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Abstract	

Molecular	interactions	affect	the	evolution	of	complex	traits.	For	instance,	adaptation	may	

be	constrained	by	pleiotropic	or	epistatic	effects,	both	of	which	will	be	reflected	in	the	

structure	of	molecular	interaction	networks.	To	date,	empirical	studies	investigating	the	

role	of	molecular	interactions	in	phenotypic	evolution	have	been	idiosyncratic,	offering	no	

clear	patterns.		Here,	we	investigated	the	network	topology	of	genes	putatively	involved	in	

local	adaptation	to	two	abiotic	stressors—drought	and	cold—in	Arabidopsis	thaliana.		Our	

findings	suggest	that	the	gene-interaction	topologies	for	both	cold	and	drought	stress	

response	are	non-random,	with	genes	that	show	genetic	variation	in	drought	response	

(GxE)	being	significantly	more	peripheral	and	cold	response	genes	being	significantly	more	

central	than	genes	not	involved	in	either	response.	We	suggest	that	the	observed	topologies	

reflect	different	constraints	on	the	genetic	pathways	involved	in	the	assayed	phenotypes.		

The	approach	presented	here	may	inform	predictive	models	linking	genetic	variation	in	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 13, 2016. ; https://doi.org/10.1101/080804doi: bioRxiv preprint 

https://doi.org/10.1101/080804


 

 

molecular	signaling	networks	with	phenotypic	variation,	specifically	traits	involved	in	

environmental	response.		

	

Introduction	

Genes	do	not	function	nor	evolve	in	isolation.	The	transcriptional	activities	of	genes	in	a	

genome	are	often	highly	correlated	with	one	another,	forming	hierarchical	regulatory	

networks	comprised	of	functionally	related	modules	(1).	Within	such	networks,	some	

genes	--	“nodes”	–	have	stronger	or	more	interactions	--	“edges”	–	with	one	another	than	do	

other	genes.	Because	the	effect	size	of	mutations	is	strongly	associated	with	their	

evolutionary	fate	(2),	the	structural	properties	of	genetic	regulatory	networks	will	likely	

affect	selection	acting	on	individual	component	genes	(3-5).	Advances	in	high-throughput	

molecular	phenotyping	and	systems	analysis	have	improved	our	ability	to	characterize	

molecular	interaction	networks,	providing	the	opportunity	to	address	classic	questions	

about	the	evolution	of	genetic	interactions.		

Two	related	features	of	gene	regulatory	networks	(GRN)	might	affect	the	evolution	

of	individual	genes	within	those	networks.	The	first	is	the	widespread	observation	that	

genes	vary	in	their	number	of	interacting	neighbor	genes,	perhaps	even	by	orders	of	

magnitude	(6).	This	feature	--	the	centrality	or	connectivity	of	a	gene	--	can	be	measured	in	

many	different	ways,	including	the	number	of	directly	interacting	genes	or	the	number	of	

paths	to	other	genes	that	pass	through	a	given	gene	(7).		The	second	feature	of	networks	

that	can	impact	gene	evolution	is	modularity,	i.e.	the	degree	to	which	the	network	is	

composed	of	functionally	related	sub-networks	of	genes,	or	modules.	Modules	are	often	

under	the	transcriptional	control	of	core	proteins,	high-level	switches	that	regulate	the	

module’s	activity	(8)	using	shared	regulatory	motifs	among	genes	within	it	(9).	Evidence	

for	the	pleiotropic	nature	of	core	genes	has	been	found	through	decades	of	developmental	

genetics	research,	which	identified	putative	master	regulators	of	the	level,	timing,	and	

location	of	expression	of	tens	to	thousands	of	other	genes	(3,	8,	10).	

		 Transcriptional	regulation	by	core	genes	plays	an	important	role	in	adaptive	

responses	to	the	environment	(11,	12).	Environmentally	responsive	transcripts	are	often	

co-regulated	as	functional	modules	(13,	14),	and	in	some	instances	the	response	of	

particular	genes	to	environmental	cues	may	be	characteristic	of	entire	species	or	kingdoms	
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(15,	16).	Considerable	genetic	variation	in	transcriptional	response	to	environment	--	

expression	Genotype	by	Environment	interaction,	eGxE	--	has	also	been	identified	within	

species	(17).	At	the	molecular	level,	eGxE	may	be	controlled	by	genetic	variants	acting	in	

cis,	e.g.	by	SNP	or	presence-absence	variants	in	promoter	motifs,	or	by	genetic	variants	

acting	in	trans,	such	as	transcription	factors,	small	RNA	species,	or	a	number	of	other	

regulatory	factors	upstream	of	genes	showing	eGxE.	Genetic	variants	affecting	eGxE	are	of	

particular	interest	because	GxE	represents	the	mutational	substrate	for	the	evolution	

environmental	response	(18,	19)	and	because	GxE	for	fitness	is	required	for	local	

adaptation	(20).		

In	the	present	study,	we	explore	two	hypotheses	for	how	environmentally	

responsive	regulatory	networks	evolve	and	might	thereby	be	involved	in	local	adaptation	

to	environment.	The	first	hypothesis,	that	eGxE	is	driven	by	genetic	variation	in	core	

transcriptional	regulatory	proteins,	arises	from	the	observation	that	suites	of	traits	often	

show	high	genetic	correlation	((21);	in	this	context,	“traits"	could	be	either	individual	

transcripts	or	higher-level	physiological	or	developmental	phenotypes).		Genetic	variants	

in	one	or	a	small	number	of	regulatory	genes	could	therefore	have	considerable	

downstream	consequences,	both	positive	and	negative	with	respect	to	transcription	level,	

trait	expression,	and	fitness.	This	model	predicts	that	eGxE	genes	would	have	relatively	

high	network	connectivity	and,	by	extension,	be	clustered	in	relatively	discrete	functional	

modules.		The	second	hypothesis	posits	that		eGxE	could	be	primarily	driven	by	variation	in	

genes	located	peripherally	in	transcriptional	networks,	which	are	expected	to	have	smaller	

effect	sizes	and	reduced	deleterious	pleiotropy.		Variation	in	peripheral	genes	could	

therefore	allow	natural	selection	to	“fine-tune"	environmental	response	by	changing	only	a	

small	number	of	expression	or	higher-order	traits.	While	these	are	not	mutually	exclusive	

hypotheses,	their	relative	importance	in	nature	has	not	been	established.		

Here,	we	extend	earlier	work	assessing	genetic	variation	in	transcriptional	activity	

during	acclimation	to	cold	(22)	and	soil	drying	(23)	in	Arabidopsis	thaliana.	We	predict	

different	patterns	for	the	genes	associated	with	each	environmental	response	based	on	our	

previous	observations.	The	sequence	conservation	in	environmentally	responsive	

promoter	motifs	among	eGxE	genes	in	Arabidopsis	(24)	leads	us	to	predict	that	cold	

acclimation	eGxE	genes	will	be	clustered	and	highly	connected.	The	conserved	patterns	of	
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nucleotide	diversity	imply	that	cis-regulatory	elements	of	eGxE	genes	for	cold	are	

evolutionarily	conserved	and	that	expression	diversity	is	controlled	by	genetic	diversity	in	

upstream	regulators	such	as	transcription	factors.	These	transcription	factors,	acting	as	

core	regulators,	would	cause	the	coexpression	of	large	sets	of	eGxE	genes	that	would	be	

observed	as	a	highly	connected	network.	Conversely,	we	predict	that	drought	eGxE	genes	

will	be	located	peripherally	in	networks	because	these	genes	show	evidence	of	adaptive	cis-

regulatory	variation	(24).	This	predominant	role	of	cis	variants	suggests	that	most	genes	

involved	in	drought	local	adaptation	have	small	trans	effects	and	are	therefore	not	likely	to	

have	a	high	degree	in	the	coexpression	network.	By	extension,	we	predict	that	the	relative	

contribution	of	cis-	and	trans-	associated	expression	variation	indicates	the	structure	of	

response	to	environment	across	a	molecular	network.		

	

Results	and	Discussion	

eGxE	genes	are	non-randomly	distributed	in	a	transcriptional	co-expression	network	

We	first	tested	the	hypothesis	that	genes	with	genetically	variable	expression	response	to	

environmental	gradients	--	eGxE	--	are	non-randomly	distributed	in	a	transcriptional	

regulatory	network.	Previously	(24),	we	re-analyzed	the	Hannah	et	al.	((22);	hereafter	

“cold	data”)	data	in	the	same	statistical	framework	as	was	used	by	Des	Marais	et	al.	(2012;	

hereafter	“drought	data”),	allowing	us	to	partition	variance	in	gene	expression	level	among	

the	effects	of	genotype	(inbred	natural	accession),	environment	(experimental	treatment),	

and	their	interaction	(eGxE).	Here,	we	assess	the	positions	of	these	eGxE	genes	in	an	

Arabidopsis	gene	co-expression	network	estimated	by	Feltus	et	al.	((25);	hereafter	“Feltus	

network”).	The	Feltus	network	was	reconstructed	by	aggregating	data	from	7105	

published	microarray	experiments	differing	in	environment,	tissue,	and	genotype;	this	

network	hypothesis	is	therefore	a	meaningful	summary	of	the	transcriptional	relationships	

among	genes	in	diverse	environmental	settings	and	genomic	backgrounds.	

For	each	gene	(node)	in	the	Feltus	network,	we	calculated	the	degree	of	the	node,	

which	measures	the	number	of	neighboring	nodes	in	the	network,	as	well	as	the	centrality	

if	the	node.	Centrality	of	a	node	estimates	the	number	of	paths	between	other	nodes	that	

pass	through	this	node;	here,	we	present	node	centrality	as	eigenvector	centrality.		A	gene	

will	have	a	high	eigenvector	centrality	if	it	is	both	well	connected	itself	and	if	its	neighbors	
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are	also	well	connected,	see	methods	and	Newman	(26)	for	more	details.		We	obtained	

qualitatively	similar	results	were	obtained	with	alternative	centrality	metrics,	e.g.,	degree,	

betweeness,	and	closeness	centrality,	see	Supplement.	

For	both	data	sets,	genes	showing	significant	eGxE	were	non-randomly	distributed	

with	respect	to	network	degree	and	centrality.		Drought	eGxE	genes	had	lower	degrees	

(Figure	1a)	[median	for	drought:	eGxE	=	4;	non-	eGxE	=	13],	i.e.	had	fewer	connections	to	

other	genes,	and	were	less	central	(Figure	1b)	when	compared	to	non-	eGxE	genomic	

controls).		Cold	eGxE	genes	exhibited	the	reverse	effect,	having	higher	degree	(Figure	1c)	

[median	cold:	eGxE	=	38;	non-	eGxE	=	11]	and	being	more	centrally	located	(Figure	1d)	

compared	to	genomic	controls.		Statistical	significance	was	determined	by	selecting	a	

random	subset	of	genes	equal	in	size	to	the	genes	showing	eGxE	and	then	calculating	their	

degree	and	centrality,	see	Supplement.		Out	of	10,000	permutations,	we	did	not	observe	a	

single	set	of	genes	with	more	extreme	low	(drought)	or	high	(cold)	distributions	of	degree	

and	eigenvector	centrality,	corresponding	to	a	p-value	of	10-4.		

It	is	possible	that	the	relevant	null	distribution	for	determining	statistically	

significant	centrality	does	not	include	the	full	gene	network.	Instead,	because	certain	

pathways	must	be	involved	in	the	phenotypic	response	to	drought	or	cold,	the	correct	null	

distribution	should	be	constructed	using	nearby	genes	(e.g.	those	with	strong	co-

expression	in	the	Feltus	network).		To	explore	this	possible	statistical	artifact,	we	

performed	standard	community	detection	using	the	leading	eigenvector	method	(27)	as	

implemented	in	the	R	package	igraph	v.1.0.1	(28)	on	the	Feltus	network	and	subdivided	the	

graph	into	sets	of	genes	that	are	densely	connected	among	themselves	and	loosely	

connected	to	other	parts	of	the	gene	co-expression	network.		Averaging	the	results	across	

all	detected	communities,	with	significance	again	determined	by	permutation	test,	we	

recover	the	same	general	pattern	seen	in	the	global	network:		Cold	eGxE	genes	have	higher	

degree	(cold	eGxE	genes	had	a	median	of	34	more	connections	than	non	eGxE	genes)	and	a	

significantly	higher	median	eigenvector	centrality	(median	0.14	above	non	eGxE),	while	

drought	eGxE	genes	have	lower	degree	(cold	eGxE	genes	had	a	median	of	16	fewer	

connections	than	non	eGxE	genes)	and	had	a	significantly	lower	eigenvector	centrality	

(median	0.04	below	non	eGxE).		
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We	further	validated	this	result	by	performing	iterative	out-of-sample	model	

validation.		Briefly,	we	randomly	selected	80%	of	genes	in	the	network	and	constructed	a	

generalized	linear	model	with	a	binomial	error	distribution	(i.e.	a	logistic	regression)	to	

predict	genes	as	eGxE	based	solely	on	their	degree	and	eigenvector	centrality.		We	then	

predicted	the	eGxE	state	for	the	remaining	20%	of	genes	and	recorded	the	error.		We	

repeated	this	procedure	1,000	times	for	both	cold	and	drought.		Assuming	a	threshold	for	

accurate	classification	of	5%,	we	were	able	to	correctly	classify	95.4%	of	genes	for	cold	and	

77.0%	of	genes	for	drought.		These	results	accommodate	classification	errors	for	both	eGxE	

and	non-	eGxE	genes,	which	means	that	for	cold	we	were	able	to	correctly	classify	nearly	

every	gene	included	in	the	co-expression	network	as	being	eGxE	based	solely	on	its	degree	

and	eigenvector	centrality.	

	

eGxE	genes	show	modular	distribution	that	differs	between	environments	

We	next	asked	whether	the	non-random	distribution	of	node	connectivity	of	eGxE	

genes	reflects	their	membership	in	particular	sub-communities,	or	modules,	of	interacting	

genes.	Interestingly,	both	the	cold	and	drought	eGxE	genes	were	non-randomly	distributed	

with	respect	to	the	sub-communities	defined	using	our	community	detection	approach.		

32.5%	of	all	cold	eGxE	genes	exist	within	a	single,	large	sub-community	containing	605	

genes	(Figure	2a)	and	an	additional	26.5%	of	cold	eGxE	genes	are	found	in	a	second	large	

sub-community	containing	425	genes.	In	contrast,	for	drought,	the	two	sub-communities	

with	highest	accumulation	of	eGxE	genes	together	contain	only	18%	of	the	total	number	of	

eGxE	genes	(Figure	2b).	Moreover,	drought	eGxE	are	statistically	over-represented	in	five	

small	sub-communities	comprised	of	between	10	and	100	members	(Figure	3a),	while	cold	

eGxE	genes	are	clustered	in	a	few	large	communities	(Figure	3b).	The	membership	of	eGxE	

genes	in	sub-communities	of	differing	size	recapitulates	our	earlier	result:	cold	eGxE	genes	

tend	to	be	functionally	connected	to	many	other	genes,	while	genes	involved	in	drought	

response	tend	to	be	in	peripheral	network	positions	(see	Figure	1).		

To	test	the	hypothesis	that	the	sub-communities	with	diverging	patterns	of	

expression	eGxE	reflect	natural	variation	in	function,	we	took	the	genes	in	the	two	sub-

communities	with	the	most	overrepresentation	in	cold	and	in	drought	response	and	tested	

for	enrichment	of	gene	ontology	(GO)	annotations.	We	found	116	significant	GO	terms	
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enriched	in	the	most	over-represented	cold	eGxE	sub-community.	The	top	7	terms	were	all	

related	to	photosynthesis	and	related	processes,	and	the	next	two	terms	were	for	response	

to	abiotic	stimulus	and	response	to	cold	(Table	S1).	Altered	primary	metabolism	is	

frequently	observed	during	cold	acclimation,	in	part	due	to	the	accumulation	of	sugars	as	

cryoprotectants	(29,	30),	so	this	eGxE	may	reflect	that	some	of	the	sampled	accessions	

modify	metabolism	during	cold	response	to	a	different	degree	than	do	other	accessions.	We	

found	89	significant	GO	terms	enriched	in	the	most	over-represented	drought	eGxE	sub-

community.	The	top	term	and	many	of	the	subsequent	terms	were	for	immune	and	defense	

responses	(Table	S2;	many	genes,	particularly	kinases,	involved	in	immune	and	defense	

responses	also	show	responses	to	abiotic	stress	(31)).	Previously,	we	found	that	drought	

eGxE	genes	showed	very	few	significant	functional	enrichments	using	a	genome-wide	test	

for	statistical	enrichment	(23),	suggesting	that	the	network-informed	approach	used	here	

may	afford	additional	statistical	power	to	detect	functional	patterns	in	these	high-

dimensional	datasets.	

	

The	evolution	of	gene	expression	response	to	the	environment	

Previously,	we	demonstrated	an	important	role	of	cis-regulatory	variants	

underlying	diversity	of	environmental	response	among	natural	genotypes	of	Arabidopsis	

(24).	Natural	variation	in	response	to	drought	showed	different	genomic	patterns	than	did	

natural	variation	in	response	to	cold,	suggesting	that	natural	selection	may	affect	different	

parts	of	the	transcriptional	regulatory	networks	for	these	two	complex	traits.		Specifically,	

the	proximal	promoters	of	genes	showing	eGxE	for	drought	stress	had	significantly	higher	

nucleotide	diversity	and	significantly	higher	among-genotype	variation	in	key	drought-

responsive	promoter	motifs	(specifically,	abscisic	acid	responsive	elements,	ABREs)	when	

compared	to	genome	averages;	neither	pattern	was	observed	for	cold	eGxE	genes.		These	

earlier	observations	for	eGxE	drought	genes	are	consistent	with	the	results	presented	here:	

drought	eGxE	genes	are	in	smaller	modules	and	are	relatively	lowly	connected	to	other	

genes,	suggesting	that	genetic	variation	in	expression	response	to	the	environment	is	

controlled	locally,	possibly	by	a	large	number	of	cis-acting	variants.	This	architecture	may	

permit	functionally	diverse	modules	to	act	independently	from	one	another,	i.e.	showing	

environmental	response	in	only	some	genotypes	(32).	Our	results	may	also	explain	why	
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expression	QTL	(eQTL)	studies	of	plant	response	to	drying	identify	a	preponderance	of	cis-	

acting	eQTL	and	few	trans-	eQTL	(33,	34).	Both	of	these	observations	fit	our	broader	

conception	of	how	local	populations	adapt	to	soil	drying	stress.	Diverse	populations	and	

species	acclimate	to	transient	soil	drying	stress	in	diverse	ways	--	via	changes	in	growth,	

transpiration,	leaf	area-volume	ratios,	timing	of	reproduction,	synthesis	of	various	

osmoprotectants	cell	wall	composition,	and	chaperonins,	to	name	but	a	few	(Chaves	et	al.	

2003).	The	extent	to	which	these	alterations	are	under	independent	or	common	genetic	

control	is	presently	unknown.	

By	contrast,	nucleotide	diversity	in	the	proximal	promoters	of	cold	eGxE	genes	is	

elevated	compared	to	genome	averages	(though	not	statistically	significant;	(24)).	

Compared	to	genome	averages,	we	also	observed	statistically	lower	turnover	of	known	

cold-responsive	motifs	(specifically,	the	c-repeat	binding	factor/dehydration	responsive	

elements,	CRT/DREs)	among	genotypes	in	the	promoters	of	cold	eGxE	genes.	These	

patterns	suggest	that	the	transcriptional	control	of	eGxE	for	cold	acclimation	is	driven	by	

genetic	variants	in	upstream	regulatory	features,	such	as	transcription	factors,	while	cis-

regulatory	elements	involved	in	cold	response	may	be	under	purifying	selection.	Indeed,	a	

recent	study	demonstrated	that	multiple,	apparently	independent,	loss	of	function	

mutations	in	key	transcriptional	regulators	of	cold-responsive	genes	are	associated	with	

geographic	variation	in	winter	temperature	across	the	range	of	A.	thaliana	(35).	The	

activity	of	CBF	transcription	factors	shows	a	strong	positive	correlation	with	the	capacity	of	

A.	thaliana	natural	accessions	to	acclimate	to	cold	(22,	36).	

	

Conclusions	

Our	results	suggest	that	topological	relationships	among	genes	in	transcriptional	

regulatory	networks	affect	how	natural	populations	adapt	to	the	multivariate	environment.	

A	promising	extension	of	our	approach	is	to	link	information	regarding	the	topological	

features	of	a	given	gene	–	its	connectivity,	in	the	case	presented	here,	as	well	as	its	

membership	in	particular	functional	modules	–	with	information	associating	genetic	

variants	with	phenotype	from	genetic	mapping.	Such	a	combined	analysis	could	clarify	how	

putatively	functional	variants	identified	via	association	mapping	result	in	phenotypic	

variation	via	cellular	and	physiological	mechanisms	(37).	
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From	an	applied	perspective,	and	improved	understanding	of	how	natural	variation	

affects	transcriptional	regulatory	networks	may	inform	decisions	about	how	to	improve	

agricultural	performance	in	challenging	environments.	We	note	that	breeding	for	improved	

performance	under	soil	drying	has	been	quite	challenging	(38);	our	results	suggest	that	

manipulating	genes	at	the	“tips”	of	regulatory	networks,	shown	herein	to	exhibit	drought	

eGxE,	may	be	a	more	fruitful	strategy	than	targeting	central	regulatory	molecules	which	

may	exhibit	undesirable	pleiotropic	effects	(“yield	drag;”	e.g.	(39)).		

	

Methods	

Co-expression	and	regulatory	networks	

We	used	two	published	datasets	on	gene	expression	interactions	in	in	Arabidopsis	thaliana.	

The	first	dataset	was	global	(i.e.	genome-wide	and	not	restricted	to	certain	functions	or	

pathways).	We	used	the	global	co-expression	network	and	86	subcomponent	genome-wide	

gene	coexpression	networks	created	by	(25).	The	authors	first	obtained	7,105	publicly	

available	ATH1	Affymetrix	microarray	samples	and	applied	a	thresholding	algorithm	

(random	matrix	theory)	to	generate	a	global	network	containing	3,297	nodes	and	129,134	

edges.	These	nodes	represent	16%	of	Arabidopsis	genes	on	the	ATH1.		

	

A	complication	from	this	approach	arises	because	of	interactions	between	genotype,	

expression	networks	and	environment	(including	ontogeny,	tissue,	or	cell	type;	(40)).	Thus	

a	prior	step	of	partitioning	expression	data	may	help	to	account	for	some	of	this	

heterogeneity	and	better	reveal	co-expression	networks.	Through	k-means	partitioning,	

Feltus	et	al.	(25)	generated	86	gene	interaction	layers	(GILs),	i.e.	86	smaller,	non-global	

networks,	that	together	included	19,588	genes,	which	represents	95%	of	Arabidopsis	genes	

on	the	ATH1.	

	

Data:	transcriptomic	responses	to	cold	and	drought	stress	

We	used	two	published	studies	on	natural	variation	in	transcriptomic	response	to	cold	(22)	

and	drought	(23).	Both	studies	used	the	ATH1	microarray	to	estimate	genome-wide	

transcript	abundance.	Each	study	subjected	a	diverse	panel	of	9	(22)	or	17	(23)	natural	

accessions	to	a	cold	or	drought	treatment,	respectively.	Lasky	et	al.	(2014)	re-analyzed	the	
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Hannah	et	al.	dataset	to	match	the	analyses	by	Des	Marais	et	al.	In	brief,	those	authors	

modeled	transcript	abundance	using	factorial	ANOVA	including	Accession	(i.e.	Genotype),	

Treatment,	and	their	interaction	and	identified	significantly	differentially	expressed	gene	

models	at	pFDR	of	0.05.	

	

Network	Methods	

We	quantified	the	degree	to	which	a	gene	was	central	using	four	standard	network	metrics,	

1.)	degree	(raw	number	of	connections),	2.)	closeness	centrality	(the	inverse	of	the	average	

shortest	path	between	the	focal	gene	and	all	other	genes	in	the	network),	3.)	betweenness	

centrality	(number	of	shortest	paths	between	all	pairs	of	nodes	in	the	network,	which	pass	

through	the	focal	node),	and	4.)	eigenvector	centrality.		Eigenvector	centrality,	which	is	

closely	related	to	Google's	PageRank	algorithm	(41)	measures	a	node's	centrality	based	on	

both	the	node's	own	position	in	the	network	and	the	position	of	that	node's	neighbors	in	

the	network.		More	specifically,	a	node's	eigenvector	centrality	will	be	proportional	to	the	

average	centralities	of	its	neighbors	(26)	

	

To	identify	community	structure	and	assign	genes	to	communities,	we	used	the	leading	

eigenvalue	algorithm.			Our	goal	was	to	determine	whether	there	are	groups	of	genes,	

which	are	more	connected	to	each	other	than	they	are	to	other	genes,	referred	to	as	

community	detection	(42)		A	variety	of	methods	exist	for	performing	community	detection,	

but	we	selected	the	leading	eigenvalue	approach	because	it	is	computationally	efficient	on	

large	networks.		Briefly,	the	adjacency	matrix	of	the	network	is	corrected	based	on	the	

expected	number	of	edges	in	a	random	graph,	using	the	configuration	model,	then	the	

distribution	of	eigenvalues	and	the	loading	of	nodes	onto	eigenvectors	can	be	used	to	1.)	

determine	whether	evidence	exists	for	the	presence	of	modular	communities	and	2.)	

assuming	such	structure	exists,	assign	genes	to	communities,	see	Newman	2006	for	more	

details.		All	of	the	analyses,	i.e.	calculation	of	centrality	measures	and	community	detection,	

was	performed	using	the	R	package	igraph	v.1.0.1	(28).	
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Enrichment	analyses	

We	tested	whether	genes	with	multiple	types	of	expression	response	to	abiotic	stress	

exhibited	non-random	network	metrics.	We	also	tested	whether	genes	exhibiting	high	Fst	

exhibited	non-random	network	metrics.	Determining	whether	a	gene	has	a	higher	value	for	

any	of	these	metrics	is	not	appropriate	for	parametric	stats.		Therefore,	we	conducted	

permutations	to	generate	null	expectations.	The	natural	accessions	used	in	this	study	all	

show	varying	degrees	of	sequence	divergence	and	gene	gain/loss	as	compared	to	the	

reference	Col-0	genome,	which	was	used	to	generate	the	microarrays	used	in	these	

experiments.	This	variance	could	generate	spurious	“gene-by-environment	interaction”	for	

gene	expression.	We	therefore	used	a	strict	filtering	scheme	to	exclude	genes	that	had	

polymorphisms	in	ATH1	probe	sites	(23).	In	order	to	assess	the	biological	function	of	

regulatory	communities,	we	first	identified	communities	containing	the	greatest	

proportion	of	GxE	genes	for	each	abiotic	stressor.	We	then	tested	gene	ontology	(GO)	term	

enrichment	in	each	of	these	communities	(AgriGO).	
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Figure	1	–	Presents	the	distribution	of	degree	for	drought	(A.)	and	(C.)	eGxE	genes	(left,	

darker)	and	non-eGxE	genes	(right,	lighter)	and	the	eigenvector	centrality. 	
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Figure	2	–	Presents	the	cold	eGxE	(A)	and	drought	eGxE	(B)	communities	with	the	

highest	proportion	of	eGxE	genes.	
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Figure	3	–	Presents	the	drought	eGxE	(A)	and	cold	eGxE	(B)	distribution	of	the	fraction	

eGxE	and	the	total	community	size.	
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