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Abstract

Striatum is predominantly inhibitory and the main input nucleus of the basal ganglia.

A functional characterization of its activity dynamics is crucial for understanding the

mechanisms underlying phenomenon such as action selection and initiation. Here, we

investigated the effects of the spatial connectivity structure on the emergence and

maintenance of localized bumps of activity in large-scale striatal networks (∼10,000

neurons). We show that in striatal network model in which the distance-dependent

connection probability varies in a Gaussian fashion (Gaussian networks), the activity

remains asynchronous irregular (AI) and spatially homogeneous, independent of the

background input. By contrast, when the distance-dependent connectivity varies

according to a Gamma distribution (Gamma networks), with short-range connectivity

suppressed, a repertoire of activity dynamics can be observed: While weak background

inputs induce spatially homogeneous AI activity, stronger background inputs induce

stable, spatially localized activity bumps as in ‘winner-take-all’ (WTA) dynamics.

Interestingly, for intermediate background inputs, the networks exhibit spatially

localized, but unstable activity bumps (Transition Activity, TA), resembling the

experimentally observed neuronal assembly dynamics in the striatum.

Among the three main regimes of network activity (AI, WTA, TA) we found that in

the AI and TA regimes, network dynamics are flexible and can be easily modified by

external stimuli. Moreover, the dynamical state of the network returns to the baseline

after the stimulus is removed. By contrast, the dynamics in the WTA state are rigid
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and can only be changed by very strong external stimuli. These results support the

hypothesis that the flexibility of the striatal network state in response to stimuli is

important for its normal function and the ‘rigid’ network states (WTA) correspond to

brain disorders such as Parkinson’s disease, where the striatum looses its repertoire of

dynamic states and is only receptive to very strong inputs.

Introduction

The basal ganglia (BG) is a collection of nuclei located at the base of the forebrain and

involved in a variety of functions, including voluntary movement control, decision

making, procedural learning and a variety of cognitive and emotional functions.

Pathological changes in any of the BG nuclei may lead to brain disorders such as

Parkinson’s disease (PD), Huntington’s disease, Tourette syndrome, impulsivity and

obsessive-compulsive disorders. Striatum is the main input stage of the BG and

therefore, plays a major role in BG related brain function and dysfunction.

Like many other sub-cortical structure, the striatum is a network of inhibitory

neurons driven by excitatory inputs from all regions of the neocortex [1], thalamus and

hippocampus. The output of the striatum directly projects to the globus pallidus (GP)

both internal and external segments and form two of the integral functional pathways of

BG, i.e. the Go and No-Go pathways, respectively. An interaction of these pathways

form the basis of functions such as action-selection, initiation and execution. The

mechanistic details of how a sparsely connected network of inhibitory neurons like the

striatum performs multi sensory, sensori-motor integration and action-selection remain

poorly understood. In the No-Go pathways, striatum needs to alter the activity of the

GP which typically spikes at ≈ 40 Hz [2].

Experimental data suggests that in the ongoing activity striatal firing rates are very

low (≈ 1 – 3 Hz) [3, 4] and in a given task, up to 30% of striatal projection neurons

respond with a markedly increased firing rate (≈ 10 – 20 Hz) [4, 5]. However, it remains

unclear, how the task-related activity of the striatum is organized in space and time to

shape the activity of GP to initiate action-selection.

Recently, the observation of temporal clustering of spiking activity in the striatum in

a decision making task [6] suggest that the network activity may be organized in

transient co-activations of small neuron groups, often referred to as neuronal assemblies

(NA). Recent in vivo imaging studies have shown that NAs are spatially localized and

can encode locomotion relevant information in the dorsal striatum [8]. These

observations corroborate similar findings on the organization of striatal activity in

vitro [7]. Co-activated neurons as a part of NAs can effectively increase the influence of

striatal neurons on the downstream GP network. However, this observation raises a key

question: Under what conditions such NAs appear in the activity dynamics of striatum

as a sparse connected, inhibitory recurrent network.

Dynamically, NA type activity state may represent the outcome of a so-called

‘winner-less-competition’ (WLC) [9] or a noise driven transition state between the
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asynchronous-irregular (AI) activity state and the ‘winner-take-all’ (WTA) state. While

the mechanisms underlying the emergence of such transient NA are not well understood,

a heterogeneity in both, the external input and in the mutual connection probabilities

among striatal projection neurons are common properties of various models that have

been proposed to explain the emergence of transient NAs [10–12]. However, these

phenomena is usually reported in relatively small networks. It is not clear whether

large-scale networks can also exhibit NAs.

In this work we investigate the existence of NAs in a large-scale network model of

striatum. Deviating from the previous work that used a small randomly connected

networks, we focus on a large-scale network in which neurons are connected in a

distance dependent manner. To better understand computations and the encoding and

processing of information in spatially connected inhibitory networks we address two key

questions: (1) How does the structure of the network connectivity define the repertoire

of the ongoing activity dynamics? (2) Under which conditions can task-related inputs

modify these ongoing activity dynamics?

To face these questions we investigated the effect of the spatial connectivity structure

on the emergence and maintenance of spatio-temporally clustered activity in large

striatal network. Specifically, we considered two different types of spatial connectivity

profiles in which the connection probability between any two neurons varied as a

function of the distance between the neurons, according to either a non-monotonic

Gamma distribution or to a monotonic Gaussian distribution [13]. We show that for a

non-monotonically shaped connectivity kernel spatially structured activity in the

network can emerge. We found that only networks with a Gamma-distributed shaped

connectivity kernel can exhibit at least three different activity dynamics regimes. Weak

background inputs and/or high input variance induced unstructured AI, whereas

stronger background inputs and/or low input variance induced a stable dynamics (e.g.

WTA). In an input regime close to the noise threshold the network activity organized

into unstable spatial bumps (transition activity, TA), resembling the experimentally

observed NAs [6] and WLC [14]. Moreover, the dynamic state of the bump activity also

determined the impact of external stimuli on the network activity dynamics. We show

that the TA state the network activity is highly sensitive to external inputs both in

terms of changes in the average firing rates and pair-wise correlations. In the TA state,

the stimulus resulted in a wide spectrum of positive and negative correlations which

would be required to initiate plasticity processes to learn the stimulus structure.

Thus, we propose that a non-monotonically shaped (e.g. Gamma distribution)

distance-dependent connectivity offers a rich dynamical activity repertoire in purely

inhibitory networks such as the striatum, enabling the ongoing activity to dynamically

switch between different network activity states. These results will help us to better

understand computations and information processing in striatum and other sub-cortical

brain regions which are primarily inhibitory networks. In addition, they may help reveal

underlying mechanisms of brain diseases such as Parkinson’s disease, in which the basal

ganglia lose their flexibility for encoding cortical input stimuli.
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Results

Neuronal activity in the striatum is maintained by thalamic and cortical excitatory

inputs. In a randomly connected inhibitory network model of striatum, the recurrent

inhibition and the level of external excitatory inputs define the dynamical states and

stimulus response properties of the network [11,12,18,23]. Here, we extend this earlier

work by investigating the effect of spatial connectivity on the dynamical states and

stimulus-response properties of striatal network models. To this end, we used both

neural field equations and numerical simulations of large-scale inhibitory networks with

10,000 spiking neurons.

In our network the profile of the spatial connection probability between any two

neurons could vary either monotonically or non-monotonically as a function of the

distance between neurons. Here, we used two different kernels for spatial connectivity:

In Gaussian networks the connection probability decreased monotonically in a

Gaussian manner as a function of distance (on-center inhibition [13], Fig. 1a, top),

whereas in Gamma networks the non-monotonic distance-dependent change in

connection probability was modeled as a Gamma distribution (off-center inhibition [13]

Fig. 1a, bottom).
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Figure 1. Spike train activity of the network with Gaussian (top) and
Gamma-distributed (bottom) connectivity.
(a) Connection probability between neurons as a function of the distance between two
neurons. (b) Examples of spiking activity of 100 neurons are visualized for different
background input strength. With a higher background input rate the spiking activity of
the Gaussian networks remained irregularly and the bursting behavior increased. The
Gamma networks, on the other hand, yielded transient or persistent bursting behavior
and local synchronization of spiking activities. (c) The informative content of the signal
is characterized by the entropy of the neural activity. Different colors of curves refer to
the different scales on the abscissa. The gray, dashed curve represents the entropy of
the Gaussian networks but on input scale of the Gamma networks to compare with
its entropy (red curve). With an increase of background input rate, the entropy of
the population activity in Gamma networks showed a drop, indicating an increase in
relevant information in this regime.
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Firing rates and spike train irregularity

First, we determined the firing rate and the degree of irregularity of the spiking

activities in the networks connected according to the Gaussian (Figs. 1a,b; top) and

Gamma (Figs. 1a,b; bottom) shaped connectivity profiles.

As expected, the average firing rates in both network types increased as a function of

the background excitatory input (νext) (Fig. 1b, top and bottom rows). However,

Gamma networks were clearly more sensitive to a change in the background input rate

and the same average firing rate as in Gaussian networks was achieved already for

much lower input rates (Fig. 2a, top row).
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Figure 2. Analysis of the spike patterns in networks with different
connectivity profiles.
(a) Distribution of the mean firing rates (top) and coefficient of variation (bottom) as a
function of background input strength for Gaussian (left) and Gamma (right) networks.
In Gaussian networks, increasing the background input results in a steadily widening
distribution of mean firing rates and CVISI , which for a large fraction of neurons tends
to the value 3. By contrast, in Gamma networks the distribution of mean firing rates
and CVISI is rapidly widely distributed from a relatively low input strength (1.5 kHz)
upwards. Gamma networks are clearly more excitable than Gaussian networks. Black
curves refer to the median value of the firing rate and CVISI , respectively; red curves
refer to the mean value. (b) Relationship between the irregularity of spiking pattern
and the mean firing rate. The color of the curves represents the background input rate.
In Gaussian networks (top) neurons with higher firing rate tend to exhibit a higher
CVISI , whereas in Gamma networks (bottom) they tend to exhibit a lower CVISI .

Moreover, the two network types differed considerably in the distribution of firing

rates over neurons (Fig. 2a, top row) and the spike timing irregularity (CVISI )

distributions (Fig. 2a, bottom row). The recurrent inhibition in the network ensured

that even for very strong background inputs only few neurons could spike at high rate

and a major fraction of neurons spiked at relatively low rates. As a result, increasing

the rate of background input to these networks increased the width of the firing rate

distribution, this widening being more pronounced in Gamma networks.
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In Gaussian networks the firing rate distribution became distinctly less skewed

when the rate of background input was increased, in Gamma networks this was hardly

the case (Fig. S1). In Gamma networks, the firing rate distribution widened

drastically at around 1.5 kHz input rate (Fig. 2a top right), thereby increasing the

average firing rate. Note, however, that the median output firing rate in

Gamma networks remained at levels comparable to that in Gaussian networks

(Fig. 2a, top row).

Interestingly, in Gaussian networks the neurons’ CVISI monotonically increased

with an increase in their firing rate. An average CVISI > 1 indicates that most high

firing rate neurons spiked in bursts (Fig. 2b,top). Because we used

leaky-integrate-and-fire neurons, the bursting in the network activity was caused by the

recurrent inhibition and not because of the intrinsic properties of the neurons. In the

Gaussian networks the connection probability peaked only over a small range in the

vicinity of a given neuron, thereby reducing the effective recurrent inhibition and

allowing the neuron to maintain its high firing rate for some time. However,

fluctuations in the background input (modeled as Poisson spike trains) could rapidly

switch the high-rate activity from any one neuron to another, thereby, creating a spike

pattern consisting of short-lived bursts and pauses.

By contrast, in the Gamma networks only neurons with moderate output firing

rates showed a CVISI > 1 (Fig. 2b, bottom). Neurons with very high firing rates

(Frout ≥ 100 Hz) spiked in a regular manner (CVISI ≤ 0.5). Such small CVISI implies

that the network was operating in the so called ‘mean-driven-regime’ [24], in which the

background input is strong enough to keep the free-membrane potential of the neurons

above spiking threshold. Within the physiological range of output firing rates (≤ 50 Hz),

neurons in both network types elicited spike bursts, but the CVISI in

Gaussian networks was nearly twice as high as that in Gamma networks. Hence, a

Gamma shaped spatial connectivity kernel increased the sensitivity of the network

activity to background input and gave rise to a wide range of output firing rates.

Spatial structure of the network activity

Next, we included the spatial information about neurons into our analysis and

characterized the spatial activity patterns in both network types. Visual inspection of

the spike rasters (Fig. 1b) suggested that in Gaussian networks the structure of the

network activity remained spatially homogeneous, even for very high background input

rates. By contrast, when increasing the background input rate in Gamma networks the

activity got confined into local clusters, resulting in spatially periodic activity bumps.

To quantify the homogeneity of the spatial activity patterns we measured their entropy

(HS ) (see Methods). For Gaussian networks, the entropy HS monotonically increased

with the background input rate (Fig. 1c, blue trace), indicating that in these networks

the activity did not organize into spatial pattens, even for very strong inputs.

By contrast, when the connectivity profile was non-monotonic (here: Gamma

distribution) the spatial entropy HS changed non-monotonically as a function of the
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background input rate (Fig. 1c, red trace). For a narrow range of weak excitatory input

rates (νext ≤ 1.5 Kspikes/sec) the entropy HS increased from the baseline level observed

at the minimum input rate required to obtain any spiking activity in the network. For

stronger background inputs (νext > 1.5 Kspikes/sec) the entropy decreased sharply and

reached its minimal value at νext = 3 Kspikes/sec (the highest input rate tested).

This reduction of entropy in Gamma networks implies that the network activity

became confined to spatially localized regions (Fig. S2, Fig. 3a). Depending on the

strength of the background input, three qualitatively different network activity states

were observed. In the asynchronous-irregular (AI) state neurons spiked at a low rate

and the activity was more or less homogeneously distributed across the network

(Fig. S2, top row). For very strong background inputs, the network activity organized

into a spatially periodic and temporally stable bump structure (Fig. S2, bottom row).

This state resembles the k-winner-take-all (WTA) state [25]. In between, for moderate

inputs, the bump structure was aperiodic and unstable (Fig. S2, middle row). We refer

to this state as Transition Activity – TA. Recently, Barbera et al. [8] have reported that

the activity of D1 and D2 type dopamine receptor expressing striatal neurons is

organized as compact spatial clusters. This type of activity of the striatal neurons

closely resembles with the TA state.

To better characterize the emergence of activity bumps and these three dynamic

states in Gamma networks, we measured the numbers, sizes, and lifespans of activity

bumps. To reliably identify bumps we designed a bump detection algorithm (see

Methods). First, we measured the average firing rate as a function of distance from the

center of a bump. For weak inputs, the average network activity decayed and reached a

baseline level with increasing distance from the center of the bump. However, for

stronger inputs not only the firing rate in the bump increased but also the spatially

periodic nature of the activity became more apparent (Fig. 3a).

The number of bumps increased in a sigmoidal fashion with the background input

rate (Fig. 3c). This increase in bump count was consistent with the decrease in entropy

of the spatial activity pattern (Fig. 3c, dashed line). For strong inputs

(νext ≥ 1.7 Kspikes/sec), the bumps were stable: neurons that started to spike at the

beginning of the simulation remained active for the entire simulation (Figs. 3d and 3e;

red trace). For weak inputs (νext ≤ 1.2 Kspikes/sec), the few bumps that appeared

lasted only for a short duration (Figs. 3d and 3e; blue trace). For the medium range of

input rates (1.2 ≤ νext ≤ 1.7 Kspikes/s), the bumps showed a wide range of lifespans

(Figs. 3d and 3e; black trace).

This analysis of the network activity showed that Gammanetworks exhibited

random unstructured activity for weak background inputs and stable periodic bump

activity for strong inputs. The stable bump activity was similar to the periodic bump

activity observed in networks of excitatory and inhibitory neurons inter-connected

according to a spatial Gaussian connectivity profile [26–28]. This raises the question,

why inhibitory networks with Gamma distributed connectivity profile exhibit spatially

bump activity pattern and why networks with Gaussian distributed connectivity profile
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Figure 3. Bump activity in Gamma networks.
(a) Spatial autocorrelation of the spiking activity of the network, showing the mean
of the firing rate of each bump depending on the distance from the cluster centroid.
Different colors represent the strength of the external excitation. (b) Distance between
bumps in various Gamma distributions and its comparison in the numerical simulations
and when using the analytical methods. The background color is from the network
simulation data. Solid curves show results from analytical estimation of bump distance,
dashed curves represent the estimation of bump distance from network simulations. The
parameter for the Gamma distributed connection is used for the spiking network model
(red circle). Spatial representations of activity bumps are also observed in Fig. S3 (c-e)
The external excitation modulates the nature of the bump activity. (c) With increasing
background input strength, the number of bumps increases in a sigmoidal fashion. For
higher input rates the number of bumps saturates, due to the limited capacity of the
finite spatial map. The entropy of the network activity decreases with the increase of
the number of bumps and tends to the lowest probability of neuronal activation (dashed
gray). (d) The lifespan of bumps is related to the dynamic state of the bumps. A
shorter lifespan leads to TA dynamics, a larger lifespan leads to stable activity of bumps,
creating WTA dynamics. (e) The lifespan distribution is split into three groups. The
transient (blue) and the persistent (red) appearance of bumps describe AI and WTA
states of bump activity, respectively. Between these dynamic states the network is in
an unstable state, characterized by a wider distribution of lifespans (black curve). This
unstable state of bump activity is related to the entropy of the population activity
(dashed gray).

do not?

Necessary conditions for the emergence of bump states

To address this question we investigated the dynamical states of spatially connected

inhibitory neurons using the neural field equations [25, 29]. For simplicity we started by
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formulating the neural field equation for a one-dimensional network with circular

boundary conditions. The results hold for a 2-D network with torus-folded boundary

conditions because we are considering a homogeneous and isotropic scenario. The mean

membrane potential v(x, t) in the continuum limit is given by:

∂v(x, t)

∂t
= −v(x, t)−

∫ ∞
−∞

f(v(y, t))W (x− y)dy + I(x, t) (1)

where W (x) denotes the spatial connectivity profile and f(v) the neuron transfer

function mapping the mean membrane potential to the output firing rate. Without loss

of generality we used normalized connectivity profiles W (x), and the scaling parameter

was chosen such that the absolute connection strength was absorbed into f(v). The

background input to the neurons is denoted by I(x, t). For the network, the stationary

and spatially homogeneous solution v(x, t) = v0 = constant is a solution to the

Equation (1) for a constant background input I(x, t) = I0. v0. Here, v0 is given by the

implicit equation:

∂v0
∂t

= −v0 − f(v0) + I0 = 0. (2)

To investigate the stability of this homogeneous solution, we considered small

perturbations v(x, t) = v0 + εν(x, t) around v0 and linearized the transfer function in

Equation (1). After subtracting Equation (2) this yields

∂ν(x, t)

∂t
≈ −ν(x, t)−

∫ ∞
−∞

f ′(v0)ν(x, t)W (x− y)dy. (3)

Here and in the remainder f ′(v0) is used as shorthand notation for ∂f(v)
∂v |v=v0 . In

the Fourier domain, this expression simplifies to:

∂ν̃(k, t)

∂t
≈ −ν̃(k, t)− f ′(v0)ν̃(k, t)W̃ (k) (4)

with ν̃ denoting the Fourier transform of ν with respect to space. We can now obtain

the eigenvalue

ζ = −1− f ′(v0)W̃ (k). (5)

When the eigenvalues are positive, small perturbations do not die out, indicating

unstable dynamics. Assuming that the slope of the transfer function (f ′(v0)) is always

nonnegative, negative values in W̃ (k) are a necessary condition for positive eigenvalues

ζ and, hence, for spatially periodic activity bumps. In purely inhibitory networks, this

condition can be fulfilled by off-center inhibition kernels, like the Gamma-kernel under

investigation, or, e.g., a mixture of two Gaussian distributions arranged symmetrically

around zero. While for biologically plausible connection kernels, off-center inhibition,

i.e., a non-monotonic kernel, fulfills this condition, it should be noted that this is not a

necessary condition. For instance, the Fourier transform of a box-shaped kernel around

zero takes negative values at non-zero frequencies and could, therefore, in principle,

generate bump states.
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For the Gamma-distribution shaped connectivity kernel:

W (x) =
xn−1e

−|x|
Θ

2Γ(n)Θn
(6)

with shape parameter n and scale parameter Θ this condition of positive eigenvalue

ζ > 0 can be fulfilled for n > 1, when the Fourier transform W̃ (k) takes negative values

(Fig. 4 right panel). By contrast, the Gaussian kernel Fourier-transforms into another

Gaussian which never takes negative values (Fig. 4; right panel) and therefore, purely

inhibitory networks with a Gaussian type connectivity profile do not show any spatially

periodic bump activity. When the eigenvalues ζ are negative, the network activity

remains spatially homogeneous, similar to the AI state observed in both the

Gaussian networks and the Gamma networks (Fig. 1c).
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Figure 4. Analytical description of connectivity profiles.
The graphs show the spatial connectivity profile (left) and its Fourier transform (right)
as a function of the distance between neurons and wave numbers, respectively, for
both Gamma and Gaussian connectivity kernels. Note that the spatial connectivity
profile remains positive for both connectivity kernels. However, their Fourier transforms
behave differently; the Gaussian kernel remains positive whereas the Gamma kernel
takes negative values.

Equation (5) also revealed that the slope of the transfer function at stationary rate

(f ′(v0)) is an important factor controlling the eigenvalues. For positive eigenvalues it

needs to be sufficiently large. That is, the following condition needs to be fulfilled:

f ′(v0) > (min
k
W̃ (k))−1 (7)

Here, f ′(v0) is controlled by a number of factors. For instance, an increase in the

synaptic weights increases f ′(v0) and can make the network cross the bifurcation.

Similarly, increasing the background input will also increase the slope f ′(v0), because

the transfer function of leaky-integrate-and-fire neurons in the simulated network is

convex for low firing rates [30]. That is, both, an increase in the strength of recurrent

synapses and an increase in background input rate can cause the transition from

spatially homogeneous firing to periodically organized bump solutions.

This analysis shows that the activity of an inhibitory network driven by constant

input I(x) has two stable solutions: for weak inputs the stationary state is spatially
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homogeneous (AI state, Fig. S2; top row) whereas for strong inputs, the stationary state

is spatially periodic (WTA state, Fig. S2; bottom row). When the network is driven

with noisy inputs or the neurons have unequal numbers of synapses (due to random

connectivity), the transition between the two stable solutions is smoothened (TA state,

Fig. S2; middle row). This is consistent with the numerical network simulations

(Figs. 1, 3) where noise was introduced into the network by the connectivity and the

Poisson type spike trains as external input.

In addition to stating the condition for spatially periodic bump solutions to arise,

Equation (5) also enables us to estimate the distance between bumps. The wave number

of the emerging spatially periodic solution is approximately given by the wavenumber kc

which minimizes the Fourier transform of the Gamma kernel (6). This critical

wavenumber kc is given by:

kc = arg min
k
W̃ (k) =

tan π
n+1

Θ
. (8)

Properties of the ongoing network activity, required to

represent external stimuli

How can the activation and inactivation of bump behavior as observed in the TA or

WTA dynamics be useful for information processing in the striatum? Recall that the

spiking activity bumps appeared in the absence of any specific stimulus, that is, in

response to a non-specific excitation of the entire network. To use a network with such

ongoing activity for any processing, it is imperative that the presentation of an external

stimulus (i.e. the specific activation of a fraction of neurons in the network) is able to

alter the ongoing network state. This requires the ongoing activity dynamics to be

‘flexible’ such that different stimuli can generate different, that is, separable responses –

since, evidently, inseparable responses would be quite useless for any information

processing. In the ongoing activity observed in TA or WTA dynamics, stimulated

neurons could create new bumps and/or attract (or repel) already existing nearby

bumps. Subsequently, the stimulus-induced bump could enhance bump formation in

nearby neurons by disinhibition. However, the ongoing network dynamics could also be

‘rigid’, meaning that external stimuli would not able to alter the network state. Indeed,

in order to participate in a rich repertoire of behaviors the network should exhibit a

state in which most neurons can be activated, thereby, allowing the formation of novel

spiking bumps with ‘flexible’ dynamics.

Even when the ongoing activity is flexible enough to produce well separated

responses to different stimuli, the dynamics could be ‘elastic’, such that after the

stimulus is removed the network activity returns to the baseline. Alternatively, it could

be ‘plastic’, such that activity does not return to the baseline after the stimulus is

removed.

Taken together, we argue that ‘flexible’ and ‘elastic’ ongoing activity dynamics

would be optimal for a striatal network to be able to represent and process external
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stimuli. Therefore, in the next step we investigated the flexibility and elasticity of the

ongoing activity dynamics in Gamma networks in the AI, TA and WTA states.

Impact of the ongoing network activity on the stimulus response

To test the flexibility and elasticity of the ongoing network dynamics we stimulated two

non-overlapping regions of the network alternately (Stimulus A and B; Fig. 5a, see

Methods). In the AI state the network instantaneously responded to the stimulus and

switched to a different pattern when the input was changed (Fig. 5a, top row). In this

state, there were no bumps in the ongoing activity, therefore, the stimulus created new

bumps.

In the TA state, the ongoing state already showed transient bumps. In this state,

external stimuli modified the already existing bump pattern to an extent which was

different for the stimuli A and B. By contrast, in the WTA state, the ongoing activity

showed strong stable bumps and the external stimuli proved insufficient to alter the

ongoing bump pattern (Fig. 5a, bottom row).

To test whether the two stimuli elicited unique activity responses that could also be

distinguished from the ongoing activity we measured the principle components (PC) of

the ongoing and of the stimulus-induced network activity (see Methods; Fig. 5b). The

minimum stimulus strength (Iminstim) needed to elicit a response discernible from the

ongoing activity depended on the ongoing network activity state.

In the AI state, once the input strength exceeded Iminstim, both inputs generated a

specific response which clearly differed from the ongoing activity as can be inferred from

the well separated PCs of the network activity in ongoing, stimulus A and stimulus B

phases (Fig. 5b, columns marked in green).

In the TA state the stimulus threshold Iminstim exceeded that in the AI state. However,

above this threshold, the network responses to the two stimuli and the ongoing activity

again clearly differed from each other (Fig. 5b, column marked in yellow). In the WTA

state, however, for all different input strengths we tested we did not observe any

response that differed from the ongoing activity (Fig. 5b, columns marked in red). Note

that the maximum strength we tested was five times the Iminstim in the AI state. Taken

together, these results suggest that among the three regimes of network activity only

the AI and TA states were flexible enough to differentially encode different stimuli.

Next, to test for the elasticity of the ongoing activity dynamics we studied the

temporal evolution of the first two PCs in the different network states and for different

input strengths (Fig. 5c). In the AI state, response switching was nearly instantaneous

and after removing either of stimuli A or B the network activity and the two PCs

rapidly returned to their baseline values (Fig. 5c; left column). In the TA state, the

switching of the network responses was slower, because stimulus encoding in this state

involved a reorganization of already existing bump patterns (Fig. 5c, middle column).

This could, in principle, be considered a useful property, because such short-term

memory of the previous stimulus could be used to encode temporal associations between

successive stimuli.
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Figure 5. Impact of the network dynamics on the stimulus response with
PCA.
(a) Spatial distribution of spiking activity displayed in time series for different dynamic
states (rows). Each block shows a spatial map of 30× 30 neurons from the ROI (black
dots) in a time window of 100 ms, with 500 ms intervals between successive blocks. The
gradient background is the probability area for stimulated neurons, its color refers to a
stimulus phase. (b) Population activity in PCA for different dynamic states of network
activity. Each dot represents the principle components describing an activity state of
the population in a given time window (1 s). The baseline activity is colored in blue, the
other colors represent the activity in corresponding stimulus phases. (c) Evolution of
the dynamical states over a period (3 s) in different stimulus phases - off-stimulus (blue),
stimulus A (red) and B (yellow). Subplots are associated to stimulus currents and input
rates in (b). Purple and blue traces represent averaged values of PCs based on time
series of the rate histogram with 100 ms bin width over 20 repetitions. Colored areas
represent the standard deviation of the PC values over 20 repetitions.

Specific differences in network responses were observed in the temporal correlation

over 20 repetitions of stimulus trials (Fig. S4). The spiking activity responses to

repeated presentation of the same stimulus were highly correlated in both AI and TA

network states, indicating the stability of the network responses (Fig. S4, a,b, II,IV). By

contrast, as is necessary for reliably encoding a sequence of different stimuli, the

stimulus responses to the two stimuli were uncorrelated (Fig. S4, a,b, III,V). Note that

the ongoing activity in the AI and TA state was quite different in different trials and,

hence, the temporal correlations in the ongoing activity over trials were very small
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(Fig. S4, a,b).

In the WTA state, however, the response, if at all different from the ongoing activity,

was by far the slowest (Fig. 5c; rightcolumn). Notice also that the variance of the two

PCs clearly grew as the activity went from the AI/TA states to the WTA state

(Fig. 5b). This increase in variance rendered the separation of responses very difficult.

Moreover, the response in the WTA state was not repeatable and temporal correlations

between responses to both the same stimulus and to the different stimuli were widely

distributed (Fig. S4, c).

Taken together, the stimulus response properties of the three ongoing network

activity regimes in Gamma networks showed that in the AI and TA states the network

dynamics are both flexible and elastic enough to reliably encode different external

stimuli arriving in sequence. By contrast, the WTA state proved to be rigid and

therefore, not suitable for encoding incoming stimuli.

Modulation of pairwise correlations is maximal in the TA state

Both AI and TA states are similar in terms of stimulus sensitivity and response

separability (Fig. 5). Because, in general, the firing rate in the TA state is higher than

that in the AI state and it could be argued that the AI state is a more suitable ongoing

activity state for a striatal network. Further analysis of the evoked activity however,

revealed a crucial difference between these two states that renders the TA as a more

suitable ongoing activity state.

In the AI state, a weak external stimulus only affects the rate of stimulated neurons

and thereby induces a very small effect on the neighboring neurons. Therefore, the

correlation spectrum during the evoked activity is slightly positively skewed (Fig. 6, left,

red trace). That is, while weak stimuli can evoke activity responses in the AI state the

spectrum of correlations remains largely unaffected (Fig. 6).

By contrast, in the TA state, even a weak external stimulus can create new activity

bumps and therefore, introduces both positive and negative correlations. (Fig. 6, middle,

red trace). The resulting distribution of correlations in the evoked activity is much

wider than observed in both AI and WTA states. That is, in the TA state even weak

stimuli are able to induce large changes in the structure of pairwise correlations (Fig. 6

middle, red trace). These correlations maybe effective in ‘carving’ out the selected

action not only in the striatum but also downstream in GPe and GPi, both of which

have high baseline activity and requries coordinated striatal inhibition to be suppressed.

For strong external stimulus the correlations spectra are similar in both AI and TA

states. In the WTA state a weak stimulus did not induce any visible modulation in the

correlation spectrum Fig. 6, right) and only very strong inputs could triggers a small

change in the correlation structure (Fig. 6, right, yellow and magenta traces).

Several previous experimental [6, 7] and computational studies [10–12] have used the

spectrum of pairwise correlations to identify neuronal assemblies in the striatal activity.

Our work suggests that the TA state of the striatal network model is more suitable to

generate stimulus evoked NAs similar to the ones described previously [6,7]. Presence of
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Figure 6. Impact of the network dynamics on the modulation of the
correlation spectrum.
It displays the correlation spectrum of the activity in three dynamic states (AI, TA,
WTA). Colored traces represent the stimulus strength on selected neurons. Compared
to correlation spectrum in ongoing activity (blue trace) a higher excitation is required
to modulate correlation in AI state than in TA state. With a stronger input the
correlation is widely distributed observed in network activity in both AI and TA states.
Interestingly, the distribution is not symmetric and the network activity showed more
positive correlation than negative correlation.

both positive and negative pairwise correlations in the evoked activity implies that

different spike timing dependent plasticity (STDP) mechanisms could be exploited to

learn stimulus specific NAs. Within the striatum it is still debated whether MSN-MSN

synapses exhibit Hebbian or anti-Hebbian STDP [31]. In TA state both positively and

negatively correlated pairs exist and therefore, both Hebbian or anti-Hebbian STDP

could be used to learn the stimulus-specific NAs. Moreover, both positive and negative

correlations allow for a better signal-noise ratio within the striatum as well as passing

this signal downstream in the basal ganglia.

Discussion

Here, we investigated the activity dynamics and stimulus response properties of

striatum as purely inhibitory networks with different spatial connectivity profiles. We

showed that a non-monotonically changing spatial connectivity profile can lead to the

emergence of spatially structured activity in purely inhibitory networks. By contrast,

when the connectivity changes monotonically as a function of distance between neurons,

the network activity is uniformly distributed over the network irrespective of

background input. Specifically, we have shown that with a non-monotonically shaped

connectivity profile a striatum network can exhibit three qualitatively different activity

states: ‘asynchronous-irregular’ (AI), ‘transition activity’ (TA), and ‘winner-take-all’

(WTA) dynamics. Importantly, among these three different dynamical network states,

both AI and TA states have the necessary properties for reliably encoding external

stimuli. Finally, we showed that the TA state is an adequate state in which the striatum

can support stimulus specific NA and provides the necessary correlation structure to

learn such NAs.
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Transient neuronal assemblies (NAs) in striatum like purely inhibitory networks were

recently defined as groups of neurons showing a conspicuous correlation in their

temporal firing rate profiles [10,11]. Such NAs and their member neurons were

identified by an off-line analysis of the spiking activities of neurons in sparsely

connected, random recurrent inhibitory network models with weak synapses. In such

networks, NAs were found to be randomly distributed over the entire network and

appeared to involve mutually unconnected neurons [12]. However, what feature of basal

ganglia performs such an offline clustering of spiking activity into assemblies

downstream is currently unknown. In the networks we studied, in particular in the

Gamma networks, potential NAs could consist of groups of neurons, which are

unconnected but spatially clustered together and share most of their sources and targets.

In the transient TA regime, this would provide a convenient apparatus to rapidly switch

their allegiance from one stimulus to the next.

Relevance for striatal activity dynamics

In its ongoing activity state striatal neurons are relatively silent. Task related activity

can increase the firing rates up to 20 Hz [4]. Recently, transient neuronal assemblies

(NAs) were reported in striatal projection neurons in vitro [7] and in vivo [6]. That is,

striatal neurons were observed to simultaneously become co-activated and stop being

co-activated on time scales in the order of ≈ 100 ms. Moreover, Barbera et al. [8] have

also shown compact spatial clustering of the activity of both D1 and D2 type dopamine

receptor expressing striatal neurons. Transient NAs were also reported to be modulated

by behavioral state, task phase [6, 8] and dopamine level [7]. Beyond the NAs, in a

low-dopamine state (as in Parkinson’s disease), striatal neuronal activity lost its

diversity and task related switching in neuronal activity was reduced [32,33].

The three network states that we have identified in this work capture different

aspects of the ongoing and evoked activity of the striatum in the normal and

low-dopamine states. The low firing rate of striatal neurons and the sparse sampling of

their activity in current experiments do not allow us to determine the spatial structure

of the striatal network activity in the ongoing state. Both the AI and TA states in our

network models match some properties of the ongoing activity measured in vivo. For

instance, the AI state of the Gamma networks closely resembles the ongoing activity

state in the healthy striatum, because in this state neurons spike irregularly at low

firing rates. The irregularity (CVISI ) is defined by the Poissonian nature of the activity

in this state (Fig. 2). Moreover, in this state the network activity dynamics is flexible

(Fig. 5) to encode stimuli, which is optimal for its ability to encode.

The transient NAs observed in the TA state in our Gamma network models closely

resemble the stimulus evoked NAs in the striatum in vivo [6]. Further support for this

comes from the observation that in behaving rodents neighboring neurons have similar

stimulus response properties [4]. Here we obtained TA state by increasing the

background input to all neurons in the network. This was done to expose the repertoire

of all possible states of the network activity dynamics. It is possible that task-related
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input from the cortex perturbs the AI state of the ongoing activity and drives the

network into the TA state.

We do not want to exclude here the possibility that the TA state could also be the

ongoing state of the striatum under some behavioral conditions. TA states offers several

useful properties that make it a convenient ongoing activity state to encode stimulus

related information. For instance, the transient patterns of NAs offer greater diversity

in the ongoing activity for encoding and processing of stimulus-induced information.

Furthermore, in the TA state an external stimulus needs to reorganize the existing NA

pattern and, likewise, when the stimulus is removed the network slowly relaxes to the

ongoing state (Fig. 5c). That is, in the TA state the stimulus response is slower than in

the AI state. However, this feature could be used to create associations between

successive stimuli or action sequences.

In the WTA state, neurons have higher firing rates and the spatial bumps are stable

(Fig. 3; Fig. S2). In this state, the ongoing activity shows only a very small diversity

and in this ‘rigid’ state only very strong inputs can induce any response. With these

properties, the WTA state closely resembles the striatum dynamics in Parkinson’s

disease [32,33]. Moreover, the WTA state is observed when neurons are spiking at a

high rate (Fig. 3), which could be achieved either by increasing the ongoing, external

excitation or by increasing the excitability of the neurons or reduced lateral inhibition

among the striatal neurons. This is also consistent with the fact that in Parkinson’s

disease the cortical drive to the striatum is increased due to the potentiation of

cortico-striatal synapses [34,35] and the lateral inhibition among the MSNs

decreases [16].

Despite these similarities and interesting insights regarding the striatal activity in

the healthy and Parkinson’s disease states, we note that our model is highly simplified

and ignores several key features of the striatal network. It would be necessary to study

how other components of the striatal network (e.g. fast spiking neurons, separation of

striatal network into D1 and D2 type medium spiny neuron populations [36]) affect the

flexibility of the stimulus responses in the AI and TA states..

TA state is optimal for stimulus representation and learning

Going by the criterion of stimulus representation and response separability, both AI and

TA states are similar. Because the ongoing firing rate is smaller in AI state than TA

state, it may be more energy efficient for the striatum to operate in the AI state.

However, only in the TA state, weak stimuli can dramatically modulate the spectrum of

correlations. The change in the bump structure implies that even a weak stimulus can

introduce both positive and negative correlations. On a functional level such positive

and negative correlations can initiate the spike timing dependent plasticity and form

stimulus specific structure. Thus, we think that in TA state, not only the striatum can

uniquely represent weak inputs but also can learn those inputs by changing synapses in

an activity dependent manner.
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Model validation

Even though the three activity states of the network model capture various aspects in

the striatal activity, it remains open question whether the striatal activity is organized

in distinct NAs. In vitro experiments have provided some evidence for the NAs in the

striatum [7]. The in vivo evidence is scarce and indirect at best. For example, the

striatal activity in behaving animals is organized in spatially distributed NAs [6] and

neighboring neurons are co-activated during the same task phase [4] indirectly points

towards an assembly like organization of the striatal activity. But in most experiments

done so far, neuronal activity was sampled too sparsely to make any clear statement

about the spatial organization of the striatal activity. Recent advances in the optical

recording methods allow for a measurement of activity of a large number of neurons

located in a small neighborhood [37]. Such data can be used to validate the results of

our network model. In addition, our model suggest that even the relationship between

the firing rate and spike time irregularity (Fig. 2) can provide further indirect evidence

for the existence of NAs.

The key to the emergence of transient NAs in the TA state is the non-monotonically

shaped connection probability. Indirect estimates of the anatomical (from neuron

morphologies) and functional connectivity both indicate that MSNs do not inhibit their

nearest neighbors and the connection probability peaks at a distance of ≈ 80µm and

then decays to zero beyond ≈ 200µm [19,20]. However, more experimental work is

required to measure the spatial profile of not just the functional but also the structural

connectivity within the striatum. However, more experimental work is required to

measure spatial connection profile and spatially compact neural clusters that would

support our network model. Alternatively, our models predicts that neurons

participating in the NAs should have a low connection probability and share their

inputs.

Recurrent networks with both excitatory and inhibitory (EI) neurons when

interconnected according to a monotonically decaying (e.g. Gaussian) connectivity

profile for excitation and inhibition, can be tuned to exhibit spatially clustered or

stationary bump type activity [27]. A classical example are EI-networks in which the

excitatory connectivity decays more rapidly with distance than the inhibitory

connectivity. In such networks, the summation of excitatory and inhibitory connectivity

kernels or excitatory and inhibitory synaptic strengths yield the well-known Mexican

hat profile as the ‘effective‘ connectivity kernel with its characteristic, non-monotonic

shape. This EI network type shows the periodic activity bumps in which neighboring

neurons become co-active because the local recurrent excitation is stronger than the

local recurrent inhibition, whereas at larger distances, the recurrent inhibition exceeds

the recurrent excitation. With such a connectivity profile, local recurrent excitation

activates neighboring neurons which, in turn, inhibit the surrounding region because of

the stronger distal inhibition. That is, in such EI-networks, a co-activated local group of

neurons is brought together by their mutual, predominantly excitatory, connections and

by its common field of surround inhibition. Examples of such behavior have been
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reported in the experimental literature, e.g. in the monkey prefrontal cortex [38]. By

contrast, we found that for purely inhibitory networks, using both network simulations

and neural field equations, a non-monotonic spatial connectivity kernel (such as the

Gamma distribution) generates spatially clustered bump type activity for high

background input. As shown by our mean field analysis, purely inhibitory networks

with a Gaussian spatial connectivity profile cannot possibly show any spatially periodic

bump activity. Intuitively, that is because co-activation of neighboring neurons requires

that these neurons do not inhibit each other while creating an inhibitory surround.

Thus, in purely inhibitory networks a co-activated local group of neurons is defined by

the lack of mutual connectivity and the presence of a common range of surround

inhibition. We would like to note that the stable bump state (WTA) observed in our

networks closely resembles the grid patterns often observed in the medial entorhinal

cortex of rodent and computational models of grid cells also use a non-monotonic kernel

to form connections between inhibitory neurons [39,40]. In summary, here, we showed

how the shape of the distance-dependent recurrent connectivity profile and the strength

of ongoing, external excitation together determine the state of the ongoing activity as

well as the stimulus response properties in a purely inhibitory network, such as the

striatum. Thus, these results, when properly adapted to the specific inhibitory network

of interest could provide important new insights into the functional characterization of

the activity dynamics in inhibitory brain networks such as the striatum, the globus

pallidus and the central amygdala.

Models

Neuron model

Neurons in the network were modeled as ‘leaky-integrate-and-fire’ (LIF) neurons. We

intentionally chose this simple neuron model to ensure that the observed network

dynamics would be the result of the connectivity profiles studied and not due to the

intrinsic dynamics of a more complex neuron model. The subthreshold membrane

potential dynamics of LIF neurons is given by:

Cm ×
dv

dt
= −gL × (v(t)− EL) + I(t) (9)

Synapses were modeled as conductance transients. The temporal profile of the

transient conductance change in response to a single pre-synaptic spike was modeled as

an alpha function. The recurrent connectivity within the inhibitory network such as the

striatum [15–17] is weak and sparse. We adjusted the synaptic conductances to obtain

weak synapses such that a unitary inhibitory postsynaptic potential (IPSP) had an

amplitude of 0.8 mV at a holding potential of -44.0 mV and an excitatory postsynaptic

potential (EPSP) had an amplitude of 1.6 mV at a holding potential of -70.0 mV. The

various neuron and synapse parameters are summarized in Table 1. Whenever possible

we used parameters corresponding to the striatal network [18].
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Table 1. Parameter values

Name Value Description
Cm 200.0 pF Membrane capacitance
gL 12.5 nS Leak conductance
EL - 80.0 mV Leak reversal potential
Vth - 45.0 mV Spike threshold
Vreset - 80.0 mV Resting membrane potential
tref 2.0 ms Refractory period
Eexc 0.0 mV Excitatory reversal potential
Einh - 64.0 mV Inhibitory reversal potential
τexc 5.0 ms Time constant of excitatory conductance
τinh 10.0 ms Time constant of inhibitory conductance

Parameter values for the neuron and synapse model.

Network architecture

We considered a population of 10,000 inhibitory neurons. The neurons were placed on a

100× 100 grid and folded as a torus to avoid boundary effects. The distance between

neighboring nodes in the grid network amounted to 10µm. Each neuron sent 1,000

inhibitory recurrent inputs to other neurons within the network (i.e. 10 % total

connection probability), mimicking the sparse connectivity in most biological inhibitory

networks. We implemented no self-connections within the network and neurons were

allowed to form multiple connections.

To implement a distance-dependent connectivity we chose two qualitatively different

spatial profiles [13]. For the first type of connectivity, we assumed that the

distance-dependent connection probability decreased monotonically as a function of

distance. To implement such connectivity we used the Gaussian distribution to model

the distance-dependent decrease in connectivity (see Fig. 1a, top). We will refer to this

network type as a Gaussian network.

For the second type of connectivity, we assumed that the distance-dependent

connection probability decreased non-monotonically as a function of distance. Recent

experimental data suggest that the connectivity between pairs of medium spiny neurons

(MSNs) in the striatum may indeed change non-monotonically as a function of

distance [19,20]. To implement such connectivity we used a Gamma distribution to

model the distance dependent decrease in connectivity (Fig. 1a, bottom). We will refer

to this network type as a Gamma network.

To appropriately compare these different network types we ensured that connection

weights and the degree distributions were identical in both network types.

Ongoing/Background excitatory drive

All neurons received background excitatory inputs mimicking the global ongoing activity

in striatum that could either be due to cirtical or thalamic input or represent the
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alternation in striatal network dynamics due to an internal change (i.e. change in lateral

inhibition). The external drive was modeled by uncorrelated homogeneous Poisson type

spike trains with fixed firing rate. Each neuron received an independent realization of

such spike train, obtained from the same underlying Poisson process. The rate of the

Poisson type spike trains was varied systematically to study the different dynamical

states of the inhibitory networks.

Stimulus

To measure the impact of the stimulus response on network activity in each dynamic

states we stimulated the network with an external stimulus, in addition to the

background inputs described above. The stimulus provided to a subset of ≈ 45 neurons.

To distribute the stimulated neurons in a spatial manner we defined a region of interest

(ROI) of size 30× 30 neurons. In the ROI we defined a location as centers for stimulated

neurons chosen according to a two-dimensional Gaussian (σ: 2 grid points). The

external stimulus was modeled as an injection of direct current to the selected neurons.

The stimulus presentation lasted for one seconds and its amplitude was systematically

varied between 0−−150 pA. To collect sufficient data for further statistical analysis

each stimulus was presented 100 times to its assigned subset of neurons.

To estimate the flexibility of the ongoing activity dynamics for encoding stimuli we

extended the simulation of the network with two different external stimuli. Each of the

two external stimuli was provided to two non-overlapping subsets of ≈ 45 neurons. In

the ROI, as described above, we defined two locations that were 10 grid points apart.

Using these two locations as centers, stimulated neurons were chosen according to a

two-dimensional Gaussian (σ: 2 grid points). The two sets of stimulated neurons are

marked with red and orange clouds respectively in Fig. 5a). The two stimuli were

presented alternatively (see Fig. 5a, bottom trace) and each stimulus presentation lasted

for one second. Thus, the two stimuli differed only in terms of their target neurons,

other properties (strength, duration) were identical.

Characterization of the network dynamics

The network activity states were characterized on the basis of the spiking activity using

standard descriptors: firing rates and the coefficient of variation of inter-spike intervals

(CVISI ), the latter to measure the degree of irregularity of the spiking of individual

neurons [21].

Entropy : To test whether the network activity was uniformly distributed over all

neurons we measured the entropy of the network activity. The entropy was given by:

H = −
N∑
i=1

pi ln(pi) (10)

where pi is the probability of neuron i to spike within a time window of 100 ms and N is

the total number of neurons in the network. The lower the entropy, the more
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information is contained in the network activity.

Count and duration of activity bumps: We constructed a series of binary matrices

representing the spatial map of the network activity over disjunct time windows of

100 ms each from the spike train recordings of all neurons. To enhance the spatial

contrast, these matrices were convolved with the two-dimensional ‘Mexican hat’ shaped

kernel (‘Ricker wavelet‘). The integral of the ‘Mexican hat’ kernel was set to zero to

ensure that the filtered activity was comparable for different inputs. Additionally, the

integrals of the positive and the negative part of the convolution kernel were set to 1

and -1, respectively. Subsequently, for each time step, the positions of the bump

centroids were determined by detecting the local activity peaks. The positions of

individual bumps were then used to compute the number of bumps and to determine

the affiliation of neurons to individual bumps. Finally, trackers of time-merged bumps

were used to analyze the life-span of the bumps, determined by finding similar positions

of bump centroids over subsequent time frames.

Characterization of the stimulus response

To estimate the influence of the external stimuli on striatal ongoing activity we analyzed

the activity of 900 neurons in the ROI (of size 30× 30 grid) surrounding the center of

the stimulated region. Thus, we included both stimulated and unstimulated neurons in

our analysis. To characterize the impact of external stimulus on striatal activity

dynamics we measured the principal components (PC) of the activity and the spectrum

of pair-wise correlations.

We analyzed the temporal evolution of the spike count using a sliding time window

(window size: 100 ms; sliding step: 10 ms). Each 100 ms window resulted in a 900

dimensional array of spike counts. Thus, we reduced the 900 dimensional spiking

activity sampled at a temporal resolution of 10 ms to a two-dimensional time-series of

PCs. For each stimulus presentation (that lasted for 1 sec.) we measured the average of

the first two PCs. These averaged PCs were plotted against each other and the scatter

revealed how much the responses to the two stimuli differed from each other and from

the ongoing activity.

The correlation spectrum was estimated for the activity of individual neurons.

Neuronal activity was binned using a rectangular bin of 100 ms. We estimated the

correlation spectrum for the trial-by-trial average of both ongoing and stimulus induced

evoked activity. To estimate correlations, we considered 1000 ms long epoch of ongoing

and evoked activity.

Simulation Tools

All simulations of the networks of spiking neurons were performed using the NEST

simulation software (http://www.nest-initiative.org) [22]. The dynamical equations were

integrated at a fixed temporal resolution of 0.1 ms. Simulation data were analyzed with

Python using the scientific libraries SciPy (http://www.scipy.org) and NumPy
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(http://www.numpy.org), and visualized using the plotting library Matplotlib

(http://matplotlib.org).
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Figure 1. S1: Skewness of firing rate distributions.
The figure shows the skewness of the distribution of firing rates for different connectivity
kernels as a function of the mean output rate. The skewness for the Gaussian kernel
drops to the value 2 with increasing output rate, whereas the skewness for the Gamma
kernel remains at a high value (> 5).
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Figure 2. S2: Characterization of the network dynamics for the bump
activity state.
Time series snapshots of the spatial pattern of bump activity, contrast-enhanced by
Mexican hat filtering. A higher density of activated neurons forms a spatially localized
activity bump. The time window for each frame is 100 ms. Asynchronous irregular
(AI) No bump activity is observed the network activity remains noisy. Transition
activity (TA) The network is in an unstable state, with several bumps appearing
transiently, in the company of noisy activity. Winner-takes-all (WTA) The network
forms mostly persistent bumps throughout the entire network.
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Figure 3. S3: Spatial map of bump activity patterns for different Gamma
distributions.
A variety of Gamma values defines the size of bumps and the distance between bumps.
This result illustrates the variety of bump capacity of the network, depending on the
bump parameters. The rate of the external Poisson input here was 5 kHz.
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Figure 4. S4: Temporal correlation of spiking activities in the AI state (a) ,
TA state (b) and WTA state (c).
The dynamic state of the network determines the impact of stimuli on the network
activity. In each state, the bigger subplot (I) shows an example of temporal correlations
for the first 3 out of 20 stimulus trials with a colormap that refers to a correlation score
between 0 (blue) and 1 (red). The grid lines define switches of stimulus inputs (A,B,0).
In each state, 4 smaller subplots (II-V) represent means and variances of temporal
correlation for 20 trials. The first two subplots (II,III) show the mean of the temporal
correlation within (diagonal) and between sequences which document the repeatability
of the network response to the stimuli. The bottom two smaller subplots (IV,V) show
the variance of the temporal correlation within (diagonal) and between sequences which
document the variability of the network response to the stimuli.
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