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Abstract 

The resolution of super-resolution microscopy based on single molecule localization is in part 

determined by the accuracy of the localization algorithm. In most published approaches to date 

this localization is done by fitting an analytical function that approximates the point spread 

function (PSF) of the microscope. However, particularly for localization in 3D, analytical 

functions such as a Gaussian, which are computationally inexpensive, may not accurately 

capture the PSF shape leading to reduced fitting accuracy. On the other hand, analytical 

functions that can accurately capture the PSF shape, such as those based on pupil functions, 

can be computationally expensive. Here we investigate the use of cubic splines as an 

alternative fitting approach. We demonstrate that cubic splines can capture the shape of any 

PSF with high accuracy and that they can be used for fitting the PSF with only a 2-3x increase 

in computation time as compared to Gaussian fitting. We provide an open-source software 

package that measures the PSF of any microscope and uses the measured PSF to perform 3D 

single molecule localization microscopy analysis with reasonable accuracy and speed. 

 

Introduction 

The accuracy of the fitting algorithm is an important factor in the final resolution of single 

molecule localization based super-resolution microscopy. This accuracy is in turn determined in 

part by how well the fitting algorithm models the PSF of the microscope. This is particularly 

important for 3D super-resolution imaging, where the PSF shapes are often not a simple 

Gaussian function [1-4]. Approaches to accurately modeling the PSF for the purpose of 

localizing single molecules include PSF correlation [5-7] and pupil function fitting [8]. In the PSF 

correlation approach, the PSF of the microscope is measured by scanning the objective (or the 

sample) in Z to capture the shape of the PSF at multiple focal planes. The resulting z stack of 

PSFs can then be cross-correlated with the image of a single molecule to determine its position. 

This is computationally expensive as it requires multiple 2D Fourier transforms, followed by 

further fitting if sub-pixel position information is desired. Alternatively, the molecule’s position 

can be determined directly by providing an initial estimate for the molecule’s position and 

computing the fitting error between the molecule’s image and the PSF, then appropriately 
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updating the position estimate. This can be done using a simplex optimization algorithm such as 

Nelder-Mead [9]. However this class of algorithms, which are used when the derivatives of the 

error function are not known or are hard to calculate, converge slowly on the optimal solution. 

An additional complication of this latter approach is the need to interpolate between the 

measured PSF values in x, y and z.  

These problems are largely avoided with a pupil function fitting approach [8, 10, 11], as 

interpolation is not necessary and the derivatives of the error function can be calculated, 

enabling the use of more rapidly converging algorithms such as those based on the Newton-

Raphson algorithm. In the pupil function approach, the PSF is again measured by scanning the 

sample containing point emitters (such as beads) in Z, passing through the focal plane of the 

objective. The measured PSF is then fit to determine the pupil function of the microscope. As 

the pupil function captures the PSF of the microscope with high accuracy, fitting the images of 

single emitters to the pupil function allows the positions of these emitters to be determined with 

high accuracy. However calculating the PSF and its derivatives with respect to the fitting 

parameters at a particular x, y and z location from the pupil function is computationally 

expensive, and could be slow unless GPU acceleration is used [8]. 

Another approach to accurately model the PSF for the purpose of localizing single molecules is 

to use splines. The most commonly used splines approximate the function of interest using one 

or more polynomials. This class of splines can be calculated rapidly, and it is also easy to 

compute their derivatives. 2D cubic splines were used in the DAOPHOT astronomy package to 

provide higher order corrections to a 2D Gaussian for the purpose of fitting the locations and 

magnitudes of stars [12], or single molecules [13], the latter using the  DAOSTORM algorithm, 

the adaptation of DAOPHOT for single molecule localization microscopy. B-splines, of which 

cubic splines are a sub-set, were used previously in localization microscopy to estimate the 

maximal localization accuracy in x, y and z of an arbitrarily shaped 3D point spread function 

(PSF) [14]. B-splines were also used in a general method for 3D localization fitting similar to 

what is presented here [15].  

This current work builds on previous work by further exploring the use of splines for rapid and 

accurate analysis of 3D super-resolution microscopy data based on single molecule localization. 

In particular, we provide an open-source maximum likelihood estimation (MLE) based cubic 

spline analysis package, side-by-side comparisons of its performance with elliptical Gaussian 

fitting, and a demonstration of its broad application by fitting simulated 3D super-resolution 

microscopy data derived from several different PSFs.  

 

Materials and Methods 

A cubic spline approximates a one dimensional function using piecewise 3rd order polynomials 

of the form: 

 𝑓𝑖(𝑥) = 𝑎𝑖 (
𝑥−𝑡𝑖

∆𝑡
)

3
+ 𝑏𝑖 (

𝑥−𝑡𝑖

∆𝑡
)

2
+ 𝑐𝑖 (

𝑥−𝑡𝑖

∆𝑡
) + 𝑑𝑖  (𝑡𝑖 ≤ 𝑥 ≤ 𝑡𝑖+1, ∆𝑡 = 𝑡𝑖+1 − 𝑡𝑖) (1) 

where each 𝑓𝑖 is valid on small equal length intervals [𝑡𝑖, 𝑡𝑖+1]. Any function with a continuous 

first derivative can be approximated with arbitrary accuracy by choosing an appropriate interval 

size. Here we follow DAOPHOT / DAOSTORM and choose an interval size that is ½ of the 
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image pixel size as a good compromise between accurately modeling the PSF and minimizing 

the total number of intervals and coefficients. 

In Fig 1 we provide a simple 1D example of the cubic spline construction process that we use in 

this work. We start with a hypothetical measurement of the PSF (gray bars in Fig 1). Next the 

measured PSF is up-sampled by 2x using 3rd order spline interpolation (red points in Fig 1). 

Finally the coefficients 𝑎𝑖 , 𝑏𝑖, 𝑐𝑖,𝑑𝑖 of the spline (blue line in Fig 1) for each interval are calculated 

with the constraint that the polynomials 𝑓𝑖(𝑥) and their first derivatives 𝑑𝑓𝑖(𝑥) 𝑑𝑥⁄  are continuous 

at the red points, the interval boundaries. We chose to use the additional constraint that the 

second derivative of the spline is zero at the start of the first interval and at the end of the last 

interval. We use the approach described in [16] to solve for the coefficients of the (natural) cubic 

spline. 

Figure 1. 1D Spline example. Each cubic spline interval (the blue line) is determined such that 

itself and its first derivative are continuous across the red points which are the interval 

boundaries. The red points are calculated by up-sampling the measured PSF (grey bars) by a 

factor of two using 3rd order spline interpolation. 

Next, we used the following procedure to determine the PSF in three dimensions, first by 

simulations and then by experiments. To determine the 3D PSF by simulation, we first place a 

number of emitters on a xy grid with an additional single pixel uniform random offset and 

generate z scan image stacks of these emitters. Then, using the known emitter locations, 

images of isolated emitters were cropped out of the image stacks and up-sampled by 2x in xy 

using the ndimage.interpolation.zoom() function from the Scipy Python package [17] with 3rd 

order spline interpolation. Next, the up-sampled images of these emitters were aligned to their 

centroid positions using the ndimage.interpolation.shift() function and averaged to obtain a 

single image for each z position. Finally, images covering 50 nm z ranges were further averaged 

together to generate the PSF for the z position that is at the center of the 50 nm range and the 

average PSFs determined from a series 50 nm intervals were used to create a 3D array that 

represents the 3D PSF. To measure the 3D PSF in real experiments, small fluorescent beads 

can be attached to a coverslip. Then z scan movies can be taken with a piezo positioner. In this 

situation the true emitter locations are not known, but they can be estimated with sufficient 

precision for this purpose by using another fitting algorithm such as 3D-DAOSTORM [18] 

because the fluorescent beads typical emit a very large number of photons. 

The extension of the cubic spline construction to 3 dimensions is described below. In three 

dimensions, the cubic spline is: 

𝑓𝑖,𝑗,𝑘(𝑥, 𝑦, 𝑧) = ∑ ∑ ∑ 𝑎𝑖,𝑗,𝑘,𝑚,𝑛,𝑜 (
𝑥−𝑡𝑖

∆𝑡
)

𝑚
3
𝑜=0 (

𝑦−𝑡𝑗

∆𝑡
)

𝑛
3
𝑛=0 (

𝑧−𝑢𝑘

∆𝑢
)

𝑜
 (𝑡𝑖 ≤ 𝑥 ≤ 𝑡𝑖+1, 𝑡𝑗  ≤ 𝑦 ≤3

𝑚=0

𝑡𝑗+1, 𝑢𝑘 ≤ 𝑧 ≤ 𝑢𝑘+1, ∆𝑡 = 𝑡𝑖+1 − 𝑡𝑖, ∆𝑢 = 𝑢𝑘+1 − 𝑢𝑘) (2) 

where each 𝑓𝑖,𝑗,𝑘 is valid on ½ pixel length intervals [𝑡𝑖, 𝑡𝑖+1] in x, [𝑡𝑗, 𝑡𝑗+1] 𝑖𝑛 y and [𝑢𝑘 , 𝑢𝑘+1] 

intervals in z. We start with a 3D PSF that is determined by either simulation or experiments, 

and then up-sampled such that it has an equal number of elements in x,y and z. This is not 

strictly necessary but having an equal number of elements for each axis simplifies later 

computations. We then use a series of 1D cubic spline interpolations in x, y and z to further 

upsample the PSF, by 4 fold in each dimension, to obtain 64 values of the PSF within each 

element. These 64 values then allow us to uniquely specify the 3D cubic spline 𝑓𝑖,𝑗,𝑘(𝑥, 𝑦, 𝑧) and 
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determine it’s 64 coefficients 𝑎𝑖,𝑗,𝑘,𝑚,𝑛,𝑜 in the intervals that correspond to each element of the 

PSF. 

We then use this cubic spline approximation of the 3D PSF to fit the image of individual emitters 

and determine their 3D coordinates. Based on the 3D cubic spline formula it can be seen that 

the evaluation of 𝑓𝑖,𝑗,𝑘(𝑥, 𝑦, 𝑧) at a single point will require 128 operations, as compared to 10 

operations to evaluate the elliptical Gaussian that is often used for 3D PSF fitting: 

 𝑓(𝑥, 𝑦, 𝑧) = 𝑎𝑒𝑥𝑝 (−
(𝑥−𝑥𝑜)2

𝑤𝑥(𝑧)
−

(𝑦−𝑦𝑜)2

𝑤𝑦(𝑧)
) + 𝑏. (3) 

Here we’ve ignored the calculation of the 𝑥𝑚𝑦𝑛𝑧𝑜 terms as for fitting the evaluation is always 

done at the same point in each of the spline intervals. Similarly, we have ignored the calculation 

of the 𝑤𝑥(𝑧) and the 𝑤𝑦(𝑧) terms in the Gaussian as these are also the same for each point in 

the PSF. We wrote a simple C program to time how long it took to perform these calculations, 

and found that the cubic spline calculation is approximately 2.3x slower. However, we note that 

this is a best case estimate as the cubic spline calculation is more memory intensive and thus is 

likely to be somewhat slower in general. However, this rough estimate suggests that the 

computational expense of the cubic spline fitting will be similar to that of Gaussian fitting. 

The highest accuracy estimation of the parameters of the localization of an emitter is typically 

achieved using non-linear least squares or maximum likelihood estimation (MLE) based fitting. 

This can be done efficiently if both the error function and its derivatives are easily calculated for 

any point in the PSF. As described in [19], the error function for MLE fitting is: 

 𝜒𝑚𝑙𝑒
2 = 2 ∑ 𝑓𝑖 − 𝑥𝑖 − 2 ∑ 𝑥𝑖𝑙𝑛(𝑓𝑖 𝑥𝑖⁄ )𝑛

𝑖=1,𝑥𝑖≠0
𝑛
𝑖=1  (4) 

And its derivatives with respect to the fitting parameters (p) are: 

𝜒𝑚𝑙𝑒
2

𝜕𝑝𝑘
= 2 ∑ (1 −

𝑥𝑖

𝑓𝑖
)

𝜕𝑓𝑖

𝜕𝑝𝑘

𝑁
𝑖=1  (5) 

𝜕2𝜒𝑚𝑙𝑒
2

𝜕𝑝𝑘𝜕𝑝𝑙
= 2 ∑

𝜕𝑓𝑖

𝜕𝑝𝑘

𝑁
𝑖=1

𝜕𝑓𝑖

𝜕𝑝𝑙

𝑥𝑖

𝑓𝑖
2 (6) 

Where we have followed reference [19] and ignored the second derivative terms in the 

calculation of equation (6). 

The cubic spline PSF and its derivatives with respect to the fitting parameters 𝑥𝑐, 𝑦𝑐, 𝑧𝑐(the 3D 

coordinates of the emitter), ℎ (the height of the PSF), and 𝑏 (the baseline of the PSF) are easy 

to calculate, and they are: 

𝑓𝑖,𝑗,𝑘(𝑥, 𝑦) = ℎ ∑ ∑ ∑ 𝑎𝑖,𝑗,𝑘,𝑚.𝑛,𝑜 (
(𝑥−𝑥𝑐)−𝑡𝑖

∆𝑡
)

𝑚
3
𝑜=0 (

(𝑦−𝑦𝑐)−𝑡𝑗

∆𝑡
)

𝑛
3
𝑛=0 (

𝑧𝑐−𝑢𝑘

∆𝑢
)

𝑜
+ 𝑏3

𝑚=0  (7) 

𝜕𝑓𝑖,𝑗,𝑘(𝑥,𝑦)

𝜕ℎ
= ∑ ∑ ∑ 𝑎𝑖,𝑗,𝑘,𝑚,𝑛,𝑜 (

(𝑥−𝑥𝑐)−𝑡𝑖

∆𝑡
)

𝑚
(

(𝑦−𝑦𝑐)−𝑡𝑗

∆𝑡
)

𝑛

(
𝑧𝑐−𝑢𝑘

∆𝑢
)

𝑜
3
𝑜=0

3
𝑛=0

3
𝑚=0  (8) 

𝜕𝑓𝑖,𝑗,𝑘(𝑥,𝑦)

𝜕𝑥
= −ℎ ∑ ∑ ∑

(𝑚+1)

∆𝑡
𝑎𝑖,𝑗,𝑘,𝑚,𝑛,𝑜 (

(𝑥−𝑥𝑐)−𝑡𝑖

∆𝑡
)

𝑚
(

(𝑦−𝑦𝑐)−𝑡𝑗

∆𝑡
)

𝑛

(
𝑧𝑐−𝑢𝑘

∆𝑢
)

𝑜
3
𝑜=0

3
𝑛=0

2
𝑚=0 + 𝑏 (9) 

𝜕𝑓𝑖,𝑗,𝑘(𝑥,𝑦)

𝜕𝑦
= −ℎ ∑ ∑ ∑

(𝑛+1)

∆𝑡
𝑎𝑖,𝑗,𝑘,𝑚,𝑛,𝑜 (

(𝑥−𝑥𝑐)−𝑡𝑖

∆𝑡
)

𝑚
(

(𝑦−𝑦𝑐)−𝑡𝑗

∆𝑡
)

𝑛

(
𝑧𝑐−𝑢𝑘

∆𝑢
)

𝑜
3
𝑜=0

2
𝑛=0

3
𝑚=0 + 𝑏 (10) 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 28, 2016. ; https://doi.org/10.1101/083402doi: bioRxiv preprint 

https://doi.org/10.1101/083402
http://creativecommons.org/licenses/by-nc-nd/4.0/


𝜕𝑓𝑖,𝑗,𝑘(𝑥,𝑦)

𝜕𝑧
= ℎ ∑ ∑ ∑

(𝑜+1)

∆𝑢
𝑎𝑖,𝑗,𝑘,𝑚,𝑛,𝑜 (

(𝑥−𝑥𝑐)−𝑡𝑖

∆𝑡
)

𝑚
(

(𝑦−𝑦𝑐)−𝑡𝑗

∆𝑡
)

𝑛

(
𝑧𝑐−𝑢𝑘

∆𝑢
)

𝑜
2
𝑜=0

3
𝑛=0

3
𝑚=0 + 𝑏 (11) 

𝜕𝑓𝑖,𝑗,𝑘(𝑥,𝑦)

𝜕𝑏
= 1 (12) 

We minimize 𝜒𝑚𝑙𝑒
2  using the above equations and the approach described in reference [19], 

which is a modified version of the Levenberg-Marquadt algorithm [20]. Given a reasonable 

starting point the optimal values for 𝑥𝑐, 𝑦𝑐, 𝑧𝑐, ℎ, and 𝑏 can be found with high accuracy in just a 

few (~10) iterative updates for isolated emitters. 

In all other respects the approach is the same as that used by 3D-DAOSTORM [18]. The 

algorithm executes the following pseudo-code on each frame of single-molecule imaging movie 

until either no new peaks are found, or the maximum number of iterations is reached. 

Algorithm: 

1: Load the current image. 

2: Perform an initial estimate of the image background. 

3: while not all converged and repeats < max repeats do 

4:  Subtract current background estimate from the image. 

5: Find localizations in the background subtracted image and add these to the list of all   

localizations. 

6: Subtract localizations from the image. 

7: while iterations < max iterations and not all converged do 

8:   for each localization do 

9:   if not converged then 

10:    Add localization to image 

11:    Levenberg-Marquadt update of localization fitting parameters 

12:    Subtract updated localization from image 

13:    if converged then 

14:     mark localization as converged 

15: for each localization do 

16:  if distance to a brighter neighbor < minimum distance then 

17:   discard localization 

18:   mark all neighbors as unconverged 

19: Subtract localizations from the image. 

20: Estimate background of the localization subtracted image. 

21: Save fit parameters of all the localizations. 

Note that this algorithm ignores cross-terms for overlapping localizations. Each localization’s 

fitting parameters are updated in a context where all the other localizations are fixed. This 

increases the simplicity of the algorithm implementation at the price of a reduced convergence 

speed for overlapping localizations. 

 

Results and Discussion 

To test how well a cubic spline with ½ pixel interval size in x and y can capture the shape of 

non-trivial PSFs we used the pupil function approach [10, 11] to generate 3D PSFs for a purely 
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astigmatic PSF (𝑍22 = 1.3) and for the saddle-point PSF described in [3], which have been 

previously used for 3D super-resolution imaging [1, 3]. For each condition we generated noise 

free images of the PSF at z positions ranging from -1 um to 1 um in 10 nm steps. Then we 

determined the coefficients of the cubic spline for this PSF as described in the Materials and 

Methods section. We found that the maximum pixel wise amplitude difference between the 

astigmatic PSF and the cubic spline was 2.0% (at z = 0 nm) over the entire 2 um z range (Fig 

2). Similarly, we found for the saddle-point PSF that the maximum pixel wise difference was 

3.7% (at z = 40 nm). We also tested how well an elliptical Gaussian was able to capture the 

shape of a purely astigmatic PSF, as elliptical Gaussian is the analytical function typically used 

in astigmatism-based 3D super-resolution imaging. We calculated the best fit elliptical Gaussian 

to the astigmatic PSF for each z position in the same 2 um z range and found that the error was 

somewhat larger than the cubic spline fitting, with a maximum pixel wise difference of 7.7% (at z 

= 60 nm) 

Figure 2. Analytical PSFs and their spline representations for the astigmatic PSF and 

saddle-point PSF. (A) Astigmatic PSF at z = -420 nm. (B) Cubic spline representation of (A). 

(C) Difference between (A) and (B) multiplied by 100. (D) Saddle-point PSF at z = -420 nm. (E) 

Cubic spline representation of (D). (F) Difference between (D) and (E) multiplied by 100. 

Next we investigated whether the fact that the cubic spline more accurately captured the shape 

of a purely astigmatic PSF resulted in improved fitting performance. First we created a 

calibration data set by placing many emitters on a xy grid with an additional single pixel uniform 

random offset and then scanning the z position of the emitters with a 10 nm interval. We then 

used these calibration movies to determine the coefficients of the cubic spline representation of 

the PSF and also to determine the 𝑤𝑥(𝑧) and 𝑤𝑦(𝑧) calibration curve for elliptical Gaussian z 

fitting. Then a simulated movie was created with 3000 photons per localization and a constant 

background of 100 photons. In the test movie, we chose the z position of the emitters to range 

from -300 nm to 300 nm, as it has been noted previously that the localization precision of the 

astigmatism approach depends on the z position of the emitter and that relatively high 

localization precisions have been achieved experimentally in the z range of -300 to 300 nm [1]. 

These movies were created using a Poisson noise model, with no camera read noise, 600 nm 

emission wavelength and a 160 nm pixel size. The test movie was analyzed by fitting the single-

emitter images to the cubic spline representation and elliptical Gaussian representation of the 

astigmatic PSF (Fig 3). The fitting error in x, y and z for each z value was determined as the 

average distance in x, y and z between the localizations determined by the fitting and their 

nearest ground-truth emitter positions.  

Figure 3. Astigmatic PSF fitting accuracy. (A) Average xy fitting error as a function of z for 

cubic spline versus elliptical Gaussian fitting. Ellipitical Gaussian fitting were performed with the 

3D DAOSTORM algorithm that we reported previously [18]. The filled points are the error in x 

and the hollow points are the error in y. Each data point is the average of multiple independent z 

positions in the 100 nm range centered on the data point. (B) Average z fitting error as a 

function of z. 

The x and y localization error was pretty similar for both approaches, with cubic spline fitting 

giving 5-10% better accuracy at the largest z offsets. The z localization accuracy of cubic spline 

fitting however was noticeable better, with an average improvement of about 20% at larger z 

offsets. We note that in real experiments, the PSF often deviates from the ideal PSF derived 

from the pupil function due to non-ideal optics and optical alignment errors, which can lead to 
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systematic errors in the determination of the x, y and z positions of the emitters when a simple 

elliptical Gaussian function is used to fit the PSF [21, 22]. Since the cubic spline representation 

can capture these experimental PSFs with arbitrarily high accuracy given a sufficiently small 

interval size, we expect cubic spline fitting to provide a greater improvement in the localization 

accuracy in experiments.    

The average amount of time that it takes to analyze a single image with the cubic spline 

approach as a function of emitter density is shown in Fig 4. Timing information for the elliptical 

Gaussian fitting (using the 3D-DAOSTORM algorithm) is provided for comparison. All timing 

measurements were performed on a laptop computer with an Intel Core i7 CPU running at 2 

GHz. Simulated movies (41 um x 41 um field of view) were generated with emitters randomly 

located in x and y in a +-500 nm z range at densities of 0.03, 0.1 and 0.3 per um2 (41, 136 and 

408 emitters respectively). The PSF that we used in these simulations was an elliptical 

Gaussian whose width in x and y varied as a function of z. To reduce the variance in the timing 

results, we increased the number of frames of the movies until they took at least 4 seconds to 

analyze regardless of the emitter density. As 3D-DAOSTORM and the cubic spline algorithm 

share most of the other components of their analysis pipeline, the timing differences reported 

are primarily due to differences in how long the localization fitting step takes. At lower emitter 

densities the overall analysis time is more dependent on how long the various non-fitting steps, 

such as reading the image from disk and background estimation, take, therefore the 

computation time of the two algorithms is similar. At higher emitter densities the fitting step 

takes a larger fraction of the total time, and hence the cubic spline approach takes a 

proportionally longer time. These results are also consistent with our estimates for the relative 

computation cost of the two approaches described earlier.  

Figure 4. Fitting speed comparison. A comparison of the time it takes to analyze a single 

frame (256 x 256 pixels) of a simulated movie with indicated emitter densities using 3D-

DAOSTORM or the cubic spline approach. 

It is worth noting that the fitting time will depend on the number of pixels that the PSF covers. In 

the above test, we used a spline that covers 14 x 14 pixels in x and y. This is a reasonable size 

for most PSFs, but a larger size may be necessary for PSFs with a larger spatial extent or for 

microscope setups with a smaller pixel size. We found a size of between 12 and 16 pixels (in 

each dimension) was sufficiently large to work well for the PSFs that are typically used in single-

molecule imaging and our pixel size of 160nm. 

An important advantage of the cubic spline approach is that it can be used to fit arbitrarily 

shaped PSFs, which makes it widely applicable to many different 3D localization methods using 

various engineered PSF shapes. Here, we demonstrate the versatility of the cubic spline 

approach by using it to analyze simulated data from two additional types of PSFs that have 

been used for super-resolution imaging,  the double helix PSF [2] and the saddle-point PSF [3]. 

We generated two kinds of simulated movies using these PSFs, a high photon count movie for 

measuring the PSF and determining the spline and a low photon count movie similar to typical 

single-molecule localization conditions. The saddle-point PSFs were generated using the pupil 

function approach [10, 11], and we rotated the saddle-point PSF by 45 degrees relative to the 

orientation reported in [3] so that the PSF stretches along the x and y axes. The double helix 

PSF was obtained from the 2016 SMLM localization challenge web-site [23] and spline 

interpolation was used to position it at arbitrary x, y and z values. In the movies simulating single 

molecules, we used 3000 photons per localization, a constant background of 100 photons, and 
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a camera pixel size of 160 nm. The x, y and z errors were again determined as the average 

distance in x, y and z between the localizations determined by the fitting and their nearest 

ground-truth emitter positions and shown in Figure 5. From these error plots, it is evident that 

the cubic spline approach can fit any of these PSFs with high accuracy.  

Figure 5. PSF localization accuracy. Localization errors in x, y and z are plotted as a function 

of z. (A) double helix PSF (B) saddle-point PSF. 

We note that the localization errors reported in this work are all determined by fitting the 

relatively ideal, simulated images of single molecules with the same photon numbers for each 

PSF. In real experiments, the photon loss associated with generating relatively complex PSFs, 

for example by using spatial light modulators or deformable mirrors, also needs to be taken into 

account when estimating the final localization error.  

 

Conclusions 

In this work, we demonstrate that a cubic spline approach provides a 5-10% improvement in x 

and y localization accuracy and up to a 20% improvement in z localization accuracy relative to 

elliptical Gaussian fitting for a purely astigmatic PSF. The cubic spline approach has the 

additional advantage of being very flexible, as it is easily adapted to fit any experimental 

realizable PSF. It is also a practical choice as it is only ~2-3x slower than a Gaussian fitting 

approach at typical emitter densities encountered in super-resolution imaging experiments. To 

make it easier for others to explore this approach to single-molecule localization analysis, our 

implementation of this algorithm, Docker images, instructions and an example of its use are 

available on Github [24]. 
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