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Abstract

Motivation: Different ChIP-seq peak callers often produce different output results from the same input.
Since different peak callers are known to produce differentially enriched peaks with a large variance in
peak length distribution and total peak count, accurately annotating peak lists with their nearest genes
can be an arduous process. Functional genomic annotation of histone modification ChIP-seq data can
be a particularly challenging task, as chromatin marks that have inherently broad peaks with a diffuse
range of signal enrichment (e.g., H3K9me1, H3K27me3) differ significantly from narrow peaks that exhibit
a compact and localized enrichment pattern (e.g., H3K4me3, H3K9ac). In addition, varying degrees of
tissue-dependent broadness of an epigenetic mark can make it difficult to accurately and reliably link
sequencing data to biological function. Thus, it would be useful to develop a software program that can
precisely tailor the computational analysis of a ChIP-seq dataset to the specific peak coordinates of the
data.
Results: geneXtendeR is an R/Bioconductor package that optimizes the functional annotation of ChIP-
seq peaks using fast iterative peak-coordinate/GTF alignment algorithms focused on cis-regulatory regions
and proximal-promoter regions of nearest genes. The goal of geneXtendeR is to robustly link differentially
enriched peaks with their respective genes, thereby aiding experimental follow-up and validation in
designing primers for a set of prospective gene candidates during qPCR. We have tested geneXtendeR on
547 human transcription factor ChIP-seq ENCODE datasets and 214 human histone modification ChIP-
seq ENCODE datasets, providing the analysis results as case studies.
Availability: The geneXtendeR R/Bioconductor package (including detailed introductory vignettes) is
available under the GPL-3 Open Source license and is freely available to download from Bioconductor at:
https://bioconductor.org/packages/devel/geneXtendeR/.
Contact: bohdan@stanford.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Epigenetic histone chromatin marks come in a variety of different shapes
and sizes, ranging from the extremely broad to the extremely narrow
(Squazzo et al. 2006, Pepke et al. 2009, Landt et al. 2012, Kellis et
al. 2014, Heinig et al. 2015). This spectrum depends on a number of

biological factors ranging from qualitative characteristics such as tissue-
type (Rintisch et al. 2014) to temporal aspects such as developmental stage
(Ha et al. 2011). Computational factors such as the variance observed in
peak coordinate positions (peak start, peak end) depending on the peak
caller used, both in terms of length distribution of peaks as well as the
total number of peaks called, is an issue that persists even when samples
are run at identical default parameter values (Koohy et al. 2014; Thomas
et al. 2017). This variance becomes a factor when annotating peak lists
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Fig. 1. Large-scale computational geneXtendeR analysis of 45 H3K27ac datasets, 48
H3K4me1 datasets, 94 H3K4me3 datasets, 27 H3K9ac datasets, and 547 transcription
factor ChIP-seq datasets from ENCODE. The y-axis represents a raw count of peak clusters,
where a peak cluster is defined as a genomic locus harboring at least 5 overlapping peaks.
The x-axis represents a genomic distance (in bp) of the closest protein-coding gene to each
respective peak cluster. A sharp drop in peak cluster count is detected at around 2000 bp for
all chromatin marks, i.e., most peak clusters congregate proximally within 0-2000 bp of their
respective protein-coding genes, yet a number of peak clusters reside further upstream of
their nearest gene. In contrast to histone modification ChIP-seq studies, transcription factor
ChIP-seq datasets do not exhibit a sharp drop in peak clusters at any particular genomic
distance, although a steady decline is certainly evident.

genome-wide with their nearest genes as, depending on the peak caller
employed, peaks can be either shifted in genomic position (towards 5’
or 3’ end) or be of different lengths. In total, the combined effect of all
these factors exerts a unique influence over the functional annotation and
understanding of genomic variability found in the broadness of chromatin
mark peak data, which complicates the study of epigenetic regulation
of biological function. Despite the existence of Bioconductor software
and command line tools available for peak annotation to nearby features
(e.g., ChIPpeakAnno (Zhu et al. 2010), HOMER (Heinz et al. 2010),
BEDTools (Quinlan and Hall, 2010)), the aforementioned issues have not
yet been addressed. As such, most studies still arbitrarily assign gene
body definitions when mapping peaks to genomic features (Maze et al.
2011). To this end, we propose geneXtendeR, an R/Bioconductor package
designed to assess the variability of peak overlap with cis-regulatory
elements and proximal-promoter regions of nearest genes. geneXtendeR
therefore represents a first step towards tailoring the functional annotation
of a ChIP-seq peak dataset according to the details of the peak coordinates
(chromosome number, peak start position, peak end position).

2 ENCODE analysis
We tested geneXtendeR on all publicly available transcription factor and
histone modification ChIP-seq datasets in ENCODE (see Supplementary
Information). Our large-scale analysis (Fig. 1) revealed that ChIP-seq
peaks concentrate within the first 2000 bp upstream of their nearest protein-
coding genes, with an immediate sharp drop observed in peak count for
narrow chromatin marks (H3K9ac, H3K4me3, H3K4me1, and H3K27ac)
but not transcription factors. Although 2000 bp is a good general guideline
cutoff for capturing proximal histone modifications, this is not the case
for transcription factor studies. In addition, there are still hundreds of

peak clusters that reside in proximal-promoter regions that are 2000-3000
bp away from their nearest protein-coding genes and in distal regions
beyond 3 kbp. When applying geneXtendeR to both proximal and distal
transcription factor (TF) binding peaks for all cell types, we observed
some cell type-dependent and TF-dependent peak aggregation dynamics
in intervals ranging from 0 to 10 kbp (Fig. S1). Likewise, examining distal
peaks in representative plots of different chromatin marks in different cell
types indicates that peaks indeed aggregate in a cell type and chromatin
mark-dependent manner (Fig. S2).

3 Functions
This complexity motivated us to design functions that can calculate
ratios of statistically significant peaks to total peaks in various
genomic intervals (see hotspotPlot() documentation in geneXtendeR
vignette). Similarly, users can transform peaks into merged peaks (see
peaksMerge()). geneXtendeR also allows users to explore gene ontology
differences at various extensions (see diffGO()) as interactive network
graphics (see makeNetwork()) or word clouds (see makeWordCloud()).
Furthermore, users can investigate mean (average) peak lengths within
any genomic interval (see meanPeakLengthPlot()), showing how average
peak broadness can change at different upstream extensions, or examine
the variance of peak lengths within a specific genomic interval (see
peakLengthBoxplot()). It is also possible to examine unique genes and
their associated ChIP-seq peaks between any two upstream extension
levels (see distinct()). For example, Fig. S3 displays all unique genes (and
their respective gene ontologies) that are associated with peaks located
between 2-3 kbp across the genome. geneXtendeR also allows users to
examine the distribution of peak lengths across the entire peak set (see
allPeakLengths()), a function that is useful for visualizing the length
distribution of all peaks from a peak caller. These functions and more
are all explored in detail within the package vignette. After a user has
explored the peak coordinates data using these functions to determine the
optimal alignment of peaks to a GTF file, the peaks file can be functionally
annotated with the annotate() function. We have successfully applied
geneXtendeR during the analysis of a histone modification ChIP-seq study
investigating the neuroepigenetics of alcohol addiction (Barbier et al.
2016), where geneXtendeR was used to determine an optimal upstream
extension cutoff for H3K9me1 enrichment (a commonly studied broad
peak) in rat brain tissue based on line plots of both significant peaks and
total peaks. This analysis helped us to identify, functionally annotate,
and experimentally validate synaptotagmin 1 (Syt1) as a key mediator
in alcohol addiction and dependence (Barbier et al. 2016). All in all,
geneXtendeR’s functions are designed to be used as an integral part of
a broader biological workflow (Fig. S4).

4 Conclusion
Motivated to optimally annotate ChIP-seq peak data based on the cis-
regulatory and proximal promoter regions of genes, we propose an
R/Bioconductor package to be used as an integral part of modern ChIP-seq
workflows. geneXtendeR optimally annotates a ChIP-seq peak input file
with functionally important genomic features (e.g., genes associated with
peaks) based on optimization calculations in cis-regulatory and proximal
promoter regions. As such, the user can effectively customize a ChIP-seq
analysis to the tissue-specific, peak caller-specific, and environment-
specific details that inherently affect the broadness, location, and total
number of peaks in their dataset.
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5 Supporting Information

Comprehensive TF ChIP-seq ENCODE analysis:

geneXtendeR analysis on 547 human TF ChIP-seq ENCODE datasets.
Files available here:https://github.com/Bohdan-Khomtchouk/
ENCODE_TF_geneXtendeR_analysis

Comprehensive histone modification ChIP-seq ENCODE
analysis:

geneXtendeR analysis on 214 human histone modification ChIP-seq
ENCODE datasets. Files available here: https://github.com/
Bohdan-Khomtchouk/ENCODE_histone_geneXtendeR_analysis
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Supplementary Figures

Fig. S1. Running geneXtendeR on 547 human transcription factor ChIP-seq datasets
obtained from ENCODE shows that most peaks reside within 500 bp upstream of their
respective protein-coding genes. Depending on the identity of the transcription factor (e.g.,
EP300) and the specific cell type (e.g., K562), there may be more or less peaks located
further upstream. Therefore, choosing an optimal gene extension is a simple exercise in ψ
calculation (see hotspotPlot() in vignette) for various upstream extension levels at a given
user-specified statistical criterion (e.g., p-value and/or FDR cutoffs).
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Fig. S2. Running geneXtendeR on 214 human histone modification ChIP-seq distal peak
datasets obtained from ENCODE reveals that most distal peaks congregate within 5000
bp upstream of their respective protein-coding genes. Additional comprehensive analyses
(see Supplementary Information) were also run for proximal peaks as well as the complete
set of peaks (proximal + distal) from all 214 histone modification ChIP-seq datasets. Each
representative figure panel demonstrates that a spike in the number of distal peaks in a
particular upstream interval differs from one dataset to another. For example, AG09309
experiences a spike in the 4000-4500 bp region, whereas NHEK experiences a spike
in the 3000-3500 bp region. This demonstrates the simple observation that arbitrarily
extending genes by some generalized upstream cutoff is unlikely to capture the optimal
number of genes-under-distal-peaks for any one specific dataset. For instance, a totally
different set of dynamics is seen with NH-A, where the highest spike occurs immediately
at 2000-2500 bp, but then another spike of almost identical magnitude occurs at 4000-
4500 bp, suggesting that a 4500 bp upstream global extension of each gene might be
preferable to a 2500 bp extension for capturing the optimal number of genes-under-
distal-peaks (may be verified with hotspotPlot() function). On the contrary, datasets
like H1_Derived_Mesenchymal_Stem_Cells experience a single spike at 3500-4000 bp,
followed by a gradual decline.
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Fig. S3. All unique genes (and their respective gene ontologies) that are associated with
peaks located between 2-3 kbp across the genome. Put another way, these are all gene-GO
pairs associated with peaks that are distinct between 2000 and 3000 bp upstream extensions.
Orange color denotes gene names, purple color denotes GO terms. A user can hover the
mouse cursor over any given node to display its respective label directly within R Studio.
Likewise, users can dynamically drag and reorganize the spatial orientation of nodes, as
well as zoom in and out of them for visual effect.
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Fig. S4. Sample biological workflow using geneXtendeR in combination with existing
statistical software to analyze peak significance. Note that geneXtendeR’s built-in
hotspotPlot() function takes as input both the total peaks and the statistically significant
peaks as returned by the peak caller. However, a user may wish to also run an additional
differential expression (DE) analysis (e.g., using edgeR/DESeq2) to count reads from the
loci belonging to the peak coordinates as a way to manually cross-check the statistical
results returned from the original peak caller. Likewise, geneXtendeR has built-in gene
ontology and network analysis functions, but these may also be cross-checked from the
results of a user’s chosen DE caller. As such, subsequent gene ontology or network analysis
may be conducted on genes associated with statistically significant peaks returned from
such DE callers, and an overlap with geneXtendeR’s results may be conducted to assess
stringency. Significant peaks may be located thousands of base pairs away from their nearest
genes, suggesting that sequences under these respective peaks may be further extracted and
analyzed for the presence of known regulatory elements or repeats (e.g., using TRANSFAC,
MEME/JASPAR, or RepeatMasker).
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