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Abstract. The present study investigates brain-to-brain coupling, defined as inter-subject correlations in 

the hemodynamic response, during natural verbal communication. We used functional near-infrared 

spectroscopy (fNIRS) to record brain activity of speakers telling stories and listeners comprehending audio 

recordings of these stories. Listeners’ brain activity was correlated with speakers' with a delay. This between-

brain correlation disappeared when verbal communication failed.  We further compared the fNIRS and 

functional Magnetic Resonance Imaging (fMRI) recordings of listeners comprehending the same story and 

found a relationship between the fNIRS oxygenated-hemoglobin concentration changes and the fMRI BOLD 

in brain areas associated with speech comprehension. This correlation between fNIRS and fMRI was only 

present when data from the same story were compared between the two modalities and vanished when data 

from different stories were compared; this cross-modality consistency further highlights the reliability of the 

spatiotemporal brain activation pattern as a measure of story comprehension. Our findings suggest that 

fNIRS is a powerful tool for investigating brain-to-brain coupling during verbal communication. As fNIRS 

sensors are relatively low-cost and can even be built into wireless, portable, battery-operated systems, these 

results highlight the potential of broad utilization of this approach in everyday settings for augmenting 

communication and interaction. 

Introduction 
Verbal communication involves the relaying of information between individuals through the use of sound 

patterns within a structure of language. For decades, neuroimaging technologies have been applied to study the 

neural mechanisms underlying the production and comprehension of language. Multiple brain areas have been 
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identified to be involved with verbal communication using Positron Emission Tomography (PET) and functional 

Magnetic Resonance Imaging (fMRI)1, whereas the timing of auditory processing was studied with the aid of 

Electroencephalogram (EEG) and Magnetoencephalogram (MEG)2-7. Although important findings have been 

discovered using these technologies, there are two limitations in traditional neurolingustic studies. First, these 

studies are mostly concerned with the cognitive process of either speech production or speech comprehension and 

confine the analysis to be within individual brains. Verbal communication, however, is an interactive process 

between speaker and listener. As pointed out by Hasson and others8, a  complete  understanding  of  the cognitive  

processes  involved cannot  be  achieved  without  examining  and  understanding  the interaction of neural activity  

among  individuals. Second, cognitive functions are traditionally studied in a controlled laboratory environment. 

While this practice helps to isolate various factors (e.g. syntactical transformations or the representation of isolated 

lexical items), the ecological validity of the findings is not clear until tested in a real-life context.  In addition, many 

studies confined the auditory stimuli to short lengths, often using isolated words or sentences for experimental 

control1,7,9. As a result, questions regarding the brain’s ability to accumulate information over longer time scales 

cannot be effectively investigated 8,10,11. 

With the recent advances in neuroimaging systems and methodology, researchers can now address which brain 

processes are involved in social interaction. Stephens et al. investigated the alignment (correlation) of neural activity 

between speaker and listener during natural verbal communication using fMRI12. In the study, brain activity was 

recorded when a speaker was telling a real-life story and later when listeners were listening to the audio recording of 

the story. Listeners’ brain activity was found to be coupled with speaker’s brain activity with a delay, although for 

certain brain areas, listeners were ahead of the speaker in time, possibly due to a predictive anticipatory effect. 

Remarkably, higher coupling was found to be associated with better understanding of the story. This neural coupling 

between speaker and listener was further supported by a recent EEG study in which the coordination between the 

brain activity of speakers and listeners was investigated with canonical correlation analysis13. Additional findings in 

the same EEG study suggest that this speaker-listener neural coupling might not be restricted to homologous brain 

areas. In another example using fMRI, Lerner et al. recorded the Blood Oxygenation Level Dependent (BOLD) 

response of participants listening to a real-life story scrambled at the time scales of words, sentences and paragraphs. 

Inter-subject correlation analyses were employed to estimate the reliability of neural responses across subjects, and 

striking topography differences in brain activation were found at the different time scales14. 

Although novel findings have been discovered using fMRI and EEG to address the aforementioned challenges, 

certain limitations of the two neuroimaging technologies have hindered the investigation of neural coupling during 

natural verbal communication. fMRI, for example, requires subjects to lie down motionlessly in a noisy scanning 

environment. Simultaneous scanning of multiple individuals, engaged in a face-to-face communication are 

impractical for fMRI based setups. EEG, on the other hand, was able to provide a more naturalistic environment. 

However, EEG is susceptible to muscle induced artifacts during vocalization, and is therefore less suitable for 
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studying speaker-listener interactions. Furthermore, the source of the EEG signal cannot be reliably localized despite 

substantial efforts in the community to solve the inverse problem15,16. 

 In this study, we propose using functional near-infrared spectroscopy (fNIRS) to investigate speaker-listener 

coupling as an effective complement to the existing studies. fNIRS is an optical brain imaging technology for 

monitoring the concentration changes of oxygenated hemoglobin (ΔHbO) and deoxygenated hemoglobin (ΔHbR) in 

the cortex. By utilizing portable, safe and wearable sensors, fNIRS provides a cost-effective and easy-to-use 

imaging solution for studying brain activation in real-life contexts17. fNIRS has been  adopted to study brain-to-brain 

coupling during a cooperation-competition game18 and a finger-tapping imitation task19. fNIRS has demonstrated 

usefulness for studying social interactions in a natural setting20. At present, studying brain-to-brain coupling during 

natural verbal communication using fNIRS has not been demonstrated. 

The main objective of this study is to evaluate the feasibility of fNIRS as a new tool to study speaker-listener 

neural coupling. To achieve this objective, we designed an fNIRS experiment to replicate the speaker-listener neural 

coupling results from a previous fMRI study12. An English speaker and two Turkish speakers told an unrehearsed 

real-life story in their native language. An additional real-life English story E2 (“Pie-man”, recorded at “The Moth”, 

a live storytelling event in New York City) used in recent fMRI studies of natural verbal communication14,21, was 

also used here. The resulting two English stories (E1 and E2) and two Turkish stories (T1 and T2, the control 

conditions) were played to listeners who only understand English. We hypothesized that: 1) Neural activities of the 

listeners demonstrate inter-subject correlation during comprehension of only the same English stories; 2) Neural 

activities of the English speaker during production of E1 are coupled with the activities of the listeners during 

comprehension; and 3) fNIRS biomarkers (ΔHbO and ΔHbR) (recorded in this study) are correlated with the fMRI 

BOLD response (recorded in the previous fMRI study14) during the comprehension of only the same English story 

E2. 

Results 

Listener-listener fNIRS inter-subject correlation 

For each story, significantly coupled optodes were identified using multilevel general linear model (GLM) and 

the results are shown in Figure 1. As expected, significant results were found only for the English conditions E1 and 

E2 (false discovery rate22 [FDR] � �  0.01 ), indicating that neural coupling only emerges during successful 

communication (i.e. when subjects understand the story content). ΔHbO shows a much stronger coupling effect than 

ΔHbR.   
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Figure 1 Listener-listener fNIRS inter-subject correlation. The top row shows the t-Map of coupling results from ΔHbO and 

the bottom row shows the results from ΔHbR. White crosses represent non-significantly coupled optodes; Black crosses represent 
significantly coupled optodes (n=15, FDR � � 0.01�. The t-Maps were smoothed using a spline method.  

 

Speaker-listener fNIRS coupling  

The neural coupling between speaker and listener may not be restricted to homologous brain areas13. Previous 

studies also showed that the neural responses of listeners can lag behind12,13 or precede12 those of the speaker, 

facilitating comprehension and anticipation, respectively. To investigate these effects, multilevel GLM has been 

adopted to evaluate the coupling between all permutations of (speaker optode, listener optode) pairs with the 

speaker’s time course shifted with respect to those of the listeners from -20s to 20s in 0.5s increments, where a 

positive shift represents the speaker preceding (listener lagging), and the results are shown in Figure 2. For the 

English story E1, the listeners’ fNIRS signals were found to be significantly coupled with the speaker’s signal with a 

5-7s time delay, and the number of significantly coupled optodes peaked at 5s (Figure 2a). As expected, no temporal 

asymmetry has been found for the listener-listener case and alignment is coupled to the incoming auditory input (i.e. 

lag 0, moment of vocalization) (Figure 2b). The speaker-listener lagged correlation replicated the speaker-listener 

lagged correlated observed with fMRI12. Significant couplings can mainly be found between prefrontal of speaker 

and parietal of listeners in the medial prefrontal and left parietal areas for ΔHbO and no results was significant at 

FDR � �  0.01 level for ΔHbR (Figure 2c).  No significant speaker-listener coupling was found for either of the 

Turkish stories (stories T1 and T2).  

To further investigate the temporal asymmetry of coupling, the average t-statistics for all significantly coupled 

speaker-listener optode-pairs were assessed across time shifts between the speaker and listener time series, as shown 

in Figure 3 (red curve). The peak of the curve is centered at 5 seconds, which shows that, on average, listeners’ time 

courses lagged behind the speaker’s. In comparison, the time courses of the listeners were synchronized (with each 

other) at 0 sec (Figure 3, blue curve). 
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Figure 2 Speaker-listener neural coupling. a: The number of optode-pairs at which the fNIRS time courses between a speaker 

and the listeners were significantly coupled (n=15, FDR � � 0.01�. Results are shown with the speaker’s time course shifted 
from -20 to 20 sec. with respect to the listeners’ in 0.5 s increments. Significant results can be found from 5 to 7 sec. of shift 
(speaker precedes) with a peak at 5 sec for the English condition E1. b: The number of optodes showed significant listener-

listener inter-subject correlation (n=15, FDR � � 0.01�. Results are shown with the average listener’s time course shifted from -
20 to 20 sec. with respect to those of each individual listener in 0.5s increments. No temporal asymmetry effect can be found. c: 

Significantly coupled speaker-listener optode-pairs were in non-homologous areas (n=15, FDR � � 0.01�.  
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Figure 3 Delayed synchrony between speaker and listener. The mean distribution of t-values across significantly coupled 

optodes for speaker-listener (red) and listener-listener (blue) analyses. Results are shown with the speaker’s (or average 
listener’s) time course shifted from -20 to 20 sec. with respect to the listeners’ in 0.5 s increments. A larger t-statistic indicates 
stronger synchrony between the signal time courses. Listener-listener coupling was centered at 0 sec whereas speaker-listener 
coupling was centered at 5 sec. This suggests that, on average, the speaker preceded, and listeners needed time to process the 
information conveyed in the stories in order to synchronize with the speaker. Similar results have been found previously12,13. 

 

Listener-listener BOLD coupling 

As a verification of the fNIRS approach, we reanalyzed an fMRI dataset of 17 subjects listening to story E2 (the

“Pie-man” story), which was recorded and used in a previous study14. To compare with the fNIRS results, we

considered only voxels from the outer layer of the cortex in the neighboring regions of prefrontal and parietal sites.

The coupling results estimated using the multilevel GLM model are shown in Figure 4. Of the 994 investigated

voxels, 551 showed significant listener-listener coupling (FDR . This result replicates published result14

and demonstrate a nice convergence across fNIRS and fMRI methods.  

 

 
Figure 4 T-map of listener-listener coupling during the comprehension of story E2 (“Pie-man” story) evaluated with fMRI. 

The significance threshold was at t(16)=2.9 (FDR . The t-statistics were superimposed on the ch2better template and 
rendered using MRIcron software42.  
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BOLD and ΔHbO are correlated during comprehension of the same story   

Previous studies have shown that fNIRS and fMRI signals are highly correlated across multiple cognitive tasks23-

26. In our study, two groups of subjects, the brain activity of one group measured with fNIRS and the other with 

fMRI, were engaged in the same task of listening to the E2 story (“Pie-man”). We hypothesize that the BOLD and 

fNIRS signals share common information even though they were measured from different subjects and in different 

recording environments. To directly compare the signals across fMRI and fNIRS, we estimated correlations between 

spatially overlapping voxel-optode pairs while subjects listened to the exact same story. Widespread significant 

correlations can be found between BOLD and ΔHbO only when the participants were listening to the same story (i.e. 

E2) as shown in Figure 5a.  
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Figure 5 Correlation between fNIRS optodes and corresponding fMRI voxels. 994 related voxels were selected as described in

section 0. a: The number of significant BOLD-ΔHbO and BOLD-ΔHbR correlations (n=15, FDR ); here we compared 
the fMRI time series from story E2 with the fNIRS time series from stories E1, E2, T2, and T2. When comparing time series 

corresponding to different stories, we found no significant correlations between BOLD and fNIRS. b: Brain maps showing voxels 
correlated with the ΔHbO of at least one optode (red) and voxels with no significant correlations with fNIRS (blue). The images 

were rendered with MRIcron42. c: Six examples of voxel-optode pair. Three of the examples are the most correlated within 
prefrontal and the other three most correlated within parietal. Each colored circle represents one voxel-optode pair. For each 
pair, the voxel and optode locations are illustrated in I. fMRI Voxels and II. fNIRS optodes respectively, and the BOLD (blue 
line) and ΔHbO (red line) time course during the comprehension of story E2 are compared (duration = 385 s). Time courses 
were first standardized and averaged across the subjects and the Pearson’s correlation ( ) between BOLD and ΔHbO were 

estimated. 
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Discussion 
During social interaction, the brains of individuals become coupled as those individuals send and receive signals 

(light, sound, etc.) through the environment, analogous to a wireless communication system8. This brain-to-brain 

coupling relies on the stimulus-to-brain coupling which reflects the brain’s ability to be coupled with the physical 

world in order to represent it, veridically and dynamically. In this study, we identified the brain-to-brain coupling 

between a speaker telling a real-life story and a group of listeners listening to the story, with the aid of fNIRS. We 

also compared the brain-to-brain coupling between people listening to a real-life story across two modalities, fNIRS 

and fMRI. Coupling was found to be reliable using either fNIRS or fMRI, and strong correlations were found even 

across the two modalities. In the following sections, the implications of our findings are discussed. 

fNIRS is a viable tool for studying brain-to-brain coupling during social 

interaction 

In this study, we demonstrated for the first time that it is feasible to study neural coupling during natural verbal 

communication with fNIRS. While there is a growing literature using fMRI and EEG to study brain-to-brain 

coupling during social interaction27, the application of fNIRS in the field is still rare. Cui et al. in 2012 first adopted 

fNIRS to investigate neural coupling between pairs of subjects playing a simple cooperation and competition 

game18. In the game, participants were asked to press a response key after a ‘go’ signal, either in synchrony with 

(cooperation mode) or faster than (competition mode) their partner. An increase in neural coupling between the 

members of a pair was found only during cooperation and was associated with better cooperation performance. 

Holper et al. in 2012 investigated neural coupling between a model and an imitator during a finger tapping task 19. A 

stronger increase in neural coupling was found during the imitation condition compared with a control condition in 

which the imitator no longer needed to follow the model’s tapping pace. These two studies, however, involved only 

simple stimuli and contexts. Our study demonstrated that: 1) the brain activation recorded by fNIRS was coupled 

between a speaker telling a real-life story and listeners listening to the story; 2) on average, the listeners’ brain 

activity lagged behind that of the speaker; 3) the brain activity evoked by the same story was reliable across the 

listeners; and 4) coupling was not present when listeners heard stories in a language incomprehensible to them. 

These findings are consistent with previous work using fMRI12 and EEG13 and demonstrate that fNIRS as a 

promising tool for studying neural coupling during social interaction in a natural communicative context.  

For the speaker-listener coupling, an interesting observation is that significant inter-subject correlations were 

found primarily between prefrontal areas in the speaker and parietal areas in the listeners. This result supports a 

previous EEG study in which the coupling between speaker and listener was found to be mainly between different 

channels13In the study, listeners watched the video playback of speakers who were telling either a fairytale or the 

plot of their favorite movie or book. A canonical correlation analysis between the EEG of the speakers and listeners 

showed that coupling was mainly limited to non-homologous channels. EEG, however, suffers from volume 
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conduction effect. Each EEG channel records a mixture of activities from the entire brain and it is difficult to 

localize the correlated brain areas between speaker and listener. Comparatively, the high spatial specificity of fNIRS 

makes it a more suitable tool to study the non-homologous coupling phenomenon. To our best knowledge, our study 

presents the first fNIRS-based evidence that the brain-to-brain coupling between speaker and listener were mainly 

between non-homologous brain areas. 

The current study, however, is only the first step toward studying neural coupling during natural communication 

using fNIRS. While fNIRS have obvious disadvantages relative to fMRI, which include coarser spatial resolution 

and an inability to measure signal beneath the cortical surface, it also has some advantages over fMRI. The 

advantages of fNIRS over fMRI include: 1) lower cost; 2) easier setup; 3) greater ecological validity, which can 

allow face-to-face communication (in fMRI setups subjects can’t see each other); 4) easier to connect two systems 

simultaneously to test bi-directional dialogue-based communication; and 5) easier to be used in clinical real-life 

communication settings. In recent studies, fNIRS has been used in extremes such as in aeurospace applications28 and 

with mobile participants walking outdoors29.  In the context of the current study, the true advantages of fNIRS can 

be exploited when the neural activation of two or more subjects is studied during face-to-face conversations in a 

natural context such as a classroom. 

Despite these promising results, our study was limited in certain aspects. First, for the fNIRS-fMRI comparison, 

the spatial resolution and coverage of our fNIRS system were limited, so fMRI-fNIRS correlations were estimated 

between all possible voxel-optode pairs within large cortical areas or the whole brain. Second, our data from fNIRS 

and fMRI were not recorded simultaneously and involved different participants, so any possible between-subject 

differences should be taken into account when interpreting the results. Future studies, preferably with concurrent 

fNIRS and fMRI, can validate our findings and deepen our understanding of the fNIRS-fMRI relationship for 

complex natural stimuli. 

fNIRS and fMRI signals are correlated for the same natural stimulus  

In this study, the fMRI and fNIRS signal time courses were compared when two groups of subjects were listening 

to the same audio recording of a real-life story. The neural activation of one group was recorded with fNIRS. The 

neural activation of the other group (the fMRI group) was recorded with fMRI in a previous study14. We first 

analyzed the two datasets separately with inter-subject multilevel GLM and found similar patterns of coupling 

between listeners in the two modalities. We then investigated the correlation between fMRI and fNIRS signals and 

found that ΔHbO and BOLD were significantly correlated, despite the fact that they were collected from different 

subjects in different recording environments, and with different techniques (fMRI vs. fNIRS). Furthermore, the 

fMRI voxels that were significantly correlated with fNIRS optodes were not randomly distributed but came from 

brain areas usually considered to be related to listening comprehension1. When the fNIRS and fMRI signals 

corresponding to different stories were compared for control purposes, no significant correlation was found, as 

expected. Significant BOLD-ΔHbR correlations were found but to a much lesser extent compared to ΔHbO (Figure 
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5a). One possible explanation is the superior reliability of ΔHbO across the listeners compared to ΔHbR as shown in 

Figure 1. 

For many years, researchers have been interested in comparing the fNIRS and fMRI responses during cognitive 

tasks. Strangman et al. simultaneously recorded fNIRS and fMRI in a finger flexion/extension task30. Although the 

authors expected the ΔHbR-BOLD correlation to be strongest due to the causal relation between the ΔHbR and 

BOLD signals, the results suggested stronger BOLD-ΔHbO correlations. The authors suspected this might be due to 

a higher signal-to-noise ratio (SNR) of ΔHbO in response to the task.  Cui et al. simultaneously recorded fNIRS and 

fMRI for the same group of subjects during 4 tasks: finger tapping, go/no-go, judgment of line orientation and 

visuospatial n-back23. They found that both ΔHbR and ΔHbO were correlated with BOLD, despite differences in 

SNR, and the type of task did not significantly affect the correlations. ΔHbO-BOLD correlations were found to be 

slightly but significantly higher than ΔHbR-BOLD.  Noah et al. compared fMRI and fNIRS measurements in a 

naturalistic task in which participants played the video game Dance Dance Revolution and rested alternately for 30-

second blocks, and the results suggested a high ΔHbO-BOLD correlation within the same measurement areas 24.  All 

of the studies above compared the mean triggered average activity induced by averaging a condition over time. 

However,  Ben-Yakov et al. demonstrated the shortcoming of the triggered averaging method for detecting an 

events’ specific responses which are locked to the structure of each particular exemplar21. In our study, each event in 

the story is unique and singular and can not be averaged with the responses evoked by other events in the story. Our 

findings provide evidence that the response dynamics to a sequence of events in the story are robust and reliable, 

and can be detected both with fMRI and fNIRS, by measuring the reliability (correlation) of responses to the story 

within and between the two methods in real-life complex settings that unfolds over several minutes.  

In summary, our results showed that: 1) A speaker’s and listener’s brain activity as measured with fNIRS were 

synchronized only when the listeners understood the story; 2) listening to a real-life story evoked at least some 

common brain activation patterns across listeners that were independent of the imaging technology (fNIRS or fMRI) 

and recording environment (quiet or noisy; sitting down or lying down); and 3) fNIRS and fMRI signals were 

correlated during the comprehension of the same real-life story. These results support fNIRS as a viable future tool 

to study brain-to-brain coupling during social interaction, in real-life and clinical settings. 

Materials and methods 

Participants 

Three speakers (one male native English speakers, two male Turkish speakers) and 15 native English listeners (8 

females) volunteered to participate in the study and were included in the analysis. An additional six subjects 

participated in the study but were excluded from analysis due to technical issues during recording or the excessive 

motion artifact presented in the large sensor array data that covers both prefrontal and parietal cortices. Subjects 
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were all right-handed (mean LQ = 74.5, SD = 24.1) based on Edinburgh Handedness Inventory31 and ages 18-35

years. All subjects had normal or corrected-to-normal vision. Participants did not have any history of

neurological/mental disorder and were not taking any medication known to affect alertness or brain activity. None of

the listeners understood Turkish. The protocol used in the study was reviewed and approved by the Institutional

Review Board (IRB) of the Drexel University (DU). The methods were carried out in accordance with approved

guidelines and participants gave written informed consent approved by the IRB of DU.  

Experimental Procedure 

All participants were seated comfortably in front of a computer screen throughout the experiment. fNIRS data of the

three speakers were recorded while they told an unrehearsed real-life story in their native language (either English or

Turkish). Audio of the stories was recorded using a microphone. The resulting one English story (E1) and two

Turkish story (T1 and T2) were played to the listeners later. An additional real-life English story E2 (“Pie-man”,

recorded at “The Moth”, a live storytelling event in New York City) used in several recent fMRI studies of natural

verbal communication14,21, was also played to the listeners.  

fNIRS data were recorded from the listeners throughout the audio playbacks. The playback sequence always

began with E2 (English story, Pie-man), and order of the remaining stories (E1, T1, and T2) was counterbalanced

across subjects. Before each story playback, short samples of scrambled audio were played to the subjects so they

could adjust the volume of the headphones they were wearing. Before the start and after the end of the audio story

playback, there was a 15-s fixation period for stabilizing the signal. Immediately after each playback, subjects were

asked to write a detailed report of the story they just heard to verify if they understood the story. Figure 6, below,

shows the timeline of a story session.  

Figure 6 Story presentation timeline  

 

Data Acquisition 

Two optical brain imaging devices were used simultaneously on each participant to record brain activity from

prefrontal cortex (PFC) and parietal cortex (PL) using 40 measurement locations (optodes).  Prefrontal and parietal

regions were selected based on the significant areas found in the previous fMRI-based speaker-listener neural

coupling study by Stephens, et al. 12. Anterior prefrontal cortex  was recorded by a 16-optode continuous wave
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fNIRS system (fNIR Imager Model 1100; fNIR Devices, LLC) first described by Chance et al.32 and developed in

our lab at Drexel University33,34. The sensor was positioned based on the anatomical landmarks as described before

in Ayaz et al.34. Briefly, the center of the sensor was aligned to the midline and the bottom of the sensor was

touching the participant’s eyebrow so that the center point of the sensor was approximately at Fpz according to the

10-20 international system (see Figure 7). The sampling rate was 2 Hz. Parietal cortex was recorded using a 24-

optode Hitachi fNIRS system (ETG 4000; Hitachi Medical Systems). Two “3×3” measurement patches were

attached to a cap that was customized for the measurement of the parietal cortex. For each subject, the center of the

two patches was placed at Pz, which was located using a measuring tape. Sensors from each patch measured the

fNIRS signal of one hemisphere from 12 channels. The sampling rate was 10 Hz. Figure 7 shows the complete

sensor setup and optode configuration. 

 
Figure 7 fNIRS acquisition setup. Red circles indicate emitters; blue circles indicate detectors; White squares indicate 

measurement channels between emitters and detectors 

The approximate projection of the channel locations onto the cortical surface in MNI space was estimated using a

virtual spatial registration approach35,36. In this approach, the sensor patches are virtually placed on an ideal scalp

and the projected Montreal Neurological Institute (MNI) coordinates on the cortical surface and the standard

deviation of displacement were estimated from the magnetic resonance (MR) images of 17 individuals that were

obtained from a publicly available dataset37,38. The results are shown in Figure 8. The optodes covered regions in the

frontopolar area, orbitofrontal area, dorsolateral prefrontal cortex, primary somatosensory cortex, somatosensory

association cortex, supramarginal gyrus and angular gyrus.  
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Figure 8 Optode locations. Left: Approximate spatial registration of optode locations to MNI space. Right: Schematic 

representation of the same optode locations on head surface which will be used later to show results. The virtual spatial 
registration approach was adopted to estimate the projection of the optodes on cortical surface in MNI space 35. The center of 
each green colored patch stands for the most likely position and the radius represents the standard deviation of displacement.   

 

fNIRS Data Preprocessing 

fNIRS raw light intensity signals were converted to changes in oxygenated hemoglobin (ΔHbO) and

deoxygenated hemoglobin (ΔHbR) concentrations using the modified Beer-Lambert law39. The raw signal and

hemoglobin concentration changes were inspected both visually and also using the automated SMAR algorithm 40

which uses a coefficient-of-variation based approach to assess signal quality, reject problematic channels with bad

contact or saturated raw light intensity. Next, the ΔHbO and ΔHbR time series for each optode and participant were

band-pass filtered (0.01-0.5 Hz) and down-sampled to 2Hz. We considered only the period from 15 to 399 seconds,

with respect to story start, in the signal time courses from each audio story. The first 15s were rejected to account for

subjects’ initial period of adjustment to the listening comprehension task, and 399 s is the duration of the shortest

story.  Prior to subsequent analysis, the signal time courses were standardized optode-wise to have a mean of 0 and a

standard deviation of 1.  
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fNIRS Analysis 

Inter-subject correlation. We first evaluated the reliability of the correlation between listeners’ brain activity 

using an inter-subject multilevel GLM similar to the one adopted by Stephens et al.12 for each of the four conditions:  

E1, E2, T1 and T2. We expected neural coupling between listeners to emerge only for the English story conditions 

E1 and E2, as none of the subjects understood Turkish.  

At the individual subject level, a GLM with AR(1) (first-order autoregressive) error model  was estimated using 

the average time course of the listeners as the independent variable and the time course of an individual listener as 

the dependent variable as follows: 

���	
 � ���	

� � ��	
                                                                        (1) 

��	
 � ���	 � 1
 � �                                                                         (2) 

where ���	
 is the time course of a channel from listener k, ���	
 is the average time course of a channel from all 

the other listeners except for listener �,  � is the autocorrelation coefficient and �~��0, ��
.  AR(1) error model has 

been frequently adopted in event-related fNIRS analysis to model auto-correlated noise caused by low-frequency 

drift and physiological processes such as cardio-respiratory and blood pressure changes41.  

At the group level, we tested the hypothesis ��: 
 � 0 using a one-tailed one-sample t-test evaluated on the 

slopes 
� (� � 1, … , �) estimated at the individual level.  We used the Benjamini–Hochberg procedure22 to control 

FDR among 80 statistical tests (2[ΔHbO/ΔHbR] × 40[optodes]) with � � 0.01. 

Speaker-listener coupling. We evaluated the coupling between optode � of speaker and optode � of the listeners 

for all permutations of (�, �
 (� � 40  40 !"	!#$% � 1600 "'�(%). The multilevel GLM was applied as it was for 

listener-listener coupling except that the time course of optode � of a speaker was used as independent variable 

�� �	
 and the time course of optode j of each individual listener � was used as dependent variable ��
�
�	
.  

Temporal asymmetry of coupling. The speaker-listener coupling analysis was repeated by shifting the speaker’s 

time course with respect to those of the listeners from -20s to 20s in 0.5s increments. At each time shift, FDR was 

controlled among 3200 statistical tests (2[ΔHbO/ΔHbR] × (40×40)[optode pairs]) with � � 0.01.  As a comparison, 

listener-listener coupling was re-evaluated by shifting the average listener time series with respect to that of each 

individual listener.  

fMRI Analysis 

The fMRI dataset included 17 subjects listening to story E2 (the “Pie-man” story), which was recorded and used 

in a previous study14. To compare with the fNIRS results, we considered only voxels from the outer layer of the 

cortex in the neighboring regions of prefrontal and parietal sites as shown in Figure 8. The “neighboring regions” are 

defined as voxels within a radius of 2.7 standard deviations from the center of each optode projection. A total of 994 

voxels were chosen in this manner. The voxel time courses were high-pass filtered at 0.01 Hz (for comparison with 

fNIRS signals) and trimmed to only include 15-399 seconds (with respect to story start), and the inter-subject 
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multilevel GLM described in section 0 was employed for model analysis. FDR was controlled among the 994 voxels 

with � � 0.01.  

fMRI-fNIRS Correlation 

To estimate the correlation between BOLD and fNIRS signals, both signals were high-pass filtered at 0.01Hz. 

The BOLD time courses were z-scored normalized for each voxel and then averaged across the 17 subjects. fNIRS 

time courses were down-sampled to 
�

�.�
Hz to match the fMRI sampling rate. The inter-subject multilevel GLM 

approach was then applied with the time course of optode � of an fNIRS subject � as independent variable ��
�  �	
 

and the time course of voxel � averaged across fMRI subjects as dependent variable ���	
.  

The aforementioned procedure was applied first to estimate all possible correlations between channels and their 

corresponding voxels in the left prefrontal (8 optodes × 131 voxels), right prefrontal (8 optodes × 144 voxels), left 

parietal (12 optodes × 376 voxels) and right parietal (12 optodes × 343 voxels) areas. The voxels were selected as 

described in section 0.  To correct for multiple comparisons, FDR was controlled with a threshold of 0.05. 
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