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Summary

1. Wildlife surveys are often used to estimate the density, abundance, or distribution of animal populations.

Recently, model-based approaches to analyzing survey data have become popular because one can more

readily accommodate departures from pre-planned survey routes and construct more detailed maps than

one can with design-based procedures.

2. Species distribution models fitted to wildlife survey data often make the implicit assumption that locations

chosen for sampling and animal abundance at those locations are conditionally independent given modeled

covariates. However, this assumption is likely violated in many cases when survey effort is non-randomized,

leading to preferential sampling.

3. We develop a hierarchical statistical modeling framework for detecting and alleviating the biasing effects of

preferential sampling in species distribution models fitted to count data. The approach works by jointly

modeling wildlife state variables and the locations selected for sampling, and specifying a dependent

correlation structure between the two models.

4. Using simulation, we show that moderate levels of preferential sampling can lead to large (e.g. 40%) bias

in estimates of animal density, and that our modeling approach can considerably reduce this bias.

5. We apply our approach to aerial survey counts of bearded seals (Erignathus barbatus) in the eastern

Bering Sea. Models that included a preferential sampling effect led to lower estimates of abundance than

models without, but the effect size of the preferential sampling parameter decreased in models that included

explanatory environmental covariates.

6. When wildlife surveys are conducted without a well-defined sampling frame, ecologists should recognize

the potentially biasing effects of preferential sampling. Joint models, such as those described in this paper,

can be used to test and correct for such biases. Predictive covariates are also useful for bias reduction, but

ultimately the best way to avoid preferential sampling bias is to incorporate design-based principles such as

randomization and/or systematic sampling into survey design.
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Introduction1

Surveys of unmarked animal populations are often used to estimate abundance and occurrence of animal populations and to predict2

species distributions, enterprises central to conservation, ecology, and management. For studies of abundance, researchers historically3

relied on design-based statistical inference (e.g. Cochran 1977), which requires adoption of a pre-defined sampling frame (e.g.4

using systematic random sampling, stratified random sampling, or some variant thereof). Designing animal surveys is relatively5

straightforward in such applications, and unbiased point and variance estimators are available. Recently, however, there has been a6

surge in research describing model-based procedures for estimating abundance, density, and occupancy from surveys of unmarked7

animals, including N-mixture and Dail-Madsen models for repeated point counts (Royle 2004; Dail & Madsen 2011), occupancy8

models for presence-absence surveys (MacKenzie et al. 2002; Johnson et al. 2013), and various model-based formulations for9

distance-sampling data (Hedley & Buckland 2004; Johnson et al. 2010; Miller et al. 2013). In such applications, it is common10

to use habitat or environmental covariates together with spatial effects (e.g. via trend surfaces or spatial random effects) to predict11

density or distributions across the landscape. We shall refer to the amalgam of model-based approaches for making spatially explicit12

inference about animal populations as “species distribution models” (SDMs; sensu Elith & Leathwick 2009), even though this term13

is more often used to refer to animal occurrence than it is to density or abundance.14

One of the main advantages of using SDMs is that one is no longer beholden to predetermined sampling frames, and can potentially15

use data gathered from non-randomized designs or platforms of opportunity to make inferences about animal populations (Johnson16

et al. 2010). However, in a recent paper, Diggle et al. (2010) emphasized that spatially explicit statistical models can easily provide17

biased estimates when sampling disproportionately targets locations where the response of interest is higher (or lower) than expected18

given a particular set of explanatory covariates. In the context of SDMs, this might occur if sampling disproportionately occurs in19

locations where animals are known to be present or of high abundance. For example, if volunteer inventory participants have access20

to multiple sites with similar covariate values, bias might arise if they consistently choose sites where species are thought or known21

to be present. Bias might also arise if surveying effort is higher near bases of operations, and if animal abundance is higher (or lower)22

near bases of operations than elsewhere in the landscape.23

In this article, we explore potential for bias in SDMs resulting from preferential sampling (hereafter, PS), and describe several24

model-based approaches for detecting and correcting for such biases. We start by describing a common currency for notation and25

basic model structures considered in this paper. Second, we review PS bias in a mathematical light, and describe prior approaches26

to coping with its effects. Third, we introduce a novel generalization of previously proposed PS models, allowing the investigator to27

jointly model animal encounter data and the locations chosen for sampling, including possible dependence structure between these28

two types of observations. Fourth, we conduct a simulation study to examine the performance of traditional SDMs and our newly29

developed PS model when data are gathered preferentially. Finally, we demonstrate our modeling approach by analyzing aerial survey30

counts of bearded seals (Erignathus barbatus) in the Bering Sea.31

Materials and methods32

NOTATION AND BASIC MODEL STRUCTURES33

We focus here exclusively on discrete space (areal) models for animal encounter data as these seem to be the dominant form used34

in design and analysis of animal population surveys, although we note that PS is likely to affect analyses similarly regardless of the35

choice of spatial domain. We suppose that the investigator intending to fit a SDM to animal encounter data breaks their study area36

up into S survey units (label these U1, U2, . . . , US), of which n are selected for sampling (call the set of sampled locations S). Each37

survey unit i is assigned a vector of covariates, xi, and an indicator Ri that takes on the value 1.0 if location i is sampled (i.e. if38

Ui ∈ S), and is 0 otherwise. To formulate a “traditional” SDM, one could then write animal abundance or occurrence as a stochastic39

realization of a probability mass function f():40

Zi ∼ f(g−1(µi)). eqn 1
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Preferential sampling in species distribution models 3

In this example, Zi denotes the state variable of interest (e.g. occupancy or abundance), g() is a link function (e.g. probit or logit for41

occupancy, log for count data), and µi is a link-scale intensity value. In applications described in this paper, we write the intensity as42

µi = β0 + xiβ + δi, eqn 2

where β0 is an intercept parameter, xi is a row vector of m predictive covariates associated with site i, β = {β1, β2, . . . , βm} is a43

column vector ofm regression parameters, and δ = {δ1, δ2, . . . , δS} are spatially autocorrelated random effects. For occupancy, f()44

would typically be Bernoulli, while the Poisson or negative binomial are typically choices for analysis of count data; common forms45

for δi include geostatistical specifications (Cressie 1993; Diggle et al. 1998), Gaussian Markov random fields (e.g. conditionally46

autoregressive models; Rue & Held 2005), or low rank alternatives such as predictive process (Banerjee et al. 2008; Latimer et al.47

2009) or restricted spatial regression models (Reich et al. 2006; Hughes & Haran 2013).48

The model for Zi describes variation in the process of interest and is often described as the “process” model. However, it is usually49

impossible to observe the system perfectly even in locations where sampling occurs, so it is customary to include an observation50

model describing incomplete detection. For occupancy studies, the response variable Yi = 1 if the species of interest is detected and51

is 0 otherwise, and is modeled with a Bernoulli distribution (Royle & Dorazio 2008):52

Yi ∼ Bernoulli(Zipi). eqn 3

Here, the detection probability pi is possibly a function of survey and observer specific covariates. Replicate surveys of the same53

sampling unit provide the necessary information to estimate pi. For count surveys, a possible model is54

Yi ∼ Poisson(ZiAipi), eqn 4

where the Yi now represents the count of animals obtained while surveying unit i, Ai denotes the proportion of sample unit i that is55

surveyed, and pi gives detection probability. Additional information will often be needed to estimate pi in this context, such as data56

from double observers, distance observations, or double sampling (see e.g. Buckland et al. 2001; Royle et al. 2004; Borchers et al.57

2006; Conn et al. 2014).58

For the remainder of this treatment, we use bold symbols to denote vector-valued quantities or matrices. We also use standard59

bracket notation to denote probability mass and density functions. For instance [Z] denotes the marginal probability mass function60

for Z, and [Z|Y] represents the conditional distribution of Z given Y. We use µ and ν to denote log-scale abundance and the logit61

of the probability of sampling, so that Zi ∼ f(µi), and Ri ∼ f(νi). We use the notation Zi when describing the state process in62

general terms, but often switch to the conventional notation Ni when animal abundance is the explicit focus of interest.63

PREFERENTIAL SAMPLING: A PRIMER64

One of the appealing aspects of model-based estimation is that there is no requirement that surveys rely on a pre-planned survey65

design selected probabilistically from an underlying sampling frame. For instance, investigators can reallocate sampling effort if66

weather or logistics preclude surveying in a desired location. This can be a crucial advantage in surveys covering large areas with67

frequent inclement weather. It also opens the door for using platforms of opportunity, presence only, and citizen science data for68

estimation.69

However, the manner in which effort is ultimately allocated can potentially have profound influence on SDM estimator70

performance. With respect to nonrandom sampling, two possible problems seem particularly likely in discrete spatial domains:71

coarse scale preferential sampling (CSPS), and fine scale preferential sampling (FSPS) (Fig. 1). FSPS arises when the observations72

taken at a particular sampling unit are non-random with respect to the density of animals within that sampling unit. For instance,73

when allocating line transect survey effort, it may be tempting to place the transect in a manner that targets habitat or landscape74

features that maximize the number of animals that will be encountered. However, this strategy will clearly lead to positive bias when75

estimating density or abundance.76
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By contrast, CSPS (hereafter, PS), the primary focus of this article, arises when the locations being sampled and the process of77

interest (e.g. density, occupancy) are conditionally dependent given modeled covariates (Diggle et al. 2010). For instance, PS can78

occur when the investigator uses a priori knowledge or observations of the state variable obtained during sampling to allocate survey79

effort in places where abundance or occurrence is known to be high. Diggle et al. (2010) showed that this type of PS can lead to80

bias when this extra information is not included in models for the state variable of interest. Specifically, PS arises when we consider81

the set of sampled locations as stochastic and when [R,Z|x] 6= [R|x][Z|x], where R is an indicator vector whose elements Ri are82

1.0 if sampling unit i is sampled and are zero otherwise. We use this definition of PS throughout the rest of the manuscript, noting83

that it is somewhat different than has sometimes been used in the SDM literature. For instance, Merckx et al. (2011) use the term84

“preferential sampling” to refer to the process of visiting some sites more often than others, while Manceur & Kühn (2014) define it85

as occurring when the locations selected for sampling are a function of an environmental covariate. Neither of these latter conditions86

are problematic outside of the specialized field of presence-only modelling.87

Diggle et al. (2010) demonstrated PS with an environmental monitoring problem, whereby pollutant monitoring stations were88

more highly clustered around urban areas with high concentrations of pollutants than in rural areas with comparably low levels of89

pollutants. Fitting simple geostatistical models without fixed effects led to positively biased estimates of landscape-level pollutant90

concentrations. Presumably (and as noted by discussants of the article) including a fixed effect associated with a relevant covariate91

(e.g. a development index) would likely reduce or eliminate bias. However, the primary point of Diggle et al. (2010) is well taken:92

inclusion of spatially autocorrelated random effects in a statistical model is insufficient to remove the potentially biasing effects of93

PS.94

As in the pollution example, having good explanatory covariates may also reduce bias when fitting SDMs to animal encounter95

data under PS. However, in many ecological applications, predictive covariates explain only a small portion of variation present96

in the data. If the locations selected for sampling are a function of some unmodelled factor related to abundance (intentionally or97

unintentionally) , bias may still occur. Despite the clear potential for bias in SDMs, there are few examples where PS (sensu Diggle98

et al. 2010) is discussed with regard to SDMs. One exception is Chakraborty et al. (2010), who acknowledged the likely presence99

of PS when fitting SDMs to data obtained using nonrandomized designs. However, they did not attempt to account for PS in their100

models.101

In design-based sampling, unequal sampling intensity is often accommodated via stratification or unequal probability sampling,102

as with Horvitz-Thompson-like estimators where the probability of inclusion varies by sampling unit (Cochran 1977). However, in103

the case of PS, this inclusion probability also depends on the value of the response associated with the sampling unit. Evidently, any104

approach to account for PS should also account for the dependence between the state variable of interest and the locations chosen for105

sampling.106

Several authors have attempted model-based corrections for PS in the statistical literature. For Gaussian models in a continuous107

spatial domain, Diggle et al. (2010) and Pati et al. (2011) jointly modeled the locations that are chosen for sampling and the108

underlying random field of interest. In particular, they expressed sampled locations as an inhomogeneous Poisson point process where109

the underlying log-scale intensity depended linearly on spatially-referenced random field values. For instance, writing observations110

of the spatial random field at a location i as111

Zi = µi + εi, eqn 5

the spatially continuous relative intensity (ψi) of sampling locations at i could be written as112

ψi ∝ exp(ξi + bµi). eqn 6

Here, the parameter b describes the level of PS; b = 0 implies no PS, b > 0 implies a greater level of sampling in locations where the113

spatial process (e.g. animal density) is high, and b < 0 implies greater sampling where the spatial process is low. Importantly, when114

explanatory covariates are used in models for µi and ξi, Pati et al. (2011) show that “. . . accounting for informative sampling is only115

necessary when there is an association between the spatial surface of interest and the sampling density that cannot be explained by116
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Preferential sampling in species distribution models 5

the shared spatial covariates.” Pati et al. (2011) also consider a simpler, plug-in based estimator, where the log of a nonparameteric117

estimate of sampling density (specifically, a two dimensional kernel density estimate) is used as an additional fixed effect in Eq. 5,118

finding that this approach helped reduce bias associated with PS, but did not perform as well as the full joint model.119

A GENERALIZED PREFERENTIAL SAMPLING MODEL120

The models considered by Diggle et al. (2010) and Pati et al. (2011) are a useful first step in addressing and modeling PS. However,121

they are somewhat limited since they are specific to continuous spatial domains, continuous data (as opposed to presence/absence or122

count data), and Gaussian error distributions. Also, they require the linear predictor of the PS model to be written as a simple linear123

function of the the spatial process model for density. In real world applications, we can envision cases where sampling is strongly124

preferential in certain areas of the landscape, and not in others. For instance, sampling may be more strongly preferential close to125

bases of operations, (e.g. landing strips in the case of aerial surveys), but less so in areas that are harder to get to.126

Given these limitations, our present task is to generalize PS models to the types of data more typical of SDMs, and to allow the127

degree of PS to vary across the landscape. Like Diggle et al. (2010) and Pati et al. (2011), we impose a joint model for the process128

of interest (animal abundance or occurrence) and the locations chosen for sampling. For the abundance process model, we start with129

eq. 1 as a general formulation for non-Gaussian data, writing the link-scale expectation as in eq. 2. Next, recalling that Ri is a binary130

indicator taking on the value 1.0 if survey unit i is selected for sampling, and is 0.0 otherwise, we model Ri using a Bernoulli131

distribution:132

Ri ∼ Bernoulli(h−1(νi)), eqn 7

where h() denotes a link function appropriate for binary data (e.g. logit, probit). We then write the intensity for this model as133

ν = β∗
0 + x∗β∗ + η +Bδ. eqn 8

In a similar fashion to the model for the state process, the sampling intensity model has an intercept (β∗
0 ), explanatory covariates134

(x∗
i ), fixed effect regression parameters (β∗) and spatially autocorrelated random effects (η and δ). The predictive covariates xi from135

Eq. 2 and x∗
i from Eq. 8 may or may not be the same. Note also that the spatially autocorrelated random effects δ are included in136

both Eqs. 2 and 8, allowing for dependency in the two models, with the matrix B describing the strength and type of dependence137

between the sampling process and underlying density. The spatially autocorrelated random effects η are assumed independent of the138

δ. In practice, we find we often need to fix β∗
0 = 0.0 when random effects in Eq. 8 are estimated to permit parameter identification.139

The formulation in Eq. 8 is similar to the one previously proposed for hierarchical multivariate models with spatial dependence140

(cf. Royle & Berliner 1999). There are multiple ways of structuring B depending on the complexity of spatial dependence desired141

for the PS process (Royle & Berliner 1999). For instance, setting B = 0S×S corresponds to an absence of spatial dependence (and142

thus no PS). Setting B = bI, where b is an estimated parameter and I is an (S × S) identity matrix corresponds to the linear PS143

model suggested by Diggle et al. (2010) and Pati et al. (2011). Alternatively, we could allow the degree of PS to vary across the144

landscape. For instance, one can contemplate a trend surface model for PS by specifying a diagonal matrix for B, with entries given145

by b0 + b1lati + b2longi, where b0, b1, and b2 are estimated parameters and lati and longi give latitude and longitude, respectively146

(Royle & Berliner 1999). Theoretically, one could include more highly parameterized structures for spatial dependence, such as147

higher order trend surface or spline formulation (Royle & Berliner 1999), but the ability to robustly estimate the parameters of such148

a model is likely dependent on having a rich, spatially balanced dataset, which is often not the case in ecological applications.149

A comparison of the performance of models with different sets of constraints on B can serve as a test of PS. In particular, if one150

can demonstrate that models with B = 0 perform similarly or better than models with B 6= 0, then PS is likely not worth modeling151

and inference can proceed using standard SDMs (i.e. not modeling sampling intensity).152
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6 P. B. Conn, J. T. Thorson, & D. S. Johnson

SIMULATION STUDY153

To illustrate PS and demonstrate that our proposed model has reasonable performance, we conducted a small simulation experiment.154

For each of 500 simulations, we generated abundance of a hypothetical species over a 25× 25 grid as155

[Ni|µi] = Poisson(exp(µi)),

where i indexes survey unit i, and µi is determined according to Eq. 2. Abundance was generated as a function of a single spatially156

autocorrelated landscape covariate, as well as residual spatial autocorrelation (δi) and overdispersion (fig. 2). Specific details of data157

generation procedures are provided in Appendix S1.158

For each simulated landscape we generated three virtual count surveys using eqs. 7 and 8. Each survey had β∗ = ηi = 0 (that159

is, no covariate or spatially autocorrelated random effects), but differed in how the matrix B was parameterized. In the first, we set160

B = 0, so that surveyed locations were selected independently of the abundance generating process. For the second and third, we161

set B to be a diagonal matrix with entries b = 1 and b = 5, respectively, so that the probability of sampling a given survey unit (grid162

cell) was explicitly dependent on the latent abundance in that unit. We refer to these scenarios as moderate and pathological PS,163

respectively (see fig. 3). Simulations were configured so that n = 50 of the 625 survey units were sampled; each survey was set to164

cover half of the target cell.165

We fitted two different models to each count dataset, both of which were provided the habitat covariate used (in part) to generate166

the data for which a log-linear coefficient β was estimated. In the first model, the elements of B in eq. 8 were all set to zero. In167

this case, the abundance and sampling process submodels were independent, as is the case canonical SDMs (at lest when fitted168

to presence-absence or count data). In the second model, we included an explicit connection between the distribution of animal169

abundance and the sampling process by setting B = bI, where b is an estimated parameter, and I is an identity matrix.170

We used maximum likelihood to conduct statistical inference. In particular, we used Template Model Builder (TMB; Kristensen171

et al. 2016), interfaced with the R programming environment, to conduct maximization. The TMB software uses a Laplace172

approximation to integrate out random effects (η and δ), and a bias correction algorithm (Tierney et al. 1989; Thorson & Kristensen173

In Press) to obtain abundance estimates and standard errors that properly account for nonlinear transformations of random effects.174

This approach resulted in a facile implementation and speedy computing times, allowing us to conduct simulation and model testing175

with greater efficiency than would have been possible with Bayesian simulation. Further detail on statistical methods are provided in176

Appendix S1; requisite R and TMB code will be published to a publicly accessible repository upon acceptance, and is also available177

at https://github.com/NMML/pref_sampling/.178

BEARDED SEAL COUNT SURVEYS179

We applied our modeling technique to counts of bearded seals obtained on aerial transects flown over the eastern Bering Sea from180

10-16 April, 2012 (Fig. 5). These counts were gathered as part of a larger survey designed to estimate abundance of four species of181

ice-associated seals; the survey is described in greater detail elsewhere (Conn et al. 2014, 2015). The survey area considered here182

consists of 25 by 25 km grid cells bordered to the north by the Bering strait, to the west by the international date line, to the south by183

maximal April ice extent, and to the east by the Alaska, USA mainland. Here, we limit counts to those gathered within a one week184

period so that relative abundance will remain relatively constant throughout the study area. Our primary focus in this application is185

to diagnose PS (rather than to estimate absolute abundance). As such, we do not attempt to correct for nuisance processes such as186

incomplete detection or species misclassification, which requires models of increased sophistication (Conn et al. 2014).187

Our choice to model bearded seal counts, as opposed to one of the other seal species, is based on the observation that bearded188

seal densities tend to be highest in the northern portion of the study area. This is also the location of one of the primary airports used189

to prosecute surveys (Nome, Alaska, USA). Higher survey coverage in areas of high bearded seal density could potentially lead to190

positive bias in apparent abundance owing to PS.191
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Preferential sampling in species distribution models 7

To test for such an effect, we modeled bearded seal counts using the formulation192

[Yi|Zi] = Poisson(PiZi), where

Zi = Ai exp(µi),

where Pi defines the proportion of grid cell i that is sampled, Ai gives the proportion of grid cell i that is composed of salt water193

habitat, and µi is defined in Eq. 2. We modeled the grid cells that were chosen for sampling using Eqs. 7-8.194

We fitted a total of six models (Mcov=0,b=0,Mcov=0,b=1,Mcov=1,b=0,Mcov=1,b=1) to bearded seal count data using the same195

estimation framework as in the simulation study. Models varied by (i) whether or not habitat and landscape variables were used as196

predictors of bearded seal density (cov = 1 and cov = 0, respectively), and (ii) the form of PS (b = 0 indicates no PS; b = 1 indicates197

B = bI, where b is an estimated parameter). We also attempted to fit models where the PS B matrix varied over the landscape using198

a trend surface specification, but parameter identification was suspect in these models and are not reported here (see Appendix S2199

for more information). When habitat and landscape variables were included, we used three log-linear predictors: linear and quadratic200

functions of sea ice concentration, and distance from the southern ice edge. Remotely sensed sea ice data were obtained at a 25× 25201

km resolution from the National Snow and Ice Data Center, Boulder, CO, USA, as described by Conn et al. (2014). Models for202

µi and νi both utilized spatially autocorrelated random effects with a Matérn covariance function between grid cell centroids (see203

Appendix S1 for further details). When covariates were included, they were included in both models (i.e. for µi and νi).204

Results205

SIMULATION STUDY206

Estimates of cumulative animal abundance across simulated landscapes were median unbiased for both estimation methods when207

the sites selected for sampling were independent of animal density, though when b was estimated, abundance estimates were more208

right skewed and had higher variance (fig. 4). Under moderate PS (b = 1), estimation of the PS parameter b led to a median bias of209

5%, while the canonical SDM model ignoring preferential sampling had a median bias of 40%. Under pathological PS (b = 5), both210

estimation methods were extremely biased, but was even more severe for the naive model ignoring PS (fig. 4).211

BEARDED SEAL ANALYSIS212

Marginal AIC strongly favored models with covariate effects, but for such models the presence of PS was equivocal (Table 1).213

Further intuition can be gained by examining estimates of the PS parameter, b. For the PS model without predictive covariates,214

b̂ = 0.27 (SE 0.11), and for the model with predictive covariates, b̂ = 0.19 (SE 0.13). Thus, it appeared that including predictive215

covariates decreased the PS effect size, as suggested by Pati et al. (2011). Estimates of abundance were substantially higher for216

models without a PS effect, with the non-PS model having a 49% higher estimate when covariates were not modeled, and a 19%217

higher estimate when covariate effects were included.218

Note that unlike the other models, Mcov=1,b=0 predicted anomalously high bearded seal abundance in the extreme southern219

portion of the study area where sea ice was absent (where there was no habitat for seals). Thus, while we present original likelihood220

and AIC values to permit direct comparison with other models, we refittedMcov=1,b=0 to produce an estimate of apparent abundance221

without this feature. Specifically, we refitted the model with 20 pseudo-absences in this portion of the study area to better inform222

abundance-covariate relationships.223

The fact that models with and without a PS effect garner approximately equal weight suggests a need to account for PS when224

producing abundance estimates from this data set. A model averaged estimate calculated using AIC machinery (Burnham & Anderson225

2002) is 54854 (SE 9351), which is 7.5% less than the estimate assuming no PS. Notably, the standard error of the model averaged226

estimate was 79% higher than the model assuming no PS.227

Discussion228

In this study, we showed that coarse-grained preferential sampling (Fig. 1) can have a profound impact on the quality of estimates229

(e.g. animal abundance) when sampling is non-randomized. In simulations, estimators were increasingly positively biased as PS230
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increased. When PS was present, we were able to substantially reduce bias by conducting estimation under a framework where the231

state variable of interest and the sites chosen for sampling were jointly modeled under a dependent covariance structure. In absence232

of PS, simulations suggest that this structure results in lower precision than a model without a PS effect; thus the need to account for233

PS reduces the quality of inference.234

Bias attributed to PS may seem counterintuitive, especially given the maxim in survey sampling to allocate more effort to strata for235

which animal density is high. For instance, in large scale line transect surveys under stratified sampling, the optimal amount of effort236

that should be allocated to stratum s is AsD
0.5
s , where As is the area of s and Ds is the anticipated density (Buckland et al. 2001;237

eqn 7.7). Thus, there are theoretical reasons to sample more in high density areas than in low density areas. The obvious solution in238

this instance is to account for variation in sampling intensity with explanatory covariates or post hoc stratification. However, it is not239

always clear how to perform post hoc stratification when effort is allocated in a subjective manner.240

When applied to bearded seal count data, approximately equal support was given to models with and without a PS effect. The241

PS effect size was estimated to be positive and to produce considerably lower abundance estimates than models without a PS effect.242

Differences between apparent abundance estimates decreased when covariates were added to model structure, supporting previous243

theoretical results (Diggle et al. 2010; Pati et al. 2011) that covariates serve to decrease the conditional dependence between site244

selection and the state variable of interest. However, in our data set, adding covariates did not eliminate evidence of PS. Accounting245

for PS in a model averaging framework led to a moderate decrease in our apparent abundance estimate for bearded seals in this246

region, and markedly decreased precision. As in our simulations, the need to account for PS thus appeared to have a real cost in terms247

of variance inflation.248

We attempted to fit models to bearded seal data where the degree of PS changed over the landscape, in a similar manner to249

multivariate spatial models (Royle & Berliner 1999). However, such models led to difficulties with parameter identification in our250

bearded seal application (see Appendix S2). Evidently, such models may require greater spatial balance or richer data sets. At this251

time, we suggest limiting initial consideration to models with a single, estimated b parameter as a composite adjustment to abundance252

or occupancy. Although more complex models are clearly identifiable in some situations (Royle & Berliner 1999), further research253

on the viability of such models as a function of data quality appears warranted. It would also be worthwhile to investigate whether254

parameter identification varies as a function of the support of the state variable being modeled (e.g. binary vs. count data).255

The models we have developed here are specific to spatial models with discrete support, as when data are gathered at a plot level,256

or aggregated prior to analysis. However, it should be possible to extend our approach to continuous space. One approach would be257

to model sampling locations as realizations from a spatial point process in a manner similar to Warton & Shepherd (2010). Another258

possible extension would be to consider models for the sampling process where sampling occurs without replacement for a fixed259

sample size. For instance, the Bernoulli sampling model makes the implicit assumption that sample size is random. If, instead, a260

fixed number of locations are sampled, the Bernoulli model is somewhat misspecified. Our simulations suggest some robustness to261

this misspecification, as the Bernoulli model performed reasonably well when sampling was without replacement for a fixed sample262

size (Fig. 4). Still, a more precise treatment would need to rely on an extended hypergeometric distribution with variable inclusion263

probabilities when formulating the sampling model; this extension is nontrivial.264

Our conception of PS is related, but not equivalent to “sample selection bias” (e.g. Phillips et al. 2009) in presence-only models.265

In such models, absence of a species at a given site is never directly observed. To draw inference about space use, it is thus necessary266

to produce a background sample representing the range of locations and habitats that could have been sampled. Sample selection bias267

then results if the characteristics of sites selected for sampling (e.g. by a volunteer or museum collector) differ systematically from268

the assumed background sample. In our case, we use PS to refer to the case where absences are available, but where the probability269

of sampling is dependent on some unknown factor that is also related to abundance or presence of the target species.270

Conclusion271

Model-based approaches to estimation of abundance or occurrence have become popular in recent years. We (the authors) have272

noticed a tendency for analysts to assume that inclusion of spatial covariates or random effects into predictive models will make273

the underlying sampling design ignorable. We have shown in this paper that this is not the case, although our results do suggest274
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that including predictive covariates can indeed decrease bias from preferential sampling. We have also shown that it is possible to275

further diagnose and adjust for preferential sampling by jointly modeling dependence between the data collection mechanism and the276

process of interest (e.g. abundance or occupancy). However, such models can be considerably less precise and have greater instability277

than models without a preferential sampling parameter. Where possible, we suggest that survey planners incorporate design-based278

elements (e.g. random or systematic sampling) into their survey designs to reduce the need for model-based triage.279

Acknowledgements280

Funding for aerial surveys was provided by the U.S. National Oceanic and Atmospheric Administration and by the U.S. Bureau of Ocean Energy Management. Views281

expressed are those of the authors and do not necessarily represent findings or policy of any government agency. Use of trade or brand names does not indicate endorsement282

by the U.S. government.283

Data accessibility284

R scripts and data necessary to recreate analyses have been collated into an R package, which is currently available at https://github.com/NMML/pref_285

sampling. We plan to publish the package to an online archive/repository upon acceptance.286

287

References288

Banerjee, S., Gelfand, A.E., Finley, A.O. & Sang, H. (2008) Gaussian predictive process models for large spatial datasets. Journal of the Royal Statistical Society B, 70,289

825–848.290

Borchers, D.L., Laake, J.L., Southwell, C. & Paxton, C.G.M. (2006) Accomodating unmodeled heterogeneity in double-observer distance sampling surveys. Biometrics,291

62, 372–378.292

Buckland, S.T., Anderson, D.R., Burnham, K.P., Laake, J.L., Borchers, D.L. & Thomas, L. (2001) Introduction to Distance Sampling: Estimating the abundance of293

biological populations. Oxford University Press, Oxford, U.K.294

Burnham, K.P. & Anderson, D.R. (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd Edition. Springer-Verlag, New York.295

Chakraborty, A., Gelfand, A.E., Wilson, A.M., Latimer, A.M. & Silander Jr, J.A. (2010) Modeling large scale species abundance with latent spatial processes. The Annals296

of Applied Statistics, 1403–1429.297

Cochran, W. (1977) Sampling Techniques, 3rd Edition. Wiley, New York.298

Conn, P.B., Johnson, D.S., Ver Hoef, J.M., Hooten, M.B., London, J.M. & Boveng, P.L. (2015) Using spatio-temporal statistical models to estimate animal abundance and299

infer ecological dynamics from survey counts. Ecological Monographs, 85, 235–252.300

Conn, P.B., Ver Hoef, J.M., McClintock, B.T., Moreland, E.E., London, J.M., Cameron, M.F., Dahle, S.P. & Boveng, P.L. (2014) Estimating multi-species abundance using301

automated detection systems: ice-associated seals in the eastern Bering Sea. Methods in Ecology and Evolution, 5, 1280–1293.302

Cressie, N.A.C. (1993) Statistics for spatial data, revised edition. Wiley, New York.303

Dail, D. & Madsen, L. (2011) Models for estimating abundance from repeated counts of an open metapopulation. Biometrics, 67(2), 577–587.304

Diggle, P.J., Tawn, J.A. & Moyeed, R.A. (1998) Model-based geostatistics. Journal of the Royal Statistical Society: Series C (Applied Statistics), 47(3), 299–350.305

Diggle, P.J., Menezes, R. & Su, T.l. (2010) Geostatistical inference under preferential sampling. Journal of the Royal Statistical Society: Series C (Applied Statistics),306

59(2), 191–232, doi:10.1111/j.1467-9876.2009.00701.x, URL http://dx.doi.org/10.1111/j.1467-9876.2009.00701.x.307

Elith, J. & Leathwick, J.R. (2009) Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and308

Systematics, 40, 677–697.309

Hedley, S.L. & Buckland, S.T. (2004) Spatial models for line transect sampling. Journal of Agricultural, Biological, and Environmental Statistics, 9, 181–199.310

Hughes, J. & Haran, M. (2013) Dimension reduction and alleviation of confounding for spatial generalized mixed models. Journal of the Royal Statistical Society B, 75,311

139–159.312

Johnson, D.S., Conn, P.B., Hooten, M., Ray, J. & Pond, B. (2013) A probit approach for spatio-temporal modeling of ecological occupancy data. Ecology, 94, 801–808.313

Johnson, D.S., Laake, J.L. & Ver Hoef, J.M. (2010) A model-based approach for making ecological inference from distance sampling data. Biometrics, 66, 310–318.314

Kristensen, K., Nielsen, A., Berg, C.W., Skaug, H. & Bell, B.M. (2016) TMB: Automatic differentiation and Laplace approximation. Journal of Statistical Software, 70,315

1–21.316

Latimer, A.M., Banerjee, S., Sang, H., Moshner, E.S. & Silander Jr., J.A. (2009) Hierarichical models facilitate spatial analysis of large data sets: a case study on invasive317

plant species in the northern United States. Ecology Letters, 12, 144–154.318

MacKenzie, D.I., Nichols, J.D., Lachman, G.B., Droege, S., Royle, J.A. & Langtimm, C.A. (2002) Estimating site occupancy rates when detection probabilities are less319

than one. Ecology, 83, 2248–2255.320
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Table 1. A summary of model selection results and estimated abundance for the four models fitted to bearded seal counts. The models include
formulations with or without predictive covariates (cov = 1 or 0, respectively) , and with or without the preferential sampling parameter b estimated
(b = 1 or 0, respectively) . All models included spatially autocorrelated random effects on log-scale abundance intensity. Shown are the log integrated
likelihood, the number of fixed effect parameters, ∆AIC, AIC model weights, and estimated apparent abundance over the landscape (N̂ ) together
with a Hessian-based standard error estimate.

Model Log likelihood Params ∆AIC Wgt N̂ (SE)
Mcov=0,b=0 -2667.1 3 21.7 0.00 68556 (7408)
Mcov=0,b=1 -2665.3 4 20.1 0.00 45857 (5114)
Mcov=1,b=0 -2650.3 9 0.0 0.53 59312† (5231)
Mcov=1,b=1 -2649.4 10 0.3 0.47 49826 (10369)

† Refitted model; see Results.
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Low quality 

High 
quality 

A. Course scale B. Fine scale 

Fig. 1. A depiction of two types of preferential sampling. In (A), an investigator preferentially places point transects (red squares) within regions of
high known animal density (blue polygons). This can cause bias in abundance or occupancy estimators unless this a priori knowledge about density
is explicitly modeled. In (B), a fine scale version of preferential sampling occurs when a line transect (red line) is intentionally placed across a region
of high quality habitat. If a landscape is discretized into homogeneous survey units for analysis (as in a grid), it is essential that the habitat surveyed
within each survey unit be randomly determined when estimating abundance. If not, bias (usually positive) can be expected.
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Fig. 2. An example of a single simulation replicate examining estimates of abundance from a naive species distribution model under preferential
sampling. First, true abundance (C) is generated as a function of a spatially autocorrelated covariate (A) and a spatially autocorrelated random effect
(B). Second, counts are generated for three different types of surveys, including a simple random sample (b = 0; D) and surveys with moderate (b = 1;
E) or pathological (b = 5; F) levels of preferential sampling. Finally, spatially explicit estimates of abundance are generated using a traditional SDM
(with b set to 0.0) to each of the count datasets (G-I). In this particular simulation replicate, cumulative abundance was underestimated by 18% when
b = 0, overestimated by 17% when b = 1, and overestimated by 293% when b = 5. For a summary of bias over 500 simulation replicates, see fig. 4.
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Fig. 3. Expected relationship between the probability of a survey unit being selected for sampling and its abundance residual in the simulation study.
The base case b = 0 represents simple random sampling, while b = 1 and b = 5 represent moderate and pathological levels of preferential sampling,
respectively. Also shown are is the realized distribution (smoothed histogram) of abundance residuals among survey units in the simulation study,
scaled to fit in the plot margins (solid black line).
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Fig. 4. Relative proportional error in abundance from the simulation experiment as computed with respect the posterior mode with a bias correction.
Each boxplot summarizes the distribution of relative proportional error as a function of the type of sampling, including simple random sampling
(b = 0), moderate preferential sampling (b = 1), and pathological preferential sampling (b = 5). Results vary by the type of estimation model; in the
“independent” model, b is set to 0.0; in the “joint” model, b is estimated. Lower and upper limits of each box correspond to first and third quartiles,
while whiskers extend to the lowest and highest observed bias within 1.5 interquartile range units from the box. Points denote outliers outside of this
range. Horizontal lines within boxes denote median bias.
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Fig. 5. Aerial survey counts and estimated apparent abundance of bearded seals in the eastern Bering Sea, April 10-16, 2012. Counts and estimates
are shown relative to a survey grid that extends south from the Bering Strait and borders the Alaska, USA mainland to the east. In (A), tan shading
denotes land, unsurveyed grid cells appear in dark gray, and counts appear in a white-blue spectrum. Apparent bearded seal abundance estimates (B)
are presented from the model with the lowest integrated AIC score, which included covariate effects but no preferential sampling effect. Apparent
abundance estimates are uncorrected for imperfect detection or species misclassification.
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