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Abstract

G
ene expression is robustly controlled in space and time by networks of transcriptional reg-
ulators. Single cell data now allow us to probe and map these networks and cellular tran-
scriptional states in unprecedented detail, but the heterogeneity and large sample sizes

that characterise these data pose new analytical challenges. Here we develop an algorithm that
exploits these features to infer gene (co-)regulatory networks from single cell data using multi-
variate information measures. Information theory allows us to detect complex non-linear rela-
tionships and explore statistical dependencies between multiple genes in detail. We thoroughly
evaluate the performance of our algorithm in comparison to existing methods, demonstrate the
benefits of considering multivariate information measures, and illustrate its application to sev-
eral datasets. We provide guidelines for the use of information theoretical based algorithms, and
software implementing our method to enable the identification of putative functional relation-
ships and mechanistic hypotheses from single cell transcriptomic data.

Introduction

Precisely controlled patterns of gene expression are essential for the survival and reproduction
of all life-forms. Development provides the canonical example, where changes in gene regulation
determine the path by which from a single fertilised egg cell emerges a complex multicellular or-
ganism. Intricate networks of transcriptional activators and repressors have evolved to regulate
the spatial and temporal expression of genes, enabling organisms to adjust transcription levels
in response to environmental, developmental and physiological cues (Trapnell et al. 2014, Har-
rington et al. 2014, Rué et al. 2015, Moris et al. 2016, Gouti et al. 2015, Göttgens 2015). Elu-
cidating the structure of such gene-regulatory networks (GRNs) has been a central goal of much
recent systems biology research (De Smet et al. 2010, Oates et al. 2012, Thorne et al. 2012, Thorne
et al. 2013, Siegenthaler et al. 2014, Oates et al. 2014, Huang et al. 2014, Young et al. 2014).

The structure of GRNs alone does not fully constrain their function (Ingram et al. 2006), but it
serves as an important starting point for further analysis. The simplest mathematical representa-
tions of GRNs are static, undirected graphs, where each node represents a gene, and edges depict
relationships between transcription factors and their targets. Although by this definition the GRN
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encapsulates every transcriptional regulatory relationship that could occur within a given organ-
ism, it is not the case that every possible interaction does occur in every cell — for example, the
downstream interactions of a transcription factor only occur when it is expressed — hence we
can define subsets of the GRN that are active in particular cells and contexts. The structure and
dynamics of these active GRN subsets give rise to distinct mRNA expression profiles, and it has
been suggested that characteristic expression profiles in different cell types (and under different
conditions) result from different stable states of the GRN (Clevers et al. 2017, Huang 2010, Moris
et al. 2016, Moignard et al. 2015).

The introduction of efficient high-throughput expression assays has driven interest in network in-
ference methods that apply statistical approaches to identify likely regulatory relationships be-
tween genes based on their expression patterns. In addition to correlation-based networks (per-
haps the simplest way of identifying putative relationships), Gaussian graphical models, (Dynam-
ical) Bayesian networks, regression analyses, and information theoretical approaches have been
used for network inference frompopulation level data (Penfold et al. 2011, Penfold et al. 2015, Bon-
neau et al. 2006, Margolin et al. 2006a, Villaverde et al. 2013, Villaverde et al. 2013, Liang et al.
2008,Madar et al. 2010, Hill et al. 2012, Lèbre et al. 2010, Beal et al. 2005, Schäfer et al. 2005, Vin-
ciotti et al. 2016). Combiningmultiple inferred networks to form a community or ensemble predic-
tion often confers slight but consistent improvements in the quality of the predicted network (Hill
et al. 2016, Marbach et al. 2010, Marbach et al. 2012), but how to best combine and weight differ-
ent methods to form a consensus prediction is poorly understood. Given our current understand-
ing, a reasonable approach to generate such ensemble predictions would be to include information
derived using different classes of inference algorithms (since these are known to show different
biases (Marbach et al. 2012)) but also to ensure that within each class we develop the best per-
forming algorithm based on a given statistical methodology.

More recently, the increasing availability of single cell expression data has led to the develop-
ment of several computational and statistical approaches aimed at gaining new insight into cell
fate decisions and transitions between cell states (Pina et al. 2015, Moignard et al. 2015, Rué
& Martinez Arias 2015, Moris et al. 2016, Bendall et al. 2014, Trapnell et al. 2014). Identify-
ing the associated changes in transcriptional state, and regulatory interactions that contribute to
controlling these processes are key aims of many single-cell transcriptomic studies (Kharchenko
et al. 2014, Ocone et al. 2015, Moignard et al. 2015, Pina et al. 2015, Trapnell et al. 2014, Bendall
et al. 2014). Several pseudotemporal ordering algorithms have been developed that aim to place
cells in an inferred temporal order based on similarities in their transcriptional states (Trapnell
et al. 2014, Bendall et al. 2014, Haghverdi et al. 2016, Reid et al. 2016, Setty et al. 2016), since
true single-cell temporal data (where large numbers of genes are assayed) are not feasible to col-
lect at present. These methods make strong assumptions about developmental processes (that
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Figure 1: Network inference from single cell data. Single cell transcriptomic data quantify mRNA species present
inside individual cells. By considering pairs (or triplets, quadruplets, etc.) of mRNA species we can test for
statistical relationships among them. These dependencies may reflect coordinated gene expression of these
pairs (or groups) of genes, resulting from gene regulatory interactions or co-regulation. Once such sets of
genes that jointly change in expression are known, other statistical, bioinformatic, or text-mining analyses
can be used to identify likely transcriptional regulators for these sets of genes. By iterating such in silico
analyses with further, targeted experimental studies we can, in principle, build up a representation of the
gene regulatory network.
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have been questioned (Moris et al. 2016)) and, in most cases, uncertainties in the inferred order
are likely to affect and bias downstream analyses. Network inference methods, in contrast, ex-
plore statistical dependencies between genes (from the observed distributions of expression levels
across a given population of cells) and identify those that may be indicative of functional relation-
ships, without necessarily making such strong assumptions about the nature of cell transitions.
Information theoretical measures, in particular, are particularly parsimonious in the assumptions
that they make(Kinney et al. 2014), compared to e.g. ODE-basd regression approaches or simple
graphical models. However, network inference using single cell data (Fig. 1) remains relatively
unexplored with only a few notable examples, e.g. (Ocone et al. 2015, Moignard et al. 2015, Filippi
et al. 2016), extending beyond simple correlation-based analyses (Bacher et al. 2016, Moignard
et al. 2013, Kolodziejczyk et al. 2015, Pina et al. 2015, Stegle et al. 2015). This is perhaps because
these datasets introduce new challenges for using and interpreting the results of existingmethods:
statistical challenges due to technical noise and heterogeneity and analytical challenges due to the
presence of heterogenous subpopulations.

Single cell data are are notoriously complex and their analysis fraught with a host of potential
problems (Stegle et al. 2015, Pierson et al. 2015, Grün et al. 2015, Bacher &Kendziorski 2016, Liu
et al. 2016, Buettner et al. 2015): technical noise is difficult to distinguish from genuine biological
variability, and relationships between gene expression vectors are complex and non-linear. Infor-
mation theory offers an ideal solution by providing a set ofmeasures, chiefly among themmutual in-
formation (MI), that allowus to characterize statistical dependencies between pairs of randomvari-
ableswithoutmaking assumptions about the nature of the dependencies (Cover et al. 2012,McMa-
hon et al. 2014). MI has considerable advantages over simpler measures such as (Pearson) corre-
lation, as it is capable of capturing non-linear dependencies, and reflecting the dynamics between
pairs or groups of genes (Mc Mahon et al. 2015, Uda et al. 2013). Calculating MI involves esti-
mating pairwise joint probability distributions, generally requiring density estimation (Kraskov
et al. 2004, Steuer et al. 2002) or data discretization, and the accuracy of these estimates depends
on the sample sizes.

With single cell datasets, sample sizes are becoming sufficiently large to estimateprobability distri-
butions betweenmore than two variables, allowing us to capitalise on recent developments in mul-
tivariate information (MVI) theory. Quantifying the information between three or more variables
has long been problematic, and the most widely-used measures, such as interaction information,
are known to have serious flaws (Timme et al. 2014). The recently-introduced partial information
decomposition (PID) both explains and solves its predecessors’ problems and provides a meaning-
ful measure of MVI (Williams et al. 2010); PID and other measures are described in detail in Box
1.

Here we develop a novel GRN inference algorithm that applies PID to triplets of variables to gen-
erate undirected networks highlighting putative functional interactions between genes, and show
that our approach outperforms algorithms based on pairwise MI. We demonstrate that the larger
sample sizes of single cell data are vital for our method and that they profoundly improve the per-
formance of information-basedmethods in general; continuing advances in single cell technologies
will allow further increases in sample sizes (Macosko et al. 2015, Klein et al. 2015). Given the clear
advantages of information measures for single cell data, we further demystify their use by provid-
ing analysis-based guidance for choosing an appropriate discretization algorithm and probability
distribution estimator, along with a fast, open-source software package that implements the alter-
natives.

A further complication of single cell data is the biological heterogeneity found within certain cell
populations (Grün & van Oudenaarden 2015, Stegle et al. 2015, Bacher & Kendziorski 2016, Liu
& Trapnell 2016, Buettner et al. 2015). It is only possible to detect statistical relationships (inter-
preted as putative functional relationships) when there is variability in the data, and population-
based studies introduce this variability by observing cell populations under different conditions,
e.g. using time series or perturbation studies (Marbach et al. 2010,Marbach et al. 2012, Penfold &
Wild 2011, Oates &Mukherjee 2012). It is worth emphasising that in these studies, certain edges
of the GRN would not be inferred: those that are not active in the populations studied, and those
that are active but with no variation; however, this is not necessarily problematic since those re-
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Figure 2: PID profiles for 3-gene networksMean PID values for 3-gene networks with different topologies. PID val-
ues are calculated using data simulated from 3-gene networks with the topologies illustrated above each
plot; the models used for simulation assumed mass action (green) or thermodynamic (orange) kinetics.
Each line graph shows the mean PID values calculated from simulations using different initial conditions
(error bars indicate 1 s.d.), with the horizontal axis labels indicating the PID contribution, e.g. the first four
values show the PID values with gene X as the target, consisting of the redundancy (R), unique contribu-
tions from gene Y (Y) and gene Z (Z), and the synergistic contribution (S). The vertical dashed grey lines
in the ‘One edge’ plot indicate the unique PID values that are used as the basis for our inference algorithm.
Here, all regulatory interactions are assumed to be activating, the additional stimulating ligand targeted
gene X, and the values indicated are the mean PID values calculated from five sets of simulations (with dif-
ferent randomly sampled initial conditions); results obtained with models that include both activating and
inhibitory regulation are shown in Fig. S1.

lationships that do vary between the investigated conditions are of the most interest. Single cell
data, by nature, offer a greater degree of variability — while we can collect time-series data, even
data collected at a single timepoint will contain variability due to i) asynchrony of cells within a
population (in terms of progression through a biological process), and ii) biological heterogeneity
and often the presence of multiple cell (sub)types.

We emphasise the importance of considering these different sources of heterogeneity so that we
can take advantage of the variation of interest — e.g. that associated with progression through
a biological process such as differentiation. We demonstrate how our inference method can be
combined with existing computational and statistical methods (e.g. clustering and dimensional-
ity reduction) to infer networks from carefully-chosen subsets of single cell data in order to ad-
dress particular questions about cellular processes. We consider three single cell transcriptomic
datasets here and additionally refer to a related manuscript (Stumpf et al. 2017), in which we use
our framework to infer changing regulatory sub-networks over the course of neural progenitor de-
velopment in mouse embryos, and to suggest candidate genes for maintaining cellular states and
driving state transitions.

In this paper, we develop a novel inference algorithm based on the MVI measure PID and use ex-
tensive analyses of in silico data to demonstrate i) the improvement over existing algorithms and
ii) the suitability of this method for analysing single cell data, before illustrating its application to
several experimental datasets. Such in silico analyses are critical for quantitatively assessing net-
work inference approaches as, unlike with real biological systems, we have knowledge of the ‘true’
GRN underlying the observed data. We thoroughly explore the factors that influence algorithm
performance — both in terms of the nature of the dataset and choices about data processing — in
order to provide evidence-based guidelines for the use of information theoretical based methods
for network inference. Finally, we provide a fast, open-source implementation of our methods to
enable easy application to other single cell datasets.
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Box 1: Information theoretic measures

The entropy,H(X), quantifies the uncertainty in the probability distribution, p(x), of a random
variable X. For a discrete random variable, the entropy is given by,

H(X) = −
∑
x∈X

p(x) log p(x), (1)

which is maximal for a uniform distribution. If we consider the mRNA expression level of a
gene to be the variableX, then a gene that is expressed differently across a set of cellswill have
a higher entropy than amore consistently expressed gene. When considering the relationship
between X and a second random variable, Y, we quantify the information that one variable
provides about the other using the MI,

I(X;Y) =
∑
x∈X

∑
y∈Y

p(x, y) log

(
p(x, y)
p(x)p(y)

)
= H(X) + H(Y)− H(X,Y).

(2)

This quantifies the difference between the joint entropy, H(X,Y), and the joint entropy as-
suming independence of X and Y, H(X) + H(Y), and thus provides a non-negative, symmetric
measure of the statistical dependency between the two variables. For a pair of genes with
more co-ordinated expression, their observed joint entropy will be lower, and hence they will
have highermutual information. Given a third variable, Z, the conditionalmutual information
(CMI),

I(X;Y|Z) = H(X,Z) + H(Y,Z)− H(X,Y,Z)− H(Z), (3)

quantifies the information between X and Y given knowledge of Z. This tells us the extent to
which knowing the expression of one gene additionally informs us about the expression of a
second gene, given that we already know the expression of a third gene.

A number of MVI measures have been defined that aim to quantify the statistical dependen-
cies between three or more variables, but there is little consensus as to the most appropri-
ate metric (Timme et al. 2014). Arguably the most widely used is interaction information
(McGill 1954), which for three genes quantifies the extra information between any two of the
genes X, Y and Z, when the third is known compared to when it is not known,

II(X;Y;Z) = I(X;Y|Z)− I(X;Y) = I(X;Z|Y)− I(X;Z) = I(Y;Z|X)− I(Y;Z). (4)

Interaction information has received much criticism since it can be (i) zero between depen-
dent variables, whenMI and CMI are equal but non-zero and (ii) negative, whenMI is greater
than CMI. The problem is that, despite its name, interaction information is not a quantity of
information between a set of variables; rather it quantifies the balance between MI and CMI.
In fact MVI is difficult to summarise with a single quantity, because there are different ways
in which information can be shared by three or more variables.

An important recent development in information theory is the introduction of partial informa-
tion decomposition (PID) (Williams & Beer 2010). In the three variable case, PID considers
the information provided by a set of source variables (or genes), S = {X,Y}, about another tar-
get variable, Z, partitioned into redundant, synergistic and unique information. Redundant
information is the portion of information about Z that can be provided by either variable in S
alone; the unique contribution from X (or Y) is the portion of information provided only by X
(or only Y); and the synergistic information is the portion of information that is only provided
by knowledge of both X and Y. Thus the PID between the set S and the target variable Z is
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equal to the sum of the four partial information terms,

I(X,Y;Z) = Synergy(Z;X,Y) + UniqueY(Z;X)

+ UniqueX(Z;Y) + Redundancy(Z;X,Y),

(5)

where UniqueY(Z;X) is the unique information between source variable X and target variable
Z when the other source variable is Y. In the context of gene expression, the terms ‘source’
and ‘target’ do not imply any mechanistic assumptions; rather, they refer to quantifying to
what extent knowledge of the source genes inform us about the target gene.

To calculate the PID terms, the redundant information is first calculated using the specific
information, Ispec, which quantifies the information provided by one variable about a specific
state of another variable (Deweese et al. 1999, Timme et al. 2013). The ‘state’ of a gene in a
given cell refers to which discrete bin its mRNA level falls within, once we have discretized
the expression data. If we consider the information provided by X about state z of variable Z,

Ispec(z;X) =
∑
x∈X

p(x|z)
(
log

(
1

p(z)

)
− log

(
1

p(z|x)

))
. (6)

If we consider S = {X,Y} and a target variable Z, the redundant contribution is calculated by
comparing the amount of information provided by each variable within S about each state of
the target Z,

Redundancy(Z;X,Y) =
∑
z∈Z

p(z)min
S

Ispec(z; S). (7)

The unique information terms can be calculated from the redundant information and the pair-
wise MI, via the relationship,

I(X;Z) = UniqueY(Z;X) + Redundancy(Z;X,Y). (8)

In otherwords, the pairwiseMIbetween twovariables canbepartitioned into a redundant and
unique component, given a third variable; it is this relationship that we exploit further in Re-
sults. Wenote that althoughPID is not a symmetricmeasure, UniqueY(Z;X)+Redundancy(Z;X,Y)
will be equal to UniqueY(X;Z) + Redundancy(X;Z,Y) because MI is symmetric.

Finally the synergistic information can be calculated via the interaction information (Eq. 4),
which turns out to be the difference between the synergistic and redundant information:

II(X;Y;Z) = Synergy(Z;X,Y)− Redundancy(Z;X,Y). (9)

Results

PID profiles in synthetic data

We first investigate the usefulness of PID for inferring network edges using data generated from
in silico models. We use stochastic simulations from simple directed 3-node networks of varying
topologies, and estimate PID values (redundant, synergistic and unique information, defined in
Box 1) from these simulated data. Simulations were generated from two model definitions, based
on thermodynamic or mass action kinetics, both commonly used in systems biology to represent
gene regulation, as described in Methods. A distinctive pattern is apparent in networks with a
single directed edge between two genes (‘one edge’ topology, Fig. 2) — the unique information
between the two connected genes is notably higher than both the unique information between un-
connected genes and the redundancy values between all three genes. With increasing numbers
of edges within the network, this pattern is lost; this makes sense intuitively as with higher con-
nectivity we expect to see increased synergistic or redundant contributions (Fig. 2 and S1). Note
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Figure 3: Demonstration of unique information in in silico networks. (A) PID values are estimated from data simu-
lated from a 10-gene in silico network (top) using GeneNetWeaverEach line graph shows PID values
estimated using genes 1 and 7 as the sources, and each of the remaining genes in turn as the target (graph
titles, GX, indicate the target gene). Four PID values are given in each graph — the redundancy (R), the
unique information between gene 1 and the target (G1), the unique information between gene 7 and the
target (G7), and the synergy (S). The mutual information between two genes is the sum of their unique in-
formation and the redundancy (Eq. 8). The ratio of the unique information to the mutual information tends
to be higher between pairs of connected genes (dashed vertical lines indicate the unique contributions for
connected genes). (B) Ratio of unique information to mutual information in triples with the two most com-
mon topologies, within the 50-gene network, S. cerevisiae 1. For each gene triple of the ‘unconnected’
and ‘one edge’ topologies (see Table S1 for topology frequencies), we calculate the unique information val-
ues between each pair of genes and their mutual information. The ratios of unique information to mutual
information are higher in general for the connected pair; the same pattern was observed in all networks.

that the pattern can only be observed under simulation conditions that generate variability in the
observed variables (i.e. statistical relationships are not detectable when the system is at steady
state; Fig. S1).

To explore whether this pattern also occurs for triplets of nodes embedded in large networks, we
consider time series expression data simulated from five different 50-gene networks generated
by GeneNetWeaver (Schaffter et al. 2011). This software generates stochastic simulations
from dynamical models that represent transcription and translation using a thermodynamic ap-
proach, with network structures that are inspired by known gene connectivity patterns in E.coli
and S.cerevisiae (Fig. S3). Datasets of varying sizes (corresponding to differing numbers of cells)
were generated by varying the temporal sampling regimes (see Methods for details). PID values
are estimated from these data for every triplet of genes within the networks, and each triplet is
classified according to its topology — six topological arrangements are possible given the model
assumptions (maximum of one edge between each pair of nodes, no self-regulation, and no feed-
back loops). Mean PID values are calculated for each group, and the same distinctive pattern (high
unique versus redundant contributions for connected genes) is apparent for triplets with a single
directed edge (Fig. S2). As with the 3-node simulations, the pattern is lost in topologies with more
connections; however, the ‘unconnected’ and ‘one-edge’ topologies are by far the most prevalent
in all networks — comprising 64.4-93.2% and 6.3-29.7% of all triplets respectively (Table S1 and
Fig S3).

Examining in silico data from a 10-gene network suggests that the relative size of the unique in-
formation compared to the redundancy — i.e. the proportion of MI accounted for by the unique
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contribution (Eq. 8) — is more informative than the absolute unique information (Fig. 3A). Us-
ing data from the 50-node networks, we confirm that this is the case more generally. We take all
triplets of the ‘unconnected’ and ‘one edge’ topologies (with each gene being able to take part in
multiple triplets); then for each triplet, treating each gene in turn as the target, we estimate (i) the
redundant information between all three genes, (ii) the unique information between one source
gene and the target and (iii) the unique information between the second source gene and the tar-
get. We plot the ratio of unique information to MI (the sum of unique and redundant information)
for each pair of genes in each triplet and find that this ratio is higher in general between connected
pairs (Fig. 3B).

Incorporating PID into an inference algorithm

In a network of n genes, given a pair of genes X and Y, there are n − 2 gene triplets involving the
pair. TheMI between X and Y, I(X;Y) is unaffected by the choice of the third gene, Z, becauseMI is
a pairwise measure, but the unique information between X and Y, UniqueZ(X;Y) varies depending
on Z. Furthermore, the difference between I(X;Y) and UniqueZ(X;Y) is equal to the redundancy
between all three genes (Eq. 8), meaning that we can regard the ratio UniqueZ(X;Y)/I(X;Y) as
capturing the proportion of MI that is accounted for by unique information between X and Y, as
opposed to redundant information between all three genes. We note that the vast majority of all
possible gene triplets in our E.coli and S.cerevisiae networks are of the ‘unconnected’ or ‘one-edge’
topology (Table S1), and that the ratio UniqueZ(X;Y) : I(X;Y) is higher between connected pairs
in a ‘one edge’ triple (Fig. 3). Therefore, we would expect that if X and Y are connected, then
most of the triplets made with X, Y and all n − 2 possible Z in turn, would be of the ‘one edge’
topology — and likewise if X and Y are unconnected, then most triples involving X and Y would
be of the ‘unconnected’ topology — so UniqueZ(X;Y)/I(X;Y) would in general be higher if X and Y
were connected.

We define the proportional unique contribution (PUC) between two genes X and Y as the sum of this
ratio calculated using every other gene Z in a network (where S is the complete set of genes),

uX,Y =
∑

Z∈S\{X,Y}

UniqueZ(X;Y)
I(X;Y)

+
∑

Z∈S\{X,Y}

UniqueZ(Y;X)
I(X;Y)

; (10)

this measure may be thought of as the mean proportion of MI between two genes X and Y that is
accounted for by the unique information. Note that the PID unique measure is not symmetric, so
for each pair of genes we consider each as the target in turn (hence we include both UniqueZ(X;Y)
and UniqueZ(Y;X) terms in Eq. 10).

In our network inference algorithm (Fig. 4), the redundancy and unique information contributions
are first estimated for every gene triplet, then the PUC is calculated for each pair of genes in the
network (Eq. 10). Finding a threshold for defining an edge at this stage is problematic, because
the distribution of PUC scores differ between genes (see Fig. S3), thus setting a global threshold
for PUC scores across the whole network risks biasing the results by factors such as expression
variability. This was previously observed with MI and led to the development of measures that
take into account the network context, central to the context likelihood of relatedness (CLR) algo-
rithm (Faith et al. 2007, Watkinson et al. 2009). A similar solution is employed here: an empirical
probability distribution is estimated from the PUC scores for each gene, and the confidence of an
edge between a pair of genes is given by,

c = FX(uX,Y) + FY(uX,Y), (11)

where FX(U) is the cumulative distribution function of all the PUC scores involving gene X (here,
we assume either a Gamma or Gaussian empirical probability distribution).
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Figure 4: Schema of the PIDC inference algorithm. PID values are estimated for every gene triplet (with each gene
treated as the target gene in turn), and from these the PUC, uX,Y, is estimated for every pair of genes. For
each gene, X, an empirical distribution, fX(u), is estimated from its PUC scores with all other genes. The
confidence of an edge between a pair of genes depends on the corresponding cumulative distribution func-
tions, FX(u), for each gene within the pair (i.e. the blue shaded areas); these confidence scores are used to
rank all possible network edges.

Algorithm performance

Wecompare our new algorithmagainst several common information theoretic based network infer-
encemethods, and thus briefly summarise these approaches inBox 2. All thesemethods start from
the pairwiseMImatrix, and then use it in differentways. Even compiling theMImatrix is, however,
fraught with potential problems: the manner in which data are treated (e.g. discretization), and
the estimator used for the entropy and MI both affect the performance of the algorithms (Simoes
et al. 2011, Zhang et al. 2015). When comparing different approaches it is therefore important
to ensure that discretization and estimation of MI are done identically. Without this it becomes
impossible to disentangle the relative strengths and weaknesses of the different approaches that
are based on and interpret MI values. In the Methods, we discuss the different estimators and
discretization approaches that we use and which are implemented in the InformationMea-
sures.jl package (see Software). Our comparisons with existing methods thus always start
from the same MI matrix.

Undirected networks are inferred from in silicodatasets (described inMethods) for five 50-gene net-
works and five 100-gene networks usingARACNE,CLR,MI (relevance networks),MRNET (Meyer
et al. 2008) and the new PID-based algorithm, PID and context (PIDC). We also include results for
the raw PUC score, without the network context step. Accuracy of the inferred networks is evalu-
ated using the area under the precision-recall curve (AUPR) and the area under the receiver oper-
ating characteristic curve (AUROC), seeMethods for definitions (Murphy 2012).

The raw PUC score outperforms the raw MI score and is closely matched by CLR, which outper-
forms theotherMI-basedapproaches in agreementwith theprevious comparisons (Fig. 5) (Marbach
et al. 2012). The PID-based algorithm PIDC, which combines the PUC measure with the network
context, performs favourably compared to the other algorithms (Fig. 5), particularly in the larger
networks. This effect is robust to simulated technical noise (Fig. S5C) and becomes more evi-
dent the larger the number of ‘cells’ in the dataset (Fig. 5); as real data become more accurate and
sample sizes increase, we expect the performance of PIDC/PUC to improve as the estimation of
3-dimensional dependencies becomes more accurate. Also, unlike CLR it was designed to capture
higher order dependencies and to distinguish between direct and indirect interactions (Williams
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Figure 5: Performance comparison of information-theoretic network inference algorithms. AUPR is calculated for
several algorithms applied to ten in silico datasets, generated from five 50-node and five 100-node net-
works, using Bayesian Blocks discretisation and the maximum likelihood estimator. All algorithms per-
formed better with larger datasets, and the PID-based algorithm PIDC and the raw PUC score performed
well in general. The algorithms used are described inMethods and Results, with MI indicating the use of
mutual information scores alone to rank edges (i.e. MI relevance network); the R package minet was
used for the existing inference algorithms.

& Beer 2010).

Box 2: MI-based algorithms

Relevance networks (Butte et al. 2000) use the MI estimates (or, in some cases, correlation)
in order to detect edges. As there is no reliable universal way of determining the statistical
significance ofMI values, a threshold is typically chosen to determinewhich edges are present.
This fails to account for the fact that MI may be increased for nodes X and Z even though
they only indirectly interact via an intermediate node Y. The Data Processing Inequality (DPI)
allows us to sort out some of these cases by virtue of the relationship

I(X;Z) ≤ min (I(X;Y), I(Y;Z)) , (12)

which holds whenever X, Y and Z form a Markov Chain. Post-processing of the MI values
using theDPI is at the core of the popularARACNE algorithm (Margolin et al. 2006a,Margolin
et al. 2006b). Thresholds on the pairwise MIs are used to identify likely dependent pairs X, Z;
MI values above the threshold are then considered with every possible other node Y in light
of the DPI.

Given that MI values are affected by a number of factors, including especially the variability
of each individual random variable, any global a priori threshold may be highly problematic:
it will give rise to false positives as well as false-negatives. In the CLR algorithm (Faith et al.
2007, Watkinson et al. 2009) the MI between X and Z is considered against all MI values for
pairings of X and Zwith all other variables Y. Thus the threshold for each pair will reflect the
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variabilities of both genes, as well as their relative levels of statistical dependence on other
genes. MRNET (Meyer et al. 2007) aims to identify a minimally redundant but maximally
explanatory set of variables/predictors for each target gene X in a greedy manner.

There have been attempts of using conditional mutual information, interaction information,
(4), or related concepts, for network inference (though not single cell data) (Watkinson et al.
2009, Villaverde et al. 2013, Villaverde et al. 2014, Liang & Wang 2008, Zhao et al. 2016).
These would have to deal with the known difficulties (Timme et al. 2013) of interpretation
(which do not arise in relation to PID-based measures), which may explain the lack of their
widespread uptake.

Application to single-cell data

The extensive analyses using simulated data are necessary to validate our algorithm and provide
quantitative comparisons with existing methods. When working with real experimental datasets,
we of course do not know the true underlying network, and thus rely on identifying relationships
that are consistentwith our current biological knowledge about the systemswe are studying. Here,
weapply our algorithm to threepublished experimental datasets and, in a relatedmanuscript (Stumpf
et al. 2017), illustrate how it can be used as part of a thorough modelling analysis of neuronal dif-
ferentiation of mouse embryonic stem cells.

Psaila et al. (Psaila et al. 2016) used single-cell quantitativePCR (sc-qPCR) to studymegakaryocyte-
erythroid progenitors (MEP). Their analysis revealed the existence of subpopulation structure
in this class of cells: two groups of cells are primed preferentially for a particular cell fate —
megakaryocytic (MK-MEP) or erythroid (E-MEP) — while a third group of multi-potent progen-
itors (Pre-MEP) retain some myeloid differentiation capacity (Fig. 6A). Here we apply our PIDC
algorithm to their complete dataset and infer a candidate network that depicts statistical depen-
dencies among the analysed genes (Fig. 6B). Given we are interested in genes involved in differ-
entiation processes, we also consider networks inferred using overlapping subsets of the data and
colour each edge in Fig. 6B according to their presence in these additional networks. Edges that
are present in the network constructed using Pre-MEP & E-MEP cells, but not that based on Pre-
MEP &MK-MEP cells, are coloured red (i.e. erythroid specific), and the reverse (megakaryocytic
specific) are shown in blue (edges present in both, or just in the original complete network are
shown in grey). Consistent with existing knowledge about these two lineages, we see a cluster
dominated by blue edges that comprises known megakaryocytic genes (e.g. Cd9, Lox, Vwf, Nfib,
Cd61, Tgfβ1) and a cluster with several red edges comprising known erythroid genes (e.g. Cd36,
Klf1, Lef1, Cnrip1, Tmod1, Ank1, Dhrs3) (Psaila et al. 2016). Networks based on pairwiseMI scores
from the same data show skewed degree distributions with many nodes unconnected (Fig. S6A,B).

We next consider sc-qPCR data comprising expression measurements of selected genes during
early embryonic development (from oocyte to 64-cell blastocyst stages) (Guo et al. 2010); Fig. 6C
shows the resulting inferred network. We again infer additional networks using subsets of these
data — here we use overlapping subsets of ‘early’ and ‘late’ cells to reveal any temporal dependen-
cies in the detected interactions. A number of known relationships between genes are apparent in
the network, e.g. upregulation of Cdx2 and Gata3 transcription factors (TFs) during the 8-cell to
morula transition is identified as an edge in the ‘early’ network; while the co-expression of primi-
tive endoderm specific TFs Creb312 and Sox17 is detected as an edge in the ‘late’ network (consis-
tent with the appearance of distinct cell types, including primitive endoderm cells, in the blasto-
cyst). A cluster of known pluripotency and reprogramming factors is also identified in the network
(Pou5f1, Nanog, Esrrb, Klf2 and Klf4) — Sox2, another key reprogramming factor, is not connected
with these genes but is known to be upregulated later than the other factors (Guo et al. 2010).

Moignard et al. studied embryonic haematopoietic development, andused sc-qPCRdata to develop
a Boolean network model of the GRN underlying blood development (Moignard et al. 2015). In
Fig. 6D we compare the networks inferred from these same data using PIDC andMI—we find the
inferred PIDC network shares a higher number of edges with the Boolean network model, than
the network constructed using MI values alone (see Fig. S6C for node labels). Although we of
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Figure 6: Application of the PIDC inference algorithm to experimental datasets. A) Illustration of the relationship be-
tween the three subpopulations of MEP cells — ‘Pre-MEP’ cells are enriched for erythroid/megakaryocyte
progenitors but still retain some potential to differentiate into other cell types (myeloid cells); ‘E-MEP’ and
‘MK-MEP’ cells are strongly biased towards erythroid andmegakaryocyte differentiation respectively (for
details see Psaila et al.). B)Network inferred using the PIDC algorithm from the complete set of data from
Psaila et al. (the top 2.5%of edges are shown; for clarity, only nodes connected by these edges are shown).
Edge colours indicate whether these edges are also detected in networks constructed using subsets of the
data (comprising data from Pre-MEP cells combined with either E-MEP or MK-MEP cells). Red edges in-
dicate those that are present in the Pre-MEP & E-MEP network but not the Pre-MEP &MK-MEP network
(i.e. erythroid specific), while blue edges indicate the reverse scenario (i.e. megakaryocytic specific); edges
present in both networks, or only in the network constructed using all the data, are shown in grey. C) PIDC
interaction network inferred using early embryonic development data (oocyte to E4.25 blastocyst stages).
Graph edges indicate the top 5 % of putative interactions detected using the PIDC algorithm on the com-
plete dataset. Networks is also inferred using two overlapping subsets of the data — an ‘early’ subset that
includes all cells collected from oocyte up to 32-cell E3.5 blastocyst stages, and a ‘late’ subset including
cells collected from 16-cell morula to 64-cell E4.25 blastocyst stages. Edge colours indicate temporal de-
pendencies of the identified relationships; red indicates an edge ranks in the top 5% of edges in the early
network but not the late network, blue indicates the converse (late but not early), while grey indicates re-
lationships without specific temporal dependencies (i.e. only present in the network constructed using the
complete dataset, or present in both the early/late networks). D) Comparison of networks inferred using
haematopoietic development data in Moignard et al.. Moignard et al. used single-cell expression data for
20 transcription factors to infer a Boolean network model of blood development; we show a simplified rep-
resentation of their model, where nodes (genes) are linked by an edge if those genes are either directly
linked, or linked via one Boolean operation or set of update rules (genes linked in their model via a chain
of multiple sets of update rules are not connected here). We used our PIDC algorithm or MI alone to infer
networks of putative interactions between genes using these same data, and compare the edges identified
in each of these three networks (numbers of shared edges are indicated by the Venn diagram). For node
labels, see Fig. S6C.

course do not know the ‘true’ structure of the GRN in this case (this is only feasible when using in
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silico data), the Boolean model was shown to capture key cell states observed experimentally and
generated several experimentally-validated predictions (Moignard et al. 2015), thus we use this as
a benchmark to indicate the biological plausibility of our inferred networks.

In a related companion paper (Stumpf et al. 2017) we apply our PIDC algorithm to sc-qPCR data
collected from cells undergoing differentiation from a pluripotent ground state towards a commit-
ted neuronal lineage, via a primed epiblast-like state. 547 cells were sampled in total at seven time-
points spanning seven days; we analysed expression measurements of 74 genes including known
regulators of pluripotency and neuronal differentiation (see (Stumpf et al. 2017) for details). We
first assign the cells to three robust groups that correspond with developmental stage (using k-
means clustering), and then infer networks using data from all the cells, or from overlapping sub-
sets containing cells at earlier or later stages of development. Comparing the networks obtained
using different subsets of cells allows us to observe any temporal dependencies in the inferred in-
teractions. Using an unsupervised community detection algorithm, we find that the network of
inferred (co-)regulatory relationships contains several communities (or modules) of genes display-
ing high connectivity within each community. Three of these communities show distinct temporal
dependencies in connectivity, and comprise genes known to play roles at different stages of dif-
ferentiation. Our analysis thus allows us to identify modules of genes that undergo coordinated
changes in expression as cells progress through development, and putative gene interactions that
may be involved in regulating these transitions in cell state.

Guidelines & limitations

Any comparative analysis of information-based GRN inference algorithms is influenced by a num-
ber of decisions, in particular: (i) how the data are discretized, (ii) the choice of MI estimator, and
(iii) the metric used to evaluate performance. We discuss the impact of each of these decisions and
offer guidelines for future analyses.

The informationmeasures described here all rely on estimates of discrete probability distributions,
and yet mRNA expression data are continuous. Several algorithms and heuristics have been devel-
oped to discretize data and estimate empirical probability distributions from the resulting discrete
frequencies. We investigated twomethods for discretization, along with fourMI estimators, as de-
scribed inMethods.

All estimators produce fairly accurate estimates of joint entropies for up to two uniformly dis-
tributed random variables, but in higher dimensions performance varies according to the distri-
bution (Tables S2 and S3), making it difficult to identify the most appropriate estimator for exper-
imental data. Rank agreement between the estimators is good when the data are discretized using
Bayesian blocks, however, diminishing the importance of the choice of estimator (Fig. S5). In light
of these findings we advise using Bayesian blocks, and since the underlying distribution is usually
unknown we favour the maximum likelihood estimator due to its simplicity.

The choice of discretization method and estimator influences the performance of the inference al-
gorithms, with effects varying depending on the algorithm and on the true network (Fig. S5A and
S5B). Sampling frequency and dataset size also have an effect, with performance increasing in line
with data set size, and decreasing in larger networks and with a higher rate of technical drop-out
errors (Fig. S5C). Due to the number of influential factors, we advise caution when interpreting
the results of this or any such comparison as an exhaustive exploration of these factors is not fea-
sible; however we note that the PIDC algorithm performs well in general across the many tested
combinations of discretization methods, estimators and datasets.

The metric used to evaluate algorithms also affects the apparent performance of the inference
algorithms, evident here in the higher scores for AUROC than AUPR (Fig. 5 and S5). This is a
well-documented phenomenon, caused by the true negatives in a GRN vastly outnumbering the
true positives, meaning that AUPR is the more meaningful measure, despite AUROC being more
widely-used (Murphy 2012).
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Software

Anewopen-source package for estimatingMVImeasures is implemented in the Julia programming
language (Bezanson et al. 2014). The package, named InformationMeasures.jl supports
information measures such as entropy, MI, CMI, and PID; the maximum likelihood, Miller-Madow,
Dirichlet and shrinkage estimators; and the Bayesian Blocks, uniform width and uniform count
discretization methods.

Juliawas chosen for its speed (Fig. 7A), clearmathematical syntax, growing availability of libraries
and good integration with other languages. The existing Discretizers.jl package is used
to implement the discretization methods; in some of our initial analyses we used the AstroML
Python implementation of the Bayesian Blocks algorithm (Vanderplas et al. 2012, Scargle et al.
2013). In order to meet a wide range of requirements, the package can be used simply for dis-
cretizing data, or to calculate information measures using pre-discretized data or probability dis-
tributions that have been estimated elsewhere.

A Julia script implementing the PID-based network inference algorithm (PIDC) is available from
our website. The algorithm has complexityO(n3) in the number of genes, therefore it is best suited
for small to medium-sized inference problems (Fig. 7). The complexity in the number of cells de-
pends on the discretization method: the recommended Bayesian blocks method scales less well
than the uniform width method, but nevertheless produces results for several thousands of cells
for amedium-sized network (a fewhundred genes)within a practically useful timescale (Fig. 7B-C).
When analysing larger datasets (e.g. as obtained using scRNA sequencing where data is available
for thousands of genes), a subset of (up to hundreds of) genes should first be selected, e.g. based
on prior knowledge of the specific system being studied (or using functional annotations of genes),
or those that show high variability between cell states or samples. This not only makes the sub-
sequent network inference analysis computationally tractable, but will also aid interpreting the
results. As is the case for other network inference algorithms, genes with no variability in mRNA
expression are uninformative, and should always be removed prior to analysis.

Discussion

Here, we have described a network inference algorithm based on PID (Williams & Beer 2010,
Timme et al. 2014), an easily interpretableMVImeasure that allows us to explore statistical depen-
dencies between multiple genes in detail. In particular we demonstrate that the unique contribu-
tion (Eq. 5) to theMI between a pair of genes is particularly informative about direct relationships,
as we might intuitively expect. When combined with information about the local network context
of each gene, this provides a robust measure of putative functional relationships. We take gene
context into account both by considering the ratio of unique information toMI (effectively normal-
ising MI), and by using empirical distributions to identify the highest scoring edges for each gene
(similar to CLR (Faith et al. 2007, Watkinson et al. 2009)).

Numerous algorithms have been developed to infer the structure of biological networks from ob-
servations of the constituent components. To thoroughly compare and quantify the relative per-
formance of thesemethods we necessarily rely on in silico studies where we know the true network
that generates the data; with experimental data, we of course only have our current knowledge
about a given biological system, and the inherent uncertainties associated with that. Here, we
rigorously analyse the performance of our method and other popular information theoretic based
algorithms for network inference, and explore the factors that influence their performance inmuch
greater depth than most existing studies. This is crucial to understand the relative advantages of
different methods, explore their limitations, and thus gain confidence in our conclusions.

All the methods we consider rely on estimating entropies and probability distributions follow-
ing discretisation of (continuous) transcriptomic data. Several algorithms exist to achieve these
steps — with no consensus as to the best approach — but, like other studies (Simoes & Emmert-
Streib 2011, Olsen et al. 2009, Hausser et al. 2009), we find these choices can greatly influence
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Figure 7: Speed of MI and PIDC calculations using the Julia programming language. A) Comparison of the times
taken to calculate a matrix of pairwise MI values using the R package minet (Meyer et al. 2008) and
our Julia package InformationMeasures.jl. Input data were simulated expression values for
up to 1000 genes, with 700 values per gene (equivalent to 700 cells, the same as our medium-sized in
silico dataset). Data were discretised using the uniform width algorithm, because Bayesian blocks was
not available via minet, and timesweremeasured using inbuilt functions in R and Julia. B)Times taken
to calculate the MI matrix in the Julia programming language with larger numbers of cells, for networks
of different sizes. Data were discretised using the recommended Bayesian blocks algorithm, which has a
much greater complexity than the uniform width algorithm, but produces better estimates. C) Time taken
to infer networks of varying sizes using the PIDC algorithm implemented in Julia. Networks were inferred
for simulated datasets of up to 500 genes, with 700 expression values per gene.

performance (Fig. S5A,B). We find the choice of discretisation method to be particularly impor-
tant with the best (and most consistent) performance achieved using Bayesian blocks. This is an
adaptive algorithm that aims to find an optimal discrete representation for a given dataset, so it is
perhaps unsurprising that this outperforms simpler, more naive approaches such as uniformwidth.
Too often, the impact of these choices is not explored sufficiently when analysing information the-
oretical methods, despite how influential they can be.

The benefit of considering MVI measures — illustrated by the good performance of our algorithm
throughout our extensive comparisons — is counterbalanced by the difficulty of accurately esti-
mating higher dimensional probability distributions (Table S2). The increased performance af-
forded by our algorithm is particularly noticeable when analysing larger datasets (Fig. 5), and
thus the large sample sizes provided by single cell data are critical to its success. As experimental
technologies advance enabling more cells to be assayed (and potentially reductions in technical
noise) we expect to further improve the accuracy of these multi-dimensional distributions and see
associated gains in performance.
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The best performing algorithms, PIDC and CLR, both take gene context into account and aim to
capture themost important interactions for each node, which of course influences the types of net-
work structures inferred. The resulting graphs tend to be well connected, whereas MI relevance
networks can produce graphs with more skewed degree distributions (e.g. Fig S6A,B) as a result
of high-variability nodes predominating amongst the highest pairwise MI scores. This should be
borne inmindwhen selecting inference algorithms, as depending on our beliefs about the structure
of the true network, and the aims of our analyses, we may want to emphasise (or elucidate) differ-
ent network features. Considering network context should provide an additional benefit when
working with single-cell data, by helping to address the influence of potential confounding factors
such as the cell cycle. Variation in cell-cycle stage is known to cause large-scale changes in cell
transcriptional states (Buettner et al. 2015, Scialdone et al. 2015, McDavid et al. 2014) — and we
would expect it to induce stronger statistical dependencies amongst the affected genes. However,
using empirical distributions to take network context into account (as in PIDC and CLR) ensures
that we identify the most important interactions for each node in turn, rather than the highest
dependencies across the whole dataset, and this should act to partly mitigate the influence of any
confounding factorswhich causemore global changes in transcriptional state that affect largenum-
bers of genes in a coordinated manner.

In order to detect statistical dependencies between genes we require their expression states to be
variable within the observed dataset. There are of course many sources of heterogeneity in single-
cell data so it is important to consider the sources of variation that are of interest. For example,
when studying developmental processes we should aim to analyse collections of data where we ex-
pect cell differentiation to be the major source of variation. We can make use of well-established
methods for analysing the subpopulation structure of single-cell data— such as clustering, dimen-
sionality reduction, and pseudotemporal ordering algorithms (Bacher & Kendziorski 2016, Stegle
et al. 2015, Grün & van Oudenaarden 2015, Liu & Trapnell 2016) — to examine our data and e.g.
identify distinct cell subtypes or alternative differentiation pathways. This allows us to select suit-
able subsets of the data to address our specific biological questions; we illustrate in the examples
here how this can enable us to focus on functional relationships involved with different develop-
mental transitions, or the relative timing of transcriptional changes. For example, in our related
manuscript (Stumpf et al. 2017) we use clusters of developmentally-similar cells to examine how
the activity of (co-)regulatory relationships changes during development, making initial steps to-
wards definingmechanisticmodels of neural differentiation— the network structure and temporal
information allow us to suggest candidate genes for maintaining cell states or driving developmen-
tal transitions.

Integrating our method with these other, complementary methods designed to analyse single-cell
data is also important to identify which gene sets we wish to analyse. Datasets generated using
RNA sequencing contain information for thousands of genes, but we recommend selecting at most
several hundred to analyse— not only to allow inference in a reasonable timescale (Fig. 7) but also
to aid interpretation of the resulting networks. Depending on our biological question and knowl-
edge about the system we are studying, we can select genes using prior knowledge or functional
annotations, or based on features such as degree of variability, differential expression between
different cell types, or temporal variability in expression state; a number of single-cell specific
methods have been developed to detect such features, e.g. (Bacher & Kendziorski 2016, Trap-
nell et al. 2014, Haghverdi et al. 2016, Reid & Wernisch 2016, Setty et al. 2016, Kharchenko
et al. 2014, Korthauer et al. 2016, Vallejos 2016, Finak et al. 2015).

Technical noise and other biological sources of heterogeneity (e.g. transcription stochasticity,
other cellular processes) within the cell population will, to some extent, impede our ability to de-
tect statistical dependencies. We see that increased technical noise reduces our ability to recover
the structure of the underlying network, although PIDC still achieves the best performance (Fig.
S5C). The theoretical benefits of using information theoretical methods are clear for these data, as
we expect the observed dependencies to be complex and non-linear under such scenarios. It is of
course highly unrealistic to expect every cell to follow precisely the same route through transcrip-
tional space when progressing through a biological process, e.g. differentiation. We do make the
assumption however, that there are key changes in transcriptional state that must occur in order
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for cells to respond appropriately to environmental and developmental cues, and that these will
be subject to conserved regulatory mechanisms. We aim to identify the strongest functional rela-
tionships between genes that occur across large parts of a given cell population, and infer network
features that are common across disparate cells.

As with any statistical analysis, it is important to consider the limitations of our approach. Many
of these are general to network inference approaches aiming to reconstruct GRN structure from
mRNA profiles and have been discussed in depth elsewhere (Penfold & Wild 2011, Marbach et al.
2012, Villaverde & Banga 2013, Oates & Mukherjee 2012), but it is worth emphasising a few key
points as these affect how we should interpret and use our results. Firstly, we can only hope to de-
tect relationships where there is sufficient variability in gene expression observed under the cho-
sen experimental conditions. Functional interactionswill only be detectable if they induce changes
in transcriptional state that persist over a reasonable timescale —we will not, for example, detect
rapidly fluctuating changes, as the transient changes in mRNA levels will not result in observed
statistical dependencies across a group of cells. As well as functional regulatory relationships,
we are likely to also identify co-regulatory relationships where genes under the influence of the
same regulatory mechanisms will show coordinated changes in expression. Without making fur-
ther assumptions, or using perturbation or temporal data, we cannot distinguish the former causal
relationships; however, in many instances it will still be biologically informative to understand
which groups of genes respond in a coordinated manner. In cases where we believe the assump-
tions made by pseudotemporal ordering algorithms to be reasonable (Trapnell et al. 2014, Bendall
et al. 2014, Haghverdi et al. 2016, Reid & Wernisch 2016, Setty et al. 2016, Moris et al. 2016),
we could potentially make use of this temporal information to infer causality and directionality
of gene interactions within networks (Villaverde et al. 2014, Villaverde et al. 2013, Zoppoli et al.
2010, Opgen-Rhein et al. 2007).

Methods that allow us to explore high-throughput datasets and identify putative functional rela-
tionships between genes are clearly needed to allow us to effectively analyse the large quantities
of single cell transcriptomic data now available. Much of our existing knowledge of biological sys-
tems is gained from population-averaged bulk data, so although some inference algorithms aim to
incorporate prior knowledge (Mukherjee et al. 2008, Studham et al. 2014), when working with sin-
gle cell data we may want to avoid biasing our conclusions in order to fully exploit the potential
of these data to provide new insights. The inferred relationships and network structure should be
viewed as a way of identifying patterns and putative relationships from the data thus serving as
a hypothesis-generation tool to guide promising areas for future research and investigation. Val-
idating or invalidating any of these hypotheses experimentally may, of course, lead to a revision
of the network model — like any mathematical model it should be subject to refinement as new
experimental data becomes available. As with all network inference methods, we cannot expect to
reconstruct the exact structure of the underlying biological networks, but instead view suchmeth-
ods as tools to explore the data; generate hypotheses; represent the current state of understanding;
and guide further experiments, model development and analyses.

Methods

Discretization algorithms

In order to use the entropy estimatorsdescribedhere, continuousdatasetsmust first bediscretized.
A number of algorithms exist to define the total number and boundaries of the resulting partitions
(or bins). One common simple approach is to use bins of equal width, with the number of bins de-
termined heuristically, e.g. here we use the nearest integer to the square root of the size of the
dataset,

√
n (Mosteller et al. 1977). A more sophisticated approach is the Bayesian Blocks algo-

rithm (Scargle et al. 2013), in which the number and widths of bins are chosen by optimising a
fitness function, without constraining the bins to be of equal width.
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Estimators

When a dataset is large enough, the empirical frequencies can be considered to be an approxima-
tion of the true probabilities, referred to here as the maximum likelihood approach. For sparser
datasets, a number of methods have been developed either for estimating the probability distri-
bution from a set of frequencies, such as the Dirichlet estimator and the shrinkage estimator, or
for estimating the entropy directly, as in the Miller-Madow estimator (Hausser & Strimmer 2009,
Paninski 2003).

The Dirichlet estimator refers to a group of Bayesian estimators that take a Dirichlet distribution
as prior, but eachwith different parameters (Agresti et al. 2005,Hausser&Strimmer 2009). There
is no consensus on the best parameters to use, despite several proposed alternatives (Hausser &
Strimmer 2009); here, we use the same parameter, 1, for each bin unless otherwise stated.

The shrinkage estimator is also Bayesian, compromising between the observed frequencies, un-
biased but with a high variance, and a prior (or target) distribution, biased but with low vari-
ance (Hausser & Strimmer 2009). The estimate is affected by both the choice of target distribu-
tion and the weight given to the target (or shrinkage intensity). In the current analysis the optimal
shrinkage intensity is calculated as described in (Hausser & Strimmer 2009), and the target distri-
bution is the uniform distribution.

The Miller-Madow estimator is an entropy bias correction that does not estimate the probability
distribution, and therefore cannot be meaningfully applied to higher order information measures.
Despite this it has been applied for the comparison of different MI-based algorithms (Meyer et al.
2008), and so it is included in this analysis, with the caveat that its meaning is unclear.

Simulation of in silico 3-gene network data

We considered six 3-gene topologies (Fig. S1), and used the Gillespie algorithm (Gillespie 1977) to
generate stochastic simulations of gene expression timecourse data using two alternative model
definitions (based on thermodynamic or mass action kinetics). In both cases, we include an addi-
tional activating stimulus that is present from halfway through the simulation timecourse. This
additional stimulus acts to perturb the system away from a steady state, driving changes in gene
expression that are necessary for relationships between genes to be observable. This section de-
scribes these model and simulation details.

The first thermodynamic model includes seven species: mRNA (xi) and protein (yi) corresponding
to three genes (i = 1, 2, 3), and a stimulating ligand (s) which targets a selected gene. We define
the following reaction types with associated propensities,

Reaction Propensity
xi → ∅ λxi
yi → ∅ λyi
xi → xi + yi ri(xi)
∅ → xi fi(y, s)

to represent mRNA decay, protein decay, translation and transcription respectively, where λ is
the protein / mRNA decay rate, translation is modelled according to saturation kinetics (with max-
imum rate αtranslation), i.e.,

ri(xi) = αtranslation ·
1

1 + (ki/xj)
,

and transcription rates depend on the concentration of any regulating proteins (including the stim-
ulating ligand s if present) according to the relationship,

fi(y, s) = αtranscription ·
M∑

m=0

αmP{Sm},
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where αtranscription is a constant transcription rate, M is the total number of possible states Sm for
gene i (either unbound, or bound by one or two regulating proteins), and αm is the relative activa-
tion rate for each state. The probability of each state, P{Sm}, depends on the concentrations of the
regulating proteins, modelled according to standard thermodynamic principles (see e.g. (Marbach
et al. 2010) for details). For example, if a gene has two possible regulators (proteins yj, yk), we
calculate the mean activation of transcription of the target gene i using the function,

fi(y) =
α0 + αjχj + αkχk + αjkχjχk

1 + χj + χk + χjχk
,

where χj = (yj/kj), kj is the dissociation constant, and the possible states of the gene are unbound,
bound by yj or yk alone, or by both yj and yk. For ourmodels, themaximumnumber of regulators for
a given gene is three (proteins yj and yk plus the stimulating ligand s), but we assume amaximumof
two regulators can bind the gene at any one time (sowe consider the gene states with each possible
pair of ligands bound, but not a state with all three bound).

For the thermodynamic model, we simulated timecourses from time 0 to 1000, with the stimulat-
ing ligand s present from time 500 at a constant level of 20 molecules, and recorded the system
state at 41 equally spaced intervals. We repeated the simulations 25 times — and calculated PID
scores using the resulting data (i.e. 1025 data points or ‘cells’ were used to calculate each PID
measure)— with the stimulus targeting each of the three genes in the network in turn (75 simula-
tions in total, 3 sets of PID scores). We randomly sample initial mRNA (xi) and protein (yi) levels
from a U(0, 5) distribution; we perform simulations for five different initial conditions and plot
the mean PID profiles from these five different conditions in Figs. 2 and S1. Model parameters
are λ = 0.02,αtranscription = 2,αtranslation = 2, and ki = 50 (for all i = 1, 2, 3). Relative activa-
tion rates for transcription, αm, depended on the number of activating and inhibiting regulators
present in each possible state Sm: αm = 0.1 (for the unbound state, i.e. basal transcription), 0.001
if an inhibitor was bound (we assumed inhibition dominated activation), and 5 if only activating
regulators are bound.

The secondmassactionmodel thatweconsider also includes seven species: genes (gi) andmRNA/protein
(xi) for i = 1, 2, 3, and the stimulating ligand s. We assume that protein and mRNA concentrations
are equal (i.e. translation is instantaneous) and, unlike our firstmodel, assume that a gene can only
be bound by a single protein at any time. The possible reactions and associated propensities are,

Reaction Propensity
gi → gi + xi ktxn · xi
xi → ∅ kdecay · xi

gi + xj → gixj kon · gi · xj
gixj → gi + xj koff · gixj
gixj → gixj + xi kregulated · gixj

for basal transcription and protein decay, protein binding and unbinding from a target gene, and
transcription from a gene bound to a regulating protein respectively (where gixj indicates gene i is
bound by regulating protein j).

For the mass action model, we simulated timecourses from time 0 to 400, with the stimulating lig-
and present from time 200 at a constant level of 20molecules, and recorded the system state at 21
equally spaced timepoints. We repeated the simulations 50 times with the stimulating ligand tar-
geting each gene to give a total of 1050 data points (‘cells’) that are used to calculate PIDmeasures.
We initiated simulations with two copies of each gene (gi = 2), no stimulating ligand, and initial
mRNA/protein levels sampled from a uniform distribution (xi ∼ U(0, 50)); we perform simulations
for five different initial conditions and calculate the mean PID profiles from these five conditions
(plotted in Figs. 2 and S1). Model parameters are ktxn = 1, kdecay = 0.05, kon = 0.01, koff = 0.25,
and kregulated = 10 or 0.1 for activating and inhibiting regulation respectively. Information mea-
sures were calculated from these data using the Matlab package written by Timme et al. (Timme
et al. 2014), following discretisation with the AstroML implementation of the Bayesian Blocks al-
gorithm (Vanderplas et al. 2012, Scargle et al. 2013).
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Simulation of in silico GeneNetWeaver network data

Data are simulated using GeneNetWeaver (Schaffter et al. 2011), which was used in the DREAM5
(DialogueonReverseEngineeringAssessment andMethods) network inference competition (Marbach
et al. 2012). We compare the network inference algorithms using ten networks, five with 50 genes
and five with 100 genes; for each network size there are two E.coli and three S.cerevisiae networks,
with average node degrees ranging from 1.19 edges per node to 5.51 edges per node.

GeneNetWeaver uses dynamical models that consider mRNA transcription and translation pro-
cesses and generates time series simulations using stochastic differential equations to model dy-
namical noise and a mixed normal and log-normal model to represent microarray noise. To mimic
single-cell data, we simulated thousands of time series experiments for each network, using the
default settings, with mRNA measurements generated according to the default settings and the
default time points: times 0 to 1000, in steps of 50. We sampled a single time point from each
time series, representing a single ‘cell’: for the large datasets, we sampled 100 cells from each of
the time points (2100 cells in total); for the medium datasets we sampled 100 cells from time 0
onwards in time steps of 150 (700 cells); and for the small datasets, we sampled 20 cells from all
time points between 0 and 300 (140 cells). Where the dataset size is unspecified, we have used the
medium datasets. For our initial exploration of PID measures, we also used data simulated from a
10-gene network (shown in Fig. 3A); in this case we again used the temporal sampling scheme for
medium datasets.

In order to test the robustness of our method to zero-inflated data, typical of single-cell experi-
ments, we further simulated ‘drop-out’ datasets. Zero measurements appear to be a combination
of technical errors and genuine lack of expression due to stochasticity or biological state, and are
more common in transcripts with low abundance (Kharchenko et al. 2014, Brennecke et al. 2013).
We simulated drop-out events at two rates, such that expression values in the lowest 50 % (high
rate) or 20% (low rate) for each gene had a 50% probability of being recorded as 0.

Network inference performance metrics and comparisons

AUROCandAUPRcurves are calculated by comparing the inferred networks (which assign a score
to every potential network edge) to the ‘true’ network used to simulate data, and identifying the
numbers of correctly (and incorrectly) assigned edges as the threshold for edge inclusion is varied.
AUROC is calculated from the area under the ROC curve, which is a plot of the false positive rate
(FPR) on the x-axis versus the true positive rate (TPR) on the y-axis. AUPR is the area under the
curve for a plot of precision (y-axis) versus recall (equal to TPR) on the x-axis. These quantities
are calculated as,

TPR (or recall) =
TP

TP+ FN

FPR =
FP

FP+ TN

Precision =
TP

TP+ FP
, (13)

where TP and FP indicate the numbers of true and false positives, and TN and FN are true and
false negatives. For networks where the number of negatives is much greater than the number
of positives, AUPR is considered a better metric for comparing algorithm performance (Murphy
2012, Davis et al. 2006).

We use these scores to compare performance of our method relative to existing inference algo-
rithms (Figs. 5 and S5). We used the implementations in R package minet for the existing infer-
ence algorithms (Meyer et al. 2008); we used the default or suggested parameters within this pack-
age except for the tolerance, τ , for ARACNE for which we either used the default (for the results
in Fig. S5) or 0.1 (for the results in Fig. 5, as recommended in the original publication describing
this algorithm (Margolin et al. 2006a)) .
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Methods for analysis of real datasets

Published datasets

Weanalysed three published qRT-PCRdatasets to illustrate our network inference algorithm. Nor-
malisedCt values fromPsaila et al. (Psaila et al. 2016)were subtracted from the assumedmaximum,
40, and the resulting dCt values (for 87 genes and 681 cells) were used in our analyses. Normalised
dCt values fromMoignard et al. (Moignard et al. 2015) are used directly for our analyses; we used
data from the20genes they represent in their networkmodel and3934 cells. RawCtdata fromGuo
et al. (Guo et al. 2010) are treated as described by the original authors (dCt values are calculated
assuming a limit of detection of 28, and normalised on a cell-wise basis by subtracting themean ex-
pression of housekeeping genes Actb and Gapdh; all values corresponding to expression below the
limit of detection are set to -15); we used data from 46 genes (i.e. we excluded the housekeeping
genes used for normalisation) and 442 cells.
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https://github.com/Tchanders/InformationMeasures.jl.
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Figure S2: Related to Figure 2. Mean PID profiles for gene triplets in a 50-gene network. Every triplet of
nodes (genes) in the network was assigned to one of six possible classes (based on the known connectivity of
genes, as indicated in network diagrams above each plot). For each triplet, twelve PID values were calculated
from the simulated data — there are four PID contributions with each gene treated as the target gene in
turn, consisting of a redundant, synergistic and two unique contributions (Eq. 4). Each line graph shows the
mean PID values calculated across triplets with the same topology, with the horizontal axis labels indicating
the PID contribution, e.g. the first four values show the PID values with gene X as the target, consisting of
the redundancy (R), unique contributions from gene Y (Y) and gene Z (Z), and the synergistic contribution
(S).
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Figure S3: Related to Figure 3 and Table 3. Topological characteristics of the 50-node in silico networks. A)
Visualisations of the directed networks, produced by GeneNetWeaver (Schaffter et al. 2011). B) Node degree
distributions for each of the 50-node and 100-node networks. The distributions are varied, with the E. coli
networks tending to have more hubs, and the S. cerevisiae networks tending to be more densely connected.
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Figure S4: Related to Figure 4. Example empirical distributions of proportional unique contribution scores
by gene. Gamma distributions were fitted to the proportional unique contribution (PUC) scores (Eq. 7) for
each gene in a 50-node in silico network (for each gene X, a PUC score, uX,Y , is obtained for that gene
paired with each other gene Y in the network). Due to the variability of these distributions, using a universal
threshold for inferring edges is problematic, thus we use the cumulative probability distributions for each gene
to obtain a final confidence score for network edges.
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Figure S5: Related to Figure 5. Influence of discretization algorithm, estimator and technical error on
network inference performance. AUPR (A) and AUROC (B) scores quantifying the accuracy of inferred
networks calculated using in silico data simulated from five 50-gene networks (see Methods). Coloured lines
indicate the results obtained with different datasets. Each plot shows the results obtained using a different
combination of discretization algorithm (rows) and MI estimator (columns). Choice of algorithm and estimator
clearly affects the relative scores of the network inference algorithms, suggesting that comparisons made using
only one combination should be interpreted with caution; we find that the PIDC inference algorithm performs
consistently well across the different combinations. C) From the medium-sized 100-node datasets, the lowest
20% (low rate) or 50% (high rate) of expression values for each gene each had a 50% probability of being set
to 0; the recommended maximum likelihood and Bayesian blocks were used. The R package minet was used
to implement the existing algorithms using the default parameters (Meyer et al. 2008).
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Figure S6: Related to Figure 6. Comparisons of networks inferred using MI and PIDC from experimental
datasets. A) Comparison of the networks inferred from the data from Psaila et al. (Psaila et al. 2016)
using our PIDC algorithm or MI relevance networks (in both cases, the top 2.5 % of edges are shown). B)
Percentage of nodes that are connected in networks inferred from the Psaila et al. data (Psaila et al. 2016)
as the threshold for edge inclusion is varied (from 0 to 100 % of possible edges, according to their rank).
These results show that networks inferred using PIDC (black) tend to be better connected than networks
inferred using MI (red); i.e. MI networks show more skewed degree distributions. C) Comparison of the
networks inferred using haematopoietic development data in (Moignard et al. 2015) (as in Fig. 6D) showing
the identity of nodes in these networks.
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Figure S7: Related to Figure 5. Influence of discretization algorithm and estimator on MI rank. MI was
estimated for every pair of genes in a 50-gene in silico network, using different combinations of discretization
algorithms (uniform width or Bayesian Blocks (Vanderplas et al. 2012, Scargle et al. 2013)) and MI estimators
(Dirichlet, Miller-Madow, shrinkage and maximum likelihood); see Methods for details. Each plot shows the
relative ranks of MI scores obtained using the maximum likelihood estimator (horizontal axis) versus one of the
other estimators (vertical axis); the top and bottom rows show results obtained using data discretized using
a uniform width or Bayesian Blocks algorithm respectively. MI ranks were the most consistent when using
Bayesian Blocks discretization (with the exception of the Miller-Madow estimator, which is an entropy bias
correction that should not be used in higher-dimensional estimation and is included here due to its frequent
misuse as an MI estimator).
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Table S1: Related to Figures 3 and S3. Topological characteristics of the 50-node and 100-node (in brackets)
networks from which data were simulated by GeneNetWeaver (Schaffter et al. 2011). In all networks the vast
majority of all possible node triples were either unconnected or had only one edge connecting two nodes in
the triple.

Network Nodes Triples Edges Unconnected
triples

One edge
triples

E. coli 1 50 (100) 19600 (161700) 62 (125) 86.4% (92.8%) 12.0% (6.8%)
E. coli 2 50 (100) 19600 (161700) 82 (119) 82.8% (93.2%) 14.4% (6.3%)

S. cerevisiae 1 50 (100) 19600 (161700) 77 (166) 82.7% (90.3%) 15.9% (9.3%)
S. cerevisiae 2 50 (100) 19600 (161700) 160 (389) 66.6% (78.8%) 28.2% (18.9%)
S. cerevisiae 3 50 (100) 19600 (161700) 173 (551) 64.4% (71.6%) 29.7% (24.1%)

Table S2: Related to Figure S5 and Table S3. Joint entropy estimates, in bits, for up to four independent
random variables, calculated using different estimators and uniform width discretization. Each variable is
uniformly distributed over n = 64 bins and sampled 642 times, with theoretical entropy, log2(n). The
theoretical joint entropy of independent variables is the sum of their entropies. The Dirichlet estimator is
given priors of 1/n or 1, and the shrinkage estimator is given a uniform target (as indicated in parentheses in
table headings). The means of 100 repetitions are given, and the variances are all < 10−4. Only the Dirichlet
and shrinkage estimators produce accurate estimates with three and four variables.

Number of
variables

Theoretical
value

Maximum
likelihood

Miller-
Madow

Dirichlet
(1/n)

Dirichlet
(1)

Shrinkage
(uniform)

1 6 5.9886 5.9963 5.9892 5.9998 6.0000
2 12 11.1705 11.4860 11.2234 11.8303 11.9998
3 18 11.9844 12.4804 15.9346 17.9915 17.9999
4 24 11.9997 12.4804 23.9283 23.9999 23.9998

Table S3: Related to Figure S5 and Table S2. Estimates of the difference between joint and marginal
entropies of four independent random variables. The theoretical difference for independent variables is 0.
Estimates are made for three sets of variables, drawn from three different distributions (uniform, normal or
exponential). The Dirichlet estimator is given priors of 1/n and 1, and the shrinkage estimator is given a
uniform target (as indicated in parentheses in table headings). The means of 100 repetitions are given, and
the variances are all < 0.2. The estimators perform differently depending on the distribution: the Dirichlet
and shrinkage estimator are the most accurate when given the correct prior, but can be the least accurate
when the prior is wrong.

Distribution Maximum
likelihood

Miller-
Madow

Dirichlet
(1/n)

Dirichlet
(1)

Shrinkage
(uniform)

Uniform 11.9559 11.4868 0.0277 0.0428 0.0005
Normal 8.7172 8.2470 3.2126 3.1409 3.1389

Exponential 5.2646 4.8102 6.7636 6.5397 6.1207
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