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Abstract14

A myriad of noncoding genetic association signals are now awaiting the identification of15

causal alleles and their functional interpretation. We introduce the novel computational frame-16

work PINES (Phenotype-Informed Noncoding Element Scoring), which evaluates the functional17

impact of noncoding variants by integrating diverse epigenetic annotations. A unique feature of18

PINES is that it directs the analysis towards genomic annotations most relevant to phenotypes19

of interest. We show that PINES identifies functional noncoding variation more accurately than20

methods that do not use phenotype-specific knowledge. We apply PINES to fine map noncoding21

alleles at GWAS loci across a range of diseases, and predict new causal risk alleles for Parkinson’s22

disease and inflammatory bowel disease. We also use PINES to confirm several high-penetrance23

variants implicated in Mendelian traits, as well as variants residing within known enhancer24

regions. PINES consistently identifies functional variants in fine mapping analyses, dissecting25
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pathogenic loci while avoiding the resource-intensive traditional fine mapping studies. Due to26

its flexibility and ease of use through a dedicated web portal, PINES provides a powerful in27

silico method to prioritize and fine map functional noncoding variants.28

1 Introduction29

A growing body of evidence suggests that DNA variants outside of protein-coding regions of the30

genome (here termed noncoding variants) impact human phenotypes, including the risk for common31

diseases. Many signals identified by genome-wide association studies (GWAS) point to regulatory32

regions as key determinants of complex traits. Likewise, some human Mendelian phenotypes such as33

hair, skin, and eye pigmentation are under the tight control of individual highly penetrant noncoding34

alleles [1, 2]. Thanks to whole genome sequencing (WGS), our ability to uncover novel noncoding35

alleles has increased substantially. However, studies of both common and rare phenotypes almost36

never resolve findings in noncoding regions to individual functional causal SNPs [3]. Functional37

prioritization of noncoding variants thus holds significant promise to assist in fine-mapping efforts38

and identify genetic lesions underlying Mendelian diseases.39

To better understand the architecture of the noncoding genome, several large-scale efforts, such40

as ENCODE [4] and the Roadmap Epigenomics Project [5], have aimed to characterize the diverse41

landscape of histone modifications and DNA accessibility based on a wide range of assays across 12742

cell types. Other efforts such as the FANTOM5 project [6] have identified enhancer elements across43

the genome, and computational tools such as TargetFinder [7] have been developed to link such44

enhancers to the relevant gene promoters. Databases of chromatin interactions such as 4DGenome45

[8] are also helpful in identifying potential regulatory elements. Yet, while most genomic regions are46

by now annotated with a plethora of epigenetic features, the challenge remains to draw meaningful47

conclusions from these annotations, especially since the data are highly dimensional and many48

epigenetic features are correlated.49

Several approaches have recently been introduced to prioritize potentially functional noncoding50

variants and address the complexity of the annotation data in a principled manner. These include51

Eigen [9], GWAVA [10], and CADD [11], as well as population genetics and conservation-inspired52

models such as PhastCons [12] and INSIGHT [13]. One drawback of models such as GWAVA is53

that they require a training dataset of both functional and non-functional examples. However,54

high-quality and particularly experimentally validated training data sets for noncoding variants are55

still very scarce and incomplete, thus limiting the prediction accuracy. A second drawback is that56
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current scoring methods globally merge annotations across many different cell types, which ignores57

the observation that regulatory elements often operate in a very cell type-specific manner [14].58

We hypothesized that predicting the functional relevance of noncoding variants could benefit59

from taking into account the vast number of variants that have not yet been annotated as having60

any function (background variants), and use these as a baseline to search for variants that devi-61

ate significantly from this background. Such an approach falls under the category of PU (Positive62

and Unlabeled example) learning, or one-class classification, and is a well-studied machine learning63

method in the field of outlier detection [15, 16]. We further hypothesized that for identifying noncod-64

ing variants of potential relevance to a specific phenotype, integration of prior biological knowledge65

around the phenotype should increase prediction reliability. This prior knowledge can consist of66

relevant cell types, but also of relevant genes or pathways. To the best of our knowledge, no current67

method has the ability to integrate general phenotype-relevant knowledge into the scoring procedure68

in such a principled and flexible manner.69

Here we introduce the Phenotype-Informed Noncoding Element Scoring (PINES) framework.70

PINES uses an unsupervised approach to systematically assess the functional significance of non-71

coding SNVs and indels, and allows to customize the search towards annotations considered as of72

highest relevance to a phenotype of interest. We apply PINES to in silico fine map noncoding73

variants at GWAS loci and predict novel causative SNPs at assumed promoter and enhancer regions74

for several common traits and diseases, including Parkinson’s disease, inflammatory bowel disease75

(IBD), multiple sclerosis, and blood lipid levels among others. We further show that PINES can be76

applied to assess a potential functional relevance of noncoding variants on Mendelian phenotypes.77

With its ease of use via a customizable web server (http://genetics.bwh.harvard.edu/pines/) we78

expect PINES to become a valuable resource for the interpretation of the noncoding human genome.79

2 Results80

2.1 PINES integrates epigenetic information to score non-coding variants81

in customizable queries82

Under a default setting, PINES integrates data from each of the 127 cell types analyzed in the83

Roadmap and ENCODE projects, specifically information on histone modifications indicative of84

promoters or enhancers (H3K4me1, H3K4me3, H3K27ac, H3K9ac), DNase I hypersensitive sites,85

sequence constraint scores (GERP, SiPhy), and ChromHMM chromatin state segmentations [17].86
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These data are applied to compare individual or a set of user-defined SNPs relative to the genomic87

background. Users may either apply PINES in a default mode, or pre-define sets of reference88

variants that are known to be linked to phenotypes of interest, or tissues of specific relevance to89

their respective scientific question. This allows that, if available, prior knowledge can be taken into90

account during the subsequent scoring process (see Figure 1 and Methods for details).91

An important feature of PINES is its ability to incorporate prior biological information into the92

scoring procedure. When no prior knowledge is provided or available, equal weights are assigned93

to all features to perform an undirected scoring of variants. When prior information is provided94

(for instance a list of lead SNPs identified as significantly associated with a trait of interest through95

GWAS), PINES searches for annotations that are enriched in the provided dataset in order to learn96

which annotations are most relevant for the phenotype under consideration. Alternatively, users can97

manually specify the most phenotypically relevant tissue, and all annotations relevant to that tissue98

will be up-weighted by the scoring procedure. Prior information can additionally be specified in the99

form of separate annotations. By relying on an angle-based distance from the vector of the maximal100

possible annotation load in a de-correlated annotation space, PINES addresses both the correlation101

structure as well as the high dimensionality of epigenetic annotation data (see also Methods).102

2.2 PINES predicts causal noncoding variants with high confidence103

We illustrate the potential of PINES to fine map noncoding genomic regions implicated in Mendelian104

traits, as well as likely causal noncoding variants from GWAS loci. In order to test whether PINES105

correctly identifies and prioritizes functional noncoding SNPs, we applied the algorithm to in silico106

fine-map 20kb regions around seven noncoding alleles whose regulatory impact on a nearby gene107

had been confirmed experimentally: rs12350739 [18], rs356168 [19], rs6801957 [20], rs12821256 [21],108

rs138557689 [22], rs2473307 [23], and rs227727 [24] (Figure 2 and Supplementary Table 1). Such well-109

studied noncoding variants, although still rare in the current literature, provide an optimal testbed110

for scoring methods. Weighted PINES was used when genome-wide significant SNPs were identified111

by GWAS for the trait under consideration (see Methods). In all cases, PINES scores peak around112

the experimentally confirmed functional variants, and PINES assigns these causal variants the lowest113

p-values. Notably, comparative analyses using these regions demonstrate that PINES outcompetes114

GWAVA, CADD or Eigen in correctly identifying causal noncoding variants (see Supplementary115

Figures 1-7).116
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2.3 PINES detects signal at fine mapped GWAS risk loci117

We next aimed to evaluate the ability of PINES to predict causal noncoding variants at GWAS loci118

across a range of conditions. As a first example for this, we extracted 3,625 candidate causal non-119

coding variants reported by a large statistical fine mapping study spanning 40 autoimmune diseases120

[25]. This study used densely-mapped genotyping data and the observed pattern of association at121

the LD locus to estimate each SNP’s probability of being a causal variant. Since this collection122

aggregates multiple immune-related phenotypes we applied weighted PINES scores, where all an-123

notations corresponding to immune cells were equally up-weighted (see Methods). We compared124

the collective PINES signal on these 3,625 variants with the results obtained on an additional set125

of 30,000 background variants that we randomly selected across the genome. Q-Q plots detailing126

the results highlight a well-calibrated PINES null distribution and clear signal on the fine mapped127

variant set (Supplementary Figure 8). A comparison of the weighted PINES results with GWAVA,128

Eigen, and CADD show that PINES delivers the best predictive performance (Figure 3 first panel).129

Next, we assessed the performance of PINES to nominate causal alleles from loci associated130

with individual common traits and diseases, including non-immune phenotypes. We extracted high-131

confidence (posterior probability ≥ 0.5) fine mapped candidate causal noncoding variants from [25]132

related to multiple sclerosis (15 variants), celiac disease (26 variants), inflammatory bowel disease133

(29 variants), and blood lipid levels (19 variants). We determined weighted and unweighted PINES134

scores for each of these variants, and compared the outcomes of PINES to those of GWAVA, Eigen135

and CADD. Phenotype-based annotation weights were automatically assigned based on GWAS data136

([26, 27, 28, 29, 30, 31]). PINES consistently delivered the highest AUROC values, with up to 12%137

improvement over GWAVA, Eigen, or CADD when running PINES in the phenotype-weighted mode138

(Figure 3).139

2.4 PINES detects signal at expression-modulating variants identified in140

a multiplexed reporter assay141

To test the performance of PINES to detect functional noncoding variants en masse, we used 230142

variants that were found to directly affect gene expression in a massively parallel reporter assay143

(MPRA) [32]. For the selection of variants we used an FDR cutoff (Benjamini-Hochberg) of 1%.144

MPRA is an extension of the traditional reporter gene setup, whereby the use of unique barcodes in145

the 3’ UTR of the reporter differentiate expression of individual oligos and thus allow for testing of146

many different sequences simultaneously. Since most variants identified through this approach have147
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not yet been linked to individual phenotypes, we performed an unweighted PINES analysis. PINES148

delivered the highest AUROC values, with up to 43% improvement over GWAVA, Eigen, or CADD149

(Figure 4).150

2.5 PINES detects functional evidence for variants residing in FANTOM5151

enhancers152

We next tested the power of PINES to correctly prioritize 9,000 variants residing within enhancers153

that have been identified by the FANTOM5 project through cap analysis of gene expression [6].154

As expected, PINES correctly assigned noncoding variants residing in these regions the highest155

relevance scores relative to genomic background variation. Importantly, in doing so PINES outscored156

GWAVA, Eigen, and CADD considerably, as demonstrated by a Wilcoxon signed rank test between157

the weighted PINES results and those of all other methods, which delivered p-values strictly below158

10−60 (Figure 5).159

2.6 PINES predicts novel causal variants for Parkinson’s disease and IBD160

through fine mapping of GWAS loci161

We next tested whether PINES can be applied to predict novel functional noncoding SNPs from162

GWAS loci. For this, we applied PINES to all GWAS loci associated in recent meta-analyses at163

genome-wide significance with Parkinson’s disease [33] and IBD [29]. We concentrated on those loci164

where all SNPs in LD of R2 ≥ 0.4 to the GWAS lead SNP were either intronic or intergenic. For165

both Parkinson’s disease and IBD we used PINES to determine enrichment-based phenotype-specific166

weights from the complete set of significantly disease-associated GWAS SNPs. We then ran weighted167

PINES to fine map the most likely causal SNP across the 12 selected Parkinson’s disease loci and168

19 selected IBD loci. With this approach, PINES distinguished 16 novel noncoding alleles from the169

background that can be assumed with a high likelihood of being causal for conferring risk for Parkin-170

son’s disease (rs10878226, rs3756063, rs2301134, rs36121867, rs1954874, rs9275373, rs117896735) and171

IBD (rs35493230, rs2187892, rs4672507, rs4845604, rs2019262, rs10489630, rs12622128, rs55776317,172

rs7685642)(Figure 6 and Supplementary Tables 2 and 3).173
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3 Discussion174

The field of human genetics has accumulated thousands of linkage and association signals. The focus175

is now rapidly shifting towards the identification of functional DNA variants underlying these signals,176

biological interpretation of their roles, and generation of mechanistic hypothesis of disease etiology.177

However, the notion of biological function of an allele is diffuse. Genetically mediated phenotypic178

presentations are usually limited to a specific organ system, tissue or even cell type. Some of them are179

pleiotropic and affect several systems, but very few represent truly systemic disorders or traits that180

impact every cell in the body. This suggests that, from the genetic perspective, the notion of function181

only makes sense in the specific phenotypic context defined by cell type, developmental stage, and182

stimulus response. This is especially true for regulatory variants involved in transcriptional control.183

A number of recent studies showed that genetic association signals are enriched in putative regulatory184

elements, and that this enrichment is highly cell type-specific [25]. However, many experimental and185

almost all computational approaches to probe the functional effects of allelic variants are agnostic186

about the context of the phenotypic presentation.187

Functional genomics is now actively embracing the multitude of contexts, starting from cell type188

variability in epigenetic annotations [5]. PINES leverages this annotation richness and attempts to189

predict the actual functional effect in the most relevant context rather than in the abstract framework190

of ubiquitous functional relevance. We note that simply restricting the analysis to the most relevant191

cell type is not the optimal approach. From purely statistical perspective, noisy correlated data192

provide information and should not be completely neglected. More importantly, from the biological193

perspective, many alleles are pleiotropic and many phenotypes are influenced by different biological194

processes in different organs, tissues and cells. For example, risk of myocardial infarction is partly195

influenced by blood lipids, but many genetic contributions are unrelated to blood lipid levels and196

are likely mediated by the vascular effects. All autoimmune diseases are influenced by the adaptive197

immune system, but individual conditions are limited to specific organs. PINES addresses this198

complexity to some degree through its customizable weighting of annotations. Additionally, many199

cell types that are relevant to a phenotype are currently not represented in the ENCODE and200

Roadmap datasets. The ability of PINES to leverage information from related cell types and tissues201

enables the analysis of noncoding variants even for such phenotypes. Finally, the noncoding genome202

has been consistently linked to human phenotypes through our knowledge of conservation, GWAS203

peak localization, and eQTLs, yet so far only few noncoding loci have been experimentally validated.204

This lack of unambiguously-defined functional noncoding loci makes the unsupervised approach used205
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by PINES very versatile.206

PINES can be easily queried through a web server at http://genetics.bwh.harvard.edu/pines/ in a207

similar manner to PolyPhen. This portal allows for scoring of noncoding SNVs based on user-defined208

weighting schemes, making PINES immediately applicable across a wide range of phenotypes. In209

addition, since the web server performs all data processing, users can query PINES with minimal210

computational overhead. PINES allows for the addition of epigenetic annotations as they become211

available without requiring significant changes to the underlying statistical model or software im-212

plementation. Due to this ease of upgrading the underlying annotation database, we aim PINES to213

become an always-up-to-date resource for the scientific community.214

In conclusion, PINES’ ability to take advantage of a wide range of prior biological information215

allows it to improve on the predictive power of other methods, and to provide an enhanced priori-216

tization of phenotype-relevant variants. PINES avoids biases stemming from inaccurate labeling of217

training datasets, and benefits from increased power when prior information is available to direct218

analyses towards relevant annotations. There is a great need for such methods since identification219

of regulatory activity specific to a subgroup of cell types or tissues can greatly increase our un-220

derstanding of disease mechanisms. We have shown that PINES can assist in identifying functional221

noncoding variants in fine mapping analyses, both for complex disease and Mendelian traits, without222

requiring the significant resource expenditure involved in a traditional fine mapping study.223
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5 Methods228

5.1 Annotation sources229

PINES uses a wide range of annotations as part of the scoring algorithm. Open chromatin and230

histone modifications for 127 cell types and tissues were obtained from ENCODE and Roadmap231

Epigenomics ChIP-seq and DNase-seq peak sets. In order to capture combinatorial interactions232

between different chromatin marks in their spatial context, we used ChromHMM chromatin state233

segmentations from Roadmap Epigenomics computed via the standard 15-state HMM model. Chro-234
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matin interaction data from a variety of assays (3C, 4C-Seq, 5C, Hi-C, ChIA-PET, Capture-C) were235

obtained from the 4DGenome database [8]. Additional DNaseI regions inferred via HMM from EN-236

CODE and Roadmap Epigenomics data were obtained from the Reg2Map database. Conservation237

was evaluated via GERP [34] and SiPhy [35].238

Noncoding background variants were selected randomly across the genome, and we used the239

ClinVar database [36] and GWAS Catalog [37] to ensure that no overlap exists with known functional240

loci. For the analysis in Figure 3 we used GWAS studies of IBD [28, 29], celiac disease [27], blood241

lipid levels [30, 31], and multiple sclerosis [26] to determine enrichment-based weights for weighted242

PINES. We then used fine mapped variants on the corresponding phenotypes from [25] as our test243

set. All immune-related fine mapped variants in [25] with posterior probability ≥ 0.2 were used to244

generate the first panel in Figure 3. A list of FANTOM5 enhancers [6] was used to create Figure245

5. The analysis of all noncoding Parkinson’s disease and IBD loci (Figure 6) was based on regions246

identified in [33] and [29].247

5.2 Working with a high-dimensional correlated annotation space248

Individual variants are assigned a score of 0 or 1 for each of the annotations referenced above. In249

particular, each variant is characterized by a vector of length 639 composed as follows:250

• Presence or absence of H3K4me1, H3K4me3, H3K27ac, H3K9ac, and DNase annotations for251

each of the 127 epigenomes (635 values).252

• Presence or absence of a conserved region as predicted by GERP and SiPhy (2 values).253

• Presence or absence of a DHS region as predicted by the ChromHMM 15 state model trained254

on all epigenomes (1 value).255

• Presence or absence of a region involved in chromatin interactions with other regions as re-256

ported in the 4DGenome database (1 value).257

In our annotation dataset, each variant is thus characterized by a vector of 635 cell type-specific258

scores and 4 cell type-independent scores. The joint distribution of this vector is difficult to ascertain259

explicitly due to its complex correlation structure; there are few outlier detection techniques that260

are robust to correlated data. One such approach is the one-class support vector machine (SVM)261

[38, 39, 40], which fits a hyperplane or hypersphere to the data in an attempt to isolate outlying262

points. One-class SVMs however suffer from a few disadvantages, such as difficulty in choosing263

tuning parameters, and the inability to add user-specified feature weights.264
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The alternative approach used in PINES is based on angular distances in a de-correlated annota-

tion space. Let X be the 639-dimensional matrix of annotations with covariance matrix Σ and mean

vector µ, and let W be a diagonal matrix of annotation weights (which in an unweighted analysis is

the identity matrix). Since Σ is a noisy estimate of the true correlation structure of X, we perform

the spectral decomposition Σ =
∑639
i=1 λiuiui

T , and compute a low-rank approximation of the esti-

mated covariance matrix based on the first 30 eigenvectors (chosen by visual inspection of the scree

plot): Σ̂ =
∑30
i=1 λiuiui

T . The matrix Σ̂−1 is obtained via the Moore-Penrose pseudo-inverse and

is used to project annotation vectors corresponding to individual variants into a decorrelated anno-

tation space via a Cholesky transformation: Σ̂−1 =
∑30
i=1

1
λi

uiui
T . If x is a vector of annotations,

then the length of the vector projected into the decorrelated space is
√

(x− µ)TWΣ̂−1W(x− µ)),

which corresponds to the reweighed Mahalanobis distance to the mean vector µ [41]. The cosine of

the angle between the projections of two vectors x and y into the decorrelated annotation space is

given by

(x− µ)TWΣ̂−1W(y − µ))√
(x− µ)TWΣ̂−1W(x− µ)) ·

√
(y − µ)TWΣ̂−1W(y − µ))

which corresponds to the correlation between the projections of x and y. In PINES we are specifically

interested in the angle between the projection of a variant of interest and the projection of the all-1

annotation vector 1. This vector is significant since it provides the direction of a point with maximal

annotation load, and thus the greatest evidence for functionality. Following the approach presented

in [42], we additionally scale this angle by the length of the projected x vector, resulting in the

following PINES score:

PINES(x) =

acos

[
(x−µ)T WΣ̂−1W(1−µ))√

(x−µ)T WΣ̂−1W(x−µ))·
√

(1−µ)T WΣ̂−1W(1−µ))

]
√

(x− µ)TWΣ̂−1W(x− µ)) ·
√

(1− µ)TWΣ̂−1W(1− µ))

Smaller scores indicate greater evidence for functionality. Supplementary Figure 9 presents the re-265

lationship between weighted PINES scores and annotation load in the original highly correlated266

space on a simulated example, as well as the effect of introducing weights in the model. For this267

simulation we generated 20 correlated Bernoulli random variables (representing the epigenetic anno-268

tations). The diagonal weight matrix W was constructed to assign weight 4 to one of the annotations269

and weight 1 to the remaining features. The plot shows the relationship between annotation count270

and PINES score, as well as shift in the score profile of observations that have the up-weighted271

annotation (red points). Finally, to determine the significance level of a given score we compute an272
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empirical p-value based on a large set of background variants. These background variants represent273

150,000 common variant sites (since rare variant sites can potentially harbor more penetrant muta-274

tions) selected randomly across the genome and that are not represented in ClinVar or the GWAS275

Catalogue.276

5.3 Background variants and the null distribution277

PINES makes use of a set of background SNPs against which to compare the score for new variants.278

We randomly selected 150,000 common variants across the genome to serve as background, none of279

which have been previously tied to phenotypes. Based on this background, PINES reports a one-280

sided p-value for each input variant, but the scores reported by CADD, GWAVA, and Eigen do no281

have an absolute unit of meaning and are thus not directly comparable. To enable this comparison282

we use the collection of background variants to determine a null distribution for each scoring method,283

and transform the raw CADD, GWAVA, and Eigen scores into empirical one-sided p-values based on284

their respective null distribution. This approach is similar to the one used to compute scaled CADD285

scores by transforming raw into rank-based scores [11]. Having performed this normalization, we286

can compare the results of PINES, CADD, GWAVA, and Eigen directly.287

5.4 Choice of feature weights288

Weighting of features can be performed manually, as was the case for the pigmentation variants289

presented in Figure 2, the first panel in Figure 3, and the simulation in Supplementary Figure 9, by290

setting the weight for biologically relevant annotations to a user-specified constant. Alternatively,291

when GWAS peaks are available, the weights used by PINES to differentiate between the different cell292

type-specific annotations are automatically computed based on the enrichment of each annotation293

across the GWAS loci. Enrichment within GWAS peaks for each annotation is used to set weights294

for the Parkinson’s disease, QRS prolongation, schizophrenia, and cleft lip and cleft palate variants295

presented in Figure 2. Such enrichment-based approaches are frequently used in predicting cell296

types contributing to specific phenotypes when GWAS or fine mapping data is available [25], with297

highly enriched annotations indicating potentially relevant cell types and disease mechanisms. In298

particular, we used the corresponding -log10(enrichment p-value) as weight for every annotation,299

although different functional forms are possible. Regardless of whether a manual or enrichment-300

based weighting is employed to construct the matrix W, no annotation will be completely excluded301

from the model. For example in a study of pigmentation, the objective is for variants that have302
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melanocyte-related annotations as well as exhibit evidence of functionality in other cell types to303

receive more significant scores than variants that only have melanocyte-related annotations. Another304

reason to rely on data from multiple cell types, even when the phenotypic effect of variants is limited305

to a single, well characterized cell type, is to gain statistical power from accumulating noisy correlated306

datasets.307

5.5 Other methods308

A few approaches have been recently proposed to score noncoding regions and address the complexity309

of the annotation data in a principled manner. The Genome-Wide Annotation of Variants method310

(GWAVA) [10] aims to predict the impact of noncoding genetic variants based on a random forest311

classifier, using variants reported in the Human GeneMutation Database (HGMD) as deleterious312

training data, and common SNPs from the 1000 Genomes Project as benign examples. The CADD313

approach [11] is based on the premise that harmful mutations are edged out of the gene pool over314

time via natural selection and that variation that has not been selected against is thus less likely to315

be deleterious. Notable for CADD is that it uses a dataset of simulated mutations for training, which316

is then compared to observed variants. A score of deleteriousness is assigned to every possible SNP in317

the human genome. One of the most recent methods, Eigen [9], is an unsupervised scoring framework318

that uses the eigen-decomposition of the covariance matrix associated with a collection of functional319

annotations to compute variant scores representing weighted sums of individual annotations.320

5.6 Code availability321

PINES can be queried through a web interface at http://genetics.bwh.harvard.edu/pines/. The322

source code and corresponding annotation data will also be available for download on this website,323

allowing users to customize and run PINES on their own system.324
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Figure 1: Overview of the PINES framework. PINES aims to systematically predict and rank the
functional relevance of noncoding genomic variants. It can either work in a default (”unweighted”)
mode and compare user-defined variants against the genomic background. Alternatively, users can
customize searches towards annotations considered as of highest relevance to a phenotype of interest,
for instance by providing a list of SNPs associated with a disease of interest through GWAS, or
by highlighting disease-relevant tissues (”weighted” PINES mode). Scores of genomic background
variants serve as an empirical null distribution against which significance levels for each variant of
interest are computed and scored in an output file.
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QRS prolongation: SCN5A
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Cleft lip/palate: FZD6
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Figure 2: PINES prioritizes experimentally validated functional noncoding variants. We fine map
20kb regions surrounding functional noncoding variants (purple dots) and show that all of the
variants validated experimentally as regulating expression of a nearby trait-associated gene are
also assigned the highest PINES scores. Supplementary Figures 1-7 show that PINES outperforms
existing methods on all loci.
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Figure 3: PINES improves statistical power to detect fine mapped variants across common neuro-
logic, immune, and metabolic traits and diseases. AUROC values (red) were computed by selecting
20,000 background variants as negative examples, and the fine mapped variants relevant to each dis-
ease as positive examples. PINES achieves the best AUROC values, of to 12% higher than the other
methods, based on its inclusion of weights encoding prior disease knowledge (in this case relevant
cell types).
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Figure 4: PINES delivers improved statistical power to identify functional noncoding variants de-
tected by a massively parallel reporter assay. The AUROC values (red) were computed by selecting
20,000 background variants as negative examples, and the reported functional variants as positive
examples. With AUROC values up to 43% higher than the other methods, PINES outperforms
GWAVA, Eigen, and CADD in its ability to detect the functional variants.
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Figure 5: PINES improves the prioritization of variants residing in experimentally validated en-
hancer regions. The AUROC values (red) were computed by selecting 20,000 background variants
as negative examples, and the variants residing in enhancer loci as positive examples. Based on AU-
ROC values, the weighted PINES approach outperforms GWAVA, Eigen, and CADD in its ability
to pinpoint enhancer variants. Additionally, testing whether the weighted PINES significance levels
are smaller that those of other methods via a Wilcoxon signed rank test delivers p-values that are
all below 10−60.
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Figure 6: PINES predicts novel noncoding pathogenic variants through fine mapping of Parkinson’s
disease and IBD GWAS loci. Loci were extracted from [33] and [29]. For each lead SNP, all variants
with LD ≥ 0.4 were selected, and loci were discarded if this list overlapped any coding regions or 3’
or 5’ UTRs of coding genes. All variants in LD to the lead SNP were scored via weighted PINES.
The GWAS lead SNP is marked blue, and the variant predicted as likely causal through PINES fine
mapping is marked red. For the rs4845604 locus the GWAS and PINES lead SNP overlaps.
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