+10x180 minutes or roughly 31h on a single

compute node. On the other hand, as we have seen from Figure 9, there is not

much of a difference between considering the top 10 or top 100 (or even 1000)

docked decoys in terms of fraction of correctly predicted interactions. Thus, one

might argue that producing only 1,000 decoys instead of 10,000 would generate

approximately the same results while at the same time reducing the computational

cost 10 times to around 3h.
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4 Conclusions

We have presented InterPred, a tool that predicts if two proteins are interacting

from their sequence and builds a full-atom model of the interaction. Starting from

two protein sequences, 3D models are constructed and the structural neighbor-

hoods of each 3D model are explored by comparing them against all possible

structural domains in the PDB using structural alignment. Candidate coarse in-

teraction models are constructed by superposition whenever structural neighbor-

hoods coincide. These models are ranked using a novel random forest classifier

that distinguish correct from incorrect interactions based on features calculated

from the coarse interaction models. Finally, if the goal is to generate an all-atom

description of the interaction, the top-ranked models are used as starting points in

an all-atom docking procedure to generate the final docked conformation selected

as the lowest IRMSD to the starting structure.

Our results show that the use of close and remote structural interaction tem-

plates represents a major improvement when comparing to methods where only

the sequence (and/or sequence profiles) are used to predict interactions.

In addition, we also show that using InterPred to detect protein-protein inter-

actions is even better than several experimental high-throughput methods, finding

25% more true interactions compared to the best high-throughput methods in low

FPR region. In fact, only a consensus approach combining five high-throughput

method in an optimal way is able to perform on par with InterPred.

The InterPred score is also a useful predictor of the success rate for modeling

the protein-protein interaction in molecular detail starting from the coarse-grained

interaction model. Molecular docking starting from interaction models with Inter-
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Pred scores >0.5 produces acceptable quality models for 50% of the targets, while

a score >0.9 produces acceptable quality models for almost 80% of the targets.

To test this further InterPred was used to generate full-atom docked models on

the Docking Benchmark 4.0, and showed that it performs better than other state

of the art predictors based on structural alignments, (PRISM), with an improve-

ment of almost 20% for the first ranked decoy, and the best available docking

pipeline (ZDOCK 3.0.2) for the top ranked docking decoys with an improvement

of around 150% for the first ranked decoy. Overall, 45-50% target interactions

were correctly modelled.

The fact that InterPred performs on par on better than state of the art was

also confirmed in the latest CAPRI37 experiment, where InterPred could correctly

predict, roughly half of the target interfaces, ranking amongst the top predictors

in the community.

InterPred is available as a standalone download from http://wallnerlab.org/InterPred/,

and should be useful for anyone working with protein-protein interactions.
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Figure 1: Overview of the InterPred pipeline
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Figure 2: The interface features describe the similarity between the interface of
the template and the model by three numbers: the number of residues in the tem-
plate complex interface (solid lines in A), the number of residues model complex
interface (solid lines in B), and the number of residues that are shared when the
template and model are superimposed (double lines in C).
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Figure 3: Performance for random forest classifiers trained different features. In
the low FPR area (cyan), the filled circles on the curve for the final predictor
highlight the thresholds on the InterPred score from 1 to 0.6 in 0.1 steps.
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Figure 4: Effects of the quality of the homology models during the detection test:
the Likelihood Ratio (LR) against the InterPred score for all, hard, medium, and
easy homology modelling cases.
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Figure 5: ROC curves comparing InterPred to a number of high-throughput meth-
ods on the Braun benchmark of 184 human protein pairs. The two black diamonds
show the Y2H at two different bait and prey expression levels. The pink circle
shows the performance if the experimental methods are combined in an optimal
way.
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Figure 6: Percentage of acceptable coarse models built using templates with dif-
ferent sequence identity.
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Figure 7: Fraction of correctly (acceptable or better) modelled targets from BM4
by InterPred (yellow) for different InterPred score excluding any template with
sequence identity >30%. ZDOCK (blue) is included as a reference using the
targets present in each bin. A target is considered correct if it has at least one
acceptable model among the top 10.
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Figure 8: IS-scores before and after docking for the top 10 docked models ranked
by Rosetta Score (red) or IRMSD (green), as reference the best IS-score (blue)
model is also included.
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Figure 9: The percentage of successfully docked targets for InterPred (blue),
PRISM (green) and ZDOCK (yellow). PRISM results is only available for rank 1
and 10, since it never returns more than 20 models per target.
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Feature group Description #

Interface Interface similarity 3
Structural Structural alignment scores (TM/RMSD) 6
Lengths Lengths of targets, templates and alignments 6
Model quality Sequence identity from

the template modeling of the two targets 2
# the number of feature descriptors for a particular feature group

Table 1: Description of features used to train the random forest classifier.
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Group Name Tot. Models Acceptable Medium High Acc. or Better

Vakser 17 3 2 3 8
Wallner (InterPred) 17 4 1 3 8

Kihara 17 3 3 2 8
Eisenstein 15 2 2 3 7
Zacharias 17 2 3 2 7

LZERD 17 2 3 2 7
Fernandez-Recio 16 2 4 1 7

Negi 10 2 4 1 7
S.Oliva 16 3 3 1 7

S.LZERD 16 2 5 0 7
SWARMDOCK 17 3 4 0 7
Takeda-Shitaka 17 1 2 3 6

Zou 16 1 2 3 6
Venclovas 10 1 2 3 6

S.SWARMDOCK 17 2 1 3 6
S.Venclovas 17 1 3 2 6

Table 2: Table showing the top ranking groups in the 37th round of the CAPRI
experiment, sorted by number of “Acceptable or Better” models.
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