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ABSTRACT 

 The study of whole microbial communities through RNA-seq, or metatranscriptomics, 

offers a unique view of the relative levels of activity for different genes across a large number of 

species simultaneously. To make sense of these sequencing data, it is necessary to be able to as-

sign both taxonomic and functional identities to each sequenced read. High-quality identifica-

tions are important not only for community profiling, but to also ensure that functional assign-

ments of sequence reads are correctly attributed to their source taxa. Such assignments allow bi-

ochemical pathways to be appropriately allocated to discrete species, enabling the capture of 

cross-species interactions. Typically read annotation is performed by a single alignment-based 

search tool such as BLAST. However, due to the vast extent of bacterial diversity, these ap-

proaches tend to be highly error prone, particularly for taxonomic assignments. Here we intro-

duce a novel program for generating taxonomic assignments, called Gist, which integrates in-

formation from a number of machine learning methods and the Burrows-Wheeler Aligner. 

Uniquely Gist establishes the most appropriate weightings of methods for individual genomes, 

facilitating high classification accuracy on next-generation sequencing reads. We validate our 

approach using a synthetic metatranscriptome generator based on Flux Simulator, termed Gene-

puddle. Further, unlike previous taxonomic classifiers, we demonstrate the capacity of composi-

tion-based techniques to accurately inform on taxonomic origin without resorting to longer scan-

ning windows that mimic alignment-based methods. Gist is made freely available under the 

terms of the GNU General Public License at compsysbio.org/gist. 
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INTRODUCTION 

Recent advances in high-throughput sequencing are driving new programs of research that are 

profoundly transforming our understanding of the relationship between microbiomes and their 

environments, including enteric bacterial communities with significance for human health. Typi-

cally, studies which rely on 16S rRNA surveys and metagenomic DNA analyses yield only lim-

ited insights into gene activity. To address this, whole-microbiome gene expression profiling 

(‘meta-transcriptomics’) through RNA sequencing, has emerged as a means of gaining a mecha-

nistic understanding of the complex functional relationships within microbial communities.
1
 

Metatranscriptomic data have been collected for ecosystems as diverse as deep sea hydrothermal 

vents
2
, forest soils,

3
 and both animal

4,1
 and human

5
 body environments.  

Due to the size of the datasets and relatively short sequence lengths, the processing, anno-

tation, and interpretation of metatranscriptomic data are all significant technical challenges. Of 

particular interest is the ability to accurately assign taxonomic information to individual se-

quences, which yields insights into the contribution of individual taxa to biological processes 

within the microbiome. For example, obesity-associated inflammation (shown to cause insulin 

resistance) is thought to be driven by induction of a low-grade inflammatory response in the in-

testinal epithelium by Clostridial species normally suppressed by the TLR5 immune pathway;
6
 

however a detailed mechanistic understanding is lacking. Similarly, key fermentation products of 

abnormal bacterial metabolism in the human gut (short-chain fatty acids, especially propionic 

acid) produced by certain Clostridia, Desulfovibrio, and Bacteroidetes species, have been shown 

to trigger neuroinflammation in a mouse model, resulting in behavioral changes consistent with 

autism spectrum disorders.
7
 Further mechanistic insights into the molecular basis for disease 

pathogenesis may be gained through the application of metatranscriptomics, identifying differen-

tially expressed genes and pathways associated with the disease state. Additionally, precise taxo-

nomic annotations permit these pathways to be attributed to discrete taxa. 

Beyond understanding the biochemical contributions of individual taxa within a complex 

community, the taxonomic classification of raw sequence reads has the potential to streamline 

sequence assembly for both metatranscriptomes and metagenomes.
8
 De novo assembly (assem-

bly without a scaffold) is typically performed using techniques that are computationally intensive 

and scale poorly with respect to read count.
9, 10

 By binning reads according to species labels, the 
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number of necessary comparisons can be significantly reduced, simultaneously minimizing the 

generation of chimeric contigs. 

Previous studies concerned with taxonomic profiling of microbiomes have largely fo-

cused on analysis of well-characterized 16S ribosomal RNA fragments, often using unusual 

combinations of methods to achieve high accuracy.
11, 12, 13, 14, 15

 Here, our aim is to develop a 

framework that extends this classification quality to all genes. Three general categories of tech-

niques for assigning taxonomic labels have been developed: phylogenetic, alignment-based 

(sometimes called ‘similarity-based’), and compositional.
15

 Phylogenetic strategies, which em-

phasize a structural understanding of the underlying evolutionary tree,
15

 can be thought of as an 

extension to either of the other two, and involve the  reprocessing of results from alignment 

and/or composition based methods to quantify the distance between the assigned reads and the 

reference data. In alignment-based strategies, the results of a search method such as BLAST
16

 are 

used to map reads directly onto known reference sequences (e.g. genomes). Due to the reliance 

on databases that represent only a fraction of bacterial diversity, these methods perform poorly 

for data containing taxa that have not previously been well-sampled.
17

 Horizontal transfer events 

are especially likely to cause erroneous assignments.
11

 When dealing with unknown sequences, 

compositional approaches are more robust. In most implementations these rely on counting the 

frequencies of short fragments of reads, called k-mers, using a sliding window of some preset 

length n to scan either the nucleotide or amino acid content of a given reference sequence. These 

counts are then tallied into a histogram which provides a position-independent summary of the 

sequence content. Reads as short as 35 nt have been seen to exhibit codon bias,
11

 relative nucleo-

tide abundances, and other features that can be recognized easily with such histograms. Popular 

machine learning techniques for this problem include naïve Bayes (NB),
11

 k-means,
13

 hidden 

Markov models (HMM),
18

 and Gaussian-kernelized k-nearest neighbors (kNN).
12

 

Here we present a new ensemble classifier, Gist, developed specifically to exploit the in-

formation richness of metatranscriptomic data. Uniquely Gist establishes weights for each tech-

nique that are specific to each genome in its reference dataset, allowing for the achievement of 

high-quality results using much smaller k-mers than in previous implementations of composi-

tion-based approaches. We validate our approach using a novel synthetic data simulation pipe-

line, Genepuddle, as well as data from a previous study of the intestinal microbiome associated 
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with a non-obese diabetic (NOD) mouse model. The performance of Gist is compared against 

three other metagenomic compositional classifiers (KRAKEN,
19

 CLARK,
20

 and NBC
11

). With 

its improved performance and reduced reliance on comprehensive genomics databases, we pro-

pose Gist as an effective solution to the taxonomic classification of metagenomic and meta-

transcriptomic datasets. 
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RESULTS 

Gist – an ensemble taxonomic classifier for analyzing metatranscriptomic sequence datasets 

Here we present Gist (Generative Inference of Sequence Taxonomy), an ensemble classi-

fier that combines the output of the Burrows-Wheeler Aligner (BWA)
21

 and four statistical mod-

els used for examining k-mer composition: naïve Bayes (NB), 1-nearest neighbor (1NN), a 

Gaussian mixture model (GMM), and a novel technique, the expected co-delta correlation (ECC) 

to assign taxonomic labels to metatranscriptomic read data (Figure 1).  

BWA was chosen primarily to provide the program with an efficient method for finding 

close or exact matches. Like many mapping aligners, BWA has a low tolerance for noise, which 

significantly curtails the rate of false positives. BWA was selected over other programs of its 

type due to its low memory usage and high accuracy when analyzing prokaryotic sequences.
22

 

We avoided the use of protein alignments in Gist due to their propensity of locating paralogs, 

limiting accurate taxonomic assignment. 

Naïve Bayes, the most popular algorithm for compositional taxonomic classifiers, works 

by assuming the data is distributed according to a single multivariate Gaussian distribution. It is 

effective at determining the mode of the distribution (i.e. what typical genes from a genome look 

like), but does not perform well on outliers, and rapidly becomes oversaturated with smaller k-

mer sizes. It may also fail when a genome has several large, distinctive subpopulations, causing 

the predicted mean to fall into an area of low importance. 

K-nearest neighbors is an instance-based method that determines the nearest known K 

genes, like an aligner, in each species and reports the distance. It provides some flexibility over 

the BWA component as it is more tolerant of rearrangements and short duplications, although it 

is sensitive to missense mutations and can be confounded by certain anagrams of repetitive se-

quences. K = 1 was chosen to minimize interference from large families of paralogs.  

A Gaussian mixture model (GMM) is a derivative of NB which uses expectation–

maximization to find the means and variances of multiple subpopulations of genes. It is most 

useful when the genome is not well-modeled by one distribution, such as when it has recently 

undergone large-scale horizontal gene transfer from another source, has many genes that do not 

obey normal codon distributions (e.g. RNA genes), or if it contains a large family of proteins 
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with many paralogs. Expectation–maximization is a randomized iterative algorithm, however, 

and therefore much iteration is required on average to attain a model of acceptable quality. 

Expected co-delta correlation (ECC) is a novel technique that provides an efficient 

tradeoff to the calculation of full covariance tables for Gaussian-based methods. It calculates the 

rates of co-occurrence between pairs of k-mers within the read, and then compares this to the av-

erage rates for each genome. Because of this two-dimensional relation, ECC can encode motifs 

of longer lengths by connecting k-mers found together in one gene to each other, even if these 

are discontiguous; e.g. when used with translated protein sequences, it can determine the amino 

acids most commonly found adjacent to disulfide bridges.  

While each component excels at identifying key features representative of specific genomes, in-

dividually they are too simplistic to model the k-mer landscapes necessary for accurate classifi-

cation. For example, ECC does not consider the background rate of each k-mer and must there-

fore be combined with other techniques to be effective. Consequently, a single-layered neural 

network, analogous to logistic regression, is employed to determine the best combination of 

methods to describe each genome. This approach significant improves resolution power at short 

k-mer lengths compared to existing composition-based methods
17

 operating under the same con-

straint; the resultant joint distribution more accurately represents the shape of each genome’s to-

tal gene population, and can better predict the expected compositional signatures of unknown 

genes from related strains, in large part due to the short k-mer lengths employed. More details of 

the implementation of each method can be found in Supplemental Methods. Generating the 

expected weights for each technique is performed during an initial bootstrapping process that is 

tailored to the dataset provided to the program. This requires synthetic data drawn from a distri-

bution approximating the real reads. To generate such data, we created a novel prokaryotic meta-

transcriptome simulation pipeline, Genepuddle. Obtaining the underlying distribution of taxa can 

be accomplished using 16s rRNA counts, and the algorithm is robust enough to permit the substi-

tution of genomes from other genera and families when more precise species data is not availa-

ble. (See Supplemental Methods.) While constructing a generic weight and class set is feasible, 

narrowing the list of possible assignments greatly reduces sequence space noise and improves 

overall accuracy. 
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Integration of classifier results to yield overall probabilities that a read derives from a 

given genome is accomplished with Bayesian inference: the log-scores from each component are 

weighted with the information obtained from training the neural network, and then summed. For 

a single read, this process is repeated for every genome in the dataset. The final output report is 

generated using a two-pass method which ensures that the program returns larger taxonomic 

units (i.e., less precise predictions) if the best-scoring taxon appears to be drawn from the same 

pool as its immediate relatives when subjected to a one-tailed t-test. This ensures that unique mu-

tations are correctly assigned to their source strain, while highly diverse genes are assigned to the 

parent species or even genus. 

 

Comparison of Gist against other taxonomic classifiers using a simulated dataset 

To assess the reliability of any classifier, it is valuable to have a source of data for which 

the correct labels are known. Often when developing metagenomic methods, the MetaSim pack-

age
23

 is used to generate simulated reads for this task, but this does not consider the types of fi-

delity loss produced during RNA sequencing and so is inappropriate for simulating a meta-

transcriptome. The pipeline for performing this we created, Genepuddle, prepares genomes from 

the NCBI site for use with Griebel et al.’s Flux Simulator,
24

 allowing rapid and efficient produc-

tion of large sets of metatranscriptomic reads according to a specified error model, read length, 

and abundance distribution. 

For this study, a set of 295 genomes was examined, belonging to genera and families as-

sociated with the NOD mouse dataset described further in the methods section. Two synthetic 

datasets were created for testing: an unbiased version, with equal counts for each strain, and a 

biased version, with abundances derived from 16S data with some adjustment, to better repro-

duce the relative levels expected in real data. (See Supplementary Notes.) 

The results were scored using another new tool called Lincomp, which reports either the 

precision of correct hits or the most closely-related parent taxon that is correct; e.g. if a classifier 

guesses the wrong species, then it is considered to be reliable at the genus level for that hit (or 

species group, if one is defined.). 
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 Training consisted of 10,000 reads per strain, totaling 2,950,000 reads. Unbiased and bi-

ased test datasets consisted of 737,500 reads (2,500 per strain) and 85,990 reads, respectively. 

Figure 2 shows the precision of each program on these datasets with variable levels of isotropic 

noise (randomly-replaced nucleotides) to simulate biological diversity despite using a limited set 

of curated genomes from NCBI. 

On data with no noise, NBC’s use of 15-mers presents an effective method for matching 

the presented synthetic data with the corresponding sequences in the database. KRAKEN and 

CLARK both attempt to improve on NBC in terms of running time by pruning and through the 

clever use of hashing methods. While CLARK maintains excellent precision, both of these ap-

proaches exhibit a sharp fall-off as their comparatively long and fragile k-mers (both default to 

31 nt) are interrupted by mutations. 

 NBC deteriorates slightly more rapidly at high noise levels than Gist: for example, on the 

endo21 dataset, Gist was able to classify 151,163 and 137,239 reads at the strain level with 

3.75% noise and 7.5% noise, respectively, whereas NBC correctly guessed the strains of 150,544 

and 133,077 reads at the same noise levels, a 3% performance difference. This can most likely be 

credited to the increased robustness of Gist’s ensemble method vs. the relatively fragile single 

distribution of NBC. (See Discussion.) 

Gist’s algorithmic approach combines several different methods using per-genome weights 

Figure 3 illustrates some of the weights and class distributions learned by the Gist for se-

lected genomes in other tests. Particular emphasis is placed on six strains: Lactobacillus crispa-

tus ST1, Streptococcus agalactiae A909, Clostridium difficile 630, Microluntaus phosphovorus 

NM-T
T
, and Escherichia coli K-12, substr. MG1655. L. crispatus ST1 and S. agalactiae A909 

are both from the same family of Firmicutes (Lactobacillales) and are hence both related to C. 

difficile 630, another Firmicute, but more closely to each other. M. phosphovorus NM-1
T
 is in-

cluded as an out-group, and is from the phylum Actinobacteria. 

Part (A) shows a comparison of some of the weights learned by the Autocross training 

algorithm. Because Autocross was calibrated for accuracy at the genus level in these experiments 

in order to pool data, the results are variable, and the numbers vary from experiment to experi-

ment, even with the same dataset. (See ‘Non-reproducibility of Autocross weights’ in Supple-
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mentary Notes.) They encode a great deal of information about the taxa in question besides actu-

al genome features, most importantly how well each strain represents its genus, how the genus as 

a whole contrasts with other taxa in the dataset, and the expected abundance of the strain and its 

parent genus based on the abundances found in the training data. 

 Part (B) illustrates part of how the profiles of these same genomes plus Moorella thermo-

acetica ATCC 39073 (another Clostridian Firmicute) are represented by the peptide naïve Bayes 

classifier. In this example, the average frequencies of different amino acids in each genome are 

compared, highlighting that, for example, the peptide dimer SerAla is less common in the Fir-

micutes shown than in E. coli or M. phosphovorus, but LeuLys is more common. 

 Part (C) further highlights the nature of Autocross weightings—hierarchical clustering of 

the weights produces no obvious relation to taxonomy. This is because the weightings are con-

trastive, and are more important for distinguishing closely-related strains which would be more 

readily confused with equal weighting. 

 Part (D) shows expected codelta tables for the peptide dimers in S. agalactiae A909, L. 

crispatus ST1, and C. difficile 630. Visually, these have a very striking resemblance, featuring 

several strong disequilibrium bands, some of which show up in all of the graphs and some do 

not. Visually, however, it is clear that the Firmicutes emphasize Isoleucine and rely less on Glu-

tamine and Asparagine than any of the other strains shown in part (E). 

 Part (E) shows the contrast between genomes and random noise generated with the same 

read length distributions and GC content. The closer the genome is to random noise, the less like-

ly the identities of its individual amino acids matter, creating a simple test metric for genome 

functionality by comparing similarities. 

Comparison of Gist against other taxonomic classifiers using real metatranscriptomic datasets 

To ascertain the performance of Gist on real data, a model dataset was used: the mouse colon 

data mentioned previously. The data used in this experiment consisted of three samples, identi-

fied as 501, 502, and 504, which were collected from the mice’s colons and chemically treated to 

delete rRNA as described in Xiong, Frank, et al. 2012, then sequenced using the Illumina plat-

form
1
. The mice were reared under germ-free conditions and initially colonized with altered 
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Schaedler flora (ASF), a community of 9 strains of bacteria commonly found in the murine gut 

as described in Table 2. The objective was to demonstrate how 16S data can be used to bootstrap 

the evaluation process, so that it is not necessary to compare metatranscriptomic data against all 

known taxa, which exaggerates the risk of misclassification. 

16S processing of this dataset produced a large inventory of candidate matches of diverse 

species within the orders of the expected strains; samples from the top 25 genera, plus one clade 

known to be present but not represented in the 16S data, were included in the database for this 

problem. The result was a dataset consisting of a total of 295 strains taken from the NCBI FTP 

server, many of which were still in the draft or assembled contig stage of processing at the time 

of collection. Training and test data were generated using Genepuddle, and abundances were 

then calculated for the reads (from the 501, 502, and 504 datasets). A full strain list used for clas-

sification in NBC, CLARK, KRAKEN, and Gist can be found in Appendix B. The results of 

classification are summarized in Figure 5. 

In order to evaluate the performance of these models on the real data, the combined out-

puts of three aligners (BWA, BLAT, and BLAST) were used with the true ASF genomes (Table 

2) to produce a ‘gold standard’. The Lincomp tool was then used to evaluate the accuracy of each 

method with respect to this gold standard. The results are shown in Figure 4. 

In the case of the NOD mouse dataset, the rRNA removal treatment appears to have been 

biased against the phylum Bacteroidetes, resulting in the complete removal of Parabacteroides 

from the data. This resulted in a deficiency in the constructed database which was amended by 

adding in the taxa by hand. This illustrates the importance of careful 16S curation, and how 

rRNA removal products can be biased towards certain taxa. 

CLARK and KRAKEN obtained similar levels of performance at the strain level to Gist 

and NBC, but were only able to classify a very small portion of the data (5-10%) in each test 

case. Conversely, NBC and Gist exhibited much greater success in identifying related sequences 

among the 293 strains present in the database which were not identical to those in the ASF data. 
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DISCUSSION 

Here we have presented a novel taxonomic classification algorithm, Gist, which yields 

precision and sensitivity on-par or surpassing existing composition-based methods at a very short 

k-mer length by combining the outputs of a number of simple techniques. This enables Gist to 

overcome the robustness problems that characterize programs such as NBC and have led to 

widespread disuse of k-mer based methods for classifying gene sequences taxonomically. 

Bazinet and Cummings
15

 found in 2012 that the Naïve Bayes Classifier (NBC)
11

 yielded 

the best performance amongst compositional techniques.
15

 NBC uses only a single nucleotide 

Naïve Bayes distribution to classify reads. To function with such accuracy comparatively large k-

mers are required, but the recommended default, 15 nt, can be defeated entirely with a pathologi-

cal example containing only 6.7% noise, where every fifteenth nucleotide has been corrupted. 

Functionally, the use of such large and frail k-mers makes NBC and MetaCV much more like 

aligners than other k-mer-based methods; this invites the same style of miscategorization that 

discussed in the introduction section. 

Most compositional classifiers for metagenomic taxonomy implement only one machine 

learning technique: RITA
17

, NBC
11

, KRAKEN,
19

 and CLARK
20

 are all examples of NB-based 

programs, TACOA
12

 uses kNN, MetaCV
25

 uses a modified protein-based HMM, and 

Phymm/PhymmBL
18

 uses a collection of HMMs called an interpolated Markov model. The only 

popular method to use more than one compositional technique is RDP
26

, which uses NB and 

kNN—but it is only intended for use with ribosomal RNA fragments. (NBC, TACOA, and 

PhymmBL are reviewed further in Bazinet and Cummings
15

 along with many other methods for 

taxonomic classification, their relative performances, and strategies.) The multifaceted approach 

used by Gist makes it possible to combine the probability spaces generated by each classifier into 

a unified model where different elements can be emphasized in order to better fit the peculiarities 

of the individual genomes, as illustrated in Figure 3. This gives Gist much more flexibility in ac-

commodating the complexity of these distributions without succumbing to the type of over-

fitting one would expect from a strictly instance-based technique such as pure kNN while avoid-

ing the cost of training a powerful discriminatory method such as a support vector machine to 

accommodate every new classifier category. 
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Key to the difficulty in using simpler classifiers with this type of data are the many 

unique limitations held by each method. For example, even when only considering a well-

behaved distribution of nucleotides with a single mode, the “naïvety” of Naïve Bayes poses a 

conceptual problem for compositional classification. The coordinates of each data point (i.e. the 

histogram of each read) must sum to 1, because they are defined fractionally, and the use of a 

sliding window means that the value of each successive k-mer is highly dependent on the value 

of the previous k-mer. Ignoring such correlation is an attractive optimization for such large da-

tasets, but it hinders discrimination between closely-related strains. In Gist’s implementation of 

1NN, a correction is applied to accommodate for this same problem; each read and gene is nor-

malized by its length during scoring, resulting in distances that do not sum to 1, but reducing the 

gap between the correct gene and its reads. To deal with this defect in Gaussian methods, ex-

pected codelta correlation is added, allowing correlation tests to be performed on unordered 

high-dimensional data (unlike e.g. Pearson correlation) with samples containing only one mem-

ber (unlike direct covariance testing.) 

Previously, generic taxonomic classifiers also failed to consider the wild variability of 

branch length on the tree of life: three taxa of equivalent rank with the same parent are unlikely 

to have the same sequence distance from each other. While classifiers including RITA have 

looked at setting constant thresholds for taxonomic units according to the user’s intuition,
17

 the 

developers ultimately assumed that each taxon had a flat evolutionary distance from its siblings 

defined only by its rank, a generalization that is poorly supported by even the most cursory sur-

vey; the authors are aware of no program that attempts to learn class boundaries for short reads 

for the purpose of intuiting taxonomic thresholds. Gist elides the need for this as a consequence 

of the Autocross training process, where contrasts between different taxa are maximized to en-

sure as many sequences as possible in the training set are classified correctly, as illustrated in 

Figure 3a. The decision of whether to assign a hit to a parent or child taxon is made solely on the 

consensus of the children (i.e. the read could be assigned equally to any of them), not on any as-

sumptions about branch length. Given the inconsistent and sometimes discontiguous
27

 nature of 

bacterial evolution, it would appear to be critical that, in lieu of a more orthogonal alternative to 

Linnaean taxonomy, methods prioritize ways to work around it. 
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As noted by the authors of NBC,
11

 16S data will not always be attainable for a dataset—

or discernible for closely-related environments. During the development of Figure 2, we found 

that Gist was equally successful at classification regardless of whether or not it was trained with 

data of uneven abundance. It is expected that this result will scale to a universal weight set, i.e. 

one which includes all available sequenced strains, although the compositional elements of the 

method may face challenges due to the overcrowding of small k-mer space, an obstacle also not-

ed by NBC’s authors. 

 This result also reveals something about the prominence of compositional features—in 

the biased training dataset, the weights of some strains were derived from as few as 4 reads of 

100 nt in length each. This amount of sequence data is nowhere near sufficient to provide com-

plete coverage for most bacterial coding sequences, and yet training was still highly successful 

and did not lose significant sensitivity on the test dataset. Genus-level pooling is partly to be 

credited for this, e.g. Streptococcus was backed by 80 strains, totaling 423 sequences. 

From a statistician’s perspective, Gist is a relatively simple ensemble; while perhaps 

more sophisticated than existing taxonomic classifiers, it is nowhere near the complexity of the 

monstrous ensemble models that cracked the 2009 Netflix prize. Despite this, however, Gist is 

able to achieve considerable performance as a result of the architectural choices that it showcas-

es. These features—the use of supervised learning on simulated data, the combination of differ-

ent compositional classification techniques, and the use of an unpaired t-test in phylogenetic 

comparison—can readily be applied to different methods (and even different problems.) The 

possibilities of building assumptions about relative abundance into a metagenomic database also 

show promise (and pitfalls) as a way to eliminate artifacts of the classification process. 

Finally, Gist does not yet support the use of RPKM (reads per kilobase per million) or 

any other measure to normalize the weights of genes during initial class construction; they are 

regarded as having an equal chance of being hit against, regardless of length. Adding RPKM will 

improve Gist’s performance further. 

Taxonomic classifiers, like many kinds of bioinformatics programs, have a relatively 

poor survival rate in the wild. Many (such as MetaCV, NBC, and RITA) cease development 

shortly after publication. One unfortunate consequence of this is that the databases offered with 
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these programs become outdated, as in the case of NBC’s webserver (not updated since March 

2011) and MetaCV’s cvk6 database, which has not been updated since October 2012 despite its 

website’s assurances of continuing monthly updates and a January 2013 release of the program 

itself. Given this pattern, it is tempting to speculate that many estimates of species diversity 

based on gene sequencing could be grossly exaggerated, as k-mer and alignment methods lacking 

a minimum threshold criterion for classification may report random, unrelated taxa based on very 

small amounts of evidence. 

To ensure that Gist does not become obsolete due to changes in reference databases, we 

are currently developing an efficient pipeline for updating and constructing both databases and 

training data tuned to the latest available information and the user’s needs. In addition, with 

Gist’s Bayesian inference framework for coordinating the outputs of its classifiers, it should be 

practical to integrate other open-source sequence classification programs also, ensuring a reliable 

source of high-quality read classifications for years to come. 
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TABLES 

Table 1. Taxa in the simulated mouse dataset. 

Genus Strains 

Actinomadura 3 

Aerococcus 2 

Anaerostipes 3 

Bacteroides 9 

Basfia 1 

Blautia 2 

Brevibacillus 6 

Brevibacterium 2 

Butyrivibrio 2 

Dorea 3 

Enterococcus 11 

Eubacterium 7 

Exiguobacterium 3 

Glaciibacter 1 

Idiomarina 5 

Lachnoanaerobaculum 2 

Lactobacillus 52 

Leifsonia 2 

Mannheimia 3 

Microlunatus 1 

Moorella 1 

Mucispirillum 1 

Paenibacillus 9 

Parabacteroides 1 

Pelotomaculum 1 

Peptostreptococcus 3 

Propionibacterium 14 

Roseburia 5 

Staphylococcus 53 

Streptococcus 79 

Thermaerobacter 2 

Thermomonospora 1 

 

Table 2. Taxa in the Altered Schaedler Flora (ASF). 

Taxon ID Name 

97138 Clostridium sp. ASF356 

97137 Lactobacillus sp. ASF360 

1235801 Lactobacillus murinus ASF361 

1379858 Mucispirillum schaedleri ASF457 

1235802 Eubacterium plexicaudatum ASF492 

1378168 Firmicutes bacterium ASF500 

84086 unclassified Firmicutes sensu stricto (miscellaneous) 

97139 Clostridium sp. ASF502 

1235803 Parabacteroides sp. ASF519 
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FIGURE LEGENDS 

Figure 1. Program overview. A) In a simplified example of the k-mer construction process, the 

tallies of each 3-mer are treated as the coordinates of a 3
4
-dimensional vector. B) Usage of the 

Gist and Genepuddle pipelines to analyze a metatranscriptome for which 16S data is available. 

Figure 2. Simulated datasets. Performance on simulated mouse datasets in the presence of iso-

tropic noise. Top: performance of different classifiers on data where each of the 295 strains is 

represented by an equal number of reads. Bottom: performance of the same when strain abun-

dance is determined by counts from 16S data.  

Figure 3. Genome features. Unique features of genomes picked up in different ways. A) 

Weight distributions as learned by the Autocross neural network for a general-purpose dataset. 

B) Comparison of the average peptide pair counts per gene for the same species (plus one addi-

tional Firmicute, Moorella thermoacetica ATCC 39073), demonstrating the variety visible be-

tween them. 

C) Result of hierarchical clustering on selected Autocross weights, showing no apparent taxo-

nomic relevance. 

D) Codelta comparisons. Three Firmicute strains, showing strong taxonomic correlation in their 

similarity. Cyan cells show a positive correlation between pairs of amino acid dimers, whereas 

yellow cells show a negative correlation. 

E) Codelta graph for random genomes with the same GC content as the Candidatus Carsonella 

rudii (not currently mentioned elsewhere in the whole paper), E. coli, and M. phosphovorus ge-

nomes, illustrating the relationship between sequence complexity and environment. 

Figure 4. Real data. Results of classifying the actual datasets collected from the colons of non-

obese diabetic (NOD) mice comparing classification of Gist, KRAKEN, NBC, and CLARK 

against one another. Each community consists of 9 strains (altered Schaedler flora, or ASF). Data 

analysis was approximated with the same strains from Figure 2, which included only one of the 

ASF strains. 

Figure 5. Real data. Genera found during dataset classification in Figure 4 for Gist and NBC. 
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