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ABSTRACT: 
Interpretation of high-throughput genomics data based on biological pathways constitutes a constant 
challenge, partly because of the lack of supporting pathway database. In this study, we created a functional 
genomics knowledgebase in mouse, which includes 33,261 pathways and gene sets compiled from 40 
sources such as Gene Ontology, KEGG, GeneSetDB, PANTHER, microRNA and transcription factor 
target genes, etc.  In addition, we also manually collected and curated 8,747 lists of differentially expressed 
genes from 2,526 published gene expression studies to enable the detection of similarity to previously 
reported gene expression signatures. These two types of data constitute a Gene Set Knowledgebase 
(GSKB), which can be readily used by various pathway analysis software such as gene set enrichment 
analysis (GSEA). Using our knowledgebase, we were able to detect the correct microRNA (miR-29) 
pathway that was suppressed using antisense oligonucleotides and confirmed its role in inhibiting 
fibrogenesis, which might involve upregulation of transcription factor SMAD3. The knowledgebase can be 
queried as a source of published gene lists for further meta-analysis. Through meta-analysis of 56 published 
gene lists related to retina cells, we revealed two fundamentally different types of gene expression changes. 
One is related to stress and inflammatory response blamed for causing blindness in many diseases; the 
other associated with visual perception by normal retina cells. GSKB is available online at                
http://ge-lab.org/gs/, and also as a Bioconductor package (gskb, https://bioconductor.org/packages/gskb/). 
This database enables in-depth interpretation of mouse genomics data both in terms of known pathways and 
the context of thousands of published expression signatures.  
 

INTRODUCTION  
Pathway analysis is a key step in analyzing high-throughput genomics data. The goal of pathway analysis is 
to determine if coherent change in gene expression occurs among a set of genes related to a molecular 
pathway or biological function. Many methods have been developed to achieve this goal (see review in 
[1]). While gene set enrichment analysis (GSEA) [2], one of the most popular programs, is based on non-
parametric Kolmogorov-Smirnov statistic, several parametric algorithms have been developed [3, 4]. The 
foundation for all of these algorithms is a database of curated pathways and functional categories. The 
Molecular Signatures Database (MSigDB) [5] is a collection of gene lists initially developed for GSEA [2]. 
While its main focus is human, MSigDB also includes a small number of gene sets for mouse and rat. In 
addition to existing pathway databases, MSigDB also includes lists of differentially expressed genes 
manually collected from published gene expression studies related to genetic and chemical perturbations. 
Inclusion of these gene sets enables detection of the co-regulation of genes similar to those reported in the 
literature. The MSigDB has been widely used and greatly facilitate pathway analysis in human genomics 
studies. 

   As much of the work has been focused on gene sets in human, there is an urgent need of comprehensive 
pathway databases for other model organisms. Some researchers have to convert human genes into mouse 
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orthologs in order to use MSigDB [6]. Other previous efforts include Genetrail [7], which constructs its 
own database by extracting information from several sources such as Gene Ontology [8], KEGG [9] etc. 
GeneSetDB is a larger collection of gene sets for several species based on 26 public databases [10]. 
Pathway and gene-set enrichment database(PAGED), which covers 20 species, derives information from 
many different sources including GeneSetDB and other disease-gene association data [11]. We recently 
created a pathway database for Arabidopsis [12].  

     In this study, we sought to develop a pathway knowledgebase for mouse, an important model organism 
for the study of many human diseases. We compiled gene sets from a large number of existing annotation 
databases as well as thousands of primary publications, which covers a wide spectrum of genetic, genomic 
and biological information. These gene sets forms a foundation for in-depth interpretation of mouse 
genomics data, supporting the use of mouse as a model for understanding human biology and diseases. We 
also demonstrate the use of this knowledgebase to generate testable hypotheses through several examples. 

METHODS 
Since most gene expression studies deposit gene expression data and publication information in public 
repositories, we first search for publications in Gene Expression Omnibus (GEO, 
www.ncbi.nlm.nih.gov/geo/) and ArrayExpress (www.ebi.ac.uk/arrayexpress/). We focused on mouse 
related expression studies in this study. Based on the information, the full text of the papers and their 
supplementary materials were retrieved. Then gene lists were compiled and curated after reading the papers 
and their supplementary materials. Similar to MSigDB [5] and AraPath [12],  an unique identifier was 
assigned to each gene list. The names often start with the last names of the first authors and end with “_up”, 
or “_down” to indicate whether the genes are up-regulated or down-regulated, respectively. A brief one-
sentence description was also given to each gene list. For example, gene list VENEZIA_FETAL-
LIVER_UP represents genes highly expressed in fetal liver. A long description for the gene lists are 
abstracts of the paper from PubMed. We retrieved and processed all papers linked to GEO and 
ArrayExpress that we can found at the time of the study. We tried to collect all lists of differentially 
expressed genes reported in the literature. Larger lists (>3000 genes) are excluded. Finally, all gene lists 
were merged into an Excel spreadsheet to be further processed.  One key step is the conversion of various 
gene IDs from different sources to NCBI gene symbols and Mouse Genome Informatics (MGI) IDs. The 
conversion was made based on the mouse genes information at NCBI, including platform definition files at 
GEO and other gene information files such as gene2accession.gz, Mm.data.gz, Mm.gb_cid_lid, and  
All_data.gene_info.gz (ftp://ftp.ncbi.nih.gov). Conversion to MGI IDs is carried out using information from 
MGI web site (www.informatics.jax.org). A Perl program was created to convert these gene IDs.  
 
Gene lists from existing sources were manually imported in July 2013. Our web site (http://gskb.ge-lab.org) 
was assembled using a combination of the Python programming language, Django web framework, 
MySQL, JavaScript, and html. More detailed information about GSKB is included in supplementary file 3 
which follows the BioDBcore guidelines [13]. This web site also includes data for other species such as the 
Arabidopsis gene sets [12], as well as other species that are still in the process.   
 
Gene expression datasets were downloaded from GEO with accession numbers GSE40261and GSE27035. 
The raw Affymetrix .CEL files were processed using robust multiarray analysis (RMA) algorithm [14] as 
implemented in Bioconductor [15]. “Present” or “Absent” calls were calculated using the Affymetrix 
MAS5 algorithm based on Wilcoxon Rank Sum test. Probe-sets with “Absent” calls across all samples 
were deemed not significantly above background and removed from further analysis. Probe-set IDs were 
mapped to official gene symbol based on the mapping in Bioconductor package mouse4302.db. If multiple 
probe-sets were mapped to the same gene, we retained the one with the largest standard deviation. The 
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processed gene expression data is available as supplementary file 4. GSEA version 2.0 was used with 
default parameters to analyze GSE40261. We also used another method, parametric analysis of gene set 
enrichment (PAGE) [3], implemented in the PGSEA package [16]. Gene expression data was mean-
centered before using PGSEA, which calculates a t-statistic for each gene-set in every sample to measure 
whether the genes are collectively up- or down-regulated. The t-statistics were used in an analysis of 
variance (ANOVA) to test whether there is significant difference between sample groups. Gene sets are 
ranked by the difference in average t-statistic.  

 RESULTS AND DISCUSSION 
GSKB is a comprehensive knowledgebase for pathway analysis in mouse. It complements MSigDB, which 
contains a small number of mouse gene lists. Unlike  GeneSetDB [10], GSKB includes a large number of 
lists of differentially expressed genes. The data can be downloaded and used by various software packages 
for pathway analysis. Our web site also includes an interface for keyword search. The keywords can be a 
topic-related (“stem cell”), or a gene symbol (“SOX2”), which will be compared against all the descriptions 
including the abstracts as well as gene lists. In addition, we also provide a similarity search page, where 
users can upload a gene list, and our web server will compare user’s gene lists with all the gene lists in the 
database and return those that have statistically significant overlaps.  

Construction	of	the	knowledgebase	
As a first step, we gathered annotation information from 40 existing databases for mouse-related gene sets 
(Table 1). These gene sets are divided into 8 categories, namely, Co-expression, Gene Ontology, Curated 
pathways, Metabolic Pathways, Transcription Factor (TF) and microRNA target genes, location 
(cytogenetics band), and others. We used information in GeneSetDB [10] for some of the databases. 
Detailed information on these 40 sources and the citations is available in supplementary file 1.  

    The gene lists from literature were retrieved manually from individual gene expression studies through a 
process similar to the one used to create AraPath, a similar resource for Arabidopsis[12]. As most 
expression studies upload raw data to repositories like GEO and ArrayExpress, we used the meta-data in 
these databases to search for publications. We scanned all datasets we can found and retrieved 4,313 
potentially useful papers reporting gene expression studies in mouse. These papers were individually read 
by curators to identify lists of differentially expressed genes in various conditions. We compiled a total of 
8,747 lists of differently expressed genes from 2,518 of papers (See supplementary information 2 for 
citations). Each gene list was annotated with a unique name, brief description, and publication information, 
similar to the protocol used in MSigDB and Arapath [12].  These gene lists constitute a large collection of 
published expression signatures that form a foundation for interpret new gene lists and expression profiles.  

     These 8,747 gene lists collected from literature include a total of 29,876 unique gene symbols. 
Interestingly, the distribution of the sizes of published gene lists approximates a normal distribution on 
logarithm scale (Fig. 1). Although the median size is 51, there are many gene lists containing a few 
hundreds of genes. The most frequently appeared genes in these lists are shown in Table 2. It includes 
genes related to cell cycle (CCND2, CDKN1A), and immune response (SOCS3, FOS). Many were 
intensively-studied, as suggested by the number of related PubMed hits when using gene symbol in 
keyword searches. 

Using	the	database	
The database can be downloaded at our web site (http://ge-lab.org/gs/), and used with various pathway 
analysis software. The web site can also be searched using keywords representing either gene names or 
pathway names.  Using the “Find related genesets” page, users can also upload their own lists of genes and 
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search the database for gene sets with significant overlap. Finally, we also created a Bioconductor package 
“gskb” (https://bioconductor.org/packages/gskb/)  that provide access to this data.  

In‐depth	analysis	of	the	expression	profile	of	miR‐29	silencing	and	induction	
To test if known pathways could be detected, we re-analyzed a gene expression dataset from Hand et al. 
[17], which is available in GEO database with accession number GSE40261. In this experiment, mice were 
injected of antisense oligonucleotides against miR-29a or a scrambled sequence as control. The antisense 
oligonucleotides should suppress the expression of miR-29a, thereby affect the expression of the set of 
genes inhibited by this microRNA in liver tissue. We downloaded and processed the raw Affymetrix files 
and used different pathway analysis software to detect significantly altered pathways (See Methods for 
details). We first focused on 1869 predicted microRNA target gene sets. Table 3 shows the top gene sets 
using GSEA. It is clear that the most significantly affected pathways are those related to miR-29a, b, and c. 
We also used another method, parametric analysis of gene set enrichment (PAGE) [3], as implemented in 
the PGSEA package [16]. The results are shown in Fig. 2. The top 6 pathways are all miR-29 target gene 
sets. Therefore, the expected molecular pathway was detected using different software.  

       To gain further insight into the downstream molecular pathways, we analyze this expression data using 
other gene sets in GSKB.  Using the PGSEA software, we identified significantly altered pathways in many 
different types of gene sets. Table 4 shows some of the top ranked gene sets by category. In the co-
expression category, we detected that the change in expression profile when miR-29c was suppressed are 
similar to several reported expression signatures. The top 5 signatures are related to various perturbations 
of liver cells such as overexpression of TCFAP2C [18], or treatment with rosiglitazone [19], a compound 
that can lower glucose levels. The third most significantly gene set (Nones_Mdr1A_Curcumin-
Diet_Fibrogenesis_Dn) includes genes involved in fibrogenesis down-regulated in the colon of multidrug 
resistance gene-deficient (mdr1a-/-) mice fed with curcumin diet [20]. Fibrogenesis is a process regulating 
the deposition of extracellular matrix proteins. This is in fact a reoccurring theme in multiple significant 
gene sets across categories.  For example, two significant Gene Ontology terms are “Extracellular Matrix 
Structural Constituent”, and “Collagen Fibril Organization”. Other related gene sets are “ECM-Receptor 
Interaction”, “Integrin”, and “Beta Integrin Cell Surface Interactions”. These results strongly suggest that 
lower expression of miR-29 caused by antisense oligonucleotides leads to the up-regulation of extracellular 
matrix proteins and fibrogenesis in hepatic cells. This agrees with the well-established role of miR-29 in 
fibrosis in liver [21], and several other tissues/cells such as heart [22], stellate cells [23] and HK-2  cells 
(human kidney cell line) [24] etc. All members of the miR-29 family were found to be downregulated in 
murine livers treated with carbon tetrachloride to induce hepatic fibrogenesis [21]. Roderburg et al. [21] 
also noted abnormally low expression of miR-29 in patients with advanced liver fibrosis and liver cirrhosis. 
Thus GSKB enables us to identify downstream molecular pathways regulated by the miR-29 family.  

     Table 4 also shows transcription factors that might be involved. Treatment with anti-miR-29 
oligonucleotides is associated with reduced expression of Srebf1 (sterol regulatory element binding 
transcription factor 1) target genes. Srebf1 is regulator of lipid homeostatsis [25] and directly binds to sterol 
regulatory element-1 (SRE1) flanking LDL receptor genes and other related genes.  This suggests that 
lower expression of miR-29 might hinder the normal function of hepatic cells in metabolism.  Therefore 
high expression of miR-29 expression in hepatic cells is required for lipid metabolism and that Srebf1 
might be downstream of miR-29. There does not appear to be any existing evidence linking miR-29 with 
Srebf1. This is a directly testable hypothesis for further experimental studies regarding the function of miR-
29.  

       Table 4 also indicates that anti-miR-29 treatment lead to increased expression of Smad3 (SMAD 
family member 3) target genes. It is well-established that Smad3 is a key player in TGFβ-mediated fibrosis, 
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tumor suppression and metastasis [26]. Qin et al. provided evidence that Smad3-mediated suppression of 
miR-29 expression by TGFβ1 is achieved by direct binding to the promoter of miR-29 [27], and 
overexpression of miR-29b inhibits the collagen I and III and prevents renal fibrosis. In our analysis, 
suppression of miR-29 leads to the upregulation of Smad3 target genes, suggesting that Smad3 and miR-29 
might form a negative regulation loop. Indeed, Xiao et al. [28] provided some evidence that gene transfer 
of miR-29 was able to block bleomycin-induced pulmonary fibrosis by suppressing the expression of 
TGFβ-1and inhibiting Smad3 phosphorylation.   

     To further confirm these findings, we analyzed another expression data set (GSE27035), in which fetal 
astrocytes were transfected with miR-29 [29]. We obtained similar results (data not shown) regarding the 
extracellular matrix related gene sets. For transcriptional factors, E2F family members are highly 
significant, which is not observed in hepatic cells in the previous dataset.  But Smad3 targets genes are 
downregulated, suggesting that the universal regulation of extracellular matrix genes by miR-29 might be 
related to Smad3.  

Identifying transcription factors from gene expression data 
In another example, we used our knowledgebase to detect transcription factors (TFs) responsible for tissue-
specific gene expression. We analyzed a large gene expression dataset consisting of 3 or 4 biological 
replicates for each of the 24 mouse tissues [30] (NCBI accession number GSE24207).  We used a subset of 
373 predicted TF target gene sets in our analysis using PGSEA. Fig. 2 lists top 30 most significant TFs 
associated with various tissues. Many highly significant TFs are known to be involved in different organs. 
The most significant are the hepatocyte nuclear factors (HNF4A,  HNF1A, and FOXA2/HNF3B) that are 
highly expressed in the liver and are supported by many studies to be involved in liver development [31]. 
The target genes of SPI1 (Spleen focus forming virus proviral integration oncogene, also listed as SFPI1) 
are highly expressed in spleen and bone marrow, in agreement with the fact that SPI1 is an ETS-domain 
transcription factor involved in myeloid and B-lymphoid cell development [32]. Another very highly 
significant TF, Steroidogenic Factor-1 (NR5A1), is found to be responsible for adrenal gland-specific 
expression profile. This nuclear receptor  is known to play an important role in adrenal development and 
function and mutations in this protein are associated with adrenal hypolasia [33]. PPARG (peroxisome 
proliferator activated receptor gamma) is essential for the differentiation of adipose tissue [34]. In our 
result, its target genes were found to be significant highly expressed in the adipose tissue. Most of the TFs 
in Fig. 2 are supported by previous studies in the literature.  
 

Meta‐analysis	of	published	gene	lists	yields	insight	into	blindness	and	visual	perception		
The comprehensive dataset can also serve as an information source on published expression signatures. For 
example, using a keyword “retina” to conduct a search at our web site, we retrieved 56 published signatures 
from 26 genome-wide expression studies of the retina cells. Detailed information on each of gene lists, 
including links to PubMed, is available for further examination.  

Meta-analysis of a set of retrieved signatures can provide insights into the relationship among multiple 
previously published expression profiles. We conducted an all-versus-all overlapping analysis of these 56 
gene lists. Following the method developed previously [35], we generated a network where nodes 
correspond to gene lists and edges represent significant overlaps between them (Fig.4). We found 52 
significant overlaps (FDR < 0.0001) among 25 gene lists. Interestingly, the overlaps define two groups with 
high similarity within each group and very little in between. Group A on the left side of Fig. 4 includes 
gene lists that are upregulated in ageing, bright-light-damaged retina, or other injury, as well as hypoxia 
treatment from 3 independent studies[36-38]. Retinal hypoxia is believed to be the mechanism of blinding 
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underlying several diseases [39] and have been subjected to studies using animal models. Our results 
suggest that there is significant similarity in gene expression response across multiple studies. We 
identified the most frequently shared genes across these 10 gene lists in group A. Table 5 lists 29 genes that 
are shared by 3 or more gene lists in group A gene lists. These 29 genes are significantly enriched in genes 
related to inflammatory response (P value < 1.80E-05), and immune response (P value < 5.30E-03). This is 
in agreement with previous finding regarding the activation of inflammatory response upon hypoxia 
treatment [39]. As shown in Table 5, the most commonly upregulated genes in group A is the glial 
fibrillary acidic protein (GFAP), which was initially discovered as an indicator of stress in astrocytes in the 
brain, but its activation in the radial glia (Müller cells) is also known to signal stress in the retina [40]. 
Based on the consensus of 8 genome-wide expression studies, our new gene lists in Table 5 thus could 
serve as marker for stress response in the retina caused by hypoxia or other injuries. 

     On the other hand, the 15 gene lists in group B on the right side of Fig. 4 have different biological 
theme. Three of the gene lists (ZHANG_RETINAL-EXPLANT_RB1_DN, 
COTTET_RPE65_RETINA_DN, DEL-TORO_EC-DLL4_RETINAS_DN) are genes downregulated in 
retina with mutated genes (Rb1[41], RPE65[42], and DLL4[43]), compared with normal retina. Another 
gene list includes genes downregualted in hypoxic retina [36]. This seems to suggest that gene lists in this 
group might include genes specifically required for normal photoreceptive function of the retina cells. This 
is confirmed by examining the frequently appearing genes in this group. Among the 38 genes (Table 6) that 
are shared by 3 or more lists in this group,  half of them are related to visual perception according to GO, 
which is extremely significant (P < 1.2E-28).  The most frequently appearing gene ARR3  (arrestin 3, 
retinal) are predicted to play an important role in retina-specific signal transduction with possible binding to 
photoactivated-phosphorylated opsins, including OPN1SW (opsin 1) that are shared by 7 of the 15 gene 
lists (Table 6). Based on multiple studies, table 6 serves as a reliable list of retina-specific genes important 
for photoreception.  

Overall, through meta-analysis of 56 retina-related gene lists, we revealed two fundamentally different 
types of gene expression changes in the retina. One is related to stress response and inflammatory response 
that are blamed for blindness in many diseases; the other is a set of genes that are required by visual 
perception by the retina cells.  Our database could be used to conduct similar meta-analysis using various 
search keywords.  

CONCLUSION 
We have created a comprehensive gene set database for pathway analysis in mouse. We also demonstrated 
that this database could be used with different pathway analysis software to gain insights into genome-wide 
expression profiles.  For further improvement of knowledgebase, we will update the database from existing 
sources, and also continue to improve the accuracy of the existing curation, and search for additional 
published gene lists. 
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Table 1. Sources for gene sets in GSKB. 

 

Type Source 
#Gene 

sets Reference 
 
Note 

Co- Literature 8747 Present Differentially expressed genes from 2526 studies
expression MSigDB 874 [5] Molecular Signature Database, v.3.1
  L2L 248 [44] List of lists,  v.2006.2
  CancerGenes* 23 [45] Cancer gene lists
 GeneSigDB 310 [46] Gene Signature Database, R.4
Gene  GO BP 8203 [47] Consistent descriptions of gene & products
Ontology GO MF 3240 across species
  GO CC 1082   v.201307
Curated  Biocarta 176  Biocarta Metabolic and signaling pathways
pathways PANTHER 151  [48] Ontology-based pathway database, v3.3
  WikiPathways* 146  [49] Open platform for pathway curation
  INOH* 73  [50] Integrating network objects with hierarchies
  NetPath* 25  [51] Signal transduction pathways
Metabolic  REACTOME 4243  [52] Peer-reviewed pathway database, v2013.7
pathways KEGG 259  [53] Metabolic pathways, R.67.0
  EHMN* 53  [54] Edinburgh human metabolic network
  MouseCyc 321  [55] Mouse Biochemical Pathways , v2013.7
Drug  CTD* 910  [56] The Comparative Toxicogenomics Database
related SIDER* 460  [57] Side Effect Resource

  MATADOR* 248  [58] 
Manually Annotated Targets and Drugs Online 
Resource 

  DrugBank* 136  [59] Open data drug and target database
  SMPDB* 74  [60] Small Molecule Pathway Database
miRNA miRDB 1157  [61] miRNA target prediction and annotations, v 4.0
Target  microRNA.org 314  [62] Predicted miRNA targets, v.R2010
Genes Grimson et al. 179  [63] Predicted miRNA targets. v.6.2
  TarBase 84  [64] Experimentally validated miRNA targets, v.6.0
  miRTarBase* 54  [65] Experimentally validated miRNA targets
  MicroCosm* 45 ebi.ac.uk Predicted targets
  PicTar 35  [66] Predicted miRNA sites, v. 2007.3
TF Target TFactS 101  [67] Predicted TF targets, v. 2012.2
Genes TRED 99  [68] Confirmed TF target genes, v.2013.7
 CircuitsDB 94  [69] Mixed miRNA/TF regulation, v. 2012
  TRANSFAC 78  [70] Confirmed TF binding sites, v7.0
Others Location 392  BioMart Genomic location on chromosomes, v.2013
  HPO* 1518  [71] The human phenotype ontology
  STITCH* 3929  [72] Interaction networks of chemicals and proteins
  MPO* 2943  [73] Mammalian Phenotype Ontology
  T3DB*    722  [74] Database of common toxins and their targets
  PID* 193  [75] Pathway Interaction Database
  MethyCancer* 50  [76] Human DNA methylation and cancer
  MethCancerDB* 19  [77] Aberrant DNA methylation in human cancer
  Grand Total 42,008   

* Secondary data downloaded from GeneSetDB [10].  

** Databases were downloaded in July 2013. 
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Table 2. Top 10 most frequent genes in 8,747 published lists of differentially expressed genes.   

Freq- 
uency 

Gene  
Symbol 

Official Full Name 
#PubMed 
Citations  

615 CDKN1A 
cyclin-dependent kinase inhibitor 
1A (P21) 

660 

498 CCND2 cyclin D2 239 

496 MT1 metallothionein 1 272 
493 SOCS3 suppressor of cytokine signaling 3 262 
490 ID2 inhibitor of DNA binding 2 256 
477 EGR1 early growth response 1 332 
465 IGF1 insulin-like growth factor 1 668 

463 GJA1 
gap junction protein, alpha 
1provided  

602 

457 SCD1 stearoyl-Coenzyme A desaturase 1 156 
454 FOS FBJ osteosarcoma oncogene 440 
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Table 3. Significant gene sets from pathway analysis using GSEA. ES: Enrichment Score, NES: Normalized 
Enrichment Score, P-val: Nominal P values, FDR: False discovery rate, FWER: family-wise error rate.  
 

NAME SIZE ES NES P-val FDR FWER 

MIRNA_MM_WANG_MMU-MIR-29C-3P 220 0.604 1.722 0 0.013 0 

MIRNA_MM_WANG_MMU-MIR-29A-3P 217 0.608 1.715 0 0.013 0.013 

MIRNA_MM_WANG_MMU-MIR-29B-3P 221 0.591 1.711 0 0.013 0.013 

MIRNA_MM_WANG_MMU-MIR-767 112 0.558 1.559 0 0.099 0.262 

MIRNA_MM_WANG_MMU-MIR-5620-5P 25 0.657 1.528 0.028 0.171 0.392 

MIRNA_MM_WANG_MMU-MIR-3065-3P 192 0.431 1.519 0 0.163 0.428 

MIRTARBASE_MM_HSA-MIR-29B 27 0.805 1.507 0.025 0.162 0.458 

MIRTARBASE_MM_HSA-MIR-29A 21 0.763 1.503 0 0.158 0.472 

MIRNA_MM_GRIMSON_MIR-486-5P 121 0.426 1.457 0 0.308 0.701 

MIRTARBASE_MM_HSA-MIR-29C 20 0.894 1.449 0.034 0.312 0.737 
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Table 4. Top gene sets in all categories from PGSEA analysis of the anti-miR-29 treated liver cells. 

 

Top Gene Sets by category Pval

Diff. in T 

statistics

Co‐Expression

Wang_Rosiglitazone_Adipocyte‐Secreted‐Protein_Diff 8.30E‐04 14.9

Holl_Tcfap2C_Liver_Dn 2.12E‐04 ‐15.6

Nones_Mdr1A_Curcumin‐Diet_Fibrogeneis_Dn 2.44E‐04 15.4

Burke_Transcriptional‐Profile_Liver‐Only_Dn 2.78E‐04 ‐15.2

Rampon_Pcdh12_Placenta_Cell‐Matrix‐Adhesion_Migration_Diff 4.83E‐04 13.6

Gene Ontology

Extracellular_Matrix_Structural_Constituent 2.22E‐04 18.9

Collagen_Fibril_Organization 7.30E‐04 12.9

Cellular_Response_To_Amino_Acid_Stimulus 4.62E‐04 12.1

Glutathione_Transferase_Activity 5.26E‐04 ‐11.1

Basement_Membrane 9.15E‐04 9.3

Metabolic Pathways

Cd44_Pathway 3.11E‐04 16.9

Ecm‐Receptor_Interaction 4.00E‐04 11.4

Protein_Digestion_And_Absorption 1.11E‐04 10.9

Cav1_Pathway 5.73E‐04 9.1

Glutathione_Metabolism 4.51E‐05 ‐9.2

Mirna Target Genes

Hsa‐Mir‐29C 1.45E‐04 17.3

Wang_Mmu‐Mir‐29C‐3P 5.19E‐05 15.2

Wang_Mmu‐Mir‐29A‐3P 7.38E‐05 15.0

Grimson_Mir‐29Abcd 3.91E‐05 15.6

Wang_Mmu‐Mir‐29B‐3P 7.32E‐05 14.8

Currated Pathways

Integrin 2.59E‐04 8.4

Pyruvate_Metabolism 9.66E‐04 ‐4.9

Transcription Factor Target Genes

Srebf1 4.62E‐04 ‐7.9

Smad3 4.01E‐04 7.1

Other gene sets

Beta1_Integrin_Cell_Surface_Interactions 2.77E‐04 13.7

Mitral_Valve_Prolapse 9.29E‐04 11.8

Abnormality_Of_The_Mitral_Valve 8.73E‐04 11.8

Syndecan‐1‐Mediated_Signaling_Events 5.21E‐04 11.6

Osteoarthritis 8.89E‐04 11.0
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Table 5. Genes frequently appeared in gene set cluster A.  Genes in bold are related to inflammatory response. Freq.: 
frequency, the number of gene sets with the gene. 

 

  

Freq. Symbol Gene Name

5 GFAP glial fibrillary acidic protein

5 OSMR oncostatin M receptor

5 TUBB6 tubulin, beta 6

4 ANTXR2 anthrax toxin receptor 2

4 C1QC complement component 1, q subcomponent, C chain

4 CCL3 chemokine (C‐C motif) ligand 3

4 LY86 lymphocyte antigen 86

3 C1QB complement component 1, q subcomponent, beta 

polypeptide

3 C4B similar to Complement C4 precursor

3 CCL12 chemokine (C‐C motif) ligand 12

3 SERPINA3N serine (or cysteine) peptidase inhibitor, clade A, 3N

3 STAT3 signal transducer and activator of transcription 3

3 B2M beta‐2 microglobulin

3 BST2 bone marrow stromal cell antigen 2

3 CD68 CD68 antigen

3 CHI3L1 chitinase 3‐like 1

3 CMTM3 CKLF‐like MARVEL transmembrane domain containing 3

3 EDN2 endothelin 2

3 EMCN endomucin

3 EMP1 epithelial membrane protein 1

3 IFITM3 interferon induced transmembrane protein 3

3 IGFBP3 insulin‐like growth factor binding protein 3

3 LCN2 lipocalin 2

3 LRRC2 leucine rich repeat containing 2

3 MT1 metallothionein 1

3 SEC22C SEC22 vesicle trafficking protein homolog C (S. cerevisiae)

3 SOCS3 suppressor of cytokine signaling 3

3 TNFRSF12A tumor necrosis factor receptor superfamily, member 12a

3 TYROBP TYRO protein tyrosine kinase binding protein
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Table 6. Genes frequently appeared in gene sets cluster B. Genes in bold are related to visual perception according 
to GO.  

Freq. Symbol Gene Name

8 ARR3 arrestin 3, retinal

7 OPN1SW opsin 1 (cone pigments), short‐wave‐sensitive (color 

blindness, tritan)

6 CNGA1 cyclic nucleotide gated channel alpha 1

6 GNAT2 guanine nucleotide binding protein, alpha transducing 2

6 PDE6B phosphodiesterase 6B, cGMP, rod receptor, beta 

polypeptide

6 PDE6H phosphodiesterase 6H, cGMP‐specific, cone, gamma

5 GNAT1 guanine nucleotide binding protein, alpha transducing 1

5 PDE6C phosphodiesterase 6C, cGMP specific, cone, alpha prime

5 RCVRN recoverin

5 GNB3 guanine nucleotide binding protein (G protein), beta 3

5 EA2 erythrocyte antigen 2

4 PDE6G phosphodiesterase 6G, cGMP‐specific, rod, gamma

4 RPGRIP1 retinitis pigmentosa GTPase regulator interacting protein 1

4 AQP1 aquaporin 1

4 CRX cone‐rod homeobox containing gene

4 GNGT2 guanine nucleotide binding protein (G protein), gamma 

transducing activity polypeptide 2

4 NR2E3 nuclear receptor subfamily 2, group E, member 3

3 ABCA4 ATP‐binding cassette, sub‐family A (ABC1), member 4

3 CNGA3 cyclic nucleotide gated channel alpha 3

3 CNGB3 cyclic nucleotide gated channel beta 3

3 GUCA1B guanylate cyclase activator 1B

3 OPN1MW opsin 1 (cone pigments), medium‐wave‐sensitive (color 

blindness, deutan)

3 PDE6A phosphodiesterase 6A, cGMP‐specific, rod, alpha

3 ROM1 rod outer segment membrane protein 1

3 SLC24A1 solute carrier family 24 (sodium/potassium/calcium 

exchanger), member 1

3 CALB2 calbindin 2

3 CRYBA1 crystallin, beta A1

3 GAS7 growth arrest specific 7

3 GLB1L3 galactosidase, beta 1 like 3

3 GNGT1 guanine nucleotide binding protein (G protein), gamma 

transducing activity polypeptide 1

3 MEF2C myocyte enhancer factor 2C

3 NEFM neurofilament, medium polypeptide

3 NRL neural retina leucine zipper gene

3 NXNL2 nucleoredoxin‐like 2

3 PDGFRA platelet derived growth factor receptor, alpha polypeptide

3 PITPNM3 PITPNM family member 3

3 SPC25 SPC25, NDC80 kinetochore complex component, homolog 

(S. cerevisiae)

3 TRPM1 transient receptor potential cation channel, subfamily M, 

member 1
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Fig. 1. Size distribution of the number of differentially expressed genes reported in the literature. 
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Fig. 2. Significant gene sets from PGSEA analysis. Red indicates higher expression of genes targeted by certain 
microRNA according to prediction, while blue means lower expression.   

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 24, 2016. ; https://doi.org/10.1101/082511doi: bioRxiv preprint 

https://doi.org/10.1101/082511
http://creativecommons.org/licenses/by-nc/4.0/


19 
 

 

  

A
D

IP
O

S
E

 T
IS

S
U

E
A

D
R

E
N

A
L 

G
LA

N
D

B
O

N
E

 M
A

R
R

O
W

B
R

A
IN

C
E

LL
-L

IN
E

 M
IN

6
D

IA
P

H
R

A
G

M
E

Y
E

H
E

A
R

T
K

ID
N

E
Y

L
IV

E
R

L
U

N
G

M
U

S
C

L
E

O
V

A
R

Y
P

A
N

C
R

E
A

T
IC

 A
C

IN
I

P
A

N
C

R
E

A
T

IC
 IS

L
E

T
S

P
IT

U
IT

A
R

Y
 G

L
A

N
D

P
L

A
C

E
N

T
A

S
A

L
IV

A
R

Y
 G

L
A

N
D

S
E

M
IN

A
L

 V
E

S
IC

L
E

S
M

A
L

L 
IN

T
E

S
T

IN
E

S
P

L
E

E
N

T
E

S
T

IS
T

H
Y

M
U

S

GS
4e-39 AR
5e-41 TCFAP2A
2e-36 NR1H3
2e-36 NR1H2
5e-41 SMAD3
2e-26 SREBF2
1e-37 PPARA
1e-35 SP1
3e-31 PPARG
7e-38 NFKB1
6e-37 FOXO3
9e-25 SREBF1
1e-48 NFIA
3e-44 ETS1
6e-38 E2F3
3e-35 PPARG
3e-31 GATA1
1e-38 E2F4
3e-39 E2F2
8e-36 E2F1
1e-39 FOXO1
2e-45 CTNNB1
4e-33 CEBPA
4e-45 SFPI1
8e-46 SFPI1
2e-48 FOXA2
3e-44 NR5A1
8e-53 HNF1A
7e-47 SPI1
3e-52 HNF4A

Fig.3. Significantly altered gene sets in normal tissues. Red represents higher expression of a set of 
genes regulated by a transcription factor.  
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Fig. 4. Overlapping analysis of 46 published lists of differentially expressed genes 
related to the retina. Each note represents a gene list. Edges represent significant 
overlaps. Edge labels are the number of genes shared and the width indicates statistical 
significance.  Highlighted in yellow are lists related to hypoxia. 
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