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Abstract 

 

Summary: ​Recent studies have uncovered a strong effect of host genetic variation on the 
composition of host-associated microbiota. Here, we present HOMINID, a computational 
approach based on Lasso linear regression, that given host genetic variation and microbiome 
composition data, identifies host SNPs that are correlated with microbial taxa abundances. By 
using HOMINID on data from the Human Microbiome Project, we identified 2,127 human SNPs 
in which genetic variation is correlated with microbiome taxonomic composition in 15 body 
sites. We also present a tool for visualization of host-microbiome association network identified 
in HOMINID. 

 

Availability and implementation:​ Software and code are available at 
https://github.com/blekhmanlab/hominid​, online visualization tool at 
http://z.umn.edu/genemicrobe​. 

 

Contact: ​ ​blekhman@umn.edu  

 

Supplementary information: ​Supplementary data are available at ​Bioinformatics​  online 
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1. Introduction 

 

The microbial communities found in and on the human body are influenced by multiple              
factors. In addition to the clear effect of environmental factors on the microbiome, there is               
growing support for an impact of host genetics. Several candidate gene studies have found              
correlation between human genetic variation and the structure of the microbiome ​(Tong ​et al.​ ,              
2014; Khachatryan ​et al.​ , 2008; Knights ​et al.​ , 2014) ​. In addition, genome-wide approaches can              
also be useful to identify human genetic impact on the microbiome ​(Goodrich ​et al.​ , 2014;               
Blekhman ​et al.​ , 2015; Goodrich ​et al.​ , 2016) ​. For example, Goodrich et al. used hundreds of                
twin pairs to calculate the heritability of the gut microbiome, and identify bacterial taxa that are                
highly heritable, such as Christensenellaceae ​(Goodrich ​et al.​ , 2014) ​. Researchers have also            
utilized quantitative trait locus (QTL)-mapping approaches in the laboratory mouse and have            
identified multiple loci associated with the structure of gut microbial communities, some of             
which overlap genes involved in immune response ​(Benson ​et al.​ , 2010; Leamy ​et al.​ , 2014) ​.               
Moreover, studies have used joint human genetic variation and microbiome data to find             
associations between loci in the human genome and microbial taxa ​(Blekhman ​et al.​ , 2015;              
Davenport ​et al.​ , 2015) ​. In our recent study, in addition to showing that human genetic variation                
is associated with the structure of microbial communities across ten body sites, we have              
identified human single nucleotide polymorphisms (SNPs) associated with variation in the           
microbiome, and found that these loci are highly enriched in immunity genes and pathways              
(Blekhman ​et al.​ , 2015) ​. This approach, which includes the joint analysis of host genetic              
variation (SNPs) and microbiome taxonomic composition data (usually an OTU table), has the             
important advantage of identifying specific host genes and pathways that may control the             
microbiome, thus shedding light on the biological mechanisms of host-microbiome interaction,           
and pinpointing potential disease-causing pathways. However, this analysis is complicated by the            
fact that the microbiome contains many taxa that can be used as potential molecular complex               
traits in the GWAS analysis. Testing many taxa reduces the power and multiple hypothesis              
testing correction makes the identification of associations challenging. 

 

2. Approach 

Here, we propose a framework for identifying host SNPs associated with microbiome            
composition using Lasso regression, named ​HOMINID ( ​Ho​st-​M​icrobiome ​In ​teraction        
Id ​entification; see ​Figure 1A and ​Supplementary Information ​). Our method takes as input            
host genetic variation data (in a modified VCF format) and microbiome composition data (as an               
OTU table), and uses Lasso regression plus stability selection with randomized Lasso to identify              
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associations between host SNPs and microbiome taxa. We implemented Lasso regression using            
the Python machine-learning library scikit-learn ​(Pedregosa ​et al.​ , 2011) with the taxon relative             
abundances (arcsin sqrt transformed) as predictors, and genetic variation at each SNP as             
response, for the purpose of identifying an additive effect between allele count and microbiome              
features (see ​Supplementary Information ​and Figures S1-S3 ​). In addition, our model can            
easily include any other factors that can affect the microbiome (e.g., sex) as covariates. We use                
five-fold cross-validation and use the coefficient of determination from the Lasso model, R​2​, as a               
measure of correlation. To reduce variability in R​2 we reshuffle the data and calculate the median                
in R​2​, as well as a 95th percentile bootstrap confidence interval of the median using 10,000                
bootstrap samples. Lastly, we assign a P- and Q-values to the R​2 using permutation of the sample                 
labels (see ​Supplementary Information) ​. Using synthetic data, we show that the accuracy of             
our approach is robust with respect to allele frequency ( ​Figures S4 and ​S5 ​), and variation in                
microbiome composition within each allele group has a relatively minor effect on accuracy             
( ​Figures S6​ and ​S7 ​). 

 

3. Results 

We ran the HOMINID pipeline on a previously published data of microbiome and host              
genetic variation from the Human Microbiome Project cohort ​(Blekhman ​et al.​ , 2015) ​. We             
focused our analysis on coding SNPs with minor allele frequency ≥ 0.2, and identified SNPs for                
which permutation-based P-value ≤ 0.01 and the 95th percentile confidence interval for R​2 does              
not include zero. This resulted in the identification of 2,127 associations between host SNP and               
microbiome composition across 15 body sites (see ​Fig. 1B​, ​Table S1 ​, and Supplementary             
methods). On average, we identified 142 associated SNPs in each body site, with most found in                
the gut (197 SNPs) and fewest in the airways (107 SNPs). These SNPs were located within 1,532                 
distinct human genes (see ​Table S2 for the detailed list). Of these, 296 genes harbor SNPs that                 
are correlated with the microbiome in more than one body site, with 13 genes in which we find                  
correlations in at least 4 different body sites (including ​STAB1​ , ​ADAMTS17​ , ​AHNAK2​ , ​AKAP12​ ,             
CD109​ , ​FBN3​ , ​HAUS6​ , ​MKI67​ , ​MUC5B​ , ​OBSCN​ , ​TBC1D10A​ , ​TEX15,​ and UNC79​ ; ​Table S2 ​).            
Only six SNPs remained significant after multiple hypothesis testing correction (at Q-value <             
0.1; see ​Table S3 ​). However, as studies using larger sample sizes materialize (for example, a               
recent study included 1,514 subjects ​(Bonder ​et al.​ , 2016) ​), we expect our method to be useful in                 
allowing the detection of a much larger number of associations. 

We find that among these genes there are several interesting candidates; for example, one              
of the most significant correlations we find with the gut microbiome is a SNP located within                
ABCC8​ , a gene that is expressed in the colon and encodes a protein involved in insulin release                 
with a strong link to diabetes mellitus ​(Hlavata ​et al.​ , 2012; Haghverdizadeh ​et al.​ , 2014) ​. We                
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find that genetic variation in SNP rs1799859 within ​ABCC8 is correlated with the abundance of               
taxa Veillonella, Lentisphaerae, Clostridiaceae, and Dialister (R​2​=0.194, P = 1.11 10​-4​, q=0.5         ×   
via permutation test), all of which have been previously associated with diabetes ​(Murri ​et al.​ ,               
2013; Fugmann ​et al.​ , 2015; Kostic ​et al.​ , 2015) ​. We find another interesting correlation between               
microbiome composition in the throat and SNPs within both ​HLA-DRA and ​HLA-DQB1​ , two             
genes involved in the regulation of the immune system (P = 5 10​-4 and P = 6 10​-4​,           ×     ×  
respectively, using permutation test). We provide an example of the patterns that can be detected               
using our approach as seen in the SNP rs2305243 in ​ATL2 in the airway ( ​Figure 1C ​; R​2​=0.201,                 
P = 1.22 10​-4​), where genetic variation is positively correlated with some taxa (e.g., Bacillales)  ×             
and negatively with others (e.g., Corynebacteriaceae).  

Lastly, we developed a web-based tool for the visualization of host-microbiome           
interaction network identified in HOMINID, available at ​http://z.umn.edu/genemicrobe​. The         
website, designed using D3.js with a dedicated MySQL database serving as the back-end,             
displays a dynamic visualization of host gene-microbiome taxa interaction networks, and allows            
the user to add and remove nodes (host gene and microbial taxa), adjust the display size and node                  
locations, filter by body sites, and generate figures. 

 

Funding 

This work is supported in part by funds from the University of Minnesota College of 
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Figure Legend 

Figure 1. Overview of the HOMINID approach and results. A.​ Outline of the 
pipeline. ​B. ​The number of SNPs identified (x-axis) as correlated with microbiome composition 
in each body site (y-axis). Colors denote skin (purple), airways (blue), oral (green), and gut 
(orange) sites. ​C. ​Visualization of the correlations found between genetic variation in SNP 
rs2305243 (x-axis) and microbiome composition (y-axis). Each of five correlated taxa is shown 
using a different color.  
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