
Bit-twiddling on Nucleotides

Fabian Klötzl1,*

1 MPI for Evolutionary Biology

* kloetzl@evolbio.mpg.de
October 20, 2016

Abstract

Bits, nucleotides and speed.

1 Introduction 1

Analyzing sequence data is one of the main focuses of bioinformatics. In this note we 2

shall analyze four common tasks: computing the GC-content, hashing k-mers, 3

computing the reverse complement and counting transversions. We present improved 4

algorithms that show superior performance compared to näıve approaches. 5

The sources of this paper including LATEX and program code are available at 6

https://github.com/kloetzl/biotwiddle. 7

2 Materials and Methods 8

A lot of bioinformatics tools work with nucleotide data. Usually, each nucleotide is 9

represented by one character in IUBUB nomenclature. For the four standard DNA 10

bases these are A, C, G, and T. These letters are commonly encoded in ASCII and take 11

up one byte of memory. Assuming a C memory model, a sequence of nucleotides is 12

stored as a string, continuous memory, with each byte representing one character 13

delimited by a NUL-byte. 14

2.1 Definitions 15

An alphabet is a non-empty set of characters, commonly written as Σ. A finite sequence 16

of characters w = w1w2 . . . wn with wi ∈ Σ is called a string with length n = |w|. In 17

this note the alphabet is assumed to consist of the four nucleotides from DNA: 18

Σ = {A, C, G, T}. 19

Each character is also the representative for a seven bit sequence, namely their 20

ASCII encoding. We allow the execution of bitwise logical operators on these sequences. 21

For example, let c and d be two bit sequences. Then c& d is the result of a 22

bitwise-logical-and. 23

2.2 GC-content 24

The GC-content of DNA is the proportion of guanin and cytosin among all nucleotides. 25

Let w be a DNA sequence of length n. Furthermore, S : Σ→ {0, 1} maps a nucleotide 26

to 1 iff it is a C or G. So the GC-content of the sequence w is
∑n

i=1 S(wi)/n. 27

1/7

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted October 20, 2016. ; https://doi.org/10.1101/082214doi: bioRxiv preprint

https://github.com/kloetzl/biotwiddle
https://doi.org/10.1101/082214

This definition easily translates into code. For every character in the given string, 28

check if it is C or G; if so, increase a counter. Once all characters are processed, compute 29

the final ratio. 30

double gc(const char ∗seq) { 31

size t gc = 0; 32

const char ∗ptr = seq; 33

34

for (; ∗ptr ; ptr++) { 35

if (∗ptr == ’G’ || ∗ptr == ’C’) { 36

gc++; 37

} 38

} 39

40

return (double)gc / (ptr − seq); 41

} 42

This looks like three comparisons are made against each character, one for NUL and 43

two against C and G. However, compilers can optimize them into just two comparisons. 44

Luckily, in ASCII, C and G differ by only one bit. This enables optimizing compilers (or 45

us) to rewrite the comparisons to use a bit mask. We ignore the bit which differs 46

between C and G and check if the remaining bits equal the common bit pattern. 47

double gc(const char ∗seq) { 48

size t gc = 0; 49

const char ∗ptr = seq; 50

51

for (; ∗ptr ; ptr++) { 52

char masked = ∗ptr & ’G’ & ’C’; 53

if (masked == (’G’ & ’C’)) { 54

gc++; 55

} 56

} 57

58

return (double)gc / (ptr − seq); 59

} 60

As most sequence data is encoded as ASCII, computing the GC-content the new way 61

may result in great performance benefits for a whole lot of bioinformatics applications. 62

2.3 Hashing 63

A common procedure on k-mers is to hash them. This allows for compact representation 64

in memory, or can be used as an index into hash-based data structures. As the 65

DNA-alphabet consists of only four characters, two bits suffice to represent one 66

nucleotide. With this we can define the following mapping for k ≥ |w|. 67

H(w, k) = h(w1) · 4k + h(w2) · 4k−1 + · · ·+ h(wk)

=
k∑

i=1

h(wi) · 4k−i+1

2/7

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted October 20, 2016. ; https://doi.org/10.1101/082214doi: bioRxiv preprint

https://doi.org/10.1101/082214

h(x) =


0 if x = A

1 if x = C

2 if x = G

3 if x = T

Again, this definition easily translates into code: Iterate over the first k characters of 68

a string, compute the map, and combine them into one number. 69

size t hash(const char ∗seq, size t k) { 70

size t return value = 0; 71

72

while (k−−) { 73

char c = ∗seq++ 74

size t val = 0; 75

switch (c) { 76

case ’A’: val = 0; break; 77

case ’C’: val = 1; break; 78

case ’G’: val = 2; break; 79

case ’T’: val = 3; break; 80

} 81

return value <<= 2; 82

return value |= val ; 83

} 84

85

return return value; 86

} 87

The switch-statement is convenient for humans to read, but not the most compact 88

way to achieve the desired mapping. Instead of essentially doing four comparisons, we 89

can resort to bit-twiddling, giving us the same mapping with fewer machine instructions. 90

Table 1. ASCII Table (excerpt)

Char ASCII bit code
A 0x41 100 0001
C 0x43 100 0011
G 0x47 100 0111
T 0x54 101 0100

Remember, the nucleotides are stored as ASCII characters in memory. The actual 91

values are shown in the table above. In the table, it can be seen that the lower bits 2 92

and 3 of each character uniquely identify it [4]. Further more, they almost achieve the 93

desired mapping given as h(x) above. However, if bit 3 is set (i. e. G or T) the bit 2 is 94

wrong. Thus it needs to be flipped conditionally using a bitwise-exclusive-or as shown in 95

the following code. 96

size t hash(const char ∗seq, size t k) { 97

size t return value = 0; 98

99

while (k−−) { 100

char c = ∗seq++; 101

c &= 6; 102

c ˆ= c >> 1; 103

size t val = c >> 1; 104

return value <<= 2; 105

return value |= val ; 106

} 107

108

return return value; 109

} 110

Finally, we have achieved the mapping we set out for. In C, this code compiles down 111

to just five bit-twiddling instructions, making it the fastest order-preserving method 112

available. Furthermore, unlike the switch-statement, this code can be vectorized. 113

3/7

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted October 20, 2016. ; https://doi.org/10.1101/082214doi: bioRxiv preprint

https://doi.org/10.1101/082214

2.4 Reverse Complement 114

DNA consists of a forward and a reverse complement strain. For this note we use the 115

following, technical, definition. Let w ∈ Σ∗ be a DNA sequence with w̄ being its reverse 116

complement, given 117

∀i ∈ [1, |w|] : w̄|w|−i−1 =


T if wi = A

G if wi = C

C if wi = G

A if wi = T

A simple implementation for the reverse complement follows a similar scheme as the 118

hashing procedure above. Iterate over all characters in the forward sequence, map 119

everyone to its complement, and write the result to the reverse string. 120

This time we focus our efforts on the complementing. Specifically, complementing a 121

nucleotide can be compactly written as A↔ T and C↔ G. Let c be the nucleotide to be 122

complemented. Then the following is true c̄ = c̄⊗ 0 = c̄⊗ (c⊗ c) = (c̄⊗ c)⊗ c, but also 123

c = (c̄⊗ c)⊗ c. So c can be complemented back and forth with the same operation. 124

Furthermore, (c̄⊗ c) simplifies to a constant value, reducing the complement to one 125

machine instruction. 126

So two magic constants suffice to complement all four nucleotides: 21 = (A⊗ T) and 127

4 = (C⊗ G). To pick the right constant for complementing, a trick similar that is in the 128

hashing section above, can be used; C and G have their bit 2 set, whereas A and T do not. 129

char ∗revcomp(const char ∗forward, char ∗reverse, size t len) 130

{ 131

for (size t k = 0; k < len; k++) { 132

char c = forward[k]; 133

char magic = c & 2 ? 4 : 21; 134

135

reverse [len − k − 1] = c ˆ magic; 136

} 137

138

reverse [len] = ’\0’ ; 139

return reverse; 140

} 141

This code is surprisingly short and could be compacted even further. It contains 142

only one branch and very simple instructions, making it fast and vectorizing-friendly. 143

2.5 Mutations and Transversions 144

As a final task we focus our attention on comparing genomes, specifically, counting and 145

classifying mutations. Given two genomes s, q ∈ Σ∗, with equal length, we are interested 146

in the number of transversions separating the two sequences. 147

trans(a, b) =

|a|∑
i=1

δ(ai, bi)

δ(a, b) =


1 if a ∈ {C, T} and b 6∈ {C, T}
1 if b ∈ {C, T} and a 6∈ {C, T}
0 otherwise

4/7

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted October 20, 2016. ; https://doi.org/10.1101/082214doi: bioRxiv preprint

https://doi.org/10.1101/082214

To account for a transversion, exactly one of the two bases has to be a pyrimidine, 148

and the other purine. A character c is a pyrimidine in ASCII if c+ 1 has a 1 at bit 3. 149

For purines that bit has the value 0. So incrementing the characters by one allows for 150

easy characterization of bases. With a bitwise-exclusive-or we can check if only one of 151

the two bases is a pyrimidine. 152

double transversions(const char ∗subject, size t length, const char ∗query) 153

{ 154

size t transversions = 0; 155

156

for (size t k = 0; k < length; k++) { 157

if (((subject [k] + 1) ˆ (query[k] + 1)) & 4) { 158

transversions++; 159

} 160

} 161

162

return (double)transversions / length; 163

} 164

3 Results 165

To evaluate the performance of the given methods, we simulated sequences with 100,000 166

nucleotides. On each sequence a method is run often enough to gain statistical 167

confidence using the benchmark library by Google [3]. This process is repeated a 168

number of runs, from which the minimum is chosen as the best run-time [1]. 169

Also, we inspect the runtime characteristics of different methods using the perf 170

tools [2]. These allow measuring the instructions per cycle, branches and other features 171

of a program. 172

3.1 GC-Content 173

In Section 2.2 we describe, how the GC-content of a sequence can be computed with 174

Figure 1. Computing the
GC-Content. Runtimes of dif-
ferent methods to determine the
GC-content from from sequences
with 100,000 nucleotides. Todo:
fix the y-axis.

simple twiddle

105

R
u

n
ti

m
e

(n
s)

GCC
Clang

fewer comparisons than necessary at first glance. 175

We created two methods, one representing 176

the simple way of counting and the other 177

the explicit twiddling way. As modern compilers 178

optimize the generated code, we do not expect any 179

significant difference between the two methods. 180

Figure 1 shows the benchmarking results 181

for the two methods. Using the GNU Compiler 182

both methods are almost equally fast. However, 183

Clang fails to optimize the simple method. It still 184

makes one extra comparison leading to many more 185

branches and thus a high number of branch misses. 186

This leads to a roughly 25 times slower function. 187

5/7

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted October 20, 2016. ; https://doi.org/10.1101/082214doi: bioRxiv preprint

https://doi.org/10.1101/082214

3.2 Hashing 188

We compare the two hashing procedures defined in Section 2.3. One uses a big switch 189

statement to map the nucleotides to an index. The other exploits the ASCII 190

switch twiddle

0.5

1

·107

R
u

n
ti

m
e

(n
s)

GCC
Clang

Figure 2. Runtime of different k-mer hash-
ing procedures.

representation of the characters 191

to achieve the same result, much 192

faster. We measured the performance by 193

having both methods compute the hash of 194

all k-mers in a long sequence with k = 16. 195

As we would have hoped, the twiddling 196

method is faster, by a factor of 3. This 197

is due to different reasons. The twiddle 198

method utilizes more instruction-level 199

parallelism. On an Intel Core i5-5200U 200

the simple method executes about 201

1.19 instructions per cycle. However, using 202

twiddling, that number can be ramped 203

up to 3.75. On the contrary, the number 204

of branches and especially the number of 205

branch misses goes down. Whereas for the 206

simple method 25% of all branches are missed, it is only 0.02% for twiddle. 207

3.3 Reverse Complement 208

Here we compare four different ways of computing the reverse complement. As a 209

baseline, again we use our simple switch-statement. twiddle is the method using xors as 210

presented in Section 2.4. A third method used by programs such as Blast and 211

Figure 3. Reverse Comple-
ment. Runtime of different meth-
ods for computing the reverse
complement of a sequence with
100,000 nucleotides.

switch twiddle table two step

105

106

107

R
u

n
ti

m
e

(n
s)

GCC
Clang

MUMmer uses a table lookup. 212

Lastly, one method (two step) splits 213

the process into two parts. First, 214

all nucleotides are complemented, 215

then the string is reversed. 216

It can be seen in Figure 3 217

that the switch method is by 218

far the slowest. All other methods 219

are at least one order of magnitude 220

faster. Among them the table 221

lookup is the slowest, followed by 222

a two-step process. Twiddling leads 223

to the best performance. All results 224

are the same across compilers. 225

6/7

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted October 20, 2016. ; https://doi.org/10.1101/082214doi: bioRxiv preprint

https://doi.org/10.1101/082214

3.4 Transversions 226

To compare the performance of different ways of counting transversions, we simply 227

Figure 4. Counting Transver-
sions. Runtime of different meth-
ods for counting mutations and
transversions. Shown is the mini-
mum of 3 runs.

mutations twiddletransversions

105

106

R
u

n
ti

m
e

(n
s)

Transversions

GCC
Clang

choose counting mutations as a baseline. 228

The simple way of counting 229

transversions cannot be vectorized 230

and thus is about ten times slower 231

than counting only mutations. However, 232

the new twiddling method presented 233

in Section 2.5 can be vectorized, an 234

thus is almost as fast as the first method. 235

References

[1] A. Alexandrescu. Writing fast code i, 2015.

[2] L. K. Developers. perf. Technical report, 2016.

[3] Google. A microbenchmark support library. Technical report, GitHub, 2016.

[4] J. Longinotto. up2bit format, 2015.

7/7

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted October 20, 2016. ; https://doi.org/10.1101/082214doi: bioRxiv preprint

https://doi.org/10.1101/082214

	Introduction
	Materials and Methods
	Definitions
	GC-content
	Hashing
	Reverse Complement
	Mutations and Transversions

	Results
	GC-Content
	Hashing
	Reverse Complement
	Transversions

