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Abstract  

 

Genetic risk factors for autism spectrum disorder (ASD) have yet to be fully elucidated. 

Postzygotic mosaic mutations (PMMs) have been implicated in several neurodevelopmental 

disorders and overgrowth syndromes. We systematically evaluated PMMs by leveraging whole-

exome sequencing data on a large family-based ASD cohort, the Simons Simplex Collection. 

We found evidence that 11% of published single nucleotide variant (SNV) de novo mutations 

are potentially PMMs. We then developed a robust SNV PMM calling approach that leverages 

complementary callers, logistic regression modeling, and additional heuristics. Using this 

approach, we recalled SNVs and found that 22% of de novo mutations likely occur as PMMs in 

children. Unexpectedly, we found a significant burden of synonymous PMMs in probands that 

are predicted to alter splicing. We found no evidence of missense PMM burden in the full cohort. 

However, we did observe increased signal for missense PMMs in families without germline 

mutations in probands, which strengthens in genes intolerant to mutations. We also determined 

that 7-11% of parental mosaics are transmitted to children. Parental mosaic mutations make up 

6.8% of all mutations newly germline in children, which has important implications for recurrence 

risk. PMMs intersect previously implicated high confidence and other ASD candidate risk genes, 

further suggesting that this class of mutations contribute to ASD risk. We also identified PMMs 

in novel candidate risk genes involved with chromatin remodeling or neurodevelopment. We 

estimate that PMMs contribute risk to 4-8% of simplex ASD cases. Overall, these findings argue 

for future studies of PMMs in ASD and related-disorders. 	
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Introduction 

 

Autism spectrum disorder (ASD [MIM: 209850]) has a strong genetic component and complex 

genetic architecture. Over the past decade, technological advances have allowed for the 

genomewide discovery of rare inherited and de novo mutations in ASD cohorts, including: copy 

number variants (CNVs), structural variants, single nucleotide variants (SNVs), and small 

insertions and deletions (indels).1-13 These studies, especially those focused on simplex cohorts 

(single affected individual within a family), have revealed a strong burden of de novo mutation 

that implicates hundreds of independent loci in ASD risk as well as, to a lesser yet significant 

extent, rare inherited mutations. Moreover, while many novel high confidence risk loci and 

genes have emerged from these studies, the full complement of risk factors and mechanisms 

have yet to be fully elucidated.	
  

Postzygotic mutations occur after fertilization of the embryo. Depending on their timing and 

cell lineage, these mutations may be found in the soma, resulting in somatic mosaicism, or the 

germ cells, resulting in gonadal mosaicism. Mutations occurring during early embryonic 

development can result in both types of mosaicism.14 Gonadal mosaicism is usually only 

identified when a mutation is transmitted to multiple offspring. If the gonadal mutation cannot be 

detected in peripheral tissues of the parent, this argues for a germline only origin. For simplicity, 

we will refer to these mutations generally as postzygotic mosaic mutations (PMMs), as in most 

cases their contribution to the germline is unknown. PMMs accumulate over an individual’s 

lifetime and have been shown to have a similar mutation spectrum to germline de novo 

mutations (GDMs).15 In addition to the well-known role of somatic mutations in cancer, PMMs 

have been firmly implicated in several neurodevelopmental/brain disorders including epilepsy, 

cortical malformations, RASopathies, and overgrowth syndromes.16-22 Pathways underlying 

some of these syndromes, e.g. PI3K/ATK/mTOR and RAS-MAPK, are also implicated in 

syndromic and nonsyndromic ASD. The mosaic nature of these mutations can make them 
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difficult to identify with current clinical testing, even if the correct gene is known, leading to no 

diagnosis, misdiagnosis, or misinterpretation of recurrence risk.17; 23 Importantly, when and 

where mutations occur in development can have a dramatic effect on the phenotypic 

presentation as exemplified by PIK3CA-related overgrowth spectrum (PROS).16; 24 Moreover, 

recent data has suggested that even low-level mosaicism (~1% in affected tissue) can be 

clinically significant, as shown in the affected skin/brain of Sturge-Weber patients.25 Finally, 

novel genetic etiologies may exist, driven by loci where germline mutations are embryonic 

lethal.26	
   

In previous work focusing on discovering GDMs in simplex ASD families, we were 

surprised to validate 4.2% of de novo mutations as likely mosaic in origin, including nine PMMs 

and two gonadal mosaic mutations (from a total 260 mutations), suggesting that mosaic 

mutations might be a common and under-recognized contributor to ASD risk.2 A similar 

observation has been made from de novo mutations identified in whole-genome sequencing 

from simplex intellectual disability (ID) trios.27 However, the mutation calling approaches used 

previously were tuned to detect GDMs. Here, we systematically evaluate the role of PMMs in 

ASD by leveraging a harmonized dataset12 of existing whole-exome sequences (WES) from a 

well-characterized cohort of ~2,300 families—the Simons Simplex Collection (SSC), including 

parents, probands, and unaffected siblings. Our goal was to answer several fundamental 

questions: 1. What are the rates of PMMs (detectable in whole blood DNA) in parents versus 

children? 2. How often are mosaic events in the parental generation transmitted to offspring? 3. 

Do PMMs play a role in ASD risk? 4. Do the targets of GDMs and PMMs overlap? 	
  

We first re-evaluated all previously published de novo mutations. Using a binomial 

approach, we found evidence that 11% of SNVs and 26% of indels called with germline 

methods show allele skewing consistent with mosaicism. We then developed a systematic 

method for identifying, specifically, SNVs that are likely PMMs from WES (or other next-

generation sequencing [NGS] data), which integrates calls from complementary approaches. 
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We benchmarked this approach on a high-coverage WES dataset and then performed 

extensive validations with molecularly tagged single molecule molecular inversion probes 

(smMIPs).28 Using these validation data, we developed a logistic regression model that is both 

highly sensitive and specific in distinguishing false positive from true mutations. We also 

established additional heuristics that when combined with our regression model, generate high 

confidence mosaic calls. With this more sensitive approach, we recalled genotypes on the SSC 

cohort and estimate that 22% of de novo SNVs are, in fact, PMMs arising in children. 

Unexpectedly, we found the strongest signal for mutation burden in probands for synonymous 

PMMs. These synonymous PMMs are enriched for features consistent with potential disruptions 

of splicing. We did not find strong evidence of missense PMM burden in the full cohort; 

however, we did observe increasing signal in subsets of the cohort without germline mutations, 

which is strongest in genes that are intolerant to mutations. We also found strong evidence of 

transmission of parental mosaic mutations to children. This finding has important potential 

implications for recurrence risk for families and may explain some instances of parents with 

subclinical ASD features.29 Importantly, we found nonsynonymous (NS) PMMs in high 

confidence ASD/ID risk genes and other candidate risk genes. We also identify novel candidate 

risk genes involved with chromatin remodeling or neurodevelopment. Overall, these findings 

suggest that future studies of PMMs in ASD and related-disorders are warranted. The methods 

and tools developed here will allow continued discovery of PMMs in future datasets and have 

potential translational benefits for clinical detection, case management, interventions, and 

genetic counseling. 

 

Material and Methods	
  

 

Family Selection and Sequence Data 
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We obtained the initially published1; 2; 4; 5; 11 and harmonized reprocessed12 WES data from 2,506 

families of the Simons Simplex Collection (SSC).30 Informed consents were obtained by each 

SSC recruitment site, in accordance with their local institutional review board (IRB). Oregon 

Health & Science University IRB approved our study as human subjects exempt as only de-

identified data was accessed. Exome libraries were previously generated from whole blood 

(WB) derived DNA and captured with NimbleGen EZ Exome v2.0 or similar custom reagents 

(Roche Nimblegen, Inc., Madison, WI) and sequenced using Illumina chemistry (San Diego, CA)  

at one of three centers: Cold Spring Harbor Laboratory (CSHL), University of Washington (UW), 

and Yale University School of Medicine. Where individuals had been sequenced by multiple 

centers, the library with the highest mean coverage was included in the harmonized 

reprocessed dataset (N. Krumm, personal communication).12  

For developing our methods, we initially selected 24 family quads (the pilot 24) that had 

WES independently performed by all three centers.11 WES data were merged and then 

reprocessed to match the harmonized dataset.12 We then expanded to a cohort of 400 

additional independent quad families (the pilot 400) with high median WES coverages,11 also 

requiring proportionate distribution across the three centers (Yale: 193, CSHL: 118, UW: 89). 

Finally, we expanded our analysis to the full SSC harmonized reprocessed dataset.12 Families 

with known identity issues (N. Krumm personal communication) were excluded, yielding 2,366 

families, of which 1,781 are quads and 585 are trios (Table S1). One hundred and two families 

with individuals showing elevated GDM or PMM calls were excluded post variant calling 

(Supplemental Material and Methods, Figure S1). The cohort used in the downstream analyses 

included 2,264 families, of which 1,698 are quads and 566 are trios. We removed additional 

families with low joint coverage depending on the minimum coverage requirement for analyzing 

variants of different minimum allele fractions (AF) (see Supplemental Material and Methods). 

 

Evaluating Potential Mosaic Mutations in Previously Published De Novo Calls 
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We combined reported de novo mutations for the SSC from previous publications (Table S2).1; 2; 

4; 5; 11; 12 Allele counts from prior analysis were used where available (N. Krumm, personal 

communication), and otherwise extracted on a quality-aware basis from mpileups of the 

corresponding WES using a custom script (samtools mpileup -B -d 1500 | mPUP -m -q 20 -a 

count). Reported mutation calls that had no variant reads from the quality-aware mpileup data 

were excluded. We focused our analysis on exonic and canonical intronic splice site regions (+/- 

2 base pairs [bp]). Mutations were considered putative PMMs if significantly skewed from the 

heterozygosity expectation of 0.5 AF for autosomal and X chromosome sites of females 

(binomial p <= 0.001). Sex chromosome sites of males were evaluated under a hemizygous 

expectation. We further analyzed the robustness of the data using additional filters for observed 

AF (5-35%, 10-35%, 10-25%, or corresponding hemizygous values), or at more strict deviations 

from the binomial expectation (p <= 0.0001). The observed rates of AF skewed de novo 

mutations were compared with expected null distributions of randomly sampled rare inherited 

variants by simulation (Supplemental Material and Methods). 

 

Raw Variant Calling and Annotation 

 

SNVs were recalled on individual samples using VarScan 2.3.2, LoFreq 2.1.1, and our in-house 

script mPUP (Supplemental Material and Methods). All caller outputs were combined at the 

individual level and used to generate family-level variant tables. Variants were annotated with 

ANNOVAR (03/22/15 release [see Web Resources])31 against the following databases: RefSeq 

genes (obtained 2015-12-11), segmental duplications (UCSC track genomicSuperDups, 

obtained 2015-03-25), repetitive regions (UCSC track simpleRepeat, obtained 2015-03-25), 

Exome Aggregation Consortium (ExAC) release 0.3 (prepared 2015-11-29), Exome Sequencing 

Project (ESP) 6500 (prepared 2014-12-22), and 1000 Genomes Phase 3 version 5 (prepared 
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2014-12-16). Annotation tracks did not include added flanking sequences. Population frequency 

databases were obtained from the ANNOVAR website. Initially, variants with AFs significantly 

below 50% (binomial p <= 0.001) were considered putative PMMs. For putative transmitted 

parental PMMs, which also had skewed AFs in child(ren), we required a significant difference 

between parent and child AF (Fisher’s exact p <= 0.01), with child AF > parental AF. Only PMM 

(child or parental) or GDM calls were considered for validation.	
  

 

smMIP Design, Capture, and Sequencing 

 

Three to four independent smMIPs were designed against candidate variant sites using the 11-

25-14 release of MIPGEN32 and a custom in-house selection script (Supplemental Material and 

Methods). The selected smMIPs were divided into pools with roughly equal numbers (Table S3). 

Single strand capture probes were prepared similarly to previous approaches with modifications 

(Supplemental Material and Methods).32 DNA samples prepared from WB (entire pilot 24; 78 

families pilot 400) and lymphoblastoid cell lines (LCLs) (entire pilot 24) were obtained from the 

SSC through Rutgers University Cell and DNA Repository (Piscataway, NJ). Probe captures 

and PCRs to append sequencing adaptors and barcodes were performed as previously 

described with minor modifications.33	
  	
  

Purified capture pools were then combined together for sequencing with NextSeq500 v2 

chemistry (Illumina, San Diego, CA). Overlapping reads were merged and aligned using BWA 

0.7.1. For each unique smMIP tag, the read with the highest sum of quality scores was selected 

to serve as the single read for the tag group. Validation outcomes were compared across WB 

and LCL data (where available) (Table S4). 

 

Establishing a systematic PMM calling pipeline 
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We iteratively developed best practices and heuristics through multiple rounds of validation and 

model development (Supplemental Note: Model Development and Supplemental Material and 

Methods). We first performed detailed evaluation of the higher depth pilot 24 dataset using 

smMIPs for validations (Figures S2-S9,  Supplemental Note: Model Development and 

Supplemental Material and Methods). We trained an initial logistic regression model using the 

pilot 24 initial resolutions, using only calls validated as true PMMs or false positives in the 

smMIP data. Candidate model predictors were derived from WES data (Supplemental Material 

and Methods).  

We next evaluated pilot 400 quad families (Figures S10-S13). Based on results from the 

initial validations, for all putative parental transmitted PMMs, we required more significant skew 

in parental AF (binomial p <= 0.0001), significant difference between parent and child AF 

(Fisher’s exact p <= 0.01), and child AF > parental AF (Figure S9). All putative PMMs scoring < 

0.2 in the initial logistic regression model were excluded. Validations using smMIPs were 

conducted on calls from 78 of the pilot 400 families.  All initial validation positive calls, from both 

pilot sets, were then subjected to an additional manual review of the WES and smMIP 

alignments to flag potentially problematic sites prior to modeling. 

We trained a refined logistic regression model based on the pilot 400 validation data 

(Supplemental Material and Methods, Figure S10). We further evaluated this refined model, 

applying the same filtering parameters as the training set, using the pilot 24 validation calls, 

which had been selected prior to any modeling or validations.  

We evaluated a third set of calls from both pilot sets that had not previously been 

validated due to data missingness in population frequency datasets (Supplemental Note: Model 

Development). To better separate germline from mosaic calls based on our empirical 

validations, we calculated 90% binomial confidence intervals (CI) (Agresti-Coull method) for the 

variant AFs derived from the WES data using the R binom package for all calls. Based upon the 

distribution of germline resolutions in these data, we re-classified putative PMMs as germline if 
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the upper bound of their observed AF was >= 0.4 (95% CI, one-tailed) (Figure S11). We 

additionally excluded calls annotated as segmental duplication regions/tandem repeat finder 

(SD/TRF) sites or mPUP only calls as they had a significantly higher false positive and smMIP 

probe failure rate (Figure S12). Putative PMMs passing filters from this third set of calls were 

scored with our refined logistic regression model and excluded from validations if they scored < 

0.26. We retroactively applied our refined filtering scheme to all validation calls in order to 

develop a harmonized set of high confidence resolutions and evaluated sensitivity and PPV of 

the refined model (Figure S13). Variants with a refined logistic model score >= 0.518 were 

included for additional analyses.  

 

Cohort Variant Calling and Burden Analysis 

 

Variants were called from all WES data in the harmonized reprocessed dataset and filtered with 

our best practice filtering scheme (Supplemental Material and Methods). We additionally 

required all variants be supported by at least five variant reads and present in no more than two 

families throughout the cohort to improve PPV for true PMMs (Figure S12). We removed eight 

remaining variants that had skewed AFs in both the child(ren) and parent. We defined our high 

confidence dataset as those variants with AF >= 5% (based on the AF upper 90% CI) and 45x 

minimum joint coverage in all family members (Table S5). 

For burden analysis, we selected five minimum variant AFs (5%, 7.5%, 10%, 12.5%, 

15%) at which to evaluate PMM prevalence across the entire SSC cohort. A variant was 

included for each subanalysis if its AF upper 90% CI met the minimum AF. For each AF 

threshold, we determined the minimum total depth (130x, 85x, 65x, 50x, 45x) at which we had 

approximately 80% binomial probability to observe five or more variant reads (Figure S14). 

Variants that met minimum coverage requirements in all family members were included in each 

AF burden analysis and we determined the total number of jointly sequenced bases at or above 
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each depth threshold in each family. Based on these joint coverage values, families in the 5th 

percentile or lower were excluded; in the 130x analysis the bottom decile was excluded (Figure 

S15).  

To determine mutation burden in the unique autosomal sequence, we first calculated the 

rate of mutation in each individual by summing all SNVs within a given functional class or gene 

set, e.g., for missense variants, and dividing by the total number of jointly sequenced bases 

(diploid, 2n) meeting the minimum coverage thresholds. Rates of mutation were then compared 

between groups (probands v. siblings, or fathers v. mothers) using, as appropriate, paired or 

unpaired nonparametric rank tests. To control for multiple comparisons, we used the Benjamini-

Yekutieli approach,34 which allows for dependent data structures, setting a false discovery rate 

(FDR) of 0.05. Families of tests were defined based on the dataset and mutation functional 

class (Supplemental Material and Methods). 

We calculated the mean rates for each group by summing all SNVs within a given 

functional class or gene set and dividing by the total number of jointly sequenced bases (diploid, 

2n) for all families meeting the minimum coverage thresholds. Poisson 95% confidence intervals 

for rates were estimated using the Poisson exact method based on the observed number of 

SNVs. Means were used for plotting rates and extrapolating variant counts to a full coverage 

exome.  

We performed subcohort burden analyses by separating families on whether or not 

probands had previously identified GDMs in published call sets.1; 2; 4; 5; 11; 12; 35 Mutations with no 

read support or flagged as potentially mosaic from our initial analysis of published de novo calls 

were removed (binomial p <= 0.001). We defined two subgroups based on level of disruption 

The first subgroup included families with probands that have germline de novo likely gene 

disrupting (LGD) SNVs, indels, as well as de novo CNVs that affect at least one gene (germline 

LGD list). The second subgroup included the LGD families and families where probands had 

any other germline de novo NS SNVs or indels (any germline NS list).  
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To evaluate burden in genes that show evidence of selection against new mutations, we 

used the recently updated essential gene set36, which contains human orthologues of mouse 

genes associated with lethality in the Mouse Genome Database;36; 37 and ExAC intolerant 

dataset, which denotes the probability of a gene being loss-of-function intolerant.38  

 

Analysis of PMM Properties 

 

The AF distributions between children and parents PMMs were compared by Wilcoxon-rank 

sum test using the high confidence dataset. To determine the fraction of parental PMMs that 

may be attributed to lack of grandparental data, we regenerated variant calls from the non-

merged reprocessed WES data12 for the pilot 24/400 families applying the same refined logistic 

model and final filters, but ignoring family data. We then fit the observed bimodal AF 

distributions to normal mixed-models using R package mixtools, function normalmixEM(), which 

defined two Gaussian distributions. We separated the calls into two discrete sets. G1 was 

defined by the mean plus or minus two standard deviations of the leftmost Gaussian model 

(lower AFs, µ1 = 0.09, σ1 = 0.046). G2 included the remaining higher AF calls. We then 

determined the fraction of calls remaining in each set after applying transmission filters. We 

used the fraction of variants retained in the children to estimate the number of variants we 

expect to remain in the parents if we had sequenced the grandparental generation.  

 To determine the mutational spectra, we used R package MutationalPatterns to extract 

and plot mutational contexts, calculate their relative frequency within our high confidence 

GDMs, child PMMs, and parental nontransmitted PMMs.39 We downloaded the frequencies of 

mutation within the 96 possible trinucleotides for each cancer signature (see Web Resources) 

and used the Pearson method to correlate each signatures mutational spectrum to our own.40   

Splice site distances for variants were annotated using Variant Effect Predictor (see Web 

Resources). The absolute value of the shorter of the two distances between donor or acceptor 
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site was chosen as the distance to nearest splice site. To predict the impact on splicing by 

synonymous variants, we used Human Splice Finder (HSF) version 3.0 and SPANR alpha 

version (see Web Resources).41; 42 For HSF, we used multiple transcript analysis with default 

settings and results were extracted from HTML format outputs with an in-house script (Table 

S6). Variants contained within multiple overlapping transcripts with disparate calls were 

manually filtered based on whether transcripts were coding or had complete stop/start 

information in the UCSC genome browser (Feb. 2009; GRCh37/hg19). SPANR analysis was 

performed with default settings and splice altering variants defined as described previously (5% 

> dPSI percentile or dPSI percentile > 95%).  

 

Gene Set Enrichment 

 

We examined potential enrichments of missense variants in five different gene sets that have 

been previously been evaluated using de novo mutations,11 including an updated version of the 

essential gene list.37 We downloaded genesets from GenPhenF (See Web Resources) and then 

mapped gene symbols to our RefSeq ANNOVAR annotations. To determine enrichment, we 

took a similar approach as previously described, using the null length model.11 However, we 

calculated joint coverage for all genes within a set as well as all the genes outside of that set 

(across the cohort) and used this value to estimate the expected proportion of mutations (p). 

Since more than one gene can overlap any genomic position, for this analysis we counted 

based on all genes impacted. Thus, if a mutation or genomic position overlapped a gene within 

the set and outside of the set, it was counted twice. We tested for gene set enrichment using a 

binomial test in R binom.test(x, n, p), where x = number of genes impact within set, n = total 

number of genes impacted, p = expected mean based on joint coverage.	
  

To determine if genes targeted by missense or synonymous mutations in probands 

showed enrichment for ASD candidate gene rankings, we used genomewide gene rankings 
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generated from two previous studies.36; 43 The LGD intolerance ranking is based on the load of 

LGD mutations observed per gene.36 The LGD-RVIS is the average rank between LGD and 

RVIS (another measure of constraint) scores.36; 44 ASD association rankings are the results of a 

machine learning approach that uses the connections of ASD candidate genes within a brain-

specific interaction network to predict the degree of ASD association for every gene.43	
  

 

Intersection of PMMs with Previously Published GDMs 

 

Degree of overlap of GDMs and PMMs for different functional classes between probands and 

siblings was determined using Fisher’s exact test. Both the high confidence and burden (15%-

45x) datasets were evaluated. Our high confidence (HC) risk gene set was curated using the 27 

ASD genes reported by Iossifov et al. and 65 ASD genes reported Sanders et al. (FDR <= 

0.1).11; 35 We also included 94 genes enriched for GDMs in developmental disorders from the 

Deciphering Developmental Disorders study and 91 genes from the Autism 

Spectrum/Intellectual Disability (ASID) network study.45; 46 Combined the HC risk gene sets 

includes 171 unique genes. 

 

Results 

 

Reanalysis of Previously Reported De Novo Mutations 

 

We began by analyzing the existing set of previously reported exonic or canonical intronic splice 

site de novo mutations in the SSC (Table S2).1; 2; 4; 5; 11; 12 We evaluated 5,076 SNVs (probands: 

2,996; siblings: 2,080) and 416 small indels (probands: 273; siblings: 143) (Figures 1A-D and 

S16-19 and Tables S7-S12). Variants had a mean depth of 77.5x. We found an excess of 

mutations with observed AFs lower than expected for germline events using a binomial 
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threshold of 0.001 (Figures 1A, C and Table S7). We evaluated the likelihood of this excess 

within the autosomes sequence by simulating a null distribution from rare inherited SNVs 

(Supplemental Materials and Methods, Figures 1B, S17 and Table S8). For autosomal de novo 

SNVs, we observed that 305/2,893 (11%) of affected proband calls and 191/1,993 (10%) of 

unaffected sibling calls show evidence of being PMMs. For rare inherited SNVs, we never 

observed the same degree of skewing of calls with lower AFs (simulation means: probands-

80/2,893 [2.8%]; siblings-56/1,993 [2.9%]; p < 0.0001, by simulation). A higher potential PMM 

rate is observed in sites that annotated as SD/TRF loci, 55/231 (24%) in probands and 28/144 

(20%) in siblings (p = 0.0166 and 0.41, respectively, by simulation). These SD/TRF sites are 

known to be more prone to false PMM calls due to uncertain mapping of WES reads. However, 

these SD/TRF loci only represent 9% of the called mutations and thus have a modest effect on 

the overall rate. We observed a similar rate of potential SNV PMMs (8-9%) when applying a 

range of additional AF cutoffs (5-35%, 10-35%, 10-25%), more strict binomial deviations (p <= 

0.0001), or both (Table S9 and Table 10), suggesting these are robust estimates. In sharp 

contrast, we did not observe an excess of calls with higher than expected AFs (Table S8). In 

probands, the relative proportion of mutation types, i.e. fraction of synonymous or missense, 

were similar between calls classified as GDMs versus PMMs. Interestingly, in siblings, the 

fraction of synonymous calls appears reduced in PMMs compared with GDMs (48/217 [22%] v. 

531/1,863 [29%], p = 0.054, two-sided Fisher’s exact) (Table S7).  

For indels, we also observed a large number of potential PMMs exceeding the binomial 

expectation (Figures 1B,D and Table S11), with more variability overall between probands and 

siblings (57/268 [22%] v. 48/140 [35%], respectively, p = 0.005, two-sided Fisher’s exact). For 

rare inherited indels, we never observed the same degree of skewing of calls with lower AFs 

(simulation means: probands-16/268 [6%]; siblings-10/140 [7%]; p <0.0001, by simulation) 

(Figures 1D, S18-S19 and Table S8). Similar to SNVs, we found an elevation in the rate for 

SD/TRF loci (probands-7/18 [39%]; siblings-9/16 [56%] ; p = 0.0003 and <0.0001, respectively, 
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by simulation). However, the percent PMM estimates were less robust, compared with SNVs, 

when applying additional AF cutoffs, more strict binomial deviations, or both (Tables S11 and 

S12). For example, the overall PMM rates using the stricter binomial threshold reduced to 

40/268 (15%) for probands and 33/140 (24%) for siblings (p = 0.045, two-sided Fisher’s exact), 

which nevertheless still exceeded the null expectation (p < 0.0001, by simulation) (Table S8). 

We observed no de novo indels with significantly deviated higher AFs.  

 We next examined validation data previously reported or available for a subset (63/545) 

of the predicted mosaic calls, which included Sanger and NGS data. We found 39/63 (62%) 

calls showed strong evidence of allele skewing in the validation data (Table S2). These data 

argue the majority of these calls are bona fide PMMs but that systematic approaches tuned to 

detecting PMMs are still needed.  

 

Developing a Systematic Mutation Calling Framework  

 

We sought to perform a systematic analysis of PMMs with methods specifically geared toward 

SNV mosaic mutations, which do not require a matched ‘normal’ tissue data comparison (Figure 

1E). Moreover, we expected a large number of suspected PMM calls to be false because of 

random sampling biases, mapping artifacts, or systematic sequencing errors. Therefore, we 

worked to build a robust calling framework that would integrate different approaches and could 

be empirically tuned based on validation data.   

We evaluated several standalone (single sample) SNV mosaic mutation callers, 

including Altas247, LoFreq48, Varscan249, and a custom read parser (mPUP) using simulated 

data containing artificial variants at 202 loci. We found that within the simulated data, caller 

sensitivity greatly varied at different depths and AFs, but many had high PPV (Table S13 and 

Table S14). Based on their complementary performances at different depths and AFs, we 

selected Varscan2, LoFreq, and mPUP for further evaluation.  
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 Next, we took advantage of the fact that 24 quad families (96 individuals) had WES 

independently generated by three centers, providing an opportunity to empirically evaluate 

these methods on a combined remapped and merged high-depth WES dataset (merged pilot 

24: average mean coverage 208x) (Figures S2B and S15A). We obtained high confidence 

validation data from at least one DNA source using smMIPs and Illumina sequencing for 

645/902 (72%) of the predicted PMM and 56/63 (84%) of the GDM sites (Figure S3 and Table 

S4). Not surprisingly, we found the majority of the PMMs predicted by a single variant caller 

were false positives (345/347, 99%), whereas those called by at least two other approaches had 

a better PPV (162/298, 54%) (Figure S7). In addition, a number of PMMs were in cis with 

existing heterozygous polymorphisms. PMM alleles tracked with specific haplotypes, but were 

absent from a number of overlapping reads, strongly suggesting that these are bona fide 

postzygotic events (Figure S4). We further found that for transmitted variants, we could 

eliminate most of the mischaracterized calls that validated as parental germline by requiring a 

more significant binomial deviation and performing a Fisher’s exact test of the read counts from 

the parent-child pair (Figure S9). Some of these transmitted variants showed consistently 

skewed AFs that transmitted in a Mendelian fashion, suggesting they are either systematically 

biased or multicopy sites that we co-sampled (Figure S5). 

 Using these pilot 24 validation data, we constructed an initial logistic regression model 

(Supplemental Material and Methods). We then applied this initial logistic regression model and 

additional filters for ambiguous transmitted sites to an independent set of 400 quad families 

(Material and Methods, Figure S10). We performed smMIPs validation on WB DNA samples 

from 78 of these quads and obtained high confidence validation data on 1,388/1,754 sites.  

 Based on manual inspection of the WES and smMIP alignment data, we identified 

additional features associated with poor prediction outcomes or problematic genomic regions, 

including multiple mismatches within the variant reads and presence in multiple families 

(Figures S6 and S12A-B). We added filters based on these features to the pilot 400 validation 
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set and built a refined logistic regression model (Figure S10). The model performed well in 3-

way cross validations with sensitivity estimated at 92% and PPV at 80% (threshold 0.26) (Figure 

S13A). To further evaluate this model, we rescored the pilot 24 validation sites with and without 

additional filters (Material and Methods). Importantly, these calls were selected and validated 

prior to model development, giving an independent set of data to evaluate performance. These 

data performed better than the training data (after removing mPUP only calls), likely due to the 

increased WES coverage of the pilot 24 samples with sensitivity of 94% and PPV of 83% 

(threshold 0.26) (Figures S13C-D). 	
  

As we specifically developed our model to separate predicted PMM calls that validate as 

false versus true variants, regardless of whether they were mosaic or germline, we 

subsequently examined the validation data to determine if an additional heuristic could further 

distinguish true mosaic calls from calls that validated as germline. We observed that calls 

validating germline tended to have higher observed WES AFs. We calculated the 90% binomial 

CI (95% one-sided) for the observed AF as a potential complement to the observed significant 

binomial deviations. We found that the vast majority 112/113 (99%) of validated PMM calls had 

upper CI bounds that remained below 0.4, while bounds for the majority of true germline calls 

25/33 (76%) fell above this threshold (Figure S11). In addition, we observed that a significant 

fraction of the false positive calls exceeding our logistic score threshold (5/26, [19%]) were 

annotated as SD or TRF sites (Figures S12C-D). Moving forward we chose to remove these 

SD/TRF sites and re-classify mosaic versus germline status based on the AF binomial CI.  

Finally, we scored and filtered the pilot cohorts using these parameters and conducted a 

third set of validations on PMM and GDM calls not previously evaluated (Supplemental Note: 

Model Development). We evaluated these new data and our previous validation calls under 

these harmonized filters (Figures S13E-F). We observed that across all test sets (excluding 

training data), both sensitivity and PPV converged at a logistic score of 0.518 (sensitivity 0.83, 

PPV 0.85). At this score threshold, 21/22 (95%) of mosaic predictions that validated as true 
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variants were confirmed as mosaic in children (all test sets). We chose to use this more 

stringent score threshold for our subsequent burden analysis. In addition, we removed calls with 

less than five variant allele reads as these disproportionately contributed to false calls (Figure 

S12E).  

 

Evaluation of Mutation Rates and Burden in Children with ASD 

 

Using this approach we recalled SNVs in the SSC, in both children and parents, from the 

existing harmonized reprocessed WES data (average mean coverage 89x).12 We identified 687 

total PMMs originating in the children from 1,699 quads and 567 trios passing SNV QC metrics 

(Tables 1 and S5). We re-identified 3,445/4,198 previously published SNVs GDMs, which were 

not flagged as potentially mosaic, and 1,064 novel calls. Applying our high confidence call set 

criteria (5% minimum AF and 45x joint coverage) resulted in 470 PMMs, of which 332 were not 

part of the published GDM calls (Figure 1F and Table 1). Of the 452 previously published SNV 

GDMs that we initially flagged as potentially mosaic, 233 were called by our approach (196 as 

mosaic), of which 157 remained in our high confidence call set (138 as mosaic, 19 as re-

classified germline) (Figure 1F). Likewise, applying the high confidence call set criteria reduced 

the GDM count to 1,677, of which only 10 were novel. Compared to our analysis of previously 

published de novo SNVs, we observed a higher fraction of mosaic mutations amongst the de 

novo calls in children, 470/1,677 (22%), consistent with increased sensitivity of our mosaic 

targeted approach (Table S15).  

In the SSC, de novo large gene disrupting CNVs, likely gene disrupting (LGD) GDMs, 

and missense GDMs have been shown to have a greater mutation burden in individuals 

affected with ASD versus their unaffected siblings.4; 11; 50 We reasoned that the burden of PMMs 

might differ based on embryonic timing given that an early embryonic mutation would contribute 

more substantially to postembryonic tissues. Therefore, we evaluated burden across the entire 
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SSC cohort at several defined minimum AFs, as a surrogate for embryonic time, and 

corresponding joint family coverage thresholds (AF-COV): 5%-130x, 7.5%-85x, 10%-65x, 

12.5%-50x, and 15%-45x (Figure S14 and Table 1). 

 We first examined the mutation burden of the unique autosomal coding regions in quad 

families exclusively as they provided a matched set of child samples (Material and Methods). 

Within our 15%-45x GDM calls, we recapitulated the previously observed mutation burdens for 

missense (p = 0.003, one-sided Wilcoxon signed-rank test (WSRT)) and nonsense/splice 

mutations (p = 0.00025, one-sided WSRT) and lack of burden for synonymous mutations, 

demonstrating these findings are robust to removing potential PMM calls. Mean rates were 

similar across minimum AF-COV thresholds with a slight trend toward lower rates at high 

minimum depths. In contrast, for PMMs we see an increase in mutation rate at higher depths 

and corresponding lower AFs. This is in line with expectations as newer mutations (lower AFs) 

would accumulate during development. Given the low number of nonsense/splice mutations 

(Figure 2A), we restricted our burden analyses to synonymous and missense PMMs. We 

observed no bulk mutation burden signal for missense PMMs (Figure 2B). Unexpectedly, we 

observed an increased burden of synonymous PMMs in probands (Figure 2C). The signal was 

strongest in the 12.5%-50x subanalysis with probands having twice as many mutations (32 in 

probands or 7.2x10-10/base pair v. 16 in siblings or 3.6x10-10/base pair, p = 0.0024, two-sided 

WSRT, FDR < 0.05). This trend continued for the three lower AF windows, but these did not 

exceed an FDR of 0.05. We extrapolated the observed mean per base rates to the full unique 

autosomal RefSeq exome (31,854,496 bases/haplotype, including canonical splice sites) in 

order to calculate the average differential between probands and siblings, similar to the analysis 

performed previously for GDMs.11 Based on the 12.5%-50x data, we found probands had a rate 

of 0.046 synonymous PMMs per exome and siblings 0.023, suggesting 50% of proband 

synonymous PMMs contribute to ASD risk. The differential between probands and siblings was 
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0.023, which translates to 2.3% of simplex cases in the overall cohort harboring a synonymous 

PMM related to ASD risk. 

We next combined the data from quad and trio-only (father, mother, proband) families to 

increase the number of mutations and conducted an exploratory analysis of mutation rates in 

subsets of the full cohort. Since a large fraction of the SSC has GDM events that are likely 

contributory, we reasoned that grouping families by presence or absence of proband GDMs of 

different severity (LGD/disruptive CNV v. any NS) might improve our ability to detect any PMM 

signal that might be present. Based on the 12.5%-50x data in families without a germline LGD, 

we observed burden signal similar to the full cohort (p = 0.004, two-sided Wilcoxon rank-sum 

test [WRST], FDR <0.05). However, the full cohort data did not meet the FDR threshold using 

the less powerful unpaired test data. In contrast, for the families without any reported NS GDMs, 

we observed a dramatic depletion of synonymous PMM events in the unaffected siblings, with a 

proband to sibling rate ratio of 10 (Figure 2D). In this group without NS GDMs, this equates to 

0.038 synonymous PMM events per proband exome and 0.004 per sibling exome (differential of 

0.034), suggesting 89% of this mutation class contributes to ASD risk.  

Next, we examined missense PMMs using the two cohort subgroupings at the 15%-45x 

threshold. We observed a non-significant trend toward burden of missense PMMs in probands 

for families either without any LGD GDMs (rate ratio 1.28) or without any NS GDMs (rate ratio 

1.49) (p = 0.085 and p = 0.076, respectively, one-sided WRST) (Figure 3A). It has now been 

well documented using several approaches that LGD GDMs in probands show enrichments for 

genes that are highly conserved/intolerant to LGD mutations.11; 50; 51 We reasoned that missense 

PMMs relating to ASD risk could also show similar enrichments. We selected two intolerant 

gene sets, an updated set of essential genes (n = 2,455)37 and the recently published ExAC 

intolerant set (n = 3,232).38 These subanalyses showed increased effect sizes, but none of 

these results exceeded a FDR of 0.05. For both essential and ExAC intolerant sets, we 
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observed similar trends for enrichments of missense PMMs in probands (rate ratios 1.4, p = 

0.093 and p = 0.13, respectively, one-sided WRST).  

When combining these two approaches, which subdivide the cohort and gene targets, 

we saw the strongest effects. In the subset of families without LGD GDMs, we saw a stronger 

effect for both essential and ExAC intolerant genes (rate ratios 1.4 and 2, p = 0.034 and p = 

0.025, respectively, one-sided WRST). We observed similar results when restricting to quad 

only families. Missense PMMs in essential/intolerant genes occur at a rate of 0.12 events per 

exome in probands who do not have a LGD GDM and at a rate of 0.11 for intolerant genes (0.06 

and 0.05 for siblings, respectively, differentials 0.06). Interestingly, the families without any NS 

GDMs showed the largest effect in the ExAC intolerant set (ratio 2.6, p = 0.047, one-sided 

WRST), but similar rates to the full cohort in the essential gene set (ExAC: 0.12 events per 

proband, 0.05 per sibling, 0.07 differential). Based on these differentials, we estimate that 6-7% 

of probands without LGD or NS GDMs have a missense PMM in an essential/intolerant gene 

contributing to risk. Adjusting to the full cohort, gives a range of 2.1-5.6% of probands harboring 

a missense PMM in an essential/intolerant gene related to ASD risk. 	
  

 

Parental PMM Rates and Transmission 

 

We divided PMMs originating in the SSC parents into transmitted and nontransmitted mutations 

(Tables 2 and S15 and Figure S4). We identified 1,293 nontransmitted (654 in fathers and 639 

in mothers) and 92 transmitted (52 in fathers and 40 in mothers) total PMMs in our high 

confidence call set. For transmitted mutations, which by definition require the postzygotic 

mutation contribute to both soma and germline, we required a stricter deviation from the 

binomial expectation based on empirical validation data (p <= 0.0001). The overall PMM rates 

were similar between fathers and mothers for different mutation functional classes and across 

AF-COV windows (Figure S20). We did see a noticeable, though non-significant, trend toward 
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higher transmitted synonymous rates in fathers. As with the children’s PMMs, we observed 

slight increases in mutation rate at higher depths and corresponding lower AF thresholds. In the 

high confidence call set, we found the PMM rate to be 2.6-fold greater in the SSC parents 

relative to their children. However, we expect that some of this bias may be due to differences in 

filtering out transmitted sites that show false mosaic signal, as we do not have the previous 

generation, i.e. grandparents, to compare to as we do for the children. Therefore, we looked at 

variants in a subset of the cohort and determined the fraction of variants remaining in children 

before and after applying transmission filters. Using this rate, we estimated the number of 

PMMs expected to be filtered from the parental calls based on transmission. We estimate that 

40% of our parental PMM calls are in excess of what is expected and likely attributed to 

incomplete filtering (Figure S21). Applying this correction reduces the parental excess PMM rate 

to 1.6-fold greater. Based on the children, two-thirds of filtered calls appear to be systematically 

biased as they are skewed in both generations. One-third of these calls are only skewed in a 

single generation with AFs > 20%, suggesting they are likely stochastic events.  

The increased rate of PMMs in parents compared to children is in line with previous 

observations that PMMs accumulate with age.15; 52 We also observed an overall trend toward an 

increase in the rate of PMMs with parental age for both sexes (Figure S22A). The rate of PMMs 

markedly increases after age 45 and there is a significant difference in rate between parents 

younger than 45 as compared to those 45 and older (mothers-rate ratio 1.2, p = 0.04; fathers- 

rate ratio 1.3, p = 0.01, one-sided WRST) (Figure S22B). We also saw that the number of 

individuals with multiple PMMs (adjusted for coverage differences) within a given age range 

increased as well (Figure S22C). Recent studies have also demonstrated a rise in PMMs in 

particular genes that result in aberrant clonal expansions (ACEs) that are specific to blood 

cells.52-55 We did not find strong evidence for enrichment of PMMs in 42 genes with recurrent 

ACE associated mutations from three studies of hematopoietic clonal expansion (parents-obs: 

9, exp: 6.6, p = 0.17; children-obs: 5, exp: 2.3, p = 0.07; two-sided binomial).53-55 However, 
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among the parents we did find recurrent PMMs in two of the most frequently mutated ACE-

related genes, DMNT3A (four nonsense and one missense) and TET2 (two missense). These 

PMMs did occur in relatively older individuals for our cohort, 45-50 years old. Two missense 

PMMs in TET2 were also observed in the children.  

Within the 45x joint coverage data, we found that 7-10% of parental PMMs were 

transmitted to one or more children depending on the minimum AF threshold (5% v. 15%), 

which requires an early embryonic origin (Table 2). Moreover, in our high-depth validation data 

with final filters applied, we found 1/164 GDM predictions showed evidence of low AF in 

parental DNA, which was not detected by WES (Table S4). Taken together, these data argue 

that at a minimum 7-11% of new mutations are likely occurring prior to germline specification. In 

addition to these mutations that showed evidence of mosaicism in the parental WES/smMIP 

data, we also identified six obligate mosaics given their de novo presence in two offspring, i.e. 

gonadal mosaic mutations (Table S5). These gonadal mutations make up 0.66% of the germline 

mutations in the children. Finally, within the quad families of our high confidence call set we did 

observe skewing of transmission to siblings (18 to both, 39 siblings, 22 probands). 	
  

 

Properties of PMMs 

 

We next examined additional properties of PMMs from the high confidence call set (Table S5). 

We examined the AF distributions of PMMs and found that between parents (fathers and 

mothers), and likewise between children (probands and siblings), AF distributions were similar 

(Figure 4). Therefore, we combined parental calls and child calls, respectively. We observed 

that the nontransmitted parental PMMs have a distinct AF distribution, which is bimodal, and 

significantly different from both transmitted parental PMM and child PMM distributions 

(nontransmitted parental v. transmitted, p = 7.07 x 10-14, nontransmitted parental v. children, p = 

2.99 x 10-14, two-sided WRST, FDR <0.05). Our analysis of transmission filtering suggests that a 
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major fraction of calls from the rightmost portion of the distribution are false mosaic calls that 

would have been filtered given the availability of grandparental data (Figure S21). Interestingly, 

however, the parental transmitted PMM distribution closely resembles the rightmost mode of the 

nontransmitted distribution, suggesting that this subset is still representative of likely early 

embryonic events, a fraction of which are also found in the germ cells. We further examined the 

AFs of the parental PMMs taking into account the confidence intervals of the AFs, similar to how 

we empirically separated germline and mosaic calls (Figure S23). Although we found some 

transmitted variants within the low AF range, the vast majority had AF CIs in excess of 10% 

(92/94 [98%]), suggesting early embryonic origin for PMMs within this AF range and 

consequently the largest risk for transmission.  

 We also examined the mutational spectra of GDMs and PMMs. As has been previously 

demonstrated,15 we found the majority of mutations are transitions over transversions for both 

GDMs and PMMs (parents and children), with the most common mutation being C>T transitions 

at CpG dinucleotides (Figure S24A). The relative frequency of mutations within trinucleotides 

showed strongest correlation with previously described cancer signature 1,40 for both GDMs and 

PMMs (Figures S24B-C). Signature 1, which is characterized by spontaneous deamination of 5-

methylcytosine, is indicative of endogenous mutational processes and associated with all 

cancer types.40 Unlike previous results,15 our second strongest correlated cancer signature was 

6, which is associated with defective DNA mismatch repair.40 

 

Potential Impact of Synonymous PMMs on Splicing 

 

We hypothesized that if the observed burden of synonymous PMMs contributed to ASD risk, 

one possible mechanism would be by disrupting splicing within the associated exon. If this was 

the case, we expected proband synonymous PMMs to be preferentially localized near existing 

canonical splicing sites, i.e. the starts or ends of exons.56; 57 Therefore, we calculated the 
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absolute minimum distances of all synonymous PMMs and GDMs to their closest splicing site 

(Figure 5). We found the proband synonymous PMM distribution to be shifted towards splicing 

sites compared to both sibling and parental synonymous PMM distributions (p = 0.017 and 

p=0.008 respectively, two-sided WRST, FDR < 0.05), while the sibling distribution was similar to 

the parental (p = 0.61, two-sided WRST). We observed a similar shift towards splice sites for 

GDMs in probands as compared to siblings (p = 0.005, two-sided WRST, FDR < 0.05).  

We further evaluated potential effects of synonymous mutations on splicing 

computationally using HSF.41 HSF utilizes a collection of splicing prediction approaches that 

assess disruptions of known splicing factor binding motifs through: position weight matrix 

analysis, comparing presence of the mutant or wild type sequence in multiple putative splice 

regulation motif collections, and performing maximum entropy modeling. HSF reported 

significantly more instances of putative splice altering mutations for proband synonymous PMMs 

(70/78) when compared to siblings (25/41) (p = 0.0005, odds ratio, 5.506, 95% CI 1.946-16.836, 

two-sided Fisher’s exact) (Table S6). Synonymous GDMs showed no enrichment (proband-

188/235 v. sibling-137/177, p = 0.544, odds ratio, 1.168, 95% CI 0.726-1.879 two-sided Fisher’s 

exact). When restricting to synonymous PMMs that occur within 50 bp of the start or end of an 

exon, where splicing regulatory elements are enriched58, we observed a stronger enrichment 

(proband-45/53 v. sibling-5/12, p = 0.00378, odds ratio, 7.53, 95% CI 1.618-38.861, two-sided 

Fisher’s exact). We did not observe a similar enrichment for proband synonymous GDMs near 

splice junctions. To assess the robustness of HSF findings, given the high call rate of splice 

altering variants, we removed the two most frequently called matrices and reclassified variants. 

We still observed an enrichment of proband synonymous PMMs predicted to alter splicing (all 

variants:	
  proband-53/79, sibling-18/41, p = 0.019, odds ratio, 2.60, 95% CI 1.20-5.66; within 50 

bp: probands-34/50, sibling-5/15, p = 0.033, odds ratio, 4.25, 95% CI 1.24-14.5, two-sided 

Fisher’s exact).  
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To independently assess splice altering variant enrichment, we applied a recently 

reported machine-learning based approach, SPANR.42 SPANR requires a variant to be within 

100 bp from an exon start or end site and be located within an exon flanked by an exon on 

either side. This limited our SPANR analysis to 68 proband and 29 sibling PMMs. SPANR 

reported a significant enrichment of splice altering synonymous PMMs in probands (proband-

15/68, v. sibling 1/29, p = 0.03, odds ratio, 7.81, 95% CI 1.09-344.8, two-sided Fisher’s exact). 

Similarly, proband PMMs remained enriched for splice altering variants (though not significantly) 

when restricting to mutations within 50bp of a canonical splice site (proband-14/46, sibling-1/13, 

p = 0.15, odds ratio 5.13, CI 95% 0.64-239.9, two-sided Fisher’s exact). 

 

Geneset Enrichment  

 

We applied a similar approach as Iossifov and colleagues to look for enrichments of PMMs 

within different gene sets using our high confidence dataset.11 Using expected values generated 

from joint coverage for the cohort, we examined whether our PMMs/GDMs showed more or less 

mutations than expected independently for probands and siblings. As expected, our GDM 

dataset showed similar enrichments or lack thereof to previous reports (Table 3). In probands, 

we found enrichment (1.8-fold) for missense PMMs intersecting chromatin modifiers (p = 0.043, 

two-sided binomial) and depletion of missense PMMs in embryonically expressed genes (p = 

0.024, two-sided binomial). Interestingly, missense GDMs showed no evidence of enrichment or 

depletion for these gene sets, while LGD GDMs have previously been shown to be enriched.11 	
  

 Recently, several groups have taken different approaches to generate genomewide ASD 

candidate risk gene rankings and predict novel gene targets.36; 43 These approaches have 

largely been validated on LGD GDMs. We explored whether our high confidence PMM calls 

showed any shift in ASD candidate gene rankings for probands compared with their unaffected 

siblings (Table S16). We evaluated rankings based on gene mutation intolerance (LGD rank, 
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LGD-RVIS average rank)36 or based on a human brain-specific gene functional interaction 

network (ASD association).43 At the population level, we found only non-significant increases in 

LGD-RVIS rankings for proband synonymous and essential missense PMMs in the subcohort of 

families without any proband NS GDMs (p = 0.029 and p = 0.073, one-sided WRST). We also 

observed no significant shifts in rankings for missense GDMs. 

 

Targets of Proband Mosaic Mutations  

 

To determine if germline and mosaic mutations in probands share common targets, we 

intersected missense PMMs from the high confidence call set and the burden subset (15%-45x) 

with the re-classified published GDM calls. We observed no enrichment of proband missense 

PMMs with genes that are targets of sibling GDMs of any type. However, we did find an 

apparent enrichment of genes that are targets of proband missense GDMs within proband 

missense PMMs from the burden call set  (proband: 25/100; sibling: 9/69, p = 0.042, OR, 2.222, 

95% CI 0.904-5.582, one-sided Fisher’s exact), suggesting some common ASD risk targets for 

mosaic and germline mutations.   

We next examined the phenotypic features of probands with PMMs from our high 

confidence and re-classified published call sets. We focused on probands with NS mutations 

that intersect genes with previously published NS GDMs, as these genes have higher prior 

probabilities for being involved in ASD risk.11 We compared a range of clinical indices among 12 

subjects with LGD PMMs (mean age: 9.9 years, standard deviation [SD] 3.8; 83.3% male) and 

45 subjects with missense PMMs (mean age: 9.5 years, SD 3.9; 81.8% male) (Supplemental 

Material and Methods and Supplemental Note: Case Reports). We found no between-group 

differences with respect to developmental features, autistic symptomatology, or non-autistic 

behavioral and emotional problems. Level of functioning, however, appeared to be slightly more 

impaired in the LGD PMM group. This was evidenced with Vineland standardized scores that 
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were significantly lower in the LGD versus the missense group for the Adaptive Behavior 

Composite (66.4 v. 73.8, p = 0.037, t-test) and the Social Interpersonal domain score (64.5 v. 

72.3, p = 0.041, t-test) whereas differences in standard scores for the Communication (69.5 v. 

77.0, p = 0.057, t-test) and Daily Living Skills (69.8 v. 77.6, p = 0.076, t-test) domains showed 

non-significant trends. Intellectual functioning showed differences of the same magnitude and 

direction. Full scale IQ showed a mean difference of 18.1 points (66.2 v. 84.3, p = 0.060, t-test) 

that was not significant largely due to the large standard deviations of IQ scores in both groups 

(26.8 and 29.5, respectively). Differences for nonverbal IQ (71.8 v. 85.4, p = 0.142, t-test) and 

verbal IQ (66.7 v. 83.8, p = 0.099, t-test) were of the same magnitude but were not statistically 

significant.  

In addition, we intersected all predicted NS PMMs (our high confidence call set plus re-

classified published [unique CDS]) with 171 genes that have reached high confidence levels for 

their risk contribution for ASD and developmental disorders from large WES and targeted 

resequencing cohorts.11; 35; 45; 46 In probands, 15/496 PMMs intersect (9 missense, 6 LGD) while 

only 4/354 PMMs intersect in siblings (3 missense and 1 LGD). The novel, i.e. not published in 

the GDM call set (Table S14),11; 12 proband events included missense PMMs in: CHD2 (MIM: 

602119, p.Glu91Gly), CTNNB1 (MIM: 116806, p.Arg376His), RELN (MIM: 600514, 

p.Gly3239Arg), KIF1A (MIM: 601255, p.Ala219Thr), and KMT2C (MIM: 606833, p.Arg4806Gly) 

(Table 4). We also identified a novel missense mutation in SCN2A (MIM: 182390, 

p.Ser1124Cys) that was transmitted to the proband from the mother. Our SNV PMM pipeline re-

identified published de novo calls that we re-classified as likely mosaic events, including: 

KANSL1 (MIM: 612452, p.Gln243His), KAT2B (MIM: 602303, splicing), INTS6 (MIM: 604331, 

p.Arg596Ter), SYNGAP1 (MIM: 612621, p.Arg1019Cys), and TBL1XR1 (MIM: 608628, 

p.Leu282Pro) (Table 4). Only the KANSL1 and INTS6 PMMs met the high confidence 45x joint 

coverage criteria. Mosaic re-classified indels included: DIP2A (MIM: 607711, 

p.Leu552ValfsTer34), GIGYF1 (MIM: 612064, p.Thr381ArgfsTer13), SRCAP (MIM: 611421, 
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p.Asp2137GlufsTer25), and ZC3H4 (MIM: NA, p.Lys449ThrfsTer12) (Table 4). With the 

exception of probands with the CHD2 and DIP2A PMMs, none of these other probands have NS 

GDMs in other strong risk genes. 

Among the remaining NS PMMs, we found seven mutations in genes overlapping 

proband LGD GDMs (sibling NS GDM count <= 1) (Table 4). Of particular interest are novel 

nonsense PMMs in BAZ2B (MIM: 605633, p.Arg1290Ter), UNC79 (MIM: 616884, 

p.Arg2070Ter) and USP15 (MIM: 604731, p.Tyr217Ter). BAZ2B is part of the bromodomain 

gene family involved in chromatin remodeling.59 UNC79 works in concert with UNC80 to 

regulate the excitability of hippocampal neurons through activation of sodium channel NALCN.60 

USP15 is a deubiquitinase that plays many roles across the cell including modulating immune 

response through TGF-β and NF-κB pathways.61  

Ten of the remaining NS PMMs intersect gene targets of missense GDMs (sibling NS 

GDM count <= 1) (Table 4). Of note are novel nonsense PMMs in the chromatin remodeling 

factor SSRP1 (MIM: 604328, p.Trp53Ter) and the membrane trafficking protein VSP13D (MIM: 

608877, p.Arg3518Ter). Novel missense PMMs included: DMXL2 (MIM: 612186, 

p.Asp1152Gly), SYNE1 (MIM: 608441, p.Ala777Val), and CFAP74 (p.Arg376Lys). 

Among the synonymous PMMs, we identified four novel candidate genes based on 

known roles in neurodevelopment, predicted creation of a new exonic silencing site, and no 

other NS GDM events in ASD risk genes in the proband: ACTL6B (MIM: 612458, p.Ser120=), 

CCT6B (MIM:610730,  p.Ala295=), FYN (MIM: 137025, p.Leu351=), and STMN1 (MIM: 151442, 

p.Ala73=). Notably, ACTL6B is a neuron-specific component of the SWI/SNF chromatin 

remodeling complex.62 We also highlight a synonymous PMM in COL5A3 (p.Ser820=) as: it has 

a high likelihood of impacting splicing by altering the wild type 3’ exonic donor site, a missense 

PMM (p.Pro1113Leu) and a LGD GDM are present at this locus, and we found no other NS 

GDMs associated with ASD risk in the proband. Taken together, these new mosaic calls provide 
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additional support for high confidence ASD risk genes and highlight novel candidates as 

potential contributors to ASD risk.  

 

Discussion 

 

The aim of our study was to systematically evaluate exonic PMMs in a large-family based SSC 

cohort and their potential role in ASD. Historically, PMMs, much like GDMs, have been 

intractable to systematically study genomewide. However, NGS technologies have now made 

this class of genomic variation accessible, genomewide, at single base resolution. A number of 

recent reports have demonstrated that PMMs are relatively common in both healthy and 

neurodevelopmental disorder cohorts, including intellectual disability, ASD, or general 

developmental delays.2; 15; 27; 63; 64 However, how frequent and widespread these events might be 

in early and/or late development and how much risk they contribute to complex disorders has 

yet to be fully elucidated. 

 We began by analyzing the underlying variant support data for previously reported de 

novo mutations from the SSC WES data. These calls were generated using a variety of calling 

approaches designed to identify germline variants. We found evidence for 11% of SNVs and 

26% of indels having AFs consistent with a PMM arising in the child. This is in excess of our 

original observation of 3.5% (9/260) of mutation events consistent with child PMMs, using only 

209 families.2 A similar analysis of de novo mutations identified from whole-genome sequencing 

of simplex ID trios validated 6.5% (7/107) as PMMs.27  

 As the previously published SSC de novo calls were all generated with germline variant 

callers, we reasoned that re-analyzing the WES data systematically with approaches tuned to 

detect PMMs would reveal novel mutations, especially those with lower AFs (<20%). Therefore, 

we sought to develop generalizable methods to identify PMMs and GDMs that can be applied to 

NGS data, without matched normal data but in the context of nuclear families. We focused our 
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analysis on SNVs because of their higher predicted frequency and more uniform AF distribution. 

We developed our method by integrating calls using three complementary approaches and 

performing extensive validations using smMIPs (Figure 1E). Using these data, we developed a 

logistic regression model and additional heuristics that clearly separate false calls, PMMs, and 

GDMs. Given that the depth of sequence directly affects the observable minimum mutation AF, 

we used varying AF-COV thresholds (e.g. 15%-45x, 5%-130x) to evaluate mosaic mutation 

burden. Surprisingly, in the full cohort, we found the strongest signal for PMM burden with 

synonymous SNVs (Figure 2C). The distribution of proband PMMs showed a significant shift in 

distance to nearest splice site (Figure 5D). Moreover, proband synonymous PMMs showed 

enrichments for splice altering predictions using two independent approaches.  

 It has recently been shown that in some cancers synonymous mutations may have a 

modest enrichment in oncogenes.56 Within 16 oncogenes, the signal was specific to the 

mutations within 30 base pairs (‘near-splice’) of the exon boundary and showed gains of exonic 

splicing enhancer (ESE) motifs and loss of exonic splicing silencer (ESS) motif sequences. 

Conducting an analysis of the intersection of ASD and schizophrenia WES GDMs and 

regulatory elements, Takata and colleagues recently reported an enrichment of near-splice 

synonymous GDMs in ASD probands (odds ratio ~2) and, to a lesser extent schizophrenia 

probands, relative to controls.57 Stronger signal in their initial ASD cohort was seen for sites 

predicted to cause ESE/ESS changes, but reduced in a replication dataset (odds ratios 2.52 

and 1.55 respectively). In their analysis they compared the fraction of near-splice or those also 

disrupting ESE/ESS sites mutations in cases versus controls (Fisher’s exact test), which does 

not take into account coverage differences across individuals/cohorts. We repeated our analysis 

of the distance to splice site distributions for the high confidence 45x-joint coverage SSC 

synonymous GDMs, finding them to be significantly closer to splice sites in probands as 

compared to siblings (p = 0.005), similar to the PMM calls. However, we observed no 

corresponding enrichment of splice altering variant predictions. Taken together, these data are 
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consistent with a possible role of synonymous postzygotic mutations that functionally disrupt 

splicing regulation in ASD. 

 While computational splice regulation predictions can provide useful information at the 

population level, we advise interpreting the effect of individual variants with caution given the 

uncertainty of splice regulatory mechanisms, cell-type specific splicing patterns, limited training 

sets, and high reported false positive rates. For example, HSF has a reported false positive rate 

(43%).41 This is due in part to the wide breadth of splicing signals it attempts to capture. 

Additional functional validation of these mutations using in vitro approaches, e.g. minigene 

assays, or in vivo approaches, e.g. genome editing of cell lines, is warranted. 

From the synonymous PMMs predicted to impact splicing, we identified a number of 

genes that have roles in neurodevelopment and are associated with other ASD risk genes. 

Additionally, these events are within probands who either have no other GDMs or whose other 

GDMs would not likely be associated with ASD risk. In particular, we highlight genes ACTL6B, a 

member of the chromatin remodeler complex SWI/SNF;62 CCT6B, a postsynaptic density gene 

recently implicated in recessive intellectual disability;65 FYN, which encodes a non-receptor 

tyrosine kinase that is involved in axon outgrowth;66 and STMN1, which encodes a microtubule 

destabilizing protein that is involved in the regulation of axon outgrowth.67 Also notable is 

COL5A3, which encodes a scaffolding protein that is directly regulated by ASD and Pitt-Hopkins 

(MIM: 610954) associated gene TCF4 (MIM: 602272).68 Individuals with duplications that span 

COL5A3 have phenotypic characteristics similar to those of TCF4-related syndromes including 

seizures, facial dysmorphia, and developmental delay.68 

We did not observe evidence of missense PMM burden in the full cohort of ASD 

probands. This is perhaps not surprising given the strong contribution of GDMs to ASD in the 

SSC and that most de novo events will be missense changes by chance, i.e. form most of the 

background non-disorder related mutations. Our sample size is too small given their rate of 

mutations to fully evaluate nonsense/splice PMMs as a separate class. Based on the differential 
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between probands and siblings, it has been reported that LGD GDMs have a 40% likelihood of 

being contributing to ASD (90% of loci with recurrent LGD), while the likelihood for missense 

variants is ~35%.11 We reasoned that restricting our analysis to families without proband 

germline mutations would increase our power to detect any effect of missense PMMs, even 

though we would be removing a significant fraction of families with germline events unrelated to 

ASD. Indeed, if we subdivide the SSC cohort into families that have or do not have a proband 

LGD GDM/de novo CNVs, or, alternatively, any NS germline mutation, we observed a difference 

emerging. This difference is strongest in the subset of genes predicted to be essential/intolerant 

to mutation (Figure 3B and 3C). Similarly, we also saw a further increase in synonymous PMM 

burden in the subcohort without any reported NS GDMs (Figure 2). 

Freed and Pevsner recently reported on PMM burden in probands and siblings in the 

SSC.63 While our two studies used the same SSC datasets, we each used different 

computational and validation approaches. Our 45x high confidence SNV call set contains 470 

PMMs in children, 398 that are unique to our study. Their 20x high confidence SNV call set 

contained 196 PMMs, 124 that are unique (65 calls <40x coverage). Most importantly, they 

restricted their burden analysis to their PMM calls that: overlapped the previously published de 

novo datasets, met 40x joint-coverage, and also included indel calls. Unlike our study, they did 

not restrict their analysis to different minimum AF-COV thresholds. They report the burden of all 

classes of variants combined (synonymous, missense, and LGD) as significant and estimate 

that 5.1% of probands have PMMs related to ASD risk. Moreover, they found nominal 

contributions across all classes of mutations. Comparing our 15%-45x PMM analysis to their 

data, we observed similar differences in the synonymous rates, but not their observed missense 

differences in the full cohort. These differences are likely driven by our different computational 

approaches and our use of a larger number of PMM calls unique to our pipeline. Specifically 

regarding the burden analyses, 175/231 of our SNV PMM calls are unique to our study. Of the 

131 re-classified published SNV calls included in the Freed and Pevsner burden analysis, 75 
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were absent from our call set because they failed best practice filters, did not meet minimum 

joint coverage (40x v. 45x), or were present in excluded families. With our approach, we 

estimate that PMMs as a group contribute to 4-8% of simplex ASD, with an ~2% contribution 

from synonymous mutations. Combined our two analyses suggest that exonic PMMs as a whole 

are likely contributing to ASD risk in the SSC at rates similar to other classes of de novo 

mutations.11; 35 

 We also tested whether PMMs and GDMs shared common gene targets. We found 

proband missense PMMs were more likely than sibling missense PMMs to intersect with 

proband GDMs (odds ratio ~2). We also found that a number of our novel nonsense PMMs in 

probands overlapped genes with GDMs including: BAZ2B, SSRP1, UNC79, USP15, and 

VPS13D (Table 4). Consistent with our observation of enrichment of chromatin modifiers in 

proband missense PMMs, we found many of our PMMs overlapping genes with NS GDMs are 

also involved in chromatin regulation: e.g., BAZ2B, CHD2, COL5A3, KAT2B, KMT2C, and 

SSRP1. Recent studies have found that ASD risk genes are highly co-expressed during the 

mid-fetal period of cortical development.69; 70 Several PMMs intersect genes that occupy the 

same co-expression modules, which are significantly enriched for ASD risk genes. For example, 

BIRC6 (MIM: 605638), DMXL2, OBSCN (MIM: 608616), SPEN (MIM: 613484), SRCAP, 

SSRP1, UNC79, and ZC3H4, all occupy modules 2 and 3, which peak between post conception 

weeks 10-22 and are enriched for chromatin modifiers/transcriptional regulators.69 COL5A3, 

KIF1A, SCN2A, and SYNE1 are found in modules 13/16/17, which are turned on later in 

development, after post conception weeks 10, and are enriched for synaptic genes.69  

Moreover, we found missense PMMs in some of the highest confidence ASD risk genes 

identified in the SSC or other combined studies, for example: CHD2, CTNNB1, KMT2C, SCN2A 

and SYNGAP1 (Table 4).33; 35; 36; 71 Interestingly, small de novo deletions targeting CHD2, 

SYNGAP1, CTNNB1, and KMT2C have been reported in the SSC as well,35 demonstrating that 

new mutations of multiple types and origins at these sites contribute to ASD risk. Taken together 
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our data argues that proband PMMs and GDMs target many common risk genes. Finally, 

mutations in some of these genes are not restricted to ASD as these genes have also been 

found to be disrupted in cohorts primarily defined on diagnoses of: epileptic encephalopathy, ID, 

and congenital heart defects with additional features.72-75 Understanding how mutations impact 

these important genes that blur our diagnostic constructs will be an important area of future 

research. These and other data suggest the creation of more broadly defined cohorts and better 

integration of genetic studies of developmental disorders are warranted.	
  

Unique to this study, we also performed our PMM analyses in the parental data. We 

identified both nontransmitted and transmitted PMMs. Transmitted PMMs are obligated to be 

present in both the soma and the germline. Given the low number of offspring of each parent, 

we cannot rule out the possibility that a fraction of the nontransmitted parental events are also 

present in the parental germ cells.	
  Our observed postzygotic mutation rate is much higher in the 

SSC parents compared to the SSC children. Moreover, the nontransmitted PMM AFs have a 

bimodal distribution that is distinct from both the child PMMs and parental transmitted PMMs. 

There are several potential explanations for the increased rate of mutation and AF differences. 

As parents in this cohort were several decades older at time of DNA collection, this increase 

could be explained by the accumulation of PMMs in the blood, some of which might drift to or be 

selected for higher AF. We found very little evidence for enrichment of PMMs in genes related to 

blood ACEs, except DMNT3A. The number of parents with PMMs in ACE-related genes is <1%, 

which is consistent with estimates that ACE associated mutations occur in less than 1% of 

individuals under 50 and do not begin to rise until after 65.53-55 

We did not evaluate the grandparental generation. For the children, we were able to 

eliminate likely inherited calls that showed consistent bias in AF generation to generation (about 

two-thirds of filtered calls) as well as some additional calls that exhibited skewing likely due to 

random chance (Figure S6). Our analysis on a subset of the cohort suggests that ~40% of the 

excess in nontransmitted parental PMM calls could be explained by incomplete filtering of these 
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recurrently biased and randomly skewed sites, while the remained are likely true events (Figure 

S21). Based on the children, recurrently biased sites are likely to have higher AFs (> 20%). 

PMMs with AF that fall in this upper range that are not clearly transmitted should be interpreted 

with caution. Importantly, Xie and colleagues report this same bimodal distribution in a case-

control study of ACE, which did not benefit from transmission based filtering.54 

Rahbari and colleagues recently performed whole-genome sequencing on moderately 

sized pedigrees followed by the identification and characterization of de novo mutations in 

multiple children, spanning approximately a decade.15 We similarly observed that the cancer 

mutation signature 140 is most strongly correlated with de novo mutations (GDMs and PMMs). 

This signature is associated with endogenous mutational processes. Our second strongest 

signature was 6, which is associated with defective DNA mismatch repair. Rahbari and 

colleagues in contrast identified signature 5, which has no known etiology but is common to all 

cancer types. This finding could reflect differences between the content of WES versus whole-

genomic datasets. In validating their de novo calls using target capture and deep sequencing, 

they identified a number of mutations that were at low levels in the parental blood derived DNA. 

Importantly in contrast to our study, PMMs were not directly identified in the parents and calls 

with greater than 5% of reads showing the alternative allele in a parent were excluded from the 

de novo call set. Nevertheless, they found that 4.2% of apparent germline mutations are present 

in the blood of parents at >1% AF. However, the rate we observed in our high confidence 

smMIP validation data, of similar calls (without parental WES signal), is 0.6% (1 out of 164). In 

our 45x WES dataset, we found 0.66% of GDMs in children are also obligate gonadal mosaic. 

Overall, our data support at least 7-11% (depending on the AF) of parental PMM events are 

also present in the parental germ cells and can be transmitted to the next-generation. Together 

these two sets of parental postzygotic mutations account for 6.8% of all germline mutations 

present in the children from our high confidence call set (Table S5). Importantly, many of these 

events would be missed by de novo calling pipelines that eliminate any sites with variant reads 
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present in a parent. This rate is higher than what has been recently reported for de novo CNVs 

(4%).23 These findings have important implications for recurrence risk and clinical testing, which 

are still not widely appreciated.14; 15; 23; 76; 77 While the recurrence risk for de novo mutations is 

generally thought to be low (~1%), finding the presence of a mutation, even at low levels, in a 

parent dramatically increases this risk to a previously estimated >5%.15; 76; 77 The risk may be 

dramatically higher for specific mutations, depending on their embryonic timing and distribution 

within the germ cells.  

We were limited by the availability of DNA from a single peripheral blood source and 

WES data that is non-uniform. Future studies in this area would greatly benefit from deep 

uniform whole-genome sequencing, access to multiple peripheral and other tissue types of 

different embryonic origin, and improved indel variant calling approaches. This could include 

brain tissue in cases of surgical resection to control intractable epilepsy. Moreover, we strongly 

suggest that new efforts to establish autism brain banks obtain peripheral DNA samples from 

the donor and their parents. These DNA would greatly aid in the classification of variant types, 

i.e. PMMs, GDMs, or inherited variants, identified in bulk brain and single-cell sequencing 

studies as well as help determine their likely embryonic timing.  

In summary, our data support the conclusion that exonic postzygotic mosaicism 

contributes to the overall genetic architecture of ASD, in potentially 4-8% of all ASD simplex 

cases, and that future studies of mosaicism in ASD and related-disorders are warranted. We 

present a general approach for identifying PMMs that overcomes many of the inherent detection 

and validation challenges for these events in family-based and unmatched samples. The 

methods developed will allow continued discovery of PMMs in future datasets, including 

unsolved genetic disorders, and our findings have potential translational implications for clinical 

detection, case management, interventions, and genetic counseling. 
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SFARI base, https://base.sfari.org. 

 

Simulated NGS Data, http://www.ebi.ac.uk/goldman-srv/simNGS/ 

 

Variant Effect Predictor, http://uswest.ensembl.org/Tools/VEP 

 

ANNOVAR, http://annovar.openbioinformatics.org/ 

 

GenPhenF, https://iossifovlab.com/gpf 

 

Mutational Signatures Data, 

http://cancer.sanger.ac.uk/cancergenome/assets/signatures_probabilities.txt 
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Human Splice Finder, http://www.umd.be/HSF3/ 

 

SPANR, http://tools.genes.toronto.edu/   
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Figures 

 

	
  
	
  
Figure 1. Re-Evaluation De Novo Mutations in the Simons Simplex Collection (SSC) 
(A-D) Histograms showing the allele fraction distributions of previously published de novo or 
rare inherited mutations in the SSC. 
(A) Published de novo SNVs show an elevated number of low allele fraction calls that are 
potentially PMMs (left tail).  
(B) Representative histogram from a random sampling of published rare inherited SNVs. The 
number of low allele fraction calls is substantially fewer compared to de novo SNVs (left tail). 
(C) Published de novo indels show an elevated number of low allele fraction calls (left tail) that 
are potentially PMMs as well as an overall shifted distribution.  
(D) Representative histogram from a random sampling of published rare inherited indels. Similar 
to SNVs, the number of low allele fraction calls is substantially fewer compared to de novo 
indels (left tail). 
(E) Schematic showing an overview of our systematic approach to developing a robust PMM 
calling pipeline and applying it to the SSC. Key analyses and display items are indicated. 
Abbreviations: Trans calls-calls showing evidence of transmission from parent to child, SD/TRF-
segmental duplications/tandem repeats, AF-allele fraction, CI-confidence interval, and DPALT-
Q20 alternative allele depth. 

E 

F 

De Novo Indels 
C 

Rare Inherited Indels 
D 

A De Novo SNVs Rare Inherited SNVs B 

!
!

Our Final Mosaic Calls 
 687   
(470) 

491 
(332) 

103 
(71) 

93 
(67) 

78 178 

Iossifov 2014 GDMs 
Flagged Mosaic 

181* 

Krumm 2015 GDMs 
Flagged Mosaic 

271* 

Best!Prac*ce!Filters!
AF!5%145x!Threshold!Applied!

Select Callers 

Evaluate Variant Callers Using  
Simulated Data 

Apply Callers to 24 Pilot Families and 
Validate Candidate Variants  

Develop Preliminary Logistic Regression 
Model to Score Variants 

Identify and Validate Candidate Variants 
in Pilot 400 Families 

 
Refine Logistic Model and  
Establish Best Practices 

Trans calls more stringent binomial cutoff; 
Mismatches <= 3; SD/TRF Sites Removed; 

Mosaic ! Germline AF CI 90% >= 0.4; 
Cohort Count <= 2; DPALT >= 5;  

Refined Score >= 0.518 
 

Determine Final List of High Confidence 
Variants and Apply Coverage Thresholds 

Table S14 

965 candidate sites identified, 701 Passed QC 

Figures S2-S7 

Apply Initial Regression Model 

Figures S8 and S9 

1,754 candiidate sites identified, 1,388 Passed QC 
Validated Families n = 78  

Figures S10-S13 

Figures S12  
and  S13 

Apply to Whole Cohort 

Gene Set 
Enrichment 

Burden 
Analysis 

Risk Gene 
Overlap 

Tables 1-2, 
and S5  

Table 4 Figures  
2 and 3 Table 3 

Threshold 
AF 5%-45x 

Thresholds 
AF 5%-130x 
AF 7.5%-85x 
AF 10%-65x 

AF 12.5%-50x 
AF 15%-45x 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 3, 2017. ; https://doi.org/10.1101/083428doi: bioRxiv preprint 

https://doi.org/10.1101/083428


48 

(F) Venn diagram showing the intersection of previously published de novo mutations initially 
flagged as potentially PMMs (binomial p <= 0.001) and our PMM calls after applying final filters. 
Numbers in parentheses are calls remaining after applying an AF 5%-45x joint coverage 
threshold. *Our pipeline identified an additional 37 calls (29 from Iossifov et al.11 and 8 from 
Krumm et al.12), which overlapped the published calls flagged as potentially mosaic, but were 
re-classified as likely germline based on their AF CIs. Note: Krumm 2015 dataset only reported 
newly identified calls and therefore does not intersect the Iossifov 2014 dataset.  
	
  
	
  

	
  
 
Figure 2. Rates and Burden of SNV PMMs in the Simons Simplex Collection (SSC) 
(A-C) Rates and burden analyses of PMMs in quad families of the SSC. Mean rates with 95% 
Poisson CIs (exact method) are shown.  
(A) Nonsense/splice PMM rates are similar and not evaluated further given their low frequency.  
(B) Missense PMMs show no evidence of burden in probands from quad families.  
(C) Synonymous PMMs show an unexpected burden in probands from quad families. 
Significance determined using a two-sided Wilcoxon signed-rank test. *FDR < 0.05 using the 
Benjamini-Yekutieli approach.  
(D) Analysis of synonymous PMMs at AF 12.5%-50x in the full SSC and subcohorts. Mean rates 
with 95% Poisson CIs (exact method) are shown for combined probands (quad + trio families) 
and unaffected siblings. SSC subcohorts: All-all families within the cohort passing quality 
criteria; Has Germline LGD-denotes whether or not proband in family has a LGD GDM or gene 
disrupting de novo CNV; Has Any Germline NS-denotes whether or not proband in family has 
any NS GDM (includes the LGD set). Significance determined using a two-sided Wilcoxon rank 
sum test. *FDR < 0.05 using the Benjamini-Yekutieli approach.  
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Figure 3. Rates and Burden of Missense PMMs in Subcohorts and Gene Sets  
For all plots, the 15%-45x burden call set was used Mean rates with 95% Poisson CIs (exact 
method) are shown. SSC subcohorts: All-all families within the cohort passing quality criteria; 
Has Germline LGD-denotes whether or not proband in family has a LGD GDM or gene 
disrupting de novo CNV; Has Any Germline NS-denotes whether or not proband in family has 
any NS GDM (includes the LGD set). Significance determined using a one-sided Wilcoxon rank 
sum test. No comparisons met a FDR < 0.05 using the Benjamini-Yekutieli approach.  
(A) Splitting by subcohort shows trends for increased missense PMM burden in families where 
probands do not have reported germline mutations. 
(B) Evaluating mutations specific for the essential gene set shows stronger proband burden in 
the without any germline LGD subcohort. 
(C) Similarly, evaluating mutations specific for the intolerant gene set shows stronger proband 
burden in the without any germline LGD or without any germline NS subcohorts. 
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Figure 4. Mosaic  
Variant Allele Fraction Distributions  
For all plots, all PMMs from the 5%-45x high 
confidence call set were used. 
(A) Distribution of allele fractions for variants in 
probands combined (quad + trio families). 
(B) Distribution of allele fractions for variants in 
siblings. 
(C) Distribution of allele fractions for germline 
variants in children that were transmitted from 
mosaic parents. 

(D) Distribution of allele fractions for variants in 
mothers that were not transmitted to children. 
(E) Distribution of allele fractions for variants in mothers that were transmitted to children.  
(F) Distribution of allele fractions for variants in fathers that were not transmitted to children.  
(G) Distribution of allele fractions for variants in fathers that were transmitted to children.  
(H) Combined data plotted as kernel density curves. Parental transmitted are significantly 
shifted towards a higher allele fraction than nontransmitted or child mosaic variants. Children 
have a significantly different distribution than parental nontransmitted. Significance determined 
using a two-sided Wilcoxon rank sum test. *FDR < 0.05 using the Benjamini-Yekutieli approach.  
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Figure 5. Distance to Nearest Splice Site for Synonymous PMMs 
For all plots, all synonymous PMMs from the 5%-45x high confidence call set were used. Splice 
site distances were calculated as absolute minimum distance to nearest canonical splice site.  
(A) Distribution of distance to nearest splice site in probands combined (quad + trio families).  
(B) Distribution of distance to nearest splice site in siblings. 
(C) Distribution of distance to nearest splice site in combined parents (quad + trio families). 
(D) Combined data plotted as kernel density curves. Proband distribution is significantly shifted 
towards the canonical splice sites compared to both parents and siblings. Significance was 
determined using a two-sided Wilcoxon rank sum test. *FDR < 0.05 using the Benjamini-
Yekutieli approach.	
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Table 1. PMM Counts in Children Across Different Allele Fraction and Coverage 
Thresholds 
 
  syn mis non+splice Total 

Best Practice Filters         
Quads Pro 94 194 20 308 
  Sib 62 203 15 280 
         
Trios Pro 26 63 6 95 
  Total Pro  120 257 26 403 

AF 5%-45x High Confidence       
Quads Pro 58 131 12 201 
  Sib 42 133 10 185 
          
Trios Pro 22 53 6 81 
  Total Pro 80 184 18 282 

AF 15%-45x Burden*       
Quads Pro 24 65 5 94 
  Sib 20 66 5 91 
Jointly Covered Bases: 24.5        
          
Trios Pro 8 30 0 38 
  Total Pro 32 95 5 132 
Jointly Covered Bases: 9.7           

AF 12.5%-50x Burden*       
Quads Pro 32 67 5 104 
  Sib 16 80 6 102 
Jointly Covered Bases: 22.3 
         
Trios Pro 12 31 2 45 
  Total Pro 44 98 7 149 
Jointly Covered Bases: 8.9           

AF 10%-65x Burden*       
Quads Pro 38 63 6 107 
  Sib 20 76 4 100 
Jointly Covered Bases: 16.7 
         
Trios Pro 12 31 1 44 
  Total Pro 50 94 7 151 
Jointly Covered Bases: 6.8           

AF 7.5%-85x Burden*       
Quads Pro 31 56 6 93 
  Sib 18 66 5 89 
Jointly Covered Bases: 11.4 
        
Trios Pro 11 28 4 43 
  Total Pro 42 84 10 136 
Jointly Covered Bases: 4.7           

AF 5%-130x Burden*       
Quads Pro 20 35 4 59 
  Sib 12 35 2 49 
Jointly Covered Bases: 5.1 
        
Trios Pro 10 18 5 33 
  Total Pro 30 53 9 92 
Jointly Covered Bases: 2.0           
Abbreviations: AF-allele fraction, Pro-proband, Sib-sibling, syn-synonymous, mis-missense, non + splice-nonsense 
and canonical splicing. Bases in billions. *PMMs in sex chromosomes were excluded in this set.   

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 3, 2017. ; https://doi.org/10.1101/083428doi: bioRxiv preprint 

https://doi.org/10.1101/083428


53 

Table 2. PMM Counts in Parents Across Different Allele Fraction Coverage Thresholds 
 
  syn mis non+splice Total 

Best Practice Filters         
Nontrans Fa 259 543 54 857 
                 Mo 266 570 41 878 
          
Trans Fa 21 41 1 63 
  Mo 12 37 0 49 
AF 5%-45x High Confidence         
Nontrans Fa 196 418 40 654 
  Mo 199 405 35 639 
          
Trans Fa 19 32 1 52 
  Mo 7 33 0 40 

AF 15%-45x Burden*         
Nontrans Fa 114 261 19 394 
  Mo 130 267 15 412 
          
Trans Fa 19 32 1 52 
  Mo 6 31 0 37 
Jointly Covered Bases: 34.2         

AF 12.5%-50x Burden*         
Nontrans Fa 126 276 22 424 
  Mo 130 281 18 429 
          
Trans Fa 16 30 1 47 
  Mo 6 30 0 36 
Jointly Covered Bases: 31.2         

AF 10%-65x Burden*         
Nontrans Fa 121 229 18 368 
  Mo 110 229 19 358 
          
Trans Fa 11 23 1 35 
  Mo 4 20 0 24 
Jointly Covered Bases: 16.7         

AF 7.5%-85x Burden*         
Nontrans Fa 90 177 19 286 
  Mo 92 180 19 291 
          
Trans Fa 5 15 1 21 
  Mo 2 13 0 15 
Jointly Covered Bases: 16.1         

AF 5%-130x Burden*         
Nontrans Fa 53 110 15 178 
  Mo 49 101 9 159 
          
Trans Fa 3 4 0 7 
  Mo 1 5 0 6 
Abbreviations: AF-allele fraction, FA-father, Mo-mother, syn-synonymous, mis-missense, non + splice-nonsense and 
canonical splicing. Bases in billions. *PMMs in sex chromosomes were excluded in this set. 
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Table 3. Enrichment of Missense Germline and Postzygotic Mutations in Gene Sets   
 

   Mis GDM (Pro) Mis GDM (Sib) Mis PMM (Pro) Mis PMM (Sib) 

 Total no. of genes= 701   426   177   129   

               Set p Genes in 
seta 

Obs Exp P Obs Exp P Obs Exp P Obs Exp P 

Chromatin 0.0372 388 32 26.1 0.230 20 15.8 0.303 12 6.6 0.043 2 4.8 0.247 

Embryonic 0.1433 1,797 114 100.5 0.178 60 61.1 0.835 16 25.4 0.024 25 18.5 0.103 

Essential 0.1967 2,402 160 137.8 0.036 83 83.7 0.903 41 34.8 0.256 24 25.4 0.825 

PSD 0.0701 879 58 49.1 0.183 35 29.9 0.346 17 12.4 0.183 14 9.0 0.167 

FMRP 0.1005 775 100 70.3 4x10^-4 57 42.7 0.036 20 17.8 0.53 13 12.9 1.000 

45x joint coverage, 5% AF call set. Variants in sex chromosomes excluded. Expected (Exp) and P values obtained from two-sided binomial 
test, based on gene length model (p). Abbreviations: Mis GDM-missense germline de novo mutation, Mis PMM-missense postzygotic 
mutation, Pro-proband, Sib-sibling, PSD-post synaptic density associated genes, FMRP-fragile X mental retardation protein-associated 
genes. aTotal number of genes differs from full lists as only genes that we were able to map to our gene symbol annotations were used and 
genes on sex chromosomes were excluded.  
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Table 4. Highlighted Mosaic Mutations In Candidate ASD Risk Genes 
 

 
         

SSC Pro 
GDM Counta 

SSC Sib 
GDM Counta         

Person:Sex NVIQ/VIQ Gene Func Gene Lista LGD Mis  LGD Mis AF HGVSp Pub Pub NS GDM 
13073.p1:M 60/25 CHD2 mis HC35; 45; 46 3 0 0 0 14/125 (11%) p.Glu91Gly N SYNGAP:fs ins 
12139.p1:M 106/86 CTNNB1 mis HC45; 46 1 1 0 0 8/103 (8%) p.Arg376His N GPBP1:mis 
14687.p1:M 38/62 INTS6 ns HC35 0 0 0 0 13/54 (24%) p.Arg596Ter Y ATP2A1:mis 
12028.p1:M 93/80 KIF1A mis HC45; 46 0 1 0 1 29/250 (12%) p.Ala219Thr N NA 
11305.p1:M 35/60 KANSL1 mis HC45; 46 0 0 0 0 40/126 (32%) p.Gln243His Y OR1S1:misd 
11592.p1:M 109/122 KAT2B sp HC35 0 0 0 0 20/80 (25%) - Yb NA 
13897.p1:M 91/78 KMT2C mis HC35 1 0 0 1 8/115 (7%) p.Arg4806Gly N CGGBP1:mis 
13322.p1:M 62/56 RELN mis HC45; 46 0 1 0 1 9/91 (10%) p.Gly3239Arg N P4HA2:mis 

13522.mo:Me 87/70e SCN2A mis HC45; 46 2 4 0 0 11/50 (22%) p.Ser1124Cys N NA 
14001.p1:M 63/38 SYNGAP1 mis HC35; 45; 46 1 1 0 1 18/74 (24%) p.Arg1019Cys Yb NA 
12335.p1:F 47/66 TBL1XR1 mis HC45; 46 1 0 0 0 9/40 (23%) p.Leu282Pro Yb STK36:mis; 

13012.p1:M 60/21 DIP2A fs ins HC35 1 0 0 0 34/164 (21%) p.Leu552ValfsTer34 Yc 
SPATA32:mis 
RELN:mis 

11232.p1:M 68/91 GIGYF1 fs del HC35 2 0 0 0 15/65 (23%) p.Thr381ArgfsTer13 Yc NA 
13857.p1:F 66/101 SRCAP fs del HC45; 46 0 2 0 1 42/140 (30%) p.Asp2137GlufsTer25 Yc PTGFRN:mis 
12600.p1:M 103/69 ZC3H4 fs del HC45; 46 0 1 0 0 20/95 (21%) p.Lys449ThrfsTer12 Yc FAT2:mis 
13694.p1:M 26/17 BAZ2B ns GLGD 0 0 0 1 9/163 (6%) p.Arg1290Ter N NA 
11411.fa:M 67/51 COL5A3 mis GLGD 1 0 0 0 16/68 (24%) p.Pro1113Leu N SNRK:mis; 

14051.p1:M 115/107 CTNNA3 mis GLGD 1 0 0 0 9/295 (3%) p.Arg51Pro N 
TSNARE1:mis 
SEC16B:mis; 

12120.p1:M 115/85 SPEN mis GLGD 1 1 0 0 15/58 (26%) p.Glu1551Lys Yb 
RFC5:mis 
OR5J2:mis 

14420.p1:M 101/80 SSPO mis GLGD 1 1 0 0 29/98 (30%) p.Ala4717Gly Y SH3BP5L:mis; 

14547.p1:M 95/60 UNC79 ns GLGD 1 0 0 0 9/106 (8%) p.Arg2070Ter N 
ZMIZ2:mis 
UQCRC2:mis 

12025.p1:M 96/69 USP15 ns GLGD 1 0 0 0 8/164 (5%) p.Tyr271Ter N NA 
12837.p1:M 92/89 BIRC6 mis GMIS 0 1 0 2 23/123 (19%) p.Arg3193Pro Y SH3RF3:mis 
13215.p1:M 69/87 CFAP74 mis GMIS 0 1 0 0 8/157 (5%) p.Arg376Lys N JUP:mis 
11942.p1:M 44/62 DMXL2 mis GMIS 0 2 0 0 19/256 (7%) p.Asp1152Gly N NA 
14248.p1:F 83/94 DNAH10 mis GMIS 0 2 0 0 13/125 (10%) p.Arg1200His Y ELAVL2:fs del; 

11627.p1:M 100/83 DNAH17 mis GMIS 0 2 0 1 11/77 (14%) p.Ser2660Phe Y 

ITGA2B:mis; 
MYO1D:mis 
RGMA:mis 

11521.p1:M 101/128 MTUS1 ns GMIS 0 1 0 0 17/111 (15%) p.Ser236Ter Y HERC2:misd 
14168.p1:M 140/123 OBSCN mis GMIS 0 2 0 0 14/61 (23%) p.Arg6115Gln Y FCGBP:misd 

11947.p1:M 33/28 SSRP1 ns GMIS 0 1 0 0 13/143 (10%) p.Trp53Ter N 
MDM2:mis; 
CCR7:mis 

13793.p1:M 56/48 SYNE1 mis GMIS 0 2 0 1 13/225 (6%) p.Ala777Val N 
SBF1:mis; 
PCDH4:misd 

12108.p1:M 63/74 VPS13D ns GMIS 0 1 0 0 11/133 (8%) p.Arg3518Ter N KAT6A:fs del; 

14059.p1:M 105/89 ACTL6B syn Novel 0 0 0 0 8/212 (4%) p.Ser120= N 
SMG6:mis 
NA 

11506.p1:F 92/82 COL5A3 syn GLGD 1 0 0 0 25/356 (7%) p.Ser820= Y PSMB4:mis;  

11115.p1:F 46/19 CCT6B syn GMIS 0 1 0 0 13/179 (7%) p.Ala295= N 

KIAA17:mis; 
INPP5D:mis 
NA 

11336.p1:M 124/114 FYN syn Novel 0 0 0 0 8/129 (6%) p.Leu351= N DXO:mis; 

14110.p1:M 84/72 STMN1 syn Novel 0 0 0 0 7/76 (9%) p.Ala73= N 
SLC26A5:mis 
PHF3:mis 
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aLists and counts compiled after re-classification of published calls (binomial p <= 0.001, see Table S2).  bCall did not meet 45x joint coverage threshold. cIndels were identified from re-classification of 
published calls. dPublished GDM call in segmental duplication or tandem repeat loci. ePhenotypic data is for proband 13522. Abbreviations: NVIQ-nonverbal IQ, VIQ-verbal IQ, mis-missense, ns-
nonsense, syn-synonymous, sp-canonical splicing site, fs-frameshifting mutation, ins-insertion, del-deletion, SSC-Simons Simplex Collection, Pro-proband, Sib-sibling, LGD-likely gene disrupting, GDM-
germline de novo mutation, GLGD-overlaps gene with germline LGD mutation, GMIS-overlaps gene with germline missense mutation, HC-overlaps high confidence risk gene list. AF-allele fraction, 
HGVSc-Human Genome Variation Society format cDNA, HGVSp-Human Genome Variation Society format protein, Pub-published in de novo mutation calls, NS-nonsynonymous. 
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