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Abstract 
 
 Extensive fMRI study of human lateral frontal cortex (LFC) has yet to yield a 

consensus mapping between discrete anatomy and psychological states, partly due 

to the difficulty of inferring mental states in individual studies. Here, we used a 

data-driven approach to generate a comprehensive functional-anatomical mapping 

of LFC from 11,406 neuroimaging studies. We identified putatively separable LFC 

regions on the basis of whole-brain co-activation, revealing 14 clusters organized 

into three whole-brain networks. Next, we used multivariate classification to 

identify the psychological states that best predicted activity in each sub-region, 

resulting in preferential psychological profiles. We observed large functional 

differences between networks, suggesting brain networks support distinct modes of 

processing. Within each network, however, we observed low functional specificity, 

suggesting discrete psychological states are not modularly organized. Our results 

are consistent with the view that individual LFC regions work as part of highly 

parallel, distributed networks to give rise to flexible, adaptive behavior.  
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Decades of research have suggested lateral frontal cortex (LFC) plays a 

critical role in the execution of flexible, goal-directed behavior1. Such flexible 

behavior enables the navigation of complex, rapidly changing environments, the 

pursuit of distant goals in the face of various obstacles, planning for hypothetical 

future events, and the communication of complex ideas with others using language. 

Although extensive work has identified putatively separable psychological processes 

critical for flexible behavior2– such as ‘working memory’, ‘inhibition’ and ‘conflict’– 

the precise organization of these processes within discrete lateral frontal anatomy 

remains actively debated. 

Much progress has been made in understanding the LFC’s functional 

organization by identifying putatively separable LFC subregions on the basis of 

properties that constrain information processing. For instance, discrete regions 

have been proposed based on differences in anatomical microstructural properties 

(e.g. cytoarchitecture3), and anatomical4-6 and resting-state functional 

connectivity7,8. Although these studies have helped carefully characterize important 

functional properties of LFC, it is unclear to what extent the boundaries derived 

from such methods correspond to the organization of brain activity observed during 

distinct psychological states9.  

One approach used to map the functional correlates of distinct behavioral 

phenotypes is the quantitative meta-analysis of functional MRI (fMRI) studies. 

Such meta-analyses help overcome the low power observed in individual fMRI 

studies and produce more precise spatial maps of psychological states that activate 
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LFC, such as working-memory10,11, inhibition12, switching13,14, language15, 

mentalizing16 and self-referential processing17. However, due to the effort required 

to compile meta-analyses, and because most researchers are interested in a 

particular psychological domain, most meta-analyses are typically focused on a 

particular subregion of LFC or a subset of domain-specific set of psychological 

processes.  

The narrow scope of most existing meta-analyses necessarily limits the extent of 

their impact for two reasons. First, complex behavior likely results from the 

coordinated activity of individual regions participating across whole-brain 

networks18; thus, it is critical to interpret the function of each region in a broader 

context in order to understand their role within large-scale networks and to better 

identify subtle differences between similar regions in the same network. Second, it 

is notoriously difficult to infer mental function from observed brain activity (the so-

called problem of “reverse inference”19), as determining the relative specificity with 

which a particular task or process activates a given region requires the ability to 

quantify the likelihood of activation in that region across a wide range of potential 

tasks. This problem is particularly acute in brain regions that appear to activate 

frequently across a broad range of tasks. Hence, the fact that LFC appears to be 

involved in a broad range of tasks—putatively due to its critical role in guiding 

flexible behavior1,20,21—implies that subregions of this area may be particularly 

difficult to associate with specific mental operations22. 
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Here we address these issues by creating a comprehensive mapping between 

data-derived semantic topics representing psychological states and LFC using 

Neurosynth23, a framework for large-scale fMRI meta-analysis composed of nearly 

11,500 studies. First, we used a data-driven method that exploits the observation 

that functionally related regions co-activate across studies24-28 to cluster individual 

voxels into putatively separable subregions (Figure 1a). We applied clustering at 

two spatial scales, identifying three distinct whole brain networks in LFC composed 

of several smaller subregions with dissociable co-activation patterns (Figure 1b). We 

then characterized the functional profile of each resulting region using multivariate 

classification, contrasting studies that activated each region with those that did not, 

revealing dissociable psychological profiles for each LFC subregion (Figure 1c). 

Collectively, we provide a comprehensive and relatively unbiased meta-analytic 

functional-anatomical mapping of LFC.  

Figure 1. Methods overview. a) We calculated co-activation across studies 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2016. ; https://doi.org/10.1101/083352doi: bioRxiv preprint 

https://doi.org/10.1101/083352
http://creativecommons.org/licenses/by/4.0/


between every cortical voxel and the rest of the brain, including subcortex.  We then 
applied Ward hierarchical clustering to obtain whole-brain clustering results. We 
chose two spatial scales to focus on using the silhouette method27,29 and selected 
clusters in LFC from the whole-brain clustering solutions. b) We contrasted the 
whole-brain co-activation of each cluster with LFC at large, identifying voxels 
across the brain that showed differential co-activation. c) We generated functional 
preference profiles for each cluster by determining which latent psychological 
topics30 best predicted the cluster’s activation across studies in the database.  

Results 

Hierarchical clustering of lateral frontal cortex. We identified spatially 

dissociable regions on the basis of shared co-activation profiles with the rest of the 

brain24-28, an approach that exploits the likelihood of a voxel co-activating with other 

voxels across studies in the meta-analytic database. To identify whole-brain 

networks spanning beyond LFC, we applied hierarchical clustering to the whole 

cortex and selected clusters within LFC mask for further analysis (Figure 2b). In 

order to map structure to function across various spatial scales, we extracted 4– to 

100– whole-brain clusters and evaluated their quality using the silhouette score, a 

measure of intra-cluster cohesion27,29 (Figure 2a). Given the intractable nature of 

choosing the ‘correct’ number of clusters31 and the lack of a single dominant solution 

in our data, we focused on two well spaced granularities, 5 and 70 whole-brain 

clusters, avoiding low quality solutions (i.e. 7-38 clusters). Importantly, we do not 

argue that the solutions we selected are in any way privileged, nor did we aim to 

match the scale of previous parcellations; rather, we simply chose two spatial scales 

for subsequent analysis with distinct vantage points into the hierarchical 

organization of LFC.  
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Figure 2. Whole-cortex co-activation based hierarchical clustering reveals 
3 networks in lateral cluster that fractionate into constituent subregions. 
a) The silhouette score, a measure of intra-cluster cohesion, was used to select two 
spatial scales: 5 and 70 whole-brain clusters. b) Whole brain hierarchical clustering 
dendrogram. Color-coded branches correspond to three of five whole-brain networks 
in LFC and color-coded nodes correspond to 14 LFC regions from 70 whole-brain 
clusters. c) Clusters at k = 5 revealed three clusters in LFC resembling large-scale 
brain networks: “fronto-parietal” (red), “default” (purple) and “somatosensory-
motor” (green) d) Clusters at k = 70 revealed 14 clusters with a 75% of their voxels 
in LFC.  

To understand the large-scale network organization of LFC, we focus on the five-

cluster solution as this scale exhibited the greatest silhouette score of coarse 

network-level solutions (see SI Figure 1 for whole-brain cluster results).  Three of 

these whole-brain network clusters were present in LFC (Figure 2c) and showed 

moderate correspondence to previously described large-scale networks32. Although 

these clusters were not isomorphic with resting-state networks32,33, these results are 

consistent with the view that large-scale brain networks supersede gross 

anatomical boundaries, such as LFC, as functional-organizational units.  
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The largest of the three clusters, which we refer to as the “fronto-parietal” 

network, spanned half of LFC, primarily in prefrontal cortex, and resembled Yeo et 

al., 2011’s description of the “fronto-parietal” network32 (dice coefficient (d) = 0.56). 

Additionally, this cluster spanned medial-frontal and anterior insular aspects of the 

“ventral attention” network (d = 0.21) (See SI Figure 2 for a cross reference between 

our networks and Yeo et al., 2011). A second cluster, which we refer to as the 

“default” network, closely matched extensive descriptions of the “default” or “task 

negative” network (d = 0.62)34. The final cluster, which we refer to as the 

“sensorimotor” network, was located in posterior LFC and showed moderate overlap 

with Yeo’s “somatosensory-motor” network (d = 0.36) and, to a lesser extent, the 

“dorsal attention network” (d=0.31). 

Having identified large-scale networks in LFC, we sough to identify more 

functionally specific subregions within each network with potentially dissociable 

psychological profiles. Although the silhouette values indicated that inter-cluster 

cohesion continuously increases with number of clusters, we chose to focus on a 

spatial scale that balanced clustering quality with psychological interpretability. 

Thus, we chose to focus on the 70- cluster solution, as this was the coarsest scale to 

result in a set of largely spatially contiguous LFC clusters. From these 70 whole 

brain clusters, we identified 14 clusters within our LFC mask (Figure 2d), 

hierarchically organized into the coarser large-scale networks.  

To provide direct insight into the functions of the 14 LFC fine-grained clusters 

we identified, we applied two approaches. First, we determined which voxels across 
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the brain differentially co-activated with each cluster, revealing distinct patterns of 

whole brain co-activation. Second, we used semantic data from Neurosynth to 

determine which latent psychological topics predict the activation of each cluster, 

resulting in a meta-analytic psychological preference profile for each subregion. 

Next, we step through these results separately for each network.   

Fronto-parietal network 

The majority of lateral frontal cortex belonged to the frontal extent of the 

“fronto-parietal” network, which further spanned portions of lateral parietal cortex, 

anterior insula, pre-SMA, mid-cingulate cortex (MCC), and the precuneus. Within 

LFC, we identified 10 finer-grained subregions within the “fronto-parietal” network. 

For purely illustrative purposes, we used the hierarchical clustering dendrogram 

(Figure 2b) to identify a granularity in which these clusters formed three sets; at k 

= 24 whole brain clusters, these 10 LFC clusters organized into three groups: 

caudal, mid and rostral regions. Across these three groupings, all clusters showed 

robust associations with executive functions, although we observed subtle 

variations in psychological preferences.  

In caudal LPFC, we identified two adjacent bilateral clusters (Figure 3a). The 

most posterior of the two (‘6/8’) was located anterior to the premotor cortex and 

extended from lateral superior frontal gyrus to the intermediate frontal sulcus of 

middle frontal gyrus. This cluster overlapped with functional descriptions of the 

frontal eye fields (FEF)– a region important for volitional eye saccades35. 
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Immediately anterior, we identified a cluster (‘9/46c’) spanning caudal area 9/46 

from the intermediate frontal sulcus into caudal portions of 9/46v. Notably, 

although cluster ‘9/46c’ arguably extends well into “mid” LPFC, this cluster did not 

group with other mid-LPFC clusters until much coarser granularities, suggesting 

these clusters may exhibit distinct functional signatures despite their spatial 

proximity. 

Anterior and ventral to caudal LPFC, we identified four clusters spanning 

common definitions of ‘mid’ lateral prefrontal cortex (Figure 3b). The organization of 

clusters in this region, however, varied by hemisphere.  Most dorsally, we identified 

a mostly left-lateralized cluster (‘9/46v’), extending from the intermediate frontal 

sulcus into the fundus of the inferior frontal sulcus. Next, we identified a cluster, 

which we refer to as right IFG (‘IFG [R]’), spanning the majority of area BA45 in the 

right hemisphere. Notably, only right IFG was part of the fronto-parietal network, 

consistent with the observation that this region is consistently observed during 

goal-directed cognition. Posterior to these two clusters, we identified a bilateral 

cluster consistent with the inferior frontal junction (‘IFJ’) (e.g. MNI coordinates: 48, 

4, 3336), located in the fundus of caudal inferior frontal sulcus, extending into 

precentral, inferior frontal and middle frontal gyri. Finally, ventral to this cluster, 

but only in the right hemisphere, we identified a fourth cluster (‘44 [R]’) located in 

posterior IFG, spanning BA44 and abutting BA6.  
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Figure 3. Anatomical location and meta-analytic contrast of lateral frontal 
clusters of the fronto-parietal network. Left: a) Two clusters located in caudal 
frontal cortex. b) Four clusters located in mid-lateral pre-frontal cortex. c) Three 
clusters located in rostral lateral pre-frontal cortex. Clusters were assigned labels 
corresponding to cytoarchitechtonic areas3 whenever possible. In cases where the 
region spanned multiple cytoarchitechtonic areas, broader anatomical (e.g. inferior 
frontal junction [IFJ]) labels were assigned. Right: Meta-analytic co-activation 
contrast of fronto-parietal LFC. Colored voxels indicate significantly greater co-
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activation with the seed region of the same color than other lateral frontal regions 
in the fronto-parietal network. Images are presented using neurological convention 
and are corrected using false discovery rate (FDR; q = 0.01).  

 

In ‘rostral’ LPFC, we identified three bilateral clusters spanning BA10 

(Figure 3c). These three clusters were organized along a ventral-dorsal axis, 

consistent with a prior DTI parcellation4, and were exclusively in lateral frontal 

cortex, consistent with cytoarchitechtonic evidence of a lateral-medial distinction of 

the frontal pole37.  The most dorsal cluster (‘9/46dr’) extended into rostral portions of 

BA 9/46, while the next two clusters (‘10v’ and ‘10d’) were exclusively located in BA 

10, separated along a dorsal/ventral axis 

Meta-analytic co-activation. To better understand functional differences 

between these regions, we directly contrasted the co-activation of each cluster with 

that of LFC as whole in order to identify voxels across the brain that differentially 

co-activated with each cluster (Figure 3; right panel).  Strikingly, we observed that 

most differential co-activation occurred within other cortical association cortex 

areas such as lateral parietal cortex (LPC), pre-SMA and MCC, and the insula.  

Across LPC, each LFC cluster co-activated most strongly with distinct areas across 

a gradient extending from tempo-parietal junction to the lateral parieto-occipital 

sulcus. For example, clusters ‘9/46c’ and all fronto-polar clusters showed greater co-

activation with parietal cortex ventral to the intraparietal sulcus. In contrast, area 

‘6/8’ and all four ‘mid’ LPFC clusters showed greater co-activation within and dorsal 

to the intraparietal sulcus.   
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Similarly in medial PFC, all clusters except right IFG and ‘9/46dr’ co-

activated most strongly with slightly different portions of pre-SMA and MCC. 

Generally, more anterior clusters co-activated more strongly with more anterior 

portions of pre-SMA/MCC. For instance, ‘10d’ co-activated most strongly with a 

anterior mid-cingulate cortex while ‘44 [R]’ co-activated most strongly with the 

SMA. Finally, in the insula, several LFC subregions exhibited differential co-

activation with distinct sub-divisions of the insula. For example, cluster ’44 [R]’ co-

activated most strongly with the posterior insula– an important region for pain and 

sensorimotor processing38– whereas IFJ co-activated most strongly with the dorsal 

anterior insula, a subregion implicated in goal-directed cognition. In contrast, area 

10v showed greater co-activation with ventral anterior insula, an area implicated in 

affect38.   

This observation that the bulk of co-activation differences between LFC 

subregions of the fronto-parietal network occurred within other cortical association 

areas is consistent with the hypothesis that association cortex is composed of 

parallel interdigitated networks32. That is, these findings suggest subregions of the 

FPN do not participate with categorically distinct sets of regions across the brain, 

and instead perform subtly different roles within a distributed network.   

Meta-analytic functional preference. Next, we used a data-driven 

approach that surveyed a broad range of fMRI studies to quantify the degree to 

which distinct psychological states might be preferentially associated with different 

LFC clusters (Figure 1c). We trained naïve Bayes classifiers to predict the presence 
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or absence of activation in each LFC cluster using a set of 60 psychological topics 

derived by applying a standard topic modeling approach to the abstracts of articles 

in the Neurosynth database39. We used the fitted model coefficients to quantify the 

strength of association between each psychological topic and the presence of 

activation in the corresponding LFC cluster (measured as the log odds-ratio [LOR] 

of the probability of each topic in studies that activated a given cluster relative to 

the probability of the same topic in studies that did not activate the cluster). Values 

greater than 0 indicate that the presence of that topic in a study positively predicts 

activity in a given region. We report the results of 16 psychological topics that 

loaded strongly onto LFC regions (Table 1) and restrict interpretation to significant 

associations using False Discovery Rate (FDR; q < 0.01). In addition, whenever we 

comparatively discuss sets of regions, we discussed differences if the 95% confidence 

interval (CI) of a given topic did not overlap between two regions (SI Figure 3). As 

the latter comparisons are post-hoc and exploratory, caution in interpretation is 

warranted.   

Consistent with a distributed role for the fronto-parietal network in goal-

directed cognition, all nine clusters were significantly associated with working-

memory, all clusters except 10d and 10v were associated with conflict, and seven 

clusters were associated with switching (Figure 4). The present results are 

inconsistent with focal anatomical locations for high-level executive processes; 

instead, these results suggest that distributed activation across fronto-parietal 

network supports goal-directed cognition in the face of interference and conflict40. 
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Despite the relatively low modularity we observed across the fronto-parietal 

network, multivariate associations between individual subregions and psychological 

states suggest preferential functional correlates can be identified for each cluster.  

Caudal fronto-parietal LFC. Consistent with its co-location with the 

frontal eye fields, ‘6/8’ was the only cluster significantly associated with saccadic eye 

movements (i.e. ‘gaze’) in the fronto-parietal network, and was also associated with 

‘attention’. This pattern suggests that area ‘6/8’ may be important for directing 

attention to relevant external stimuli to support downstream information 

processing. However, ‘6/8’ was also significantly associated with a ‘working-memory’ 

topic, consistent with a recent lesion study implicating the FEF in a causal role in 

working memory41. These results suggest area ‘6/8’ is not merely involved in low-

level saccadic eye movements, but plays an important role in higher-level cognition. 

In contrast, cluster ‘9/46c’ showed a much less distinctive functional 

signature, with relatively weak associations to other psychological processes outside 

of core EF processes and ‘memory’. This relatively diffuse pattern suggests area 

‘9/46c’ may be involved in domain-general processes that span across distinct 

psychological states in our topic model.  
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Figure 4. Meta-
analytic functional 
preference profiles 
for lateral frontal 
regions in the fronto-
parietal network.  
Each cluster was 
profiled to determine 
which psychological 
topics best predicted its 
activation. Each of the 
three functional groups 
we identified showed 
distinct functional 
profiles, although 
appreciable variation 
was observed for each 
individual cluster. 
Strength of association 
is measured in log odds-
ratio (LOR), and 
permutation-based 
significance corrected 
using false discovery 
rate (FDR) of q = 0.01 is 
indicated next to each 
psychological concept by 
color-coded dots 
corresponding to each 
region. Negative 
associations are 
indicated by the grey 
circle.  
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Mid fronto-parietal LFC. Clusters ‘9/46v’ and IFJ showed similar 

functional profiles, exhibiting robust associations with several executive functions 

(e.g. ‘working memory, ‘conflict’, ‘switching’) in addition to ‘semantics’. Cluster 

‘9/46v’ showed a particularly strong association with executive functions– exhibiting 

the strongest relationship across LFC with ‘conflict’; these results are consistent 

with a hypothesized role for mid-DLPFC as a seat of high-level executive processes3. 

These results are also consistent with the hypothesis that IFJ is involved in 

task-set switching; 13 however, given that several other LFC clusters were similarly 

associated with switching, it is unlikely IFJ is focally responsible for this 

phenomenon. Yet, IFJ showed a stronger association with low and high level motor 

function (i.e. ‘motor’, ‘action’) than other fronto-parietal LFC clusters, suggesting 

that IFJ is important for motoric aspects of cognitive control42. In contrast, cluster 

‘44 [R]’ exhibited weaker associations with executive functions and robust 

associations with motor function and ‘pain’, suggesting area this area is more 

involved in sensori-motor processing than high-level cognitive control.  

Finally, ‘IFG [R]’ showed a distinct functional signature to other mid LPFC 

clusters, with much weaker associations with conflict, working memory and 

switching; instead, ‘IFG [R]’ was associated with ‘inhibition’– consistent with 

extensive studies linking this region to inhibitory processes10. ‘IFG [R]’ was also 

associated with ‘emotion’, consistent with the hypothesis that this region is crucial 

for effective emotion regulation and reappraisal43,44. However, the relationship 

between ‘inhibition’ and ‘IFG [R]’ was not particularly strong or significantly 
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greater than other fronto-parietal regions, suggesting ‘IFG [R]’ may play a more 

domain general role such as context monitoring45. Alternatively, local neuronal 

groups not detectable by fMRI may play more specific and distinct roles46-48. 

Rostral fronto-parietal LFC. Although ‘rostral’ fronto-parietal clusters 

exhibited significant associations with various executive processes, these three 

clusters were characterized by weaker associations with motor function (‘action’), 

language and ‘conflict’. Rather, clusters ‘9/46dr’ and ‘10d’ were robustly associated 

with ‘inhibition’ and cluster ‘10d’ with ‘novelty’. This pattern of results suggests 

fronto-polar LFC regions may be important for high-level monitoring and guiding of 

cognitive control, removed from low-level motor implementations. 

Finally, the most ventral fronto-polar region, cluster ‘10v’, showed a more 

distinct pattern, exhibiting weaker associations with all executive processes but a 

significant association with ‘reward’ (at a lower threshold, q<0.05). This pattern is 

consistent with its location near orbitofrontal cluster, and provides support for 

hypotheses that suggest that the ventral frontal pole may be important for 

representing the value of appetitive stimuli in order to effectively guide goal-

directed behavior4.  

Default network 

Anatomical correspondence. We identified three distinct default network 

clusters in LFC, consistent with previous descriptions of the default network and 

large-scale rs-fMRI parcellations (Figure 5a)32. The first two clusters were 
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positioned adjacent to each other in ventrolateral prefrontal cortex. The more 

anterior of the two (‘47/12’) spanned lateral orbitofrontal cortex and IFG orbitalis 

bilaterally, while a more posterior and dorsal cluster spanned inferior frontal gyrus 

exclusively in the left hemisphere (‘IFG [L]’). Finally, we identified a third cluster in 

dorsal LPFC consistent with BA93, extending from superior frontal gyrus to dorsal 

middle frontal gyrus across the superior frontal sulcus. This cluster has long been 

noted for its lack of anatomical input from lateral and medial parietal cortex49,50. 

Thus, despite these cluster’s close proximity to fronto-parietal clusters, we expected 

them to exhibit very distinct functional profiles. 

Meta-analytic co-activation. Consistent with the grouping of these 

clusters with the default network, clusters ‘47/12’ and ‘9’ co-activated much more 

strongly than the rest of LFC with other default network regions, such as dorsal 

medial PFC (mPFC), middle temporal gyrus and angular gyrus (Figure 5b). Area ‘9’ 

showed particularly robust co-activation with key hubs of the default network, such 

as anterior mPFC and posterior cingulate cortex (PCC), firmly placing this region in 

the default network despite its proximity to mid-DLPFC. In contrast, ‘IFG [L]’ 

showed a relatively distinct pattern, showing co-activation with portions of the 

fronto-parietal network– such as mid-DLPFC and pre-SMA. This pattern is 

consistent with the fact that left IFG’s contralateral homologue clustered with the 

fronto-parietal network and suggests this region may not be entirely dissociable 

from fronto-parietal clusters. Moreover, left IFG also showed stronger co-activation 

with posterior superior temporal sulcus– a key region implicated in semantic 
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processing15 suggesting left IFG may also show a preference towards language 

topics.  

  

Meta-analytic functional preference.  In contrast to clusters in the 

frontal-parietal network, clusters ‘47/12’ and ‘9’ showed no association with any 

executive processes– particularly notable for cluster ‘9’ due to its spatial proximity 

Figure 5. Lateral 
frontal regions of 
the default network 
a) Individual clusters 
projected onto an 
inflated surface. b) 
Differences in co-
activation between the 
three regions. Colored 
voxels activated more 
frequently in studies in 
the seed cluster of the 
same color was also 
active. c) Functional 
preference profiles for 
each cluster, revealing 
distinct psychological 
signatures for each 
subregion. Strength of 
association is 
measured in log odds-
ratio (LOR), and 
permutation-based 
significance is 
indicated next to each 
topic by color-coded 
dots corresponding to 
each region. Negative 
associations are 
indicated by the grey 
circle. 
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to mid fronto-parietal clusters (Figure 5c). Instead, clusters ‘47/12’ and ‘9’ were 

significantly associated with ‘mentalizing’, consistent with the hypothesis that these 

regions, as part of the dorsal medial subsystem of the default network, play an 

important role in conceptual processing and mentalizing51. 

Distinct from other default network clusters, ‘45 [L]’ showed a significant 

association with various executive functions– further highlighting the distributed 

nature of executive processes across frontal regions. However, area ‘45 [L]’ was not 

associated with inhibition, suggesting inhibition is right-lateralized to some 

degree52. Furthermore, consistent with this region’s co-location with Broca’s area 

and co-activation with the superior temporal sulcus, area ‘45 [L]’ was significantly 

associated with ‘semantics’ and ‘speech’.  Importantly, although it well-known 

Broca’s area is important for motor function in language, we did not find any 

association between area ‘45 [L]’ and motor topics; these results suggest Broca’s 

area is involved in the generation of speech motor plans, but not motor function 

more generally53. Moreover, ‘45 [L]’ was notable for its robust association with 

‘semantic’ function– more so than any other region– consistent with the hypothesis 

that left IFG is a part of the brain’s ‘semantic’ system15. 

Finally, consistent with the default network’s well-characterized involvement 

in memory51, all three LFC default clusters were robustly associated with ‘memory’ 

and ‘emotion’. This is consistent with a long line of evidence supporting the role of 

these regions in autobiographical, internally oriented cognition. Moreover, the left 

IFG is purported to play a key role in controlled memory retrieval54,55– a hypothesis 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2016. ; https://doi.org/10.1101/083352doi: bioRxiv preprint 

https://doi.org/10.1101/083352
http://creativecommons.org/licenses/by/4.0/


supported by the joint association between executive processes and memory in this 

region. However, it is also notable that ‘memory’ was associated with many other 

clusters in the fronto-parietal network, suggesting memory processes are widely 

distributed across lateral frontal cortex.  

Somatosensory-motor network 

We identified two LFC clusters in the somatosensory-motor network: dorsal 

and ventral lateral premotor cortex– ‘PMd’ and ‘PMv’, respectively (Figure 6a). Both 

clusters were located in dorsal BA 656, although ‘PMd’ was slightly more anterior. 

As a result of its more posterior location, ‘PMv’ included several voxels in primary 

motor cortex, although the cluster was primarily located in pre-motor cortex. 

Meta-analytic co-activation. Both PMd and PMv showed greater co-

activation with nearby voxels in the primary motor and somatosensory cortices, as 

well as SMA– regions important for the control of movement (Figure 6b). PMd, 

however, additionally showed greater co-activation with various regions implicated 

in executive function, such as lateral parietal cortex and the anterior insula– 

suggesting dorsal pre-motor cortex may engage a broader functional network in 

support of the cognitive control of motor actions. 
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Meta-analytic functional preference.  The functional preference profiles 

of both premotor clusters suggest their primary functional role is in core aspects of 

motor function (Figure 6c). However, both of these the two clusters were also 

associated with higher-level motor planning (i.e. ‘action’) and working-memory, 

suggesting these regions are important for higher-level motoric control. Moreover, 

consistent with PMd’s stronger co-activation with regions previously associated 

Figure 6. Meta-
analysis of 
somatosensory 
clusters. a) Clusters 
projected onto an 
inflated surface b) 
Differences in co-
activation between each 
cluster and the rest of 
LFC. Colored voxels 
activated more 
frequently in studies in 
which the seed cluster of 
the same color was also 
active. c) Functional 
preference profiles 
reveal distinct 
psychological 
signatures. Strength of 
association is measured 
in log odds-ratio (LOR), 
and permutation-based 
significance (q<0.05) is 
indicated next to each 
topic by color-coded dots 
corresponding to each 
cluster. Negative 
associations are 
indicated by the grey 
circle. 
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with executive function, PMd was significantly associated with ‘conflict’ and 

‘attention’ (although not significantly more so than PMv). Thus, although these two 

premotor clusters were most strongly associated with motor function, their function 

is not exclusively limited to low-level processes, and may require the recruitment of 

higher-level psychological processes for the execution of motor plans.  

Functional distance between clusters

Figure 7. Co-activation and functional distance between LFC clusters. 
Pearson’s correlation distance between the 14 LFC clusters on the basis of meta-
analytic (a) co-activation and (b) functional preference profiles. Although clusters 
within each network showed generally shorter distances to clusters in the same 
network than between networks, relatively high functional heterogeneity within 
each network was observed. The high similarities between these two distance 
matrices (r = 0.86, p < 0.001), suggests that the differences between regions 
observed in meta-analytic co-activation are generally accompanied by differences in 
functional preference profiles. Correlation distances range from 0 to 2, with 2 
indicating perfect anti-correlation. 

Finally, to examine the overall difference between regions, we computed the 

mean correlation distance between clusters on the basis meta-analytic co-activation 

(Figure 7a) and psychological preference profiles (Figure 7b). Supporting the 
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network organization of these clusters, the distance between clusters in the same 

network was much shorter (co-activation: r=0.58, functional profiles, r=0.5) than the 

distance between clusters in different networks (co-activation: r=0.7, functional 

profiles, r=0.7) across both modalities. However, the distance between clusters in 

the same network was in certain cases relatively high. For example, clusters ‘45 [L]’ 

and ‘9’ in the default network (r = 0.77) and ’44 [R]’ and ‘10v’ in the fronto-parietal 

network (r= 0.93) exhibited large functional distances, despite belonging to the 

same network. Thus, although large-scale networks likely represent a fundamental 

organizational structure in the brain– and distinct networks tend to support 

categorically different types psychological processes– our results suggest these 

networks are relatively heterogeneous. Finally, we also observed that the 

differences between regions based on meta-analytic co-activation were highly 

similar to those based on functional preference profiles (Pearson’s correlation r = 

0.86), suggesting that clusters that show distinct meta-analytic co-activation 

generally exhibit distinct functional preference profiles.  

Discussion 

 In the present study, we applied data-driven methods to the largest meta-

analytic database available to systematically map psychological states to discrete 

lateral frontal cortex anatomy. Importantly, we conducted our analyses broadly 

both with respect to anatomy– by focusing on the entirety of LFC– and function– by 

surveying a wide, representative range of psychological states– resulting in a 

relatively unbiased and comprehensive functional-anatomical mapping. Using co-

activation-based hierarchical clustering, we identified 14 subregions in LFC 

organized into three whole-brain networks (fronto-parietal, default and 
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sensorimotor). We then used multivariate classification to determine which 

psychological states best predicted activation in each region, resulting in dissociable 

psychological profiles for each subregion. In contrast with more modular models of 

LFC organization57-59, we observed a complex many-to-many mapping between 

individual regions and discrete psychological states, suggesting cognitive processes 

are supported in a distributed fashion by regions organized into whole-brain 

networks.  

Consistent with the emerging view that the brain is composed of complex, 

distributed networks18,32,33, we found that individual regions within the same 

network exhibited relatively similar psychological profiles to each other. For 

example, all regions in the fronto-parietal network exhibited strong associations 

with executive functions, consistent with the hypothesis that the fronto-parietal 

network critical for flexible externally oriented behavior. In contrast, regions in 

different networks showed distinct psychological profiles from each other– despite 

occasionally high spatial proximity. For example, area ‘9’ of the default network, 

showed no significant association with any executive functions despite being 

positioned immediately dorsal to area ‘9/46’ of the fronto-parietal network. 

However, despite being relatively distant, areas ‘9’ and ‘47/12’ of the default 

network were both preferentially recruited by internally oriented processes such as 

‘mentalizing’, ‘emotion’ and ‘memory’– a pattern consistent with a hypothesized role 

of the default network in self-generated conceptual processing51.  
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Although networks exhibited relatively robust dissociations, within each 

network we observed relatively low modularity, in contrast to more localizationist 

models. For example, sustained activity in DLPFC during working memory tasks 

has been hypothesized to reflect the active storage of working memory 

representations in domain-specific buffers58. However, we find that working 

memory recruits activity across a wide range of regions extending from posterior 

LFC to the lateral frontal pole. Moreover, many of these same regions that are 

preferentially recruited by working memory are similarly recruited by other 

executive functions, such as ‘conflict’ and ‘switching’, suggesting sustained activity 

in these regions supports domain-general processes required to flexibly guide 

behavior in support of the task goals60. These findings are consistent with a recent 

hypothesis that working memory is supported by the distributed reactivation of 

representations in parietal cortex, rather than isolated and modular maintenance in 

DLPFC1,61. In the same vein, updating task representations during task set 

switching has been hypothesized to preferentially recruit the inferior frontal 

junction13,36. However, we find that ‘switching’ preferentially recruits activity across 

a wide variety of LFC subregions as far rostral as the frontal pole, suggesting task-

set switching is supported by distributed regions across the fronto-parietal network. 

Importantly, although we observed relatively low functional specialization for 

individual regions across LFC, the present findings do not negate the idea that local 

neuron populations may be functionally specific. On the contrary, extensive 

neurophysiological data suggests association cortex contains overlapping neuron 
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populations with distinct—and often highly specific—functional profiles46-48. Since 

subregions on the scale readily identified by fMRI likely exhibit aggregated activity 

across distinct neuron types, the relatively low modularity of these clusters should 

not be surprising. Rather, given that the distribution of distinct neuron populations 

likely varies across association cortex, one would expect individual regions to 

exhibit subtly varying associations to a wide range of psychological states.  

 Indeed, in the present study we observed substantial functional 

heterogeneity within each network and dissociable psychological profiles for regions 

within the same network. That is, although psychological states are not 

modularized into individual regions, the multivariate psychological profiles we 

generated for each region can be used to ascribe distinct roles for each region within 

the broader network. For instance, although all fronto-parietal regions were 

associated with various core executive functions, only IFJ showed additionally 

robust associations with high and low level motor function. Thus, it is plausible that 

IFJ may play an important role in biasing motoric representations in support of 

high-level goals represented in a distributed fashion throughout the network. In 

contrast, area 9/46v in mid-DLPFC was the region most strongly recruited by core 

executive processes, but showed no associations with ‘lower-level’ processes such as 

attention and motor function, suggesting this region may be more important for the 

biasing of abstract representations in more domain-specific regions of posterior 

cortex62.  
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Although the present results provide a comprehensive view into the 

functional organization of LFC, several challenges remain. More broadly, a difficult 

challenge in cognitive neuroscience is developing the appropriate psychological 

constructs that distinguish activity in related brain regions. Appropriately modeling 

the differences between nuanced psychological concepts is particularly difficult for 

large-scale meta-analyses, as there is no established ontology of psychological 

constructs, unlike in fields such as genetics63. In the present study, we used a data-

driven set of topics derived from the abstracts of fMRI papers to represent major 

psychological phenomena. Although these topics are a major improvement on more 

simple term-based features, due to their data-driven nature they are likely to 

imperfectly capture psychological dimensions that are hypothesized to be important 

for differentiating regions. For example, in our set of 60 topics, only a single topic 

represented long-term memory function, and likely combined memory retrieval and 

autobiographical memory processes. Although the Neurosynth framework allows 

researchers to develop custom meta-analyses that can be used to test apriori 

predictions, the myriad of combinations in which studies can be combined is not 

conducive to determining the psychological dimensions that best differentiate brain 

activity. 

The classification-based approach we employed is a step in the direction of 

quantifying the extent to which a given set of psychological features explains 

variability in brain activity. A promising future direction is to use classification 

based approaches and feature engineering to find the psychological dimensions that 
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best differentiate patterns in activity between related regions, such as regions 

within a network. In combination with the adoption of standardized cognitive 

ontologies, such as the Cognitive Atlas64, such large-scale approaches should help 

the development of novel theories of functional brain organization. Moreover, given 

the limited quality of the summarized coordinate based data in Neurosynth65 the 

widespread sharing of richer statistical images in databases such as NeuroVault66 

will greatly improve the fidelity of future meta-analyses. 

 In the present study, we used relatively unbiased data-driven methods to 

comprehensively map psychological states to individual regions in lateral frontal 

cortex. These regions were organized within large-scale whole-brain networks and 

shared functional properties with other regions in the same network. Moreover, we 

found that various specific psychological processes that have been previously 

hypothesized to map onto specific brain regions were widely distributed throughout 

lateral frontal cortex. Yet, we identified dissociable functional profiles for each 

subregion, suggesting that lateral frontal cortex supports a wide variety of 

psychological states through a mixture of network-level dynamics and moderate 

degree of functional specialization. 
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Methods 

Dataset. We analyzed version 0.6 of the Neurosynth database23, a repository 

of 11,406 fMRI studies and over 410,000 activation peaks that span the full range of 

the published neuroimaging literature.  Each observation contains the peak 

activations for all contrasts reported in a study’s table as well as the frequency of all 

of the words in the article abstract. A heuristic but relatively accurate approach is 

used to detect and convert reported coordinates to the standard MNI space. As such, 

all activations and subsequent analyses are in MNI152 coordinate space. The scikit-

learn Python package67 was used for all machine learning analyses. Analyses were 

performed using the core Neurosynth python tools 

(https://github.com/neurosynth/neurosynth). 

Data and code availability. Code and data to replicate these analyses on 

any given brain region at any desired spatial granularity are available  

as a set of IPython Notebooks (https://github.com/adelavega/neurosynth-lfc). 

Lateral frontal cortex mask. To select clusters from whole-brain clustering 

solutions in lateral frontal cortex, we defined an LFC anatomical mask. Crucially, 

we only used this mask to select clusters that fell within this mask, and not to 

exclude individual voxels. First, we included voxels with a greater than 30% chance 

of falling in the frontal lobes according to the Montreal Neurological Institute 

structural probabilistic atlas and excluded medial voxels within 14mm of the 

midline. To focus on lateral frontal cortex, we excluded voxels that were exclusively 

located on the orbital surface– ensuring to include lateral orbitofrontal voxels– by 

removing voxels in the superior and medial orbital gyri according to the AAL atlas 

and voxels with a greater than 30% probability of falling in ‘Frontal Operculum 
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Cortex’ in the Harvard-Oxford atlas. Finally, we also excluded far ventral voxels of 

OFC (Z < -14mm) that were not excluded using anatomical atlases.  

Co-activation clustering. Next, we clustered individual grey-matter cortical 

voxels across the whole brain based on their meta-analytic co-activation with the 

whole brain across studies in the database (Figure 1a). In order to avoid potentially 

biased or arbitrary cluster boundaries, we clustered the whole cortex and selected 

clusters for further analysis that fell within an anatomically defined LFC mask. 

Critically, we did not mask out voxels that were slightly outside of our mask– we 

either included or excluded entire clusters. This was particularly important for 

clusters near the edge of our LFC mask– as functional boundaries may not conform 

to anatomical boundaries– and at coarse clustering solutions– given the well-

established finding that at least 4-5 whole-brain networks include voxels in lateral 

frontal cortex32. For whole-cortex clustering, we excluded voxels with less than 30% 

probability of falling in grey matter according to the Harvard-Oxford anatomical 

atlas and those with very low activation in the database (less than 100 studies per 

voxel). In general, Neurosynth’s activation mask (derived from the standard 

MNI152 template distributed with FSL) corresponded highly with probabilistic 

locations of cerebral cortex, with the exception of portions of dorsal precentral 

gyrus– which showed low activation although it was more than 50% likely to be in 

cerebral cortex.   

We calculated the co-activation between each cortical voxel and every other voxel 

in the brain (including sub-cortex) by determining how correlated their activity was 
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across studies. Activation in each voxel is represented as a binary vector of length 

11,406 (the number of studies). A value of 1 indicated that the voxel fell within 10 

mm of an activation focus reported in a particular study, and a value of 0 indicated 

that it did not. Because correlating the activation of every cortical voxel with every 

other voxel in the brain would result in a very large matrix (112,358 cortical voxels 

x 171,534 whole-brain voxels) that would be very computationally costly to cluster 

so as to identify distinct LFC regions. Hence, we reduced the dimensionality of the 

whole brain to 100 components using principal components analysis (PCA; the 

precise choice of number of components does not materially affect the reported 

results). Next, we computed the Pearson correlation distance between every voxel in 

the MFC mask with each whole-brain PCA component, resulting in a matrix that 

described the frequency with which each cortical voxel co-activated with the rest of 

the brain.  

As an additional pre-processing step, we standardized each cortical voxel’s co-

activation with other brain voxels to ensure clustering would be driven by relative 

differences in whole brain co-activation and not the overall activation rate of each 

voxel. That is, if two voxels co-activated with similar voxels across the brain, we 

should consider them to be relatively similar even if one of those voxels activates 

more frequently (and thus has slightly stronger correlations with all voxels). This 

adjustment was particularly important, as preliminary analyses indicated that 

regions with very high rates of activation (e.g. pre-SMA/mid-cingulate cortex) more 

readily clustered into multiple clusters with few voxels, reflecting base rates in 
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activation, although differences in their functional associations were minimal. 

Indeed, preliminary analyses confirmed that standardizing the co-activation matrix 

alleviated this concern. At k = 70, the mean activation rate of each cluster showed 

no correlation with voxel size when Z-scoring was used (r=0.05), as compared to 

when the raw co-activation matrix was used (r = -0.65) at k = 70. Additionally, the 

range of cluster sizes was compressed, resulting in more evenly sized clusters. 

Cluster sizes ranged from 352 to 4546 voxels using the raw activation, compared to 

a range of 560 to 2862 voxels using standardized co-activation.  

We applied hierarchical clustering with Ward’s linkage to the normalized co-

activation matrix, resulting in a whole-brain linkage matrix. Ward’s clustering was 

selected as this algorithm is recommended as a good compromise between accuracy 

(e.g., fit to data) and reproducibility for clustering fMRI data68. However, this 

clustering algorithm is seldom used for whole-brain clustering because the 

computational time increases cubically [Θ(N³)] as a function of samples. We 

employed the fastcluster algorithm69—a package of libraries that enable efficient 

hierarchical clustering [Θ(N2)]—to achieve whole-brain clustering.  

Since the optimality of a given clustering depends in large part on investigators’ 

goals, the preferred level of analysis, and the nature and dimensionality of the 

available data, identifying the ‘correct’ number of clusters is arguably an intractable 

problem31. However, in order to attempt to objectively guide the choice of choice of 

number of clusters to further analyze, we selected viable solutions using the 

silhouette score– a measure of within-cluster cohesion. Crucially, as we were 
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specifically interested in the fit of the clustering to lateral frontal cortex, we only 

calculated the silhouette score with respect to voxels within our lateral frontal 

cortex mask. The silhouette coefficient was defined as (b – a) / max(a, b), where a is 

the mean intra-cluster distance and b is the distance between a sample and the 

nearest cluster of which the sample is not a part. Solutions that minimized the 

average distance between voxels within each cluster received a greater score. Once 

having chose two whole brain solutions, we extracted LFC clusters from with a 

substantial percentage of voxels within our apriori LFC mask. We varied the 

percentage of voxels within our LFC mask required to include a region across 

granularities with the objective maximizing coverage in LFC without including 

extraneous clusters with little presence in LFC. We arrived at 12% of voxels in a 

cluster within LFC at k=5 and 75% of voxels at k=70.  

To understand the anatomical correspondence of the resulting clusters, we 

consulted a variety of anatomical and cytoarchitechtonic atlases. To locate each 

cluster anatomically, we used the probabilistic Harvard-Oxford atlas (H-O) that is 

packaged with FSL. We also visually compared the location of our clusters to the 

Petrides’ (2005) and Jülich micro-anatomical atlases included in FSL56. Regions 

were assigned names in accordance to Brodmann areas (BA) whenever clusters 

were sufficiently small to correspond to a single area (e.g. ‘area 9/46v’). Clusters 

were given functional names when they spanned multiple cytoarchitechtonic areas 

(e.g. IFJ) or multiple clusters spanned a single cytoarchitechtonic area (e.g. PMd & 

PMv). Note that although names were assigned to ease the discussion of these 
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regions, we do not make strong claims of correspondence between functionally and 

anatomically defined regions, as we observed several discrepancies throughout LFC. 

Co-activation profiles. Next, we analyzed the differences in whole brain co-

activation between the resulting clusters (Figure 1b) in order to understand the 

patterns of co-activation that differentiates these clusters. To highlight differences 

between clusters, we contrasted the co-activation of each cluster to the mean co-

activation of the entire LFC. To do so, we performed a meta-analytic contrast 

between studies that activated a given cluster, and studies that activated a LFC 

mask composed of all clusters. The resulting images identify voxels with a greater 

probability of co-activating with the cluster of interest than with LFC on average. 

For example, voxels in blue in Figure 5b indicate voxels that are active more 

frequently in studies in which ‘area 9’ is active than in studies in which other LFC 

on average is active. We calculated p-values for each voxel using a two-way chi-

square test between the two sets of studies and thresholded the co-activation 

images using the False Discovery Rate (q<0.01). The resulting images were 

binarized for display purposes and visualized using the pysurfer Python library.   

Topic modeling. Although term-based meta-analysis maps in Neurosynth 

closely resemble the results of manual meta-analyses of the same concepts, there is 

a high degree of redundancy between terms (e.g. ‘episodes’ and ‘episodic’), as well as 

potential ambiguity as to the meaning of an individual word out of context (e.g. 

‘memory’ can indicate working memory or episodic memory). To remedy this 

problem, we employed a reduced semantic representation of the latent conceptual 
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structure underlying the neuroimaging literature: a set of 60 topics derived using 

latent dirichlet allocation (LDA) topic-modeling30. This procedure was identical to 

that used in a previous study39, except for the use of a smaller number of topics and 

a much larger version of the Neurosynth database. The generative topic model 

derives 60 independent topics from the co-occurrence of all words in the abstracts of 

fMRI studies in the database. Each topic loads onto individual words to a varying 

extent, facilitating the interpretation of topics; for example, a working memory topic 

loads highest on the words “memory, WM, load”, while an episodic memory topic 

loads on “memory, retrieval, events”. Note that both topics highly load on the word 

“memory”, but the meaning of this word is disambiguated because it is 

contextualized by other words that strongly load onto that topic. Although the set of 

topics included 25 topics representing non-psychological phenomena– such as the 

nature of the subject population (e.g. gender, special populations) and methods (e.g., 

words such as “images”, “voxels”)—these topics were not explicitly excluded as they 

were rarely the strongest loading topics for any region. For all of our results, we 

focus on a set of 16 topics that strongly loaded onto lateral frontal cortex clusters 

(Table 1). These topics were obtained by determining the two strongest loading 

topics for each region.  

Topic name Top words 
 action action actions motor goal mirror planning imitation execution  

attention attention attentional visual spatial search location orienting target  

conflict conflict interference incongruent stroop congruent selection competition color  

emotion emotional emotion regulation affective pictures emotions arousal affect  

gaze eye gaze eyes movements saccades target saccade visual  

inhibition inhibition inhibitory stop motor sustained nogo transient suppression  
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memory memory retrieval encoding recognition episodic items recall words  

mentalizing social empathy moral person judgments mentalizing mental mind  

motor motor movement movements sensorimotor finger somatosensory sensory force  

novelty target targets novelty oddball distractor distractors deception mismatch  

pain pain stimulation somatosensory painful intensity sensory chronic noxious  

reward reward sleep anticipation monetary rewards motivation incentive loss  

semantics semantic words word lexical verbs abstract meaning verb  

speech speech auditory sounds sound perception voice acoustic listening  

switching switching rule executive switch rules flexibility shifting aggression  

WM memory working wm load verbal maintenance delay encoding  
 
Table 1. Topics most strongly associated with lateral frontal regions. Eight 
strongest loading words for each topic are listed, in descending order of association 
strength. 

Meta-analytic functional preference profiles. We generated functional 

preference profiles by determining which psychological topics best predicted each 

cluster’s activity across fMRI studies (Figure 1c). First, we selected two sets of 

studies: studies that activated a given cluster– defined as activating at least 5% of 

voxels in the cluster– and studies that did not– defined as activating no voxels in 

the cluster. For each cluster, we trained a naive Bayes classifier to discriminate 

these two sets of studies based the loading of psychological topics onto individual 

studies. We chose naive Bayes because (i) we have previously had success applying 

this algorithm to Neurosynth data23; (ii) these algorithms perform well on many 

types of data, (iii) they require almost no tuning of parameters to achieve a high 

level of performance; and (iv) they produce highly interpretable solutions, in 

contrast to many other machine learning approaches (e.g., support vector machines 

or decision tree forests). 
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We trained models to predict whether or not fMRI studies activated each cluster, 

given the semantic content of the studies. In other words, if we know which 

psychological topics are mentioned in a study how well can we predict whether the 

study activates a specific region? We used 4-fold cross-validation for testing and 

calculated the mean score across all folds as the final measure of performance. We 

scored our models using the area under the curve of the receiver operating 

characteristic (AUC-ROC)– a summary metric of classification performance that 

takes into account both sensitivity and specificity. AUC-ROC was chosen because 

this measure is not detrimentally affected by unbalanced data70, which was 

important because each region varied in the ratio of studies that activated it to the 

studies that did not.  

To generate functional preference profiles, we extracted from the naive Bayes 

models the log odds-ratio (LOR) of a topic being present in active studies versus 

inactive studies. The LOR was defined, for each region, as the log of the ratio 

between the probability of a given topic in active studies and the probability of the 

topic in inactive studies, for each region. LOR values above 0 indicate that a 

psychological topic is predictive of activation of a given region. To determine the 

statistical significance of these associations, we permuted the class labels and 

extracted the LOR for each topic 1000 times. This resulted in a null distribution of 

LOR for each topic and each cluster. Using this null distribution, we calculated p-

values for each pairwise relationship between psychological concepts and regions, 

and reported associations significant after controlling for multiple comparisons 
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using False Discovery Rate with q<0.01. Finally, to determine if certain topics 

showed greater preference for one cluster versus another, we conducted exploratory, 

post-hoc comparisons by determining if the 95% confidence intervals (CI) of the 

LOR of a specific topic for a one region overlapped with the 95% CI of the same topic 

in another region. We generated CIs using bootstrapping, sampling with 

replacement and recalculating log-odds ratios for each region 1000 times. A full 

reference figure of the loadings between topic and regions, including CIs, is 

available in Supplemental Figure 3. The ordering of the labels around the polar plot 

was determined using hierarchical clustering with average linkage, resulting in an 

order that concisely conveyed the functional differences between LFC’s subregions. 
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