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Abstract	
The	 most	 widespread	 measures	 of	 human	 brain	 activity	 are	 the	 blood	 oxygen	 level	 dependent	
(BOLD)	 signal	 and	 surface	 field	potential.	 Prior	 studies	 report	 a	 variety	 of	 relationships	 between	
these	signals.	To	develop	an	understanding	of	how	to	 interpret	 these	signals	and	the	relationship	
between	 them,	 we	 developed	 a	 model	 of	 (a)	 neuronal	 population	 responses,	 and	 (b)	
transformations	 from	 neuronal	 responses	 into	 the	 fMRI	 BOLD	 signal	 and	 electrocorticographic	
(ECoG)	 field	potential.	 Rather	 than	 seeking	 a	 transformation	between	 the	 two	measures	directly,	
this	 approach	 interprets	 each	 measure	 with	 respect	 to	 the	 underlying	 neuronal	 population	
responses.	 This	model	 accounts	 for	 the	 relationship	 between	 BOLD	 and	 ECoG	 data	 from	 human	
visual	cortex	in	V1-V3,	with	the	model	predictions	and	data	matching	in	three	ways:	Across	stimuli,	
the	BOLD	amplitude	and	ECoG	broadband	power	were	positively	correlated,	 the	BOLD	amplitude	
and	alpha	power	(8-13	Hz)	were	negatively	correlated,	and	the	BOLD	amplitude	and	narrowband	
gamma	 power	 (30-80	 Hz)	 were	 uncorrelated.	 The	 two	 measures	 provide	 complementary	
information	 about	 human	 brain	 activity	 and	we	 infer	 that	 features	 of	 the	 field	 potential	 that	 are	
uncorrelated	with	 BOLD	 arise	 largely	 from	 changes	 in	 synchrony,	 rather	 than	 level,	 of	 neuronal	
activity.	
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1.	Introduction	
Most	 measurements	 of	 activity	 in	 the	 living	 human	 brain	 arise	 from	 the	 responses	 of	 large	
populations	 of	 neurons,	 spanning	 the	millimeter	 scale	 of	 functional	magnetic	 resonance	 imaging	
(fMRI)	 and	 electrocorticography	 (ECoG)	 to	 the	 centimeter	 scale	 of	 electro-	 and	 magneto-
encephalography	 (EEG	 and	MEG).	 Integrating	 results	 across	 methods	 is	 challenging	 because	 the	
signals	measured	by	these	instruments	differ	in	spatial	and	temporal	sensitivity,	and	in	the	manner	
by	which	they	combine	the	underlying	neuronal	population	activity	[1-3].	Differences	in	scale	can	
be	partially	bridged	by	bringing	the	measurements	into	register.	For	example,	EEG	and	MEG	sensor	
data	can	be	projected	to	cortical	sources	subject	to	constraints	from	simultaneously	recorded	fMRI	
data	 [4]	 or	 from	 independent	 fMRI	 localizers	 [5],	 and	 ECoG	 electrodes	 can	 be	 aligned	 to	 a	 high	
resolution	anatomical	MRI	image	[6]	and	compared	to	the	local	fMRI	signal.		

Yet	 even	when	electrophysiological	 and	 fMRI	data	 are	 spatially	 registered,	 striking	differences	 in	
the	 sensitivity	 to	 stimulus	 and	 task	 are	 often	 observed,	 indicating	 differences	 in	 how	 neuronal	
responses	contribute	to	the	measured	physiological	signals.	For	example,	the	fMRI	BOLD	signal	and	
EEG	evoked	potentials	differ	 in	which	brain	areas	are	most	 sensitive	 to	 visual	motion	 (area	MT+	
with	 fMRI	 [7]	 versus	 V1	 and	 V3A	with	 EEG	 [8]).	Within	 the	 same	 visual	 area,	 fMRI	 and	 source-
localized	 EEG	 evoked	 potentials	 can	 show	 different	 effects	 of	 task	 in	 similar	 experimental	
paradigms,	such	as	the	effect	of	spatial	attention	on	the	contrast	response	function	(additive	in	fMRI	
[9],	multiplicative	 in	 EEG	 [10]).	 Even	when	 the	 spatial	 scale	 of	 the	 two	 signals	 is	 approximately	
matched	at	acquisition,	such	as	ECoG	electrodes	and	fMRI	voxels	(both	at	~2	mm),	systematically	
different	 patterns	 of	 responses	 can	 be	 obtained,	 such	 as	 compressive	 spatial	 summation	 in	 fMRI	
versus	nearly	linear	summation	in	ECoG	steady	state	potentials	(but	not	ECoG	broadband	signals)	
[11].	Such	fundamental	 functional	differences	cannot	be	explained	by	numerical	measurement-to-
measurement	 transformations.	 	 Rather,	 these	 differences	 must	 reflect	 the	 fact	 that	 the	
measurements	 are	 based	 on	 different	 aspects	 of	 the	 neural	 population	 response.	 To	 explain	 the	
differences	 in	measurement	modalities	 requires	 a	 computational	 framework	 that	 derives	 each	 of	
these	signals	from	the	neuronal	responses.	

One	 approach	 toward	 developing	 such	 a	 framework	 has	 been	 to	 measure	 the	 BOLD	 signal	 and	
electrophysiological	 signals	 simultaneously,	 or	 separately	 but	 using	 the	 same	 stimulus	 and	 task	
conditions,	 and	 to	 ask	 how	 features	 of	 the	 electrophysiological	 response	 compare	 to	 the	 BOLD	
signal.	This	 approach	has	 revealed	 important	patterns,	 yet	 after	 several	decades	of	 careful	 study,	
some	apparent	discrepancies	remain.	A	number	of	studies	comparing	band-limited	power	 in	 field	
potential	recordings	to	the	BOLD	signal	have	shown	that	 increases	 in	power	between	30	and	100	
Hz	 (gamma	band)	are	more	highly	correlated	with	BOLD	amplitude	 than	power	changes	 in	other	
bands	[12-17].	Yet	power	changes	in	this	band	do	not	fully	account	for	the	BOLD	signal:	very	large	
power	 changes	 can	occur	 in	 the	 gamma	band	without	 a	measurable	BOLD	 signal	 change	 [18,19],	
and	power	changes	in	lower	frequency	bands	can	be	correlated	with	the	BOLD	signal	independently	
of	power	changes	 in	 the	gamma	band	 [20-23].	 It	 therefore	cannot	be	 the	case	 that	 field	potential	
power	 in	 the	 gamma	 band	 is	 a	 general	 predictor	 of	 BOLD,	 even	 if	 the	 two	 measures	 are	 often	
correlated.	Another	source	of	disagreement	is	that	within	the	gamma	band,	some	reports	claim	that	
BOLD	 is	 best	 predicted	 by	 synchronous	 (narrowband)	 signals	 (Niessing	 et	 al.,	 2005),	 and	 others	
claim	that	BOLD	is	best	predicted	by	asynchronous	(broadband)	neural	signals	[11].	Moreover,	 in	
some	 cases,	 it	 has	 been	 reported	 that	 no	 feature	 of	 the	 local	 field	 potential	 predicts	 the	 intrinsic	
optical	 imaging	 signal	 (closely	 related	 to	 BOLD)	 as	 accurately	 as	 multiunit	 spiking	 activity	 [24].	
Consistent	with	this	claim,	a	comparison	of	both	motion	and	contrast	response	functions	measured	
with	 single	 units	 and	 with	 BOLD	 suggested	 a	 tight	 coupling	 between	 BOLD	 and	 single	 unit	
responses	 [25-27].	 To	 our	 knowledge,	 there	 is	 currently	 no	 single	 model	 linking	 the	
electrophysiological	and	BOLD	signals	that	accounts	for	the	wide	range	of	empirical	results.	
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The	 numerous	 studies	 correlating	 features	 of	 electrophysiological	 signals	 with	 BOLD	 provide	
constraints	in	interpreting	the	relationship	between	the	two	types	of	signals,	yet	the	approach	has	
not	led	to	a	general,	computational	solution.	We	argue	that	one	reason	that	correlation	studies	have	
not	 led	 to	 computational	 solutions	 is	 that	 any	 particular	 feature	 of	 the	 field	 potential	 could	 be	
caused	 by	 many	 possible	 neuronal	 population	 responses.	 For	 example,	 a	 flat	 field	 potential	
(minimal	 signal)	 could	 arise	 because	 there	 is	 little	 activity	 in	 the	 local	 neuronal	 population,	 or	 it	
could	 arise	 from	 a	 pair	 of	 neuronal	 sub-populations	 responding	 vigorously	 but	 in	 counterphase,	
resulting	in	cancellation	in	the	field	potential.	The	same	field	potential	in	the	two	situations	would	
be	accompanied	by	different	 levels	of	metabolic	demand	and	presumably	different	 levels	of	BOLD	
signal.	 Similarly,	 any	 particular	 BOLD	 measurement	 could	 be	 due	 to	 many	 different	 patterns	 of	
neural	 activity.	 For	 example,	 stimulation	 of	 a	 neuronal	 population	 that	 inhibits	 local	 spiking	 can	
cause	 an	 elevation	 in	 the	 BOLD	 signal	 [28],	 as	 can	 stimulation	 of	 an	 excitatory	 population	 that	
increases	the	local	spike	rate	[29].	In	short,	there	can	be	no	single	transfer	function	that	predicts	the	
BOLD	 signal	 from	 the	 field	 potential,	 because	 the	 field	 potential	 does	 not	 cause	 the	BOLD	 signal;	
rather,	the	neuronal	activity	gives	rise	to	both	the	field	potential	and	the	BOLD	signal.	

We	 propose	 that	 many	 of	 the	 different	 claims	 pertaining	 to	 the	 relationship	 between	 BOLD	
amplitude	 and	 features	 of	 the	 field	 potential	 can	 be	 accounted	 for	 by	 a	 modeling	 framework	 in	
which	BOLD	and	 field	potential	measurements	are	predicted	 from	simulated	neuronal	population	
activity,	rather	than	by	predicting	the	BOLD	signal	directly	 from	the	 field	potential	(Fig	1a	versus	
1b).	 In	 this	 paper,	 we	 model	 fMRI	 and	 ECoG	 responses	 in	 two	 stages,	 one	 stage	 in	 which	 we	
simulate	 activity	 in	 a	 population	 of	 neurons,	 and	 a	 second	 stage	 in	 which	 we	 model	 the	
transformation	 from	 the	 population	 activity	 to	 the	 instrument	 measures.	 We	 then	 analyze	 the	
simulated	 instrument	measures	 in	precisely	 the	same	manner	 in	which	we	analyze	data	obtained	
from	fMRI	and	ECoG	measurement	of	visual	cortex.	By	design,	the	model	employs	a	minimal	set	of	
principles	governing	how	the	instruments	pool	neural	activity,	rather	than	a	biophysically	detailed	
description	 of	 neural	 and	 hemodynamic	 events,	 enabling	 us	 to	 ask	 whether	 this	 minimal	 set	 of	
principles,	 together	with	 simulated	 neuronal	 population	 activity,	 can	 simultaneously	 account	 for	
the	empirical	BOLD	and	ECoG	measurements.		

2.	Results	
We	first	present	an	analytic	framework	to	capture	basic	principles	of	how	the	BOLD	signal	and	the	
field	 potential	 pool	 neuronal	 signals	 across	 a	 population.	 Second,	 we	 apply	 this	 framework	 to	
predict	ECoG	and	BOLD	 responses,	 and	quantify	how	 the	 simulated	ECoG	data	 are	 related	 to	 the	
simulated	BOLD	data.	Third,	we	present	results	from	ECoG	and	fMRI	experiments	in	human	V1,	V2	
and	V3	and	assess	how	well	 the	predictions	 from	the	simulation	can	account	 for	 the	 relationship	
between	ECoG	and	BOLD	observed	in	the	data.		

2.1	Relationship	between	LFP	and	BOLD:	analytic	framework	
The	fMRI	BOLD	signal	and	the	local	field	potential	(LFP)	measure	neuronal	population	activity	in	a	
fundamentally	different	manner.	The	goal	of	this	analytic	framework	is	to	capture	these	differences	
in	 simple	mathematical	 expressions,	 and	 from	 these	expressions	derive	 the	 relationship	between	
the	two	instrument	measurements.	We	purposely	omit	a	 large	number	of	biophysical	details	such	
as	cell	types,	neuronal	compartments,	the	dynamics	of	blood	flow,	and	so	forth,	both	for	tractability	
and	 in	 order	 to	 emphasize	 the	 basic	 principles	 of	 how	 different	 measures	 integrate	 neuronal	
activity.	 In	 the	 sections	 that	 follow,	 we	 then	 show	 that,	 when	 coupled	 to	 simulated	 neural	
responses,	 the	model	 can	 account	 for	many	 important	 patterns	 observed	 in	 fMRI	 and	ECoG	data	
from	human	visual	cortex.	
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For	this	analytic	framework,	we	consider	how	a	population	of	n	neurons	responds	to	a	stimulus	or	
task	during	a	brief	epoch	(time	0	to	T),	assumed	to	be	on	the	order	of	a	second.	Each	neuron	will	
produce	 a	 time	 varying	 dendritic	 current,	 denoted	 as	 Ii(t)	 for	 the	 ith	 neuron,	 resulting	 from	 the	
trans-membrane	potential.	We	would	like	to	know	how	these	currents,	Ii(t),	relate	to	the	fMRI	BOLD	
signal	and	to	the	LFP	signal	measured	by	an	ECoG	electrode.		

We	assume	that	the	LFP	arises	primarily	from	dendritic	membrane	currents	[2].	We	ignore	output	
spikes	 (although	 spikes	 can	 influence	 the	 LFP	 [30],	 it	 is	 generally	 thought	 that	 the	 influence	 is	
smaller	than	synaptic	and	dendritic	currents	[2]),	and	including	spikes	would	not	change	the	logic	
of	our	arguments).	For	the	ith	neuron,	the	contribution	to	the	LFP	is	then	𝛼!  ×𝐼! 𝑡 .	The	constant	𝛼! 	
depends	on	the	distance	and	orientation	of	the	neuron	with	respect	to	the	electrode,	as	well	as	the	
electrode’s	 impedance.	 For	 simplicity,	 we	 assume	 that	 each	 neuron	 is	 equidistant	 from	 the	
electrode	 and	 has	 the	 same	 orientation,	 like	 pyramidal	 neurons	 perpendicular	 to	 the	 cortical	
surface,	and	therefore	its	contribution	to	the	electrode	measurement	is	scaled	by	the	same	constant,	
𝛼.	Because	currents	add,	the	LFP	time	series	will	sum	the	contribution	from	each	neuron,	

𝐿𝐹𝑃 𝑡 = 𝛼 ∙ 𝐼! 𝑡
!

!

  	 (Equation	1)	

Field	 potential	 recordings	 are	 usefully	 summarized	 as	 the	 power	 (or	 band-limited	 power)	 in	 the	
time	series	[31].	Here	we	summarize	the	LFP	response	within	a	short	time	window	as	the	power	in	
the	signal	summed	over	the	time	window	T:		

𝐿𝐹𝑃 𝑝𝑜𝑤𝑒𝑟 =  𝛼 ∙ 𝐼! 𝑡
!

!

!
!

!
𝑑𝑡]	 (Equation	2)	

power	of	sum	

Importantly,	Equation	2	is	a	linear/	nonlinear	(L/N)	computation,	since	the	LFP	power	is	computed	
by	first	summing	the	signals	(L),	and	then	computing	the	power	(N).		

The	BOLD	signal	pools	neural	activity	 in	a	 fundamentally	different	manner	because	it	depends	on	
metabolic	demand	[e.g.,	for	reviews,	see	1,32].	The	metabolic	demand	of	each	neuron	will	increase	
if	the	cell	depolarizes	(excitation)	or	hyperpolarizes	(inhibition)	[28].	Hence	the	metabolic	demand	
of	a	neuron	is	a	nonlinear	function	of	its	membrane	potential:	either	a	positive	or	negative	change	in	
voltage	 relative	 to	 resting	 potential	 causes	 a	 current,	 thereby	 resulting	 in	 a	 positive	 metabolic	
demand.	 There	 are	 many	 possible	 nonlinear	 functions	 one	 could	 assume	 to	 summarize	 the	
metabolic	demand	from	the	dendritic	time	series,	such	as	the	rectified	signal	(absolute	value)	or	the	
power	 (squared	 signal).	 For	 tractability,	 we	 assume	 the	 metabolic	 demand	 of	 the	 ith	 neuron	 is	
proportional	 to	 the	 power	 in	 the	 time	 varying	 trans-membrane	 current,	 integrated	 over	 time:	
𝛽!×(𝑃𝑂𝑊𝐸𝑅(𝐼!(𝑡),	 or	 𝛽!× 𝐼!(𝑡)! 𝑑𝑡

!
! ,	 with	 𝛽! 	a	 scaling	 constant	 for	 the	 ith	 neuron.	 (Similar	

results	were	obtained	if	used	the	absolute	value	rather	than	the	power).	For	the	entire	population	
of	n	neurons,	we	then	assume	the	BOLD	signal	will	sum	the	metabolic	demand	of	each	neuron.	For	
simplicity	we	use	the	same	scaling	constant	for	each	neuron:	

	

𝐵𝑂𝐿𝐷 =  𝛽 ∙ 𝐼! 𝑡 ! 𝑑𝑡
!

!

!

!

	 (Equation	3)	

sum	of	power	
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Importantly,	 Equation	 3	 is	 a	 nonlinear	 /	 linear	 (N/L)	 computation,	 since	 the	 power	 is	 computed	
first	 (N)	and	 then	 the	 signals	are	 summed	 (L),	opposite	 to	 the	order	of	operations	 for	 the	LFP	 in	
Equation	3	(Fig	1)	(Personal	communication	from	David	J	Heeger).	In	other	words,	we	approximate	
the	BOLD	signal	as	the	sum	of	the	power,	and	LFP	as	the	power	of	the	sum,	of	the	separate	neuronal	
time	series.	The	difference	in	the	order	of	operations	can	have	a	profound	effect	on	the	predicted	
signals,	as	in	the	simple	example	with	2	neurons	depicted	in	Fig	1c	and	1d.	The	BOLD	signal	pooled	
over	the	two	neurons	is	the	same	whether	the	time	series	from	the	two	neurons	are	in	phase	or	out	
of	phase,	whereas	the	LFP	power	is	large	when	the	time	series	are	in	phase	and	small	when	they	are	
out	of	phase.		

	
Fig 1. Pooling with different orders of operations can have a large effect on measured brain signals. A) The 
approach to directly correlate LFP and BOLD data. B) Current approach to infer the LFP and BOLD from activity in a 
neuronal population. C) In this illustration the membrane potential of two neurons (x1 and x2) has the shape of a 
sinusoid with noise, and the sinusoid is in phase between the two neurons. In the simulated electrode measurement 
the signals are summed and the power is calculated (POWER(SUM) = 2.00). In the simulated measurement of 
metabolic demand, the power of each of these neurons is first calculated, and then summed across the neurons 
(SUM(POWER) = 1.01). Here, the POWER(SUM) > SUM(POWER). D) In this illustration the membrane potential of 
two neurons (x1 and x2) is the same as in panel C except that the two time series are in counterphase. Here, opposite 
from C), POWER(SUM) < SUM(POWER).  

	

	

These	approximations	allow	us	to	make	predictions	about	the	relation	between	LFP	and	BOLD.	By	
theorem,	we	know	that	the	power	of	the	sum	of	several	time	series	is	exactly	equal	to	the	sum	of	the	
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power	 of	 each	 time	 series	 plus	 the	 sum	 of	 the	 cross-power	 between	 the	 different	 time	 series	
(Equation	4):		

𝑋! 𝑡
!

!

!
!

!
𝑑𝑡  =  𝑋! 𝑡 ! 𝑑𝑡

!

!

!

!

+  𝑋! 𝑡 ∙ 𝑋! 𝑡 𝑑𝑡
!

!

!

!!!

	

													Power	of	sum																								Sum	of	power																	Sum	of	cross-power	

(Equation	4)	

Applying	this	theorem	to	Equations	2	and	3	shows	the	relationship	between	our	model	of	BOLD	and	
LFP	power:	

𝐿𝐹𝑃 𝑝𝑜𝑤𝑒𝑟 =  𝛼 𝛽 ∙ 𝐵𝑂𝐿𝐷 +   𝛼 ∙ 𝐼!(𝑡) ∙ 𝐼!(𝑡) 𝑑𝑡
!

!

!

!!!

 	 (Equation	5)	

We	can	now	see	that	the	LFP	power	depends	on	two	quantities,	one	of	which	is	related	to	the	BOLD	
signal,	and	one	of	which	 is	unrelated	to	 the	BOLD	signal	 (Equation	5).	The	 first	 term	summarizes	
the	 total	 level	 of	 neural	 activity	 (summed	 across	 neurons),	 and	 the	 second	 term	 summarizes	 the	
relationship	between	neural	 time	series	(the	cross-power,	similar	 to	covariance).	 If	and	when	the	
second	term	tends	to	be	large	compared	to	the	first,	then	the	LFP	power	will	not	be	closely	related	
to	the	BOLD	signal.		

One	cannot	deduce	from	first	principles	whether	the	first	term	in	Equation	4	(summed	power)	or	
the	 second	 term	 (summed	 cross-power)	 will	 dominate.	 However,	 he	 number	 of	 elements	
contributing	 to	 the	 two	 terms	 is	 quite	 different:	 For	n	 neurons,	 the	 first	 term	 grows	with	n	 (the	
power	in	each	neuron’s	time	series),	whereas	the	second	term	grows	with	n2	(all	the	pairwise	cross-
powers).	Hence	if	there	is	any	appreciable	covariance,	then	the	LFP	power	will	be	dominated	by	the	
second	term,	and	the	correlation	with	BOLD	will	be	weak	(except	in	cases	where	the	cross-power	
and	power	are	highly	correlated).	

2.2	Relationship	between	LFP	and	BOLD:	simulated	experiments	
We	next	used	the	framework	above	to	compute	the	BOLD	and	LFP	signals	as	a	function	of	simulated	
neuronal	population	activity.		

2.2.1	Simulations	of	BOLD	and	LFP	responses	from	neuronal	population	activity		

Cortical	 neurons	 receive	 a	 large	 number	 of	 inputs	 from	 diverse	 cell	 types.	 We	 simulated	 three	
inputs	to	each	neuron	(Fig	2a).	Input	1	approximated	Poisson-like	spike	arrivals	(C1,	‘Broadband’).	
Input	 2	 was	 a	 high	 frequency	 oscillation,	 peaked	 between	 40	 and	 60	 Hz,	 coordinated	 between	
neurons	(C2,	‘Gamma’).	Input	3	was	a	low	frequency	inhibitory	signal,	8-12	Hz	(C3,	‘Alpha’).	For	each	
simulated	neuron	i,	the	total	input	C	on	each	trial	is	the	sum	of	these	three	signals	(Fig	2b):	

𝐶! 𝑡 =  𝐶!! 𝑡  +  𝐶!! 𝑡 +  𝐶!! 𝑡  			 (Equation	6)	

We	then	passed	the	summed	input	in	each	neuron	through	a	leaky	integrator	to	produce	the	time-
varying	dendritic	current	for	that	neuron	(Ii,	Fig	2c):	

𝜏 ∙ 𝑑𝐼! 𝑑𝑡 = −𝐼! 𝑡 + 𝐶! 𝑡 		 (Equation	7)	

The	 membrane	 time	 constant,	𝜏	reflects	 the	 time	 dependence	 of	 the	 trans-membrane	 current	
[33,34].	 In	 total,	we	modeled	a	population	of	200	neurons,	each	of	which	produced	a	one-second	
time	 series	 on	 each	 trial.	 To	match	 the	 design	 of	 our	 ECoG	 experiments,	 a	 simulated	 experiment	
consisted	of	240	1-s	trials	(30	repeats	of	8	conditions).	Below	we	explain	(1)	how	the	time	series	
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was	generated	 for	each	of	 the	three	types	of	 inputs,	and	(2)	how	the	 input	 levels	varied	 for	 the	8	
conditions.	

	
Fig 2. Simulated model inputs. A) Three different inputs to each neuron were simulated: a broadband, random 
input with a small positive offset (𝐶!!), an oscillatory input with a time-scale of 40-60Hz (𝐶!!), and a negative input with 
a time-scale of 10 Hz (𝐶!!). The bottom panel shows the power spectra for each of the three inputs. B) The three 
inputs were summed in each neuron to produce the total input to the neuron (𝐶!). C) The total input was passed 
through a leaky integrator to produce the dendritic dipole current (𝐼!).  

Broadband	input	(C1).	Input	𝐶!	was	Gaussian	white	noise	with	a	 small	positive	bias.	The	Gaussian	
white	 noise	 approximates	 Poisson	 distributed	 spike	 arrivals,	 each	 of	 which	 produces	 a	 small	
positive	 or	 negative	 conductance	 change,	 corresponding	 to	 excitatory	 or	 inhibitory	 post-synaptic	
potentials.	 The	 small	 positive	 bias	 reflects	 the	 assumption	 of	 more	 excitatory	 than	 inhibitory	
synaptic	currents,	causing	a	net	depolarization.	Gaussian	white	noise	was	used	rather	than	Poisson	
distributed	 synaptic	 inputs	 for	 computational	 efficiency,	 but	 the	 pattern	 of	 results	 is	 similar	 for	
Poisson	 or	 Gaussian	 distributions.	With	𝐶!,	 we	 simulated	 high	 versus	 low	 rates	 of	 spike	 arrivals	
across	 simulation	 trials	 by	 using	 large	 versus	 small	 standard	 deviations	 of	 the	 Gaussian	
distributions.	 For	 all	 simulations,	 the	 coherence	 was	 zero	 between	 the	 200	 neurons	 in	 the	
population,	 meaning	 the	 time	 series	 in	 each	 neuron	 was	 independent	 except	 for	 chance	
correlations.	 This	white	noise	 input,	 after	 passing	 through	 leaky	 integration,	 results	 in	 an	output	
whose	 power	 spectral	 density	 declines	 with	 temporal	 frequency.	 When	 the	 level	 of	 this	 input	
increases	(higher	standard	deviation	of	the	noise	distribution),	the	result	is	a	broadband	elevation	
in	power	[34]	(Fig	3,	 left	panel),	an	effect	 that	can	be	observed	 in	 the	 local	 field	potential	 [35]	as	
well	as	intracellular	membrane	potentials	of	single	neurons	in	awake	macaque	[36].		

Gamma	input	(𝐶!).	 Input	𝐶!	consisted	 of	 band	pass	 noise	 (40-60	Hz),	with	 fixed	 amplitude	 on	 all	
trials,	and	with	coherence	across	neurons	that	varied	between	trials.	This	 input	approximates	the	
signals	 giving	 rise	 to	 narrowband	 gamma	 oscillations.	 Across	 different	 conditions,	we	 varied	 the	
coherence	 between	 neurons	 of	𝐶!	rather	 than	 the	 amplitude	 for	 individual	 neurons,	 which	 was	
fixed.	The	motivation	for	this	comes	from	empirical	observations	that	 large	gamma	oscillations	 in	
the	 LFP	 tend	 to	 reflect	 increased	 coherence	 between	 neurons	 [37,38].	 This	 is	 opposite	 to	 the	
broadband	input	(𝐶!),	for	which	we	varied	the	amplitude	in	individual	neurons	across	trials,	rather	
than	the	synchrony	between	neurons.	Narrowband	gamma	oscillations	with	a	peak	between	30	and	
80	Hz	can	be	observed	in	the	local	field	potential	[39,40],	as	well	as	in	the	membrane	potential	of	
individual	pyramidal	neurons	 [41].	When	we	 increase	 the	coherence	of	𝐶!	in	our	simulations,	 the	
result	is	an	increase	in	the	amplitude	of	the	LFP	in	the	gamma	band	(Fig	3,	middle	panel),	much	like	
narrowband	gamma	signals	observed	in	microelectrode	recordings	[42]	and	human	ECoG	[43].	

Alpha	input	(𝐶!).	The	alpha	input	consisted	of	inhibitory	oscillations	at	approximately	10	Hz,	with	
fixed	 coherence	 between	 neurons,	 and	 varying	 amplitude	 across	 trials.	 The	 oscillations	 were	
inhibitory,	 i.e.	 the	mean	was	below	 the	 resting	potential	 (compare	𝐶!	versus	𝐶!	and	𝐶!	in	Fig	2a).	
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Because	𝐶!	was	 inhibitory,	 it	 results	 in	 hyperpolarization	 (or	 less	 depolarization),	 opposite	 the	
effect	 of	𝐶!,	 which	 resulted	 in	 depolarization.	 This	 input	 approximates	 the	 signals	 giving	 rise	 to	
alpha	oscillations	(Fig	3,	right	panel).	Pyramidal	neurons	in	visual	cortex	have	been	hypothesized	to	
receive	periodic	inhibition,	with	pulses	arriving	at	approximately	10	Hz	[44,45].	Individual	neurons	
in	visual	cortex	can	indeed	show	subthreshold	membrane	oscillations	at	frequencies	around	10	Hz	
[46].		

	
Fig 3. Effect of varying simulated neural inputs on output spectra. Each panel shows the effect of manipulating 
one of the three neural inputs used in the simulations. For C1 (broadband), a high amplitude results in a broadband 
power elevation, evident in individual neurons. For C2 (gamma), a high coherence results in a narrowband power 
elevation when the field potential is summed over the population of 200 neurons. For C3 (alpha), a high amplitude 
results in a narrowband power elevation in the alpha band, evident in individual neurons. For each spectrum in each 
plot, 10 simulated trials were run. The plotted spectra are averaged across the 10 trials, and are computed from I(t), 
the time series after leaky integration of the inputs. 

From	the	neuronal	population	simulations,	we	computed	the	LFP	and	BOLD	signals	according	to	the	
equations	above	(section	“Relationship	between	LFP	and	BOLD:	analytic	framework”).	In	brief,	the	
LFP	was	computed	by	summing	the	trans-membrane	current	across	neurons	(Equation	1),	and	the	
BOLD	signal	was	computed	by	summing	the	power	across	neurons	(Equation	3).	The	BOLD	signal	
was	averaged	across	the	30	trials	with	the	same	condition.	The	LFP	time	series	was	transformed	to	
a	 power	 spectrum,	which	was	 averaged	 across	 the	 30	 repeated	 trials	 of	 the	 same	 condition.	 The	
average	power	spectrum	was	summarized	by	three	components:	elevation	in	broadband	power,	the	
power	of	narrowband	gamma	oscillations	(40-70	Hz),	and	the	power	of	alpha	oscillations	(8-12	Hz).		

The	 simulations	were	 structured	 to	 approximate	 the	 experimental	 design	 and	 the	 results	 of	 our	
ECoG	experiments	(Section	2.3).	In	brief,	in	the	ECoG	experiments,	there	were	four	grating	stimuli	
of	 different	 spatial	 frequencies,	 three	noise	patterns	with	different	power	 spectra,	 and	one	blank	
stimulus	 (mean	 luminance).	 For	 each	 of	 the	 8	 stimuli	 and	 each	 of	 22	 electrodes	 in	 V1-V3,	 we	
decomposed	 the	measured	 ECoG	 responses	 into	 the	 same	 three	 components	 computed	 from	 the	
simulations:		broadband,	narrowband	gamma,	and	alpha.		
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Fig 4. Inputs and outputs of simulations. A) The 8 different stimuli were defined by particular mixtures of the three 
types of input (C1, C2, C3).  The bar plots show the amplitude per neuron and the coherence across neurons for each 
of the 8 simulated stimuli. The output spectra were computed by summing the time series across the 200 neurons, 
computing the power spectra on each trial, and averaging the power spectra across 30 repeated trials of the same 
stimulus. The colors of the traces match the colors of the 8 stimuli in the bar plots.  The spectra show broadband 
changes across all frequencies arising from C1, a peak around 50 Hz from C2, and a peak around 10 Hz from C3. The 
right panel shows the simulated and measured summary metrics for each of the 8 stimuli: alpha power (green), 
gamma power (magenta), and broadband (black). The simulated measures are derived from the spectra in the 
‘Output spectra’ panel. The measured metrics are derived from a V1 electrode. The simulated and measured values 
are close by construction, since the inputs to the simulation were fitted to match the output spectral measurements 
from this electrode, see a plot of all electrodes in Supplemental Figure S9. B) Same as A, except that the simulation 
was matched to a V2 electrode rather than a V1 electrode. 

The	 level	of	 the	 three	 inputs,	C1,	C2,	and	C3	were	determined	so	 that	 that	 the	simulated	summary	
metrics	(broadband,	gamma	and	alpha)	matched	the	measured	ECoG	summary	metrics	for	each	of	
the	8	conditions	for	a	particular	electrode	(Fig	4).	Importantly,	the	determination	of	the	input	levels	
did	not	take	into	account	the	measured	BOLD	responses.	Hence	the	simulations	provided	a	test:	if	
the	 inputs	 were	 chosen	 to	 produce	 outputs	 that	 match	 the	measured	 ECoG	 responses,	 does	 the	
simulated	BOLD	signal	accurately	predict	the	measured	BOLD	signal?		

We	first	review	two	simulations,	one	matched	to	ECoG	measurements	from	a	V1	electrode,	and	one	
matched	 to	 ECoG	 measurements	 from	 a	 V2	 electrode.	 We	 then	 summarize	 the	 results	 of	 22	
simulations	 corresponding	 to	 the	 22	 electrodes	 in	 V1-V3.	 As	 with	 the	 ECoG	 experiments,	 in	 the	
simulation	each	condition	was	repeated	30	times	for	240	trials.	
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2.2.2	Broadband	and	alpha	LFP,	but	not	gamma	LFP,	correlate	with	BOLD	

For	 each	 of	 the	 8	 stimuli	 in	 one	 simulation,	 we	 obtained	 4	 summary	 responses,	 a	 single	 BOLD	
amplitude	and	three	LFP	measures	(broadband,	gamma	and	alpha,	Fig	5A).	By	design,	the	values	of	
the	LFP	components	(but	not	BOLD)	were	close	to	the	values	measured	in	one	of	the	electrodes.	

	

Fig 5. Simulated correlation between BOLD and LFP. A) Schematic to show LFP summary metrics derived from 
spectra: broadband power elevation, narrowband gamma and alpha. Broadband was calculated by the increase in a 
1/fn signal, gamma was calculated by fitting a Gaussian on top of the 1/fn line, and alpha was calculated as the 
difference from baseline in the alpha-frequency-range. B) The levels of C1, C2, C3, and were chosen for each of 8 
conditions to approximate the measurements of broadband, gamma, and alpha for 8 different stimuli from a V1 
electrode. Red dots indicate that inputs were matched to responses to a grating pattern, blue dots are matched to 
noise patterns, and black is matched to a blank stimulus. The correlation between broadband and simulated BOLD is 
high (left), whereas the correlations between gamma and BOLD (middle) and alpha and BOLD (right) are low. Error 
bars show the 68% confidence interval across bootstraps. C) Same as B except that inputs were chosen so that LFP 
measures matched ECoG data from a V2 electrode. Here, the correlation is high and positive between broadband 
and BOLD (left), low between gamma and BOLD (middle), and highly negative between alpha and BOLD (right).  
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For	 Simulation	 1,	 we	 observed	 three	 patterns	 (Fig	 5B).	 First,	 the	 LFP	 broadband	 response	
correlated	highly	with	BOLD	(R2	=	0.88).	Second,	the	power	of	narrowband	gamma	oscillations	was	
weakly	correlated	with	BOLD	(R2	=	0.01),	and	third	alpha	oscillations	were	weakly	correlated	with	
BOLD	(R2	=	0.06).	In	this	simulation,	the	LFP	broadband	response	was	the	only	good	correlate	of	the	
BOLD	signal.	

In	Simulation	2,	 the	broadband	LFP	was	again	a	good	predictor	of	BOLD,	and	gamma	power	was	
again	a	poor	predictor	(Fig	5C).	Unlike	Simulation	1,	 the	power	of	alpha	oscillations	was	strongly	
negatively	 correlated	with	BOLD	 (R2	=	0.74).	The	 stronger	 correlation	between	alpha	oscillations	
and	BOLD	was	not	due	to	a	difference	in	the	way	the	alpha	oscillations	were	simulated,	nor	to	the	
way	BOLD	was	computed	–	the	simulation	algorithm	and	the	analysis	code	extracting	the	BOLD	and	
LFP	measures	were	identical.	The	observations	from	the	two	sets	of	simulations	emphasize	the	fact	
that	 the	 identical	 mechanism	 that	 converts	 neural	 activity	 to	 BOLD	 (“neurovascular	 coupling”),	
modeled	here	as	power	in	the	time	series	summed	across	neurons	(Equation	3),	can	produce	very	
different	correlations	between	BOLD	and	features	of	the	LFP.	The	two	sets	of	simulations	differed	
only	 in	 the	 neural	 population	 activity,	 not	 in	 the	 transfer	 functions	 relating	 neural	 responses	 to	
instrument	measurements.	The	higher	correlation	between	alpha	power	and	BOLD	in	Simulation	2	
versus	1	is	due	to	the	fact	that	the	alpha	power	varied	more,	and	the	broadband	power	varied	less,	
across	the	8	stimuli	in	the	simulation.		

2.3	Relationship	between	ECoG	and	fMRI:	Data		
The	ECoG	responses,	 like	the	simulated	LFP	responses,	were	separated	into	three	components	for	
each	 stimulus	 condition	 in	 each	 electrode:	 a	 broadband	 component,	 a	 narrowband	 gamma	
component,	and	an	alpha	component.	The	separation	into	the	three	components	was	accomplished	
using	 the	 identical	analysis	code	as	 in	 the	simulated	data.	An	 important	 feature	of	 this	data	set	 is	
that	the	3	components	of	the	ECoG	response	showed	different	patterns	across	stimuli	[43]:	stimuli	
comprised	 of	 noise	 patterns	 caused	 large	 broadband	 increases	 but	 little	 to	 no	 measureable	
narrowband	 gamma	 response,	 whereas	 grating	 stimuli	 elicited	 both	 broadband	 increases	 and	
narrowband	 gamma	 increases.	 Gratings	 and	 noise	 stimuli	 resulted	 in	 decreases	 in	 alpha	 power	
compared	 to	baseline	(Supplementary	Fig	S1).	Had	all	 three	responses	been	correlated	with	each	
other,	it	would	not	be	possible	to	infer	how	each	relates	separately	to	the	BOLD	signal.	

We	measured	 BOLD	 responses	 in	 4	 healthy	 subjects	 to	 the	 same	 visual	 stimuli	 as	 used	 in	 ECoG	
(subjects	are	different	from	the	ECoG	subjects),	and	extracted	the	signal	from	regions	of	interest	in	
visual	cortex	matched	to	the	previously	recorded	ECoG	electrode	locations	(Supplementary	Fig	S2	
and	S3).	Combining	the	ECoG	and	BOLD	data	sets	enabled	us	to	summarize	the	data	with	the	same	
four	measures	for	each	stimulus	that	we	used	to	summarize	the	simulation:	a	single	BOLD	response	
and	three	ECoG	component	responses.		
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Fig 6. Measured correlation between ECoG and BOLD in V1 and V2/V3. A) The correlation between ECoG and 
BOLD was calculated for electrodes in V1 and V2/V3. The locations of one sample electrode in V1 and one in V2 are 
indicated by the enlarged white discs on the cortical surface for subject 1. B) In a foveal V1 site, the broadband ECoG 
amplitude predicted the BOLD signal (left). Error bars show 68% confidence intervals across bootstraps. Narrowband 
gamma power (center) and alpha power (right) did not predict BOLD. C) In a V2 site, the broadband ECoG was 
weakly correlated with BOLD (left). Narrowband gamma did not predict BOLD (middle). Alpha was negatively 
correlated with BOLD (right). The schematic spectral plots beneath the scatter plots illustrate the three ECoG 
components. Scatter plots for all other V1 and V2/V3 sites are shown in Supplementary Fig S5. 

We	first	consider	the	V1	site	that	was	used	to	guide	the	input	levels	for	Simulation	1	(Fig	6B).	We	
emphasize	that	the	BOLD	data	for	this	site	was	not	used	to	guide	the	simulation	(only	the	ECoG	data	
were	used).	Three	patterns	relating	the	BOLD	signal	to	the	ECoG	data	for	this	site	match	Simulation	
1.	 First,	 the	 BOLD	 amplitude	 for	 the	 different	 stimuli	 was	 highly	 correlated	with	 the	 broadband	
response	(R2	=	0.79).	Second,	the	narrowband	gamma	response	was	unrelated	to	BOLD	(R2	=	0.04).	
Third,	 there	 was	 little	 correlation	 between	 BOLD	 and	 alpha	 power	 (R2	 =	 0.02).	 Hence,	 as	 in	
simulation	1,	only	broadband	power	was	a	good	predictor	of	BOLD	amplitude.	

A	different	pattern	was	found	in	the	V2/V3	data,	and	this	pattern	was	similar	to	that	observed	in	
Simulation	2.	 	For	the	V2	site	guiding	Simulation	2,	the	correlation	between	BOLD	and	broadband	
was	 smaller	 than	 that	 found	 for	 the	 V1	 channel	 (R2	 =	 0.33),	 and	 the	 correlation	 between	 alpha	
power	and	BOLD	was	 stronger	 than	 for	V1,	 and	was	negative	 (R2	=	0.60).	Gamma	power	did	not	
correlate	with	BOLD,	similar	to	V1	data	and	to	Simulations	1	and	2.		

The	differences	 in	 the	BOLD/ECoG	 responses	 in	V1	 compared	 to	V2/V3	 could,	 in	 principle,	 arise	
either	 because	 the	 neurovascular	 coupling	mechanism	 differs	 between	 the	 two	 cortical	 areas,	 or	
because	the	neural	responses	for	these	particular	experimental	conditions	differ	 in	the	two	areas.	
While	we	do	not	have	access	to	the	neurovascular	coupling	mechanisms	nor	to	the	neural	response	
at	 the	 individual	 neuron	 level,	 we	 can	 compare	 the	measured	 ECoG	 responses	 in	 the	 two	 brain	
areas.	 We	 observe	 one	 large	 difference	 between	 V1	 and	 V2/V3,	 which	 is	 that	 the	 range	 of	
broadband	responses	elicited	by	the	different	stimuli	was	larger	for	V1	than	for	V2/V3:	the	average	
broadband	 increase	 above	 baseline	 was	 0.43	 log	 units	 for	 V1	 and	 0.26/0.28	 for	 V2/V3	
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(Supplementary	Fig	S4).	As	shown	in	Simulations	1	and	2,	a	difference	in	the	neuronal	population	
responses	can	result	in	a	different	pattern	of	response	between	features	of	the	ECoG	signal	and	the	
BOLD	signal.		

2.4	Data	model	comparison		
In	the	example	V1	electrode	and	in	Simulation	1,	the	BOLD	signal	was	well	explained	by	broadband	
increases	 (Fig	5B;	Fig	6B,	 left).	 In	 the	example	V2	electrode	and	 in	Simulation	2,	 the	BOLD	signal	
was	 explained	 by	 both	 broadband	 increases	 and	 alpha	 decreases	 (Fig	 5C,	 Fig	 6C).	 By	 explicitly	
modeling	both	the	population	response	and	the	population-to-instrument	transformations,	we	see	
that	a	difference	in	the	relation	between	instrument	measures	(BOLD	and	ECoG)	can	arise	from	a	
difference	in	the	population	response,	without	a	difference	in	neurovascular	coupling.	We	now	ask	
(1)	whether	these	effects	are	consistent	across	the	measured	V1	and	V2/V3	electrodes,	and	(2)	how	
a	 multiple	 regression	 model	 using	 broadband,	 gamma	 and	 alpha	 as	 predictors	 fits	 the	 BOLD	
response	for	both	data	and	simulation.			

2.4.1	Predicting	the	BOLD	amplitude	from	features	of	the	LFP	

As	we	argued	in	the	Introduction,	we	believe	there	is	no	single,	general	transfer	function	that	can	
predict	 the	BOLD	signal	 from	 the	LFP.	Yet	a	 regression	model	 linking	 the	 two	measures	can	be	a	
useful	 way	 to	 summarize	 the	 results	 of	 a	 particular	 experiment	 or	 simulation,	 and	 to	 compare	
results	 between	 different	 experiments	 or	 simulations.	 Here,	 we	 fit	 several	 regression	models	 to	
each	simulation	and	to	the	data.	The	regression	models	predicted	the	simulated	or	measured	BOLD	
response	from	either	a	single	LFP	component	(broadband	power,	gamma	power,	or	alpha	power),	
or	 from	 combinations	 of	 LFP	 components	 (each	 of	 the	 pairwise	 combinations,	 and	 the	 3	
components	together).	These	models	were	fit	separately	for	each	of	the	9	electrodes	in	V1	and	each	
of	 the	 13	 electrodes	 in	 V2/V3	 (19	 electrodes	 from	 subject	 1;	 3	 from	 subject	 2),	 and	 for	 the	 22	
corresponding	simulations.	Accuracy	of	each	model	was	assessed	by	cross-validation.	With	a	cross-
validation	procedure,	there	is	no	advantage	in	accuracy	for	models	with	more	free	parameters.		

Simulations.	For	the	simulations,	we	expect	broadband	power	to	positively	predict	the	BOLD	signal	
and	 alpha	 power	 to	 negatively	 predict	 the	 BOLD	 signal,	 because	 of	 the	 construction	 of	 the	
simulations:	broadband	and	alpha	power	elevations	were	achieved	by	increasing	the	level	of	inputs	
per	 neuron,	 rather	 than	 coherence;	 the	 converse	 was	 true	 for	 gamma.	 Nonetheless,	 solving	 the	
regression	models	can	be	informative	because,	as	seen	in	Fig	5,	simulations	with	the	identical	input	
types	and	the	identical	analysis	can	lead	to	different	patterns,	depending	on	the	mixtures	of	values	
simulated.	 Moreover,	 the	 regression	 analyses	 of	 the	 simulated	 data	 provide	 a	 baseline	 against	
which	we	can	compare	the	regression	analyses	of	the	observed	data.	

The	 single	 parameter	 models	 across	 electrodes	 in	 V1	 and	 V2/V3	 show	 the	 same	 pattern	 as	 the	
single	electrode	examples	in	Figs	5	and	6.	For	simulations	fit	to	V1	ECoG	data,	broadband	alone	was	
a	good	predictor	of	BOLD	(average	cross	validated	R2=0.87	across	9	simulations)	while	gamma	and	
alpha	alone	were	not	(gamma	R2	=	0.17,	alpha	R2	=	0.06).	For	simulations	fit	to	V2/V3	ECoG	data,	
broadband	and	alpha	alone	each	predicted	the	BOLD	signal	with	moderate	accuracy	(broadband	R2	
=	0.68,	alpha	R2	=	0.37).		

For	 simulations	 fit	 to	 V1	 and	 to	 V2/V3,	 the	 BOLD	 response	 was	 best	 explained	 by	 a	 regression	
model	 combining	 broadband	 and	 alpha	 (R2	 =	 0.95,	 R2	 =	 0.97,	 Fig	 7A	 and	 B).	 The	 regression	
coefficients	 for	 this	 model	 were	 positive	 for	 broadband	 and	 negative	 for	 alpha.	 A	 model	 that	
incorporated	all	 three	LFP	measures	–	broadband,	alpha	and	gamma	–	did	not	explain	additional	
variance	for	either	simulation,	confirming	our	earlier	observation	that	narrowband	gamma	power	
was	not	correlated	with	BOLD	amplitude	in	simulated	data.		
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Fig 7. Explained variance in the BOLD fMRI signal in the simulations and in data. A) Variance in the simulated 
BOLD signal explained by broadband, gamma and alpha changes in the simulated LFP. The colored bars show the 
R2 for each of the 7 model types averaged across the 9 simulations fitted to V1 data. Error bars are standard error of 
the mean across the 9 simulations. The R2 was cross-validated (split between even and odd stimulus repetitions), to 
ensure that the R2 can be compared between models with different numbers of explanatory variables. Bottom: The 
regression coefficients show whether the broadband, gamma, and alpha signals were positive or negative predictors 
of the BOLD signal.  B) Same as A, but for the 13 simulations fitted to V2/V3 ECoG data. C) Same as A, but for 
measured BOLD and ECoG data averaged across the 9 V1 sites. The R2 was cross-validated (split between subjects 
for BOLD and stimulus repetitions for ECoG). A red * in the lower plot indicates whether regression coefficients 
differed significantly from zero by a t-test (p<0.05). D) Same as C, except for the 13 electrodes in V2/V3. (E) 
Simulated BOLD (x-axis) versus measured BOLD (y-axis) for the 9 V1 sites. Each color corresponds to one site. The 
R2 was computed separately for each of the 9 sites, and then averaged. (F) Same as E, but for V2/V3 sites. 
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Data.	The	regression	analysis	between	the	measured	ECoG	and	BOLD	signal	in	V1	(Fig	7C)	was	very	
similar	 to	 the	 regression	 analysis	 in	 the	 simulation	 (Fig	 7A).	 The	 observed	BOLD	 signal,	 like	 the	
simulated	BOLD	signal,	was	best	predicted	by	a	combination	of	broadband	and	alpha	changes	(R2	=	
0.73).	While	narrowband	gamma	changes	were	modestly	predictive	of	 the	BOLD	signal	across	V1	
electrodes	 in	 a	 single	 parameter	 model	 (R2=0.11),	 adding	 gamma	 as	 a	 predictor	 to	 either	 the	
broadband	only	model	(model	2	versus	model	1)	or	to	the	combined	broadband	and	alpha	model	
(model	7	versus	model	5)	led	to	a	slight	decrease	in	accuracy,	suggesting	that	any	predictive	power	
of	 gamma	 alone	 was	 probably	 due	 to	 correlation	 with	 the	 other	 ECoG	 predictors,	 rather	 than	 a	
direct	relationship	to	the	BOLD	signal.		

The	model	 fits	 of	 the	measured	 BOLD	 signal	 in	 V2/V3	 (Fig	 7D)	were	 qualitatively	 similar	 to	 the	
model	 fits	 for	 the	V2/V3	data	 (Fig	7B),	 though	with	 some	quantitative	differences.	The	observed	
BOLD	signal,	like	the	simulated	BOLD	signal,	was	best	predicted	by	a	combination	of	broadband	and	
alpha	 changes	 (R2=	 0.50)	 (see	 also	 Supplementary	 Fig	 S6).	 As	 with	 V1,	 narrowband	 gamma	 in	
V2/V3	did	not	explain	additional	variance	 in	 the	BOLD	signal.	Overall,	compared	to	V1,	 the	BOLD	
signal	 in	 V2/V3	 was	 less	 accurately	 predicted	 by	 the	 regression	 models	 based	 on	 the	
electrophysiological	 measurements	 (Fig	 7D),	 and	 was	 also	 less	 well	 predicted	 by	 the	 simulated	
BOLD	responses	(average	R2	of	35%)		(Fig	7F).		

Finally,	we	directly	compared	the	BOLD	responses	predicted	in	the	simulations	with	the	measured	
BOLD	data.	These	were	in	good	agreement,	with	the	BOLD	data	in	the	simulations	accounting	for	an	
average	of	80%	of	the	variance	in	the	measured	data	in	V1	and	44%	in	V2	(R2	averaged	across	sites)	
(Fig	7E-F).	

Across	simulations	and	data	sets,	a	general	pattern	emerges.	The	broadband	signal	was	significantly	
and	positively	predictive	of	BOLD,	and	alpha	power	was	significantly	and	negatively	predictive	of	
BOLD.	Narrowband	gamma	had	no	consistent	relation	with	BOLD.	While	the	relationships	between	
broadband	 and	 BOLD	 and	 alpha	 power	 and	 BOLD	were	 consistent	 in	 terms	 of	 sign	 (the	 former	
positive,	 the	 latter	 negative),	 the	 level	 was	 not	 always	 the	 same.	 As	 we	 noted	 in	 the	 example	
channels	 shown	 in	Fig	7,	 the	broadband	power	was	more	strongly	predictive	of	BOLD	 in	V1,	and	
alpha	power	was	more	strongly	predictive	of	BOLD	in	V2/V3.	An	examination	of	responses	to	the	
different	 stimulus	 types	clarifies	 the	difference	between	V1	and	V2/V3	 in	 these	data.	Specifically,	
the	 BOLD	 response	 in	 V2/V3	 to	 noise	 patterns	was	 under-predicted	 by	 the	 broadband	 response	
alone	(Supplementary	Fig	S5).	In	V2/V3	alpha	decreased	more	for	the	noise	patterns	and	this	alpha	
decrease	accounted	for	the	BOLD	change	unexplained	by	broadband	(Supplementary	Fig	S1).	This	
helps	to	explain	why	a	model	that	includes	broadband	and	alpha	is	much	more	accurate	for	V2/V3	
than	 a	 model	 that	 includes	 only	 broadband.	 In	 contrast,	 for	 V1	 the	 BOLD	 response	 was	 well	
predicted	 by	 broadband	 power	 in	most	 sites,	 with	 little	 systematic	 prediction	 failures,	 and	 little	
room	for	increased	model	accuracy	when	adding	predictors	such	as	alpha	power.		

For	 each	 of	 the	 22	 simulations,	 the	 three	 inputs	 C1,	 C2,	 and	 C3	 defining	 each	 of	 the	 8	 stimulus	
conditions	were	fit	to	produce	the	LFP	data	from	the	corresponding	ECoG	electrode.	By	design,	the	
C1	(broadband)	and	C3	(alpha)	inputs	were	fit	to	data	by	varying	the	 level	per	neuron,	whereas	C2	
was	fit	to	data	by	varying	the	coherence	across	neurons.	In	principle,	for	any	of	the	three	inputs,	the	
ECoG	data	could	have	been	fit	by	varying	either	the	level	per	neuron	or	coherence	across	neurons.		
For	completeness,	we	tested	 the	7	alternative	models	(Supplementary	Fig	S7).	The	most	accurate	
model,	quantified	as	the	R2	between	the	measured	BOLD	and	the	simulated	BOLD,	averaged	across	
the	22	sites,	was	the	simulation	type	used	in	the	main	text,	in	which	C1	and	C3	varied	in	the	level	per	
neuron	 and	 C2	 varied	 in	 the	 coherence	 across	 neurons.	 The	 simulation	 in	 which	 broadband	
coherence	rather	than	level	modulated	broadband	power	caused	a	large	drop	in	R2,	The	models	in	
which	the	gamma	LFP	power	was	modulated	by	the	coherence	rather	than	the	level	only	caused	a	
small	drop	in	R2.	
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2.4.2	Correlation	between	BOLD	and	LFP	across	all	frequencies		

Simulation.	 In	 the	previous	section,	we	modeled	 the	BOLD	responses	as	a	 linear	 function	of	 three	
components	derived	from	the	LFP.	These	features	-	broadband	power,	narrowband	gamma	power,	
and	narrowband	alpha	power	-	are	summary	metrics	of	 the	power	spectrum.	We	also	tested	how	
the	power	at	each	frequency	in	the	simulated	LFP	and	in	the	ECoG	data	correlated	with	the	BOLD	
response	(simulated	and	observed).	We	calculated	LFP	power	for	each	frequency	from	1	to	200	Hz	
and	 correlated	 the	 power	 changes	 from	 baseline	 with	 BOLD	 changes	 from	 baseline	 (Fig	 8).	 In	
simulations	fit	to	V1	ECoG	data,	the	LFP	correlated	well	with	the	BOLD	signal	across	all	frequencies	
except	those	in	the	alpha	band	(8-15	Hz)	and	below,	and	those	in	the	gamma	band	(40-60Hz).		

In	 simulations	 fit	 to	 V2/V3	 ECoG	 data,	 the	 pattern	 was	 similar,	 except	 that	 the	 correlation	 was	
negative	in	the	alpha	band	rather	than	0,	and	weaker	but	still	positive	in	the	rest	of	the	spectrum.	
These	patterns	match	the	summary	metrics	of	alpha,	gamma,	and	broadband	shown	in	Fig	7.		

	

 

Fig 8. The correlation between BOLD and LFP as a function of frequency. A) The correlation between LFP and 
BOLD for simulations fit to V1 shows that there is a positive correlation across most frequencies, except those 
including the alpha and gamma changes. B) The correlation between LFP and BOLD for the simulations fit to V2/V3 
shows that there is a strong negative correlation around 10 Hz, and a positive correlation across a broad range of 
frequencies. C) In the V1 data there was a positive correlation between ECoG and BOLD for a broad range of 
frequencies, except those including the alpha changes. Gray lines represent the 9 individual V1 electrodes, the black 
line is the average, the red line corresponds to the example electrode shown also in Fig 6B, and to the simulation in 
panel A. D) In the V2/V3 data there was a strong negative correlation between ECoG and BOLD in the alpha range 
around 10 Hz and a positive correlation between ECoG and BOLD for a broad range of frequencies. Gray lines 
represent the 13 individual V2/V3 electrodes, the black line is the average, the red line corresponds to the example 
electrode shown also in Fig 6C, and to the simulation plotted in panel B. Note that neither the V1 electrodes nor the 
V2/V3 electrodes show a peak at the gamma frequency. 

Data.	The	correlation	between	measured	BOLD	and	ECoG	power	in	V1	was	qualitatively	similar	to	
that	found	in	simulations.	In	V1,	ECoG	responses	across	all	frequencies	except	the	alpha	band	were	
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positively	correlated	with	 the	BOLD	response	(Fig	8C),	consistent	with	 the	regression	analyses	of	
the	 summary	metrics,	 showing	 that	 broadband	 ECoG	 power	was	 the	 best	 predictor	 of	 the	 BOLD	
signal.			

The	pattern	of	correlation	between	ECoG	power	and	BOLD	in	V2/V3	was	similar	to	that	found	in	V1,	
although	the	overall	level	of	correlation	was	lower.	There	were	positive	correlations	between	ECoG	
and	 BOLD	 extending	 across	 most	 frequencies	 that	 were	 weaker	 than	 in	 V1,	 and	 there	 was	 a	
negative	correlation	for	most	sites	in	the	alpha	band.		

There	were	 some	 differences	 between	V1	 sites.	 For	 example,	 in	 two	 sites,	 the	 correlation	 across	
frequencies	dipped	in	the	gamma	band	(30-80Hz),	similar	to	simulated	data.	These	are	also	the	two	
sites	that	showed	the	largest	amplitude	gamma	responses	(sites	8	and	9	in	Supplementary	Fig	S5).	
In	other	words,	when	cortical	sites	showed	 large	gamma	signals,	 these	signals	were	uncorrelated	
with	 BOLD.	 The	 fact	 that	 in	 7	 V1	 sites	 there	 was	 a	 positive	 correlation	 between	 BOLD	 and	 LFP	
power	spanning	30-80	Hz	might	seem	inconsistent	with	our	earlier	observation	that	narrowband	
gamma	 power	was	 not	 predictive	 of	 the	 BOLD	 signal	 in	 V1	 sites	 (Fig	 6	 and	 7).	 However,	 in	 this	
analysis	 the	 narrowband	 and	 broadband	 power	 are	 not	 modeled	 separately	 and	 the	 positive	
correlation	between	power	at	30-80	Hz	in	Fig	8	thus	likely	suggests	that	broadband	power	extends	
into	 this	 band,	 since	 broadband	 changes	 can	 extend	 across	 all	 frequencies	 [11,34].	 Therefore,	 if	
there	 is	 little	 to	no	narrowband	response,	we	would	expect	a	positive	 correlation	between	BOLD	
and	ECoG	throughout	all	frequencies.	

There	were	some	site-to-site	differences	in	the	correlation	between	alpha	and	BOLD.	For	example,	
some	 sites	 showed	 a	 positive	 correlation	 with	 BOLD	 in	 the	 alpha	 range,	 and	 others	 showed	 a	
negative	 correlation	 (Fig	 8C).	 These	 site	 to	 site	 differences	 depend	 on	 the	 range	 of	 responses	
evoked	by	stimuli.	For	example,	for	electrodes	in	which	stimuli	evoked	a	large	of	power	changes	in	
the	alpha	band,	alpha	was	more	strongly	correlated	with	BOLD.	Similarly,	 for	electrodes	 in	which	
stimuli	evoked	a	large	range	of	broadband	responses,	broadband	was	more	highly	correlated	with	
BOLD	(Supplementary	Fig	S8).	This	pattern	did	not	hold	for	narrowband	gamma	power	changes.				

3.	Discussion	
This	study	investigated	the	relationship	between	electrophysiological	and	BOLD	measurements	in	
human	visual	cortex.	Our	modeling	framework	decomposed	the	signals	into	two	stages,	a	first	stage	
in	 which	 we	 simulated	 the	 neuronal	 population	 responses	 (dendritic	 time	 series),	 and	 a	 second	
stage	in	which	we	modeled	the	transfer	of	the	neuronal	time	series	to	the	BOLD	signal	and	the	field	
potential.	 This	 approach	 differs	 from	 the	 direct	 comparison	 of	 electrophysiological	 signals	 and	
BOLD.	The	explicit	 separation	 into	 stages	 clarified	both	a	 similarity	and	a	difference	between	 the	
BOLD	 amplitude	 and	 the	 field	 potential	 power:	 the	 two	 can	 be	 approximated	 as	 the	 same	
operations	on	the	neuronal	population	activity,	but	applied	in	a	different	order.	Specifically,	within	
a	 brief	window,	we	modeled	 the	 BOLD	 amplitude	 as	 the	 sum	of	 the	 power	 in	 the	 neuronal	 time	
series,	and	the	field	potential	as	the	power	of	the	sum	of	the	neuronal	time	series.	Because	the	order	
of	 operations	 differs,	 the	 two	 signals	 differ,	 and	 each	 is	 blind	 to	 particular	 distinctions	 in	 the	
neuronal	 activity.	 For	 example,	 the	 BOLD	 signal	 (according	 to	 our	 model)	 does	 not	 distinguish	
between	 synchronous	 and	 asynchronous	 neural	 signals	 with	 the	 same	 total	 level	 of	 activity.	 In	
contrast,	the	field	potential	does	not	distinguish	counterphase	responses	from	no	response.	Even	if	
one	knew	the	exact	mechanism	of	neurovascular	coupling	and	the	precise	antenna	 function	of	an	
electrode,	 one	 still	 could	 not	 predict	 the	 relationship	 between	 the	 BOLD	 signal	 and	 the	 field	
potential	 without	 specifying	 the	 neuronal	 population	 activity	 that	 caused	 both.	 Hence	 the	
relationship	between	the	 two	types	of	signals	 is	not	 fixed,	but	rather	depends	on	the	structure	of	
the	underlying	responses	of	the	neuronal	population.		
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Although	we	do	not	have	access	to	the	complete	set	of	individual	neuronal	responses	in	any	of	our	
experiments	 in	 visual	 cortex,	 we	 approximated	 the	 responses	 by	 specifying	 the	 type	 of	 signals	
common	 to	 visual	 cortex.	 We	 therefore	 limited	 the	 space	 of	 neuronal	 population	 responses	 by	
modeling	the	activity	as	arising	from	three	types	of	signals,	enabling	us	to	compute	the	complete	set	
of	 field	 potentials	 and	 BOLD	 responses	 to	 a	 variety	 of	 conditions.	 Finally,	 we	 compared	 the	
simulated	patterns	of	BOLD	and	 field	potential	 responses	 to	 the	actual	 responses	we	observed	 in	
data	from	human	subjects.	These	patterns	are	discussed	and	interpreted	below.		

3.1	Changes	in	broadband	power	predict	BOLD	
Many	studies	have	 reported	correlations	between	BOLD	and	power	 in	 the	gamma	band	LFP	 (30-
130	Hz)	(review	for	human	studies:	[47]).	Yet	changes	in	gamma	band	power	do	not	reflect	a	single	
biological	 mechanism.	 For	 example,	 several	 recent	 studies	 have	 emphasized	 that	 LFP	 power	
changes	 in	 the	 gamma	 band	 reflect	 multiple	 distinct	 neural	 sources,	 including	 narrowband	
oscillations	 and	 broadband	 power	 shifts,	 with	 very	 different	 stimulus	 selectivity	 and	 biological	
origins	[43,48,49].		

Broadband	 changes	 have	 been	 proposed	 to	 reflect,	 approximately,	 the	 total	 level	 of	 Poisson	
distributed	spiking	(or	spike	arrivals)	 in	a	 local	patch	of	cortex	 [34].	 In	contrast,	 the	narrowband	
gamma	 response	 is	 caused	 by	 neural	 activity	with	 a	 high	 level	 of	 cell-to-cell	 synchrony	 [50]	 and	
likely	depends	on	specialized	circuitry	[51].	While	the	two	responses	are	sometimes	distinguished	
as	‘high	gamma’	(referring	to	broadband	signals),	and	‘low	gamma’	(referring	to	oscillatory	signals),	
this	distinction	 is	not	general.	Broadband	signals	 can	extend	 into	 low	 frequencies	 [11,52]	 so	 that	
the	two	signals	can	overlap	in	frequency	bands.	Hence	separating	gamma	band	field	potentials	into	
an	 oscillatory	 component	 and	 a	 broadband	 (non-oscillatory)	 component	 is	 not	 reliably	
accomplished	by	binning	the	signals	into	two	temporal	frequency	bands,	one	low	and	one	high,	but	
rather	requires	a	model-based	analysis,	such	as	fitting	the	spectrum	as	the	sum	of	a	baseline	power	
law	 (to	 capture	 the	 broadband	 component)	 and	 a	 log-Gaussian	 bump	 (to	 capture	 the	 oscillatory	
component)	[43].		

There	is	strong	experimental	support	for	the	idea	that	increases	in	broadband	LFP	power	primarily	
reflect	 increases	 in	 asynchronous	 neural	 activity	 rather	 than	 increases	 in	 coherence.	 First,	
experiments	 have	 shown	 that	 broadband	 power	 is	 correlated	 with	 multiunit	 spiking	 activity	
[49,53].	 Second,	 unlike	 the	 case	 of	 narrowband	 gamma	 LFP,	 changes	 in	 broadband	 LFP	 are	 not	
accompanied	by	 changes	 in	broadband	 spike-field	 coupling	 ([37],	 their	 Fig	1A-B).	 The	possibility	
that	neuronal	synchrony	sometimes	affects	broadband	signals	cannot	be	ruled	out,	for	example	as	
shown	in	cases	of	pharmacological	manipulations	 in	nonhuman	primate	[54].	 In	such	cases,	 there	
would	not	be	a	simple	relationship	between	broadband	power	and	BOLD.	

The	 prior	 literature	 has	 not	 shown	 definitively	whether	 broadband	 LFP,	 narrowband	 gamma,	 or	
both	predict	the	BOLD	signal.	The	first	study	that	directly	compared	simultaneously	recorded	BOLD	
and	electrophysiology	showed	that	both	LFP	power	in	the	gamma	frequency	range	(40-130	Hz)	and	
multi	unit	 spiking	activity	 (MUA)	predicted	 the	BOLD	signal	 [16],	 and	 further,	 that	when	 the	LFP	
power	diverged	from	MUA,	the	gamma	band	LFP	predicted	the	BOLD	signal	more	accurately	than	
did	 spiking.	 This	 study	however	did	not	 separately	 test	whether	 a	 narrowband	 (oscillatory)	 or	 a	
broadband	(non-oscillatory)	component	of	the	LFP	better	predicted	the	BOLD	response.		

Other	 studies,	 too,	 have	 shown	 a	 variety	 of	 patterns	when	 correlating	 LFP	power	 changes	 in	 the	
gamma	band	with	BOLD.	Some	reported	that	BOLD	amplitude	correlates	with	narrowband	gamma	
activity	 [13],	while	others	 showed	 that	BOLD	correlates	with	broadband	changes	 [11],	 and	many	
did	 not	 distinguish	 narrowband	 from	 broadband	 power	 in	 the	 gamma	 band	 [55].	 Simultaneous	
recordings	of	hemodynamic	and	neuronal	activity	 in	macaque	V1	showed	that	BOLD	signals	 from	
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intrinsic	optical	images	can	occur	in	the	absence	of	gamma	band	LFP	changes	[56],	and	that	in	some	
circumstances,	multiunit	activity	predicts	the	BOLD	signal	more	accurately	than	gamma	band	LFP	
[24,57].		

Here	 we	 separately	 quantified	 the	 broadband	 power	 (spanning	 at	 least	 50-150	 Hz)	 and	
narrowband	 gamma	 power.	 We	 found	 that	 the	 amplitude	 of	 broadband	 changes	 accurately	
predicted	the	BOLD	signal	in	V1.	The	empirical	results	and	the	models	help	resolve	the	question	of	
why	 ‘high	gamma’	has	been	shown	to	correlate	with	BOLD,	and	 ‘low	gamma’	sometimes	does	not	
[24].	 The	 likely	 reason	 is	 unrelated	 to	 the	 difference	 in	 frequency	 range,	 nor	 to	 the	 size	 of	 the	
spectral	perturbation	in	the	local	field	potential.	In	fact,	the	elevation	broadband	power	is	relatively	
small	 (2	 or	 3	 fold)	 compared	 to	 the	 elevation	 in	 power	 often	 observed	 in	 narrowband	 gamma	
oscillations	 (10	 x	 or	more)[43].	 Instead	 “High	 gamma”	 is	 predictive	 of	 the	 BOLD	 signal	 in	many	
cases	 not	 because	 of	 the	 specific	 frequency	 range,	 but	 because	 this	 signal	 captures	 the	 level	 of	
asynchronous	 neuronal	 response;	 this	 signal	 happens	 to	 be	 most	 clearly	 visible	 in	 the	 high	
frequency	range	(>100	Hz)	where	it	is	not	masked	by	rhythmic	lower	frequency	responses.	Hence	
the	distinction	in	predicting	the	BOLD	response	is	not	about	“high”	versus	“low”	gamma,	but	rather	
synchronous	 versus	 asynchronous	 responses,	 and	 the	 broadband	 signal,	 sometimes	 labeled	 high	
gamma,	 maps	 onto	 the	 first	 term	 on	 the	 right	 hand	 side	 of	 Equation	 4,	 the	 portion	 of	 the	 field	
potential	measurement	which	sums	the	energy	demand	of	each	neuron.	

Our	 model	 fits	 and	 data	 support	 this	 view.	 When	 we	 captured	 the	 stimulus-related	 broadband	
response	by	simulating	a	change	 in	broadband	coherence	across	neurons	rather	 than	a	change	 in	
the	 level	 of	 response	 in	 each	 neuron,	 our	 predicted	 BOLD	 response	 was	 highly	 inaccurate	
(Supplementary	Fig	S7).	

3.2	Changes	in	narrowband	gamma	power	do	not	predict	BOLD	
In	contrast,	we	propose	that	 ‘low	gamma’	often	does	not	predict	the	BOLD	response	because	 ‘low	
gamma’	reflects	narrowband	oscillatory	processes,	which	 largely	arise	 from	a	change	 in	neuronal	
coherence	across	the	population	rather	than	a	change	in	the	level	of	neuronal	population	activity.	
This	corresponds	to	 the	second	term	in	 the	right	hand	side	of	Equation	4,	 the	portion	of	 the	 field	
potential	measurement	which	reflects	the	cross-power	arising	from	currents	 in	different	neurons,	
and	which	in	our	model	is	independent	of	the	signals	giving	rise	to	the	BOLD	signal.		

Our	results	and	model	do	not	argue	that	narrowband	gamma	oscillations	will	never	be	predictive	of	
the	BOLD	signal.	If	in	a	particular	experiment	narrowband	gamma	oscillations	were	to	co-vary	with	
broadband	increases,	we	would	expect	both	signals	to	correlate	with	BOLD.	This	might	occur	in	an	
experiment	 with	 gratings	 of	 different	 contrast;	 with	 increasing	 contrast	 narrowband	 gamma	
responses,	 broadband	 responses,	 and	 BOLD	 responses	 all	 increase	 [21,58]	 and	 all	 3	 measures	
would	 correlate	 across	 stimuli.	 In	 such	 an	 experiment,	 if	 narrowband	 gamma	 oscillations	 had	 a	
higher	signal	 to	noise	 ratio	 than	 the	broadband	response,	 then	 the	oscillatory	signal	would	 likely	
show	 a	 higher	 correlation	 with	 BOLD.	 In	 contrast,	 when	 the	 choice	 of	 stimulus	 or	 task	 can	
independently	modulate	broadband	power	and	gamma	oscillations	so	 that	 the	 two	LFP	measures	
are	 not	 correlated,	 as	 in	 the	 experiments	 presented	 here	 and	 previously	 [43],	 then	 gamma	
oscillations	will	not	strongly	correlate	with	BOLD.			

Our	simulation	and	empirical	results	are	consistent	with	studies	which	varied	chromatic	contrast	
and	 spatial	 frequency,	 while	 measuring	 MEG	 and	 BOLD.	 These	 studies	 found	 that	 BOLD	 and	
narrowband	 gamma	 activity	 did	 not	 match	 in	 stimulus	 specificity	 [18,19].	 It	 is	 likely	 that	 these	
stimulus	 manipulations,	 like	 ours,	 independently	 modulated	 narrowband	 gamma	 power	 and	
broadband	 power,	 although	 the	 studies	 did	 not	 quantify	 broadband	 fields,	 which	 are	 more	
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challenging	 to	 measure	 with	 MEG	 than	 with	 ECoG	 [59].	 We	 speculate	 that	 broadband	 fields	
spanning	the	gamma	range	would	have	shown	a	higher	correlation	with	BOLD.		

3.3	Neuronal	synchrony	and	the	BOLD	signal	
In	our	model,	the	LFP	measures	are	highly	sensitive	to	neuronal	synchrony,	whereas	BOLD	is	not.	In	
our	simulations,	increases	in	neuronal	synchrony	drove	narrowband	gamma	oscillations	in	the	field	
potential.	There	are	other	 cases	of	population	activity	with	a	high	degree	of	neuronal	 synchrony.	
One	example	is	the	steady	state	evoked	potential	associated	with	a	periodic	stimulus	[first	reported	
by	60,reviewed	by	61].	Previous	studies	have	described	discrepancies	between	evoked	potentials	
and	 the	BOLD	signal,	 such	as	 in	 the	case	of	spatial	 summation	[11],	directional	motion	selectivity	
[7,8]	 and	 spatial	 attention	 [9,10].	 Our	 modeling	 framework	 suggests	 that	 the	 neural	 sources	
generating	 the	 steady	 state	 potential	 (synchronous	 neural	 activity)	 are	 likely	 to	 be	 only	 weakly	
related	 to	 the	 BOLD	 signal	 (depending	 largely	 on	 asynchronous	 signals),	 as	 these	 sources	 will	
primarily	affect	the	second	term	on	the	right	hand	side	of	Equation	4	(cross-power).	This	does	not	
imply	 that	 the	 two	measures	 are	 always	 or	 even	 usually	 discrepant;	 the	BOLD	 signal	 and	 steady	
state	potentials	 are	 likely	 to	 correlate	 any	 time	 that	 the	 steady	 state	 signals	 correlate	with	other	
measures	of	neural	activity.	When	measures	do	dissociate,	we	do	not	conclude	that	one	measure	is	
more	 accurate;	 instead,	 the	 measures	 offer	 complementary	 views	 of	 the	 population	 activity,	
emphasizing	the	degree	of	synchrony	or	the	average	level	of	the	response.	An	intriguing	question	is	
how	each	of	the	two	signals	contributes	to	perception	and	behavior.	

Neural	synchrony	can	also	emerge	without	being	time-locked	to	the	stimulus,	often	called	‘induced	
synchrony’	or	 ‘induced	oscillations’	 [62].	 In	our	simulation,	we	assumed	that	narrowband	gamma	
LFP	changes	were	induced	by	increases	in	synchrony	between	neurons,	and	not	by	changes	in	the	
level	of	gamma	power	within	the	individual	neurons.	In	contrast,	we	assumed	that	broadband	LFP	
increases	 were	 induced	 by	 increased	 broadband	 activity	 in	 individual	 neurons,	 and	 not	 by	
increased	 broadband	 coherence	 between	neurons.	(In	 Equation	 4,	 a	 change	 in	 the	 left	 hand	 side,	
LFP	power	in	the	gamma	band,	can	be	produced	by	a	change	in	either	the	first	or	second	term	on	
the	 right).	This	explains	why,	 in	our	 simulation,	 the	broadband	power	was	correlated	with	BOLD	
whereas	the	LFP	gamma	power	was	not,	 findings	that	were	also	confirmed	by	the	data.	Were	our	
assumptions	justified?	

In	principle,	an	increase	in	narrowband	gamma	power	in	the	LFP	could	arise	because	the	neurons	
synchronize	 in	 the	 gamma	 band,	 or	 because	 ongoing	 gamma	 oscillations	 within	 each	 neuron	
increase	in	amplitude,	independent	of	coordination	between	neurons.	There	is	strong	experimental	
support	 for	 the	 former.	 Experiments	which	measure	both	 intracellular	membrane	potential	 from	
single	neurons	and	the	extracellular	LFP	show	that	when	there	 is	an	 increase	 in	narrowband	LFP	
gamma	power,	 the	 gamma	power	 from	 individual	neurons	becomes	more	 coherent	with	 the	LFP	
[41].	Moreover,	the	coherence	between	local	spiking	and	the	LFP	also	increases	in	the	gamma	band	
when	LFP	gamma	power	 increases	 [37].	These	 results	 are	 consistent	with	our	assumption	 that	 a	
significant	part	of	the	increase	in	gamma	LFP	power	arises	from	a	change	in	population	coherence.	
To	 our	 knowledge,	 it	 is	 not	 certain	 whether	 there	 is	 also	 some	 increase	 in	 the	 level	 of	 gamma	
signals	 within	 individual	 neurons	 when	 the	 narrowband	 gamma	 band	 LFP	 power	 changes.	
However,	since	we	can	attribute	a	large	part	of	the	change	in	gamma	LFP	to	a	change	in	coherence,	
we	infer	that	we	can	only	attribute,	at	most,	a	small	part	of	the	change	in	gamma	LFP	to	the	level	of	
gamma	power	within	neurons.		

In	our	simulation,	we	made	 two	simple	but	extreme	assumptions.	First,	we	assumed	 that	gamma	
oscillations	 occur	 with	 no	 change	 in	 the	 total	 level	 of	 neural	 activity,	 and	 hence	 no	 change	 in	
metabolic	demand	or	BOLD.	Second,	we	assumed	that	broadband	responses	occur	with	no	change	
in	 neural	 synchrony.	 While	 these	 assumptions	 are	 likely	 incorrect	 at	 the	 limit,	 the	 simulations	
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nonetheless	 captured	 the	 pattern	 of	 ECoG	 and	 fMRI	 results	 obtained	 in	 our	 datasets.	 Alternative	
models	 in	which	 the	 broadband	 response	was	 caused	 by	 a	 change	 in	 synchrony	were	much	 less	
accurate	 (Supplementary	Fig	S7).	Models	 in	which	gamma	responses	were	caused	by	a	change	 in	
level	 were	 only	 slightly	 less	 accurate,	 and	 cannot	 be	 ruled	 out	 entirely	 (Supplementary	 Fig	 S7).	
However	the	regression	models	fit	to	our	data	(Fig	7)	show	that	the	power	of	narrowband	gamma	
oscillations	does	not	predict	the	BOLD	response.	Hence	the	most	parsimonious	explanation	is	that	
these	responses	in	the	LFP	are	caused	in	large	part	by	changes	in	synchrony.	

3.4	DC	offsets	and	the	BOLD	signal	
Both	 our	 measurements	 and	 our	 simulations	 showed	 that	 broadband	 electrophysiological	
responses	 were	 related	 to,	 but	 did	 not	 fully	 account	 for,	 the	 BOLD	 signal.	 This	 was	 especially	
evident	 in	 Simulation	 2	 and	 extrastriate	 data	 (V2/V3).	 In	 these	 cases,	 the	 amplitude	 of	 low	
frequency	 oscillations	 (8-15	Hz)	was	 negatively	 correlated	with	 the	BOLD	 signal,	 independent	 of	
broadband	 signals.	Numerous	previous	 studies	have	 reported	 that	 low	 frequency	oscillations	 are	
anti-correlated	with	BOLD,	including	measurements	in	motor,	visual	and	language	areas	[20-22,63-
65].	This	result	may	appear	to	conflict	with	the	prior	discussion,	since	we	argued	that	oscillations	
(to	 the	 degree	 that	 they	 reflect	 neuronal	 synchrony)	 should	 have	 little	 to	 no	 effect	 on	metabolic	
demand	 or	 the	 BOLD	 signal.	 It	 is	 therefore	 important	 to	 ask	 why	 low	 frequency	 oscillations	
sometimes	correlate	with	the	BOLD	signal,	both	in	data	and	in	simulation.	

One	explanation	 is	 that	alpha	oscillations,	or	a	mechanism	which	generates	the	oscillations,	affect	
the	BOLD	signal	indirectly,	by	inhibiting	cortical	activity.		According	to	this	explanation,	an	increase	
in	alpha	power	results	in	a	decrease	in	local	spiking	activity	in	turn	reducing	metabolic	demand	and	
the	BOLD	signal	[66].	Alpha	oscillations	may	indeed	co-occur	with	reduced	cortical	excitation	[67].	
However,	 if	 this	 coupling	 between	 alpha	 power	 and	 spiking	 were	 the	 only	 explanation	 for	 the	
relationship	between	alpha	power	and	BOLD,	 then	a	more	direct	measure	of	neuronal	excitation,	
such	 as	broadband	or	multiunit	 activity,	would	 adequately	predict	 the	BOLD	 signal;	 alpha	power	
would	negatively	correlate	with	the	BOLD	signal,	but	would	provide	no	additional	predictive	power.	
Our	data	and	model	do	not	support	this	explanation,	as	we	find	that	for	most	cortical	sites,	the	most	
accurate	predictor	of	 the	BOLD	signal	 is	a	combined	model	 including	both	the	amplitude	of	alpha	
oscillations	and	broadband	power.		

We	therefore	propose	that	in	addition	to	the	indirect	effect	of	modulating	cortical	excitability,	alpha	
oscillations	are	also	accompanied	by	a	DC	shift	 in	membrane	potential,	making	it	 less	depolarized	
(i.e.,	closer	to	the	equilibrium	potential),	and	this	shift	reduces	metabolic	demand.	Indirect	evidence	
for	 a	 DC	 shift	 comes	 from	 MEG	 and	 ECoG	 studies	 [44,45,68]	 and	 can	 be	 explained	 by	 a	 simple	
process:	 if	 alpha	 oscillations	 reflect	 periodic	 inhibitory	 pulses,	 then	 on	 average	 they	will	 cause	 a	
depolarization.	 If	 the	neuron	was	slightly	depolarized	before	the	 inhibitory	alpha	pulses,	 then	the	
pulses	would	push	 the	neuron	 toward	 equilibrium,	 and	hence	 a	 lower	 energy	 state.	 In	 this	 view,	
large	 alpha	 oscillations	 reflect	 larger	 inhibitory	 pulses,	 and	 hence	 reducing	 depolarization.	 We	
suggest	that	this	reduced	depolarization	affects	metabolic	demand	in	two	ways:	by	reducing	spiking	
(as	discussed	above),	and	by	maintaining	a	 less	depolarized	state,	reducing	metabolic	demand.	 In	
our	model,	 the	contribution	 to	 the	BOLD	signal	 from	each	neuron	 is	 the	power	 in	 the	 time	series	
(Equation	 3),	 and	 the	 mean	 contributes	 to	 power.	 The	 idea	 that	 a	 DC	 shift	 in	 the	 membrane	
potential	 affects	 metabolic	 demand	 (in	 addition	 to	 altering	 excitability)	 is	 consistent	 with	 the	
observation	that	slowly	changing	currents	(<0.5	Hz)	correlate	with	BOLD	fluctuations	[12,69].		
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3.5	 A	 single	 modeling	 framework	 accounts	 for	 patterns	 of	 LFP/BOLD	 correlations	
across	sites	
We	 found	 that	 the	 relationship	 between	 the	 BOLD	 signal	 and	 features	 of	 the	 ECoG	 data	 differed	
across	cortical	areas.	For	example,	broadband	changes	in	ECoG	responses	explained	more	variance	
in	the	BOLD	data	in	V1	than	in	V2/V3.	Conversely,	low	frequency	power	decreases	(alpha,	8-13Hz)	
explained	more	 variance	 in	 the	BOLD	 signal	 in	V2/V3	 than	 in	V1.	 In	 the	 absence	 of	 a	model,	we	
might	 have	 interpreted	 the	 results	 as	 evidence	 that	 neurovascular	 coupling	 differs	 across	 sites.	
Many	 previous	 studies	 have	 reported	 differences	 in	 the	 relation	 between	 LFP	 and	 BOLD	 as	 a	
function	 of	 site	 or	 condition,	 for	 example	 between	 cortical	 and	 subcortical	 locations	 [70],	 across	
cortical	regions	[71,72],	between	cortical	layers	[73],	and	as	a	function	of	medication	[74].	Here,	we	
showed	 that	 a	 difference	 in	 the	 relationship	between	LFP	 and	BOLD	need	not	 arise	 because	 of	 a	
difference	 in	 neurovascular	 coupling.	 In	 our	 results,	 Simulations	 1	 and	 2,	 like	 V1	 compared	 to	
extrastriate	areas,	showed	differences	in	the	relationship	between	LFP	and	BOLD,	yet	we	used	the	
identical	model	of	neurovascular	coupling	in	all	simulations.	The	systematic	differences	in	the	two	
simulations	 arose	 because	 of	 differences	 in	 the	 neuronal	 population	 activity,	 not	 because	 of	
differences	 in	 neurovascular	 coupling.	 While	 our	 results	 do	 not	 exclude	 the	 possibility	 of	
differences	in	neurovascular	coupling	across	locations	or	states	they	do	caution	against	interpreting	
differences	 in	 the	 relationship	 between	 field	 potentials	 and	BOLD	 as	 evidence	 for	 a	 difference	 in	
neurovascular	coupling,	since	they	show	that	a	single	model	can	account	for	a	variety	of	patterns.	
More	generally,	 the	V1	versus	V2/V3	discrepancies	bolster	 the	argument	 that	one	cannot	predict	
the	 exact	 relationship	 between	 BOLD	 and	 field	 potentials	 without	 also	 specifying	 the	 neuronal	
population	activity.		

3.6	The	role	of	a	simple	model	in	understanding	the	relation	between	BOLD	and	LFP	
A	 complete	 description	 of	 the	 biophysical	 processes	 giving	 rise	 to	 the	 BOLD	 signal	 and	 the	 field	
potential	 is	 far	 beyond	 the	 scope	 of	 this	 paper,	 and	 is	 likely	 premature	 given	 the	 enormous	
complexity	 in	 the	 nervous	 system,	 the	 vascular	 system,	 and	 the	 coupling	 mechanisms	 between	
them.	Instead,	the	purpose	of	our	modeling	framework	was	to	first	begin	with	a	general	principle,	
namely	 that	 BOLD	 and	 field	 potentials	 sum	 neural	 activity	 according	 to	 a	 different	 sequence	 of	
operations;	 second,	 to	 instantiate	 this	 principle	 in	 simple	 mathematical	 rules;	 third,	 to	 combine	
these	rules	with	a	minimal	model	of	neural	population	activity;	and	 finally,	 to	ask	 to	what	extent	
such	 a	 model	 can	 account	 for	 the	 patterns	 in	 our	 data.	 Our	 model	 omits	 many	 biophysical	
components,	 such	 as	 compartmentalized	 neurons,	 multiple	 cell	 types	 and	 vessel	 types,	
neurotransmitters,	the	dynamics	of	blood	flow,	and	so	on,	and	hence	it	is	not	a	detailed	simulation	
of	the	nervous	system	or	vascular	system.	On	the	other	hand,	the	simplicity	of	the	model	facilitates	
an	 understanding	 derived	 from	 basic	 principles,	 similar	 to	 the	 advantages	 in	 building	
computational,	rather	than	biophysical,	models	of	neural	responses	[75-78].	Both	types	of	models	
and	empirical	studies	are	valuable.	Here	we	emphasize	that	even	with	a	highly	simplified	model	of	
the	 BOLD	 signal,	 the	 field	 potential,	 and	 neuronal	 population	 activity,	we	 are	 able	 to	 reconcile	 a	
wide	range	of	findings	in	a	complicated	and	technical	literature.	The	model	accounts	for	differences	
in	how	broadband	field	potentials	and	gamma	oscillations	relate	to	the	BOLD	signal.	It	can	explain	
differences	 between	 cortical	 areas	 in	 the	 relationship	 between	 field	 potentials	 and	 BOLD.	 The	
model	also	provides	an	explanation	for	why	the	amplitude	of	alpha	rhythms	is	negatively	correlated	
with	BOLD,	even	after	accounting	for	the	relationship	between	broadband	signals	and	BOLD.		

3.7	Reproducible	computations	
To	test	competing	computational	theories	about	the	relation	between	the	visual	input,	the	LFP	and	
the	 BOLD	 response,	 it	 is	 essential	 to	 make	 sample	 data	 and	 code	 available	 for	 others	 [43,48].	
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Following	standard	practices	of	reproducible	research	[79-81],	 the	Matlab	code	of	 the	simulation,	
and	 sample	 data	 and	 code	 to	 reproduce	 the	 Figs	 in	 this	 manuscript	 can	 be	 downloaded	 at	
https://github.com/WinawerLab/BOLD_LFP.		

3.8	Conclusions	
To	understand	how	the	electrophysiology	and	BOLD	responses	are	related,	it	is	necessary	to	specify	
both	 the	 manner	 in	 which	 population	 activity	 transfers	 to	 the	 two	 signals,	 and	 the	 neuronal	
population	activity	itself.	The	former	shows	that	the	covariance	between	neuronal	time	series	has	a	
large	 influence	 on	 the	 field	 potential	 and	 not	 the	 BOLD	 signal.	 Based	 on	 our	 simulations	 and	
empirical	results,	we	made	several	inferences	about	the	neuronal	population	responses	mediating	
the	BOLD	signal	and	the	LFP:	that	narrowband	gamma	oscillations	in	visual	cortex	likely	arise	more	
from	synchronization	of	neural	responses	than	a	change	in	level	of	the	neural	response,	and	hence	
have	a	large	influence	on	the	field	potential	and	little	influence	on	the	BOLD	signal;	that	responses	
which	 are	 asynchronous	 across	 neurons	manifest	 in	 broadband	 field	 potentials	 and	 an	 elevated	
BOLD	signal;	and	that	low	frequency	oscillations	observed	in	field	potentials	are	likely	accompanied	
by	a	widespread	hyperpolarization,	which	in	turn	reduces	metabolic	demand	and	the	BOLD	signal.	
Our	model-based	 approach	 brings	 us	 a	 step	 closer	 to	 a	 general	 solution	 to	 the	 question	 of	 how	
neural	activity	relates	to	the	BOLD	signal.				 	
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4.	Materials	and	Methods	

4.1	Simulated	neuronal	time	series	
Simulations	were	 computed	 for	 a	population	of	200	neurons.	Each	 simulation	 trial	was	1	 second	
long	with	millisecond	 sampling.	 The	 time	 series	 for	 each	 neuron	was	 derived	 by	 summing	 three	
inputs,	 each	 1	 second	 long,	 followed	by	 leaky	 integration	with	 a	 time	 scale	 of	 10	ms	 to	 simulate	
temporal	 integration	 in	 the	 dendrite	 (Fig	 2).	 Each	 simulation	 was	 fit	 to	 ECoG	 data	 from	 one	
electrode	 and	 consisted	 of	 240	 trials,	 8	 repeats	 of	 30	 stimulus	 conditions.	 A	 condition	 in	 the	
simulation	 was	 defined	 by	 the	 parameter	 settings	 for	 the	 3	 inputs	 (Fig	 4):	 C1	 (broadband),	 C2	
(gamma)	and	C3	 (alpha).	See	Supplementary	Methods	 for	details.	Variations	 in	 these	 three	 inputs	
resulted	 in	 power	 changes	 in	 the	broadband,	 gamma,	 and	 alpha	LFP.	The	 inputs	were	 fit	 to	 data	
such	 the	 simulated	 LFP	 power	 changes	 matched	 the	 ECoG	 data	 power	 changes	 for	 a	 particular	
electrode	and	stimulus.	

4.1.1	C1	-	Broadband	input	

The	 first	 input	 was	 a	 series	 of	 random	 numbers	 drawn	 from	 a	 normal	 distribution,	 with	 no	
temporal	dependencies	and	no	dependencies	between	neurons.	

Motivation.	This	input	approximates	spike	arrivals	with	a	Poisson	distribution	at	a	fixed	rate	for	a	
given	 1-s	 trial.	 A	 random	 normal	 distribution	 was	 used	 rather	 than	 a	 Poisson	 distribution	 for	
computational	efficiency.	(The	pattern	of	results	is	the	same	for	either	distribution.)	The	input	has	a	
flat	(white)	power	spectrum	up	to	the	sampling	limit	of	500	Hz.	When	coupled	with	leaky	temporal	
integration	 (described	 in	 a	 subsequent	 section),	 this	 input	 results	 in	 a	 power	 spectrum	 that	 is	
approximately	 proportional	 to	 1 𝑓! 	(brown	 noise).	 Several	 groups	 have	 proposed	 that	 the	

approximately	1 𝑓!	power	spectra	observed	in	field	potentials	arises	from	white	noise	(or	Poisson	
noise)	 input	 to	 individual	neurons,	coupled	to	one	or	more	 low-pass	 filters	 [34,82,83].	Previously	
proposed	 sources	 of	 filters	 include	 an	 exponentially	 decaying	 current	 response	 in	 the	 synapse	
following	 each	 spike	 arrival	 [82],	 leaky	 temporal	 integration	 in	 the	 dendrite	 [34],	 and	 frequency	
dependent	propagation	in	the	extracellular	tissue	[84],	the	last	of	which	has	since	been	shown	to	be	
unlikely	 [85].	 Regardless	 of	 the	 source	 of	 the	 low-pass	 filtering,	 the	 general	 proposal	 makes	 an	
interesting	 prediction,	 namely	 that	 a	 spectrally	 broadband	 increase	 in	 field	 potential	 power	 in	
response	 to	a	 stimulus	 is	 likely	 to	 indicate	an	 increase	 in	 the	 rate	of	 spike	arrivals	 following	 that	
stimulus	 [34].	 This	 hypothesis	 has	 empirical	 support,	 based	 on	 correlations	 between	 spike	 rates	
(single	unit	and	multiunit)	and	broadband	field	potentials	[49,53],	and	the	fact	that	a	1 𝑓!	baseline	
spectrum,	 as	 well	 as	 stimulus-dependent	 broadband	 power	 increases,	 can	 be	 observed	 in	
intracellular	 (single	 neuron)	 membrane	 potentials	 in	 awake	 macaque	 visual	 cortex	 [36].	 This	
hypothesis	 is	the	logic	behind	our	choice	to	model	both	the	baseline	1 𝑓!	spectrum	and	stimulus-
dependent	 broadband	 modulations	 as	 arising	 from	 spectrally	 flat	 inputs	 followed	 by	 low-pass	
filtering	within	individual	neurons.	For	computational	tractability,	we	explicitly	modeled	only	one	
of	the	low	pass	filters	–	leaky	integration	in	the	dendrites.	We	assumed	that	spectrally	broadband	
signals	 reflect	 uncorrelated	 activity.	 First,	 we	 have	 shown	 that	 the	 broadband	 ECoG	 signal	 is	
asynchronous	 with	 respect	 to	 a	 visual	 stimulus,	 and	 hence	 uncorrelated	 from	 trial	 to	 trial	 [11].	
Here,	we	extrapolate	that	within	a	trial,	 the	contribution	to	the	broadband	signal	 is	asynchronous	
from	neuron	to	neuron.	One	reason	to	assume	so	is	based	on	a	physiological	model:	the	broadband	
signal	 has	 been	 hypothesized	 to	 arise	 from	 the	 leaky	 integration	 of	 Poisson	 distributed	 spike	
arrivals	[34].	Even	if	the	spike	rate	is	correlated	between	neurons,	the	spike	timing	within	a	trial	is	
likely	have	low	correlations	between	neurons.		
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Parameters.	For	each	simulation	the	Gaussian	distribution	defining	C1	always	had	a	mean,	𝜇 = 0.25.	
The	slightly	positive	mean	ensured	that	in	the	baseline	state,	the	membrane	potential	was	slightly	
positive,	such	that	a	suppressive	signal	(described	in	the	section	C3)	could	bring	the	potential	closer	
to	0,	hence	 reducing	 the	metabolic	demand.	For	 the	8	conditions	 in	each	simulation,	 the	baseline	
standard	deviation	of	 the	distribution	was	set	at	𝜎 = 0.3.	A	 larger	𝜎	results	 in	a	 larger	broadband	
signal,	 and	 can	 be	 thought	 of	 as	 reflecting	 a	 higher	 Poisson	 rate	 of	 spike	 arrivals.	 The	𝜎	for	 each	
condition	 was	 calibrated	 such	 that	 the	 resulting	 changes	 in	 broadband	 power	 for	 each	 of	 the	 8	
stimulus	 conditions	 matched	 the	 changes	 in	 broadband	 power	 in	 the	 ECoG	 data	 (Fig	 4,	 see	
Supplementary	Fig	S9	for	details	of	the	calibration).	

4.1.2	C2	–	Narrowband	oscillations	in	the	gamma	band	

The	 second	 input	 was	 band-passed	 filtered	 white	 noise.	 The	 white	 noise	 was	 drawn	 from	 a	
distribution	 with	 zero	 mean	 and	 fixed	 standard	 deviation	 on	 all	 trials	 and	 for	 all	 neurons,	 and	
subsequently	band-pass	filtered.	Unlike	C1,	there	were	dependencies	(coherence)	between	neurons.	
The	level	of	coherence	varied	across	the	8	trial	types	in	each	simulation.	

Motivation.	This	input	approximates	a	circuit	producing	narrowband	gamma	oscillations	in	the	field	
potential.	 Parvalbumin	 positive	 interneurons	 project	 to	 pyramidal	 neurons,	 and	 can	 produce	
fluctuations	in	the	membrane	potential	of	the	pyramidal	neurons	in	gamma	frequencies	from	30-80	
Hz	[41].	The	narrowband	rise	in	gamma	power	associated	with	certain	stimuli	or	tasks	appears	to	
reflect	 an	 increase	 in	 synchrony	 between	 neurons	 in	 this	 band	 [86].	 Therefore,	 unlike	 C1,	 which	
varied	in	level	but	not	coherence	as	a	function	of	condition,	C2	varied	in	coherence	but	not	level	as	a	
function	of	condition.	

Parameters.	 For	 all	 trials	 and	 all	 conditions,	 the	white	 noise	 samples	were	drawn	 from	a	normal	
distribution	with	𝜇 = 0	and	𝜎 = 0.2.	The	covariance	of	the	distributions	could	range	between	0	and	
1	(using	Matlab’s	mvnrnd	function).	The	white	noise	inputs	were	filtered	between	50	Hz	and	60	Hz	
prior	 to	 temporal	 integration	 in	 the	 dendrite:	 inputs	were	 first	 zero-padded,	 then	 filtered	with	 a	
10th	 order	 Butterworth	 filter	 in	 forward	 and	 reverse	 direction.	 (Fig	 4).	 The	 covariance	 for	 each	
simulation	was	calibrated	such	that	the	resulting	changes	in	narrowband	gamma	power	for	each	of	
the	8	stimulus	conditions	matched	the	changes	in	narrowband	gamma	power	in	the	ECoG	data.	

4.1.3	C3	–	Narrowband	oscillations	in	the	alpha	band	

The	 third	 input	 was	 band-passed	 filtered	 white	 noise,	 with	 an	 added	 asymmetry	 such	 that	
increased	power	decreased	the	mean	amplitude.	The	coherence	was	the	same	for	all	trials	and	all	
neurons;	the	amplitude	of	the	pulses	varied	by	condition.	

Motivation.	 Oscillations	 in	 the	 alpha	 band	 (8-15	 Hz)	 are	 widely	 observed	 in	 visual	 cortex,	 with	
higher	amplitudes	associated	with	low	sensory	stimulation	(e.g.,	eyes	closed	or	zero	contrast)	or	a	
low	 level	 attention.	 	 One	 model	 of	 alpha	 oscillations	 is	 that	 pyramidal	 neurons	 in	 visual	 cortex	
receive	 pulses	 of	 inhibition	 (hyperpolarizing	 inputs)	 spaced	 on	 the	 order	 of	 100	 ms,	 generated	
indirectly	by	thalamic-cortical	loops	[44,45].	According	to	this	view,	less	active	states	are	associated	
with	 larger	 inhibitory	 pulses,	 resulting	 in	 a	 time-averaged	 hyperpolarization,	 compared	 to	more	
active	states	with	smaller	inhibitory	pulses.	The	inhibition	is	pulsed	rather	than	continuous,	so	that	
the	 reduced	 cortical	 responsiveness	 is	 dependent	 on	 the	 phase	 of	 the	 alpha	 cycle	 (most	 reduced	
following	 each	 inhibitory	pulse).	 Individual	 neurons	 in	 visual	 cortex	 can	 indeed	 show	membrane	
oscillations	 at	 frequencies	 around	10	Hz	 [46],	 indicating	 that	 it	 is	 reasonable	 to	model	 the	 alpha	
oscillation	measured	 in	 the	 population	 as	 arising	 from	 oscillations	 in	 individual	 neurons,	 rather	
than	arising	only	from	band-limited	coherence		between	neurons.		

Parameters.	 For	 all	 trials	 and	 all	 conditions,	 the	white	 noise	 samples	were	drawn	 from	a	normal	
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distribution	 with	𝜇 = 0	and	𝜎 =	1.	 The	 covariance	 of	 the	 distributions	 was	 fixed	 at	 .75	 (using	
Matlab’s	mvnrnd	function).	The	white	noise	inputs	were	filtered	between	9	Hz	and	12	Hz	prior	to	
temporal	integration	in	the	dendrite:	inputs	were	first	zero-padded,	then	filtered	with	a	10th	order	
Butterworth	 filter	 in	 forward	 and	 reverse	 direction.	 The	 envelope	 was	 calculated	 by	 a	 Hilbert	
transform,	and	added	to	the	signal,	and	the	signal	was	multiplied	by	-1,	such	that	increases	in	power	
reduced	 the	mean	amplitude.	The	signal	was	 then	multiplied	by	a	 factor	c3,	which	was	calibrated	
such	that	 the	resulting	changes	 in	narrowband	alpha	power	 for	each	of	 the	8	stimulus	conditions	
matched	the	changes	in	narrowband	alpha	power	in	the	ECoG	data.		

4.1.4	Fitting	the	LFP	power	changes	to	the	ECoG	power	changes	

Changing	inputs	in	C1,	C2	and	C3	results	in	a	change	in	LFP	power	in	broadband,	gamma	and	alpha	
respectively.	 In	 order	 to	 fit	 the	 simulated	 LFP	 power	 changes	 to	 the	 ECoG	 power	 changes	 we	
quantified	 the	 input	 to	 LFP	 output	 relation,	 such	 that	 a	 certain	 change	 in	 simulated	 LFP	 power	
could	 be	 predicted	 by	 change	 in	 the	 input	 amplitude.	 Different	 functions	 described	 the	 relation	
between	 the	 input	 and	 LFP.	 The	 relation	 between	 broadband	 input	 and	 LFP	 broadband	 was	
described	 as	 𝐿𝐹𝑃𝑏𝑟𝑜𝑎𝑑𝑏𝑎𝑛𝑑 =  𝑎 ∙ log!"

!!!!
!

.	 Since	 gamma	 and	 alpha	 were	 dependent	 on	
broadband	 amplitude	 (an	 increase	 in	 broadband	 noise	 masks	 the	 relative	 contribution	 of	
narrowband	oscillations)	the	following	function	described	the	relation	between	input	and	gamma	

and	 alpha	 LFP:	 ( 𝐿𝐹𝑃𝑔𝑎𝑚𝑚𝑎 =  𝑎 ∙ 10
!!"#$%&'($')(

! ∙ log!"
!!!!
!

+ 𝑐 ∙ 𝐿𝐹𝑃𝑏𝑟𝑜𝑎𝑑𝑏𝑎𝑛𝑑 + 𝑑 	and	

𝐿𝐹𝑃𝑎𝑙𝑝ℎ𝑎 =  𝑎 ∙ 10
!!"#$%&'($')(

! ∙ log!"
!!!!
!

+ 𝑐 ∙ 𝐿𝐹𝑃𝑏𝑟𝑜𝑎𝑑𝑏𝑎𝑛𝑑 + 𝑑.	Parameters	a,	b,	c,	d	and	m	
were	 estimated	 by	 a	 separate	 calibration	 procedure	 in	 which	 C1,	 C2	 and	 C3	were	 systematically	
varied	 and	 LFP	broadband,	 gamma	 and	 alpha	were	 calculated.	 Supplementary	 Fig	 S9	 shows	 that	
using	this	procedure	the	simulated	LFP	power	changes	match	the	ECoG	power	changes	well.	

4.2	Stimuli	and	task	
Stimuli	 for	ECoG	experiments	were	reported	previously	 [43].	 In	brief,	 for	one	subject,	 the	stimuli	
came	from	8	classes	of	patterns	(30	exemplars	per	class,	20x20°),	 including	high	contrast	vertical	
gratings	 (0.16,	 0.33,	0.65,	 or	 1.3	 cycles	 per	 degree	 square	wave)	 noise	 patterns	 (spectral	 power	
distributions	 of	𝑘/𝑓!,	𝑘/𝑓!,	and	𝑘/𝑓!),	 and	 a	 blank	 screen	 at	 mean	 luminance	 (Supplementary	
methods	and	Supplementary	Fig	S2).	For	the	second	ECoG	subject,	there	were	the	same	8	classes	as	
well	as	two	other	stimulus	classes	–	a	high	contrast	white	noise	pattern	and	a	plaid	at	0.65	cpd.	The	
fMRI	subjects	had	the	same	10	stimulus	classes	as	the	second	ECoG	subject.	

4.2.1	ECoG	task	

ECoG	data	were	 re-analyzed	 from	a	previous	 report	 [43].	We	briefly	 summarize	 that	 experiment	
here.	Subjects	viewed	static	images	of	gratings	and	noise	patterns	for	500	ms	each,	with	500	ms	of	
zero-contrast	 (mean	 luminance)	 between	 successive	 stimuli.	 Order	 of	 presentation	 was	
randomized	(Supplementary	Fig	S2).	There	were	a	total	of	210	contrast	stimuli,	shown	once	each	in	
a	single,	continuous	experiment	(and	210	interstimulus	blanks).	Stimuli	were	shown	on	a	15-inch	
MacBook	Pro	laptop	using	Psychtoolbox	(http://psychtoolbox.org/).	The	laptop	was	placed	60	cm	
from	 the	 subject’s	 eyes	 at	 chest	 level.	 Screen	 resolution	 was	 1280x800	 pixels	 (33x21	 cm).	
Coordinates	of	the	population	Receptive	Fields	(pRF)	were	obtained	from	a	prior	study	[11].		

4.2.2	fMRI	task	

The	 fMRI	 experiment	 was	 a	 block	 design,	 with	 12-second	 stimulus	 blocks	 alternating	 with	 12-s	
blank	periods	 (mean	 luminance).	During	 the	stimulus	blocks,	 images	were	presented	at	 the	same	
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rate	 as	 the	 ECoG	 experiment:	 500	ms	 duration	 alternating	 with	 500	ms	 of	 zero-contrast	 (mean	
luminance)	between	images	(Supplementary	Fig	S2).	All	stimuli	from	each	block	came	from	one	of	
the	7	stimulus	classes.	The	exemplars	within	the	block	were	all	different.	Subjects	participated	in	8	
scans	of	9	blocks	each,	and	block	order	was	randomized	using	Latin	squares.	Two	subjects	(S2	and	
S3)	 additionally	participated	 in	 an	 identical	 experiment	using	 lower	 contrast	 images,	 resulting	 in	
similar	findings.	fMRI	subjects	participated	in	two	pRF	runs	to	identify	retinotopy	maps.	Stimuli	for	
the	 pRF	 experiments	 consisted	 of	 a	 bar	 (width=	 3	 deg)	 that	 swept	 across	 the	 visual	 field	 in	 8	
directions:	 the	 four	 cardinal	 directions	 and	 the	 four	 diagonals.	 The	 bar	 contained	 a	 drifting	
checkerboard	with	 100%	 contrast.	 Images	were	 projected	 on	 a	 screen	 in	 the	 rear	 of	 the	magnet	
bore	using	an	LCD	projector	(LC-XG250,	Eiki)	with	a	resolution	of	1024x768	(60	Hz	refresh	rate)	
and	 subtending	 approximately	 32x24	 visual	 degrees	 (32.4x24.3	 cm).	 Subjects	 viewed	 the	 screen	
with	a	mirror	mounted	to	the	RF	coil.	The	viewing	distance	was	approximately	58	cm.		

4.3	ECoG	procedure	
ECoG	data	were	measured	 from	 two	 subjects	who	were	 implanted	with	 subdural	 electrodes	 (2.3	
mm	 diameter,	 AdTech	 Medical	 Instrument	 Corp)	 for	 clinical	 purposes	 at	 Stanford	 Hospital.	
Informed,	written	 consent	was	 obtained	 from	all	 subjects.	 ECoG	protocols	were	 approved	by	 the	
Stanford	 University	 IRB.	 In	 22	 channels	 in	 V1	 V2	 and	 V3,	 broadband	 and	 narrowband	 gamma	
responses	 were	 quantified	 as	 before	 [43],	 and	 alpha	 power	 changes	 were	 calculated	 (see	
Supplementary	Methods).	

4.3.1	ECoG	recording	

ECoG	 data	 were	 recorded	 at	 3052/1528	 Hz	 (ECoG	 subject	 1/ECoG	 subject	 2)	 from	 118/96	
electrodes	 through	 a	 128-channel	 Tucker	 Davis	 Technologies	 recording	 system	
(http://www.tdt.com).	 Electrodes	 were	 localized	 on	 a	 postoperative	 computer	 tomography	 (CT)	
scan	 that	was	co-registered	with	a	pre-operative	MRI,	 and	 locations	were	corrected	 for	 the	brain	
shift	[6].	Electrodes	that	showed	large	artifacts	or	epileptic	activity	(as	determined	by	the	patient’s	
neurologist)	were	excluded	from	analysis	(7/35	electrodes	were	excluded	in	subject	1/subject	2).	
Off-line,	 data	 were	 re-referenced	 to	 the	 common	 average,	 low-pass	 filtered	 and	 resampled	 at	
1000Hz	for	computational	purposes	using	the	Matlab	resample	function.	Line	noise	was	removed	at	
60,	120	and	180	Hz	using	a	3rd	order	Butterworth	filter.		

4.3.2	ECoG	analyses	

Broadband	and	narrowband	gamma	responses	were	quantified	as	before	[43].	We	calculated	power	
spectra	 and	 separated	 ECoG	 responses	 into	 broadband	 and	 narrowband	 gamma	 band	 spectral	
power	 increases.	 To	 control	 for	 the	 influence	 of	 evoked	 activity	 on	 the	 spectrum,	 event	 related	
potentials	(ERPs)	were	calculated	per	condition	and	the	condition	specific	ERP	was	regressed	from	
each	trial.	This	procedure	makes	sure	that	the	broadband	increase	is	not	due	to	a	sharp	edge	in	the	
ERP;	the	same	pattern	of	results	is	obtained	if	this	step	is	omitted.	For	each	condition,	the	average	
power	spectral	density	was	calculated	every	1	Hz	by	Welch’s	method	 [87]	 from	0	–	500	ms	after	
stimulus	onset	(and	0-500	ms	after	stimulus	offset	for	the	baseline)	and	a	250	ms	Hann	window	to	
attenuate	 edge	 effects.	 ECoG	 power	 spectra	 are	 known	 to	 obey	 a	 power	 law	 and	 to	 capture	
broadband	 and	narrowband	gamma	 increases	 separately	 the	 following	 function	was	 fitted	 to	 the	
average	 log	 spectrum	 from	35	 to	 200Hz	 (leaving	 out	 60Hz	 line	 noise	 and	 harmonics)	 from	 each	
condition	(Fig	5A):	

𝑃(𝑥) = (𝛽!"#$%!$&% − 𝑛x) + 𝛽!"##$%&"!'𝐺(x|𝜇,𝜎)			

In	which,	
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𝑥 = 𝑙𝑜𝑔10(𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦) 	

𝐺(x|𝜇,𝜎) = 𝑒
!(!!!)!
!!! 	

with	10σ	=	1.1	Hz	and	35	Hz	<	10μ	<	80	Hz.	

The	slope	of	the	log-log	spectral	power	function	(n)	was	fixed	for	each	electrode	by	fitting	it	based	
on	the	average	power	spectrum	of	the	baseline.	For	cross-validation,	trials	were	split	into	even	and	
odd	 repeats,	 and	 broadband	 and	 gamma	 changes	 were	 calculated	 for	 each.	 Confidence	 intervals	
were	calculated	by	a	bootstrap	procedure.	For	each	condition	C	with	Nc	trials,	Nc	trials	were	drawn	
randomly	with	replacement	and	power	spectra	were	averaged.	The	parameters	β	were	fitted	on	the	
average	log	power	spectrum	from	these	bootstrapped	trials.	This	was	repeated	100	times,	resulting	
in	two	sets	of	distributions	of	broadband	and	gamma	weights	for	even	and	odd	trials.		

Alpha	response	amplitude	was	calculated	as	follows.	Alpha	changes	are	best	visible	after	the	initial	
onset	transient	and	ERP,	and	we	used	the	power	from	250-500	ms	to	calculate	the	alpha	decreases	
for	each	stimulus.	Alpha	amplitude	was	calculated	by	averaging	 the	 log-power	between	8	and	13	
Hz.		

4.3.3	Channel	selection	

Channels	for	analysis	were	selected	on	the	basis	of	three	criteria.	First,	the	pRF	was	located	within	
V1,	 V2,	 and	 V3.	 Second,	 the	 explained	 variance	 in	 a	 pRF	 experiment	 was	 >15%	 [11].	 Third,	 the	
center	of	 the	pRF	was	within	 the	extent	of	 the	stimulus	(<12	deg)	and	on	the	contralateral	visual	
field.	Because	ECoG	subject	2	did	not	have	pRF	data,	only	anatomical	estimates	of	V1,	V2,	and	V3	
were	used	[88].	These	criteria	yielded	22	channels	(19	from	ECoG	S1,	3	from	ECoG	S2).	

4.4	fMRI	procedure	
Functional	 MRI	 data	 was	 measured	 from	 four	 subjects	 (3	 female,	 ages	 22-42)	 with	 normal	 or	
corrected-to-normal	vision	at	the	Center	for	Brain	Imaging	at	NYU.	Informed,	written	consent	was	
obtained	 from	 all	 subjects.	 The	 fMRI	 protocols	 were	 approved	 by	 the	 New	 York	 University	 IRB.	
Functional	 MRI	 data	 were	 preprocessed	 and	 analyzed	 using	 custom	 software	
(http://vistalab.stanford.edu/software)	(see	Supplementary	Methods).	Disc	ROIs	(radius	=	2	mm)	
were	 defined	 in	 fMRI	 subjects	 to	 match	 the	 position	 of	 the	 electrodes	 in	 ECoG	 subjects	 using	 a	
combination	 of	 anatomy,	 pRF	 centers,	 and	 visual	 field	 maps.	 The	 similarity	 between	 the	 ROI	
position	and	electrode	position	was	compared	via	visual	inspection	of	anatomical	images	and	pRF	
centers	(Supplementary	Fig	S3).	

4.4.1	fMRI	recording	

Anatomical	 and	 functional	 MRI	 data	 was	 collected	 at	 the	 Center	 for	 Brain	 Imaging	 at	 NYU	 on	 a	
Siemens	Allegra	3T	head-only	 scanner	with	a	Nova	Medical	 transmit/receive	coil	 (NMG11)	and	a	
Nova	Medical	phased	array,	8-channel	receive	surface	coil	(NMSC072).		

Two	 to	 three	 T1-weighted	whole	 brain	 anatomical	 scans	 (MPRAGE	 sequence)	were	 obtained	 for	
each	subject	(voxel	size:	1x1x1	mm,	TR:	2500	ms;	TE:	3.93	ms,	flip	angle:	8	deg).	Functional	images	
were	collected	using	gradient	echo,	echo-planar	imaging	(voxel	size:	2x2x2	mm,	24	slices,	TR:	1500	
ms,	TE:	30	ms,	flip	angle:	72	deg).	Images	were	corrected	for	B0	field	inhomogeneity	during	off-line	
image	 reconstruction	 using	 a	 separate	 field	map	measurement	made	 half	 way	 through	 the	 scan	
session.	 Slice	 prescription	was	 set	 approximately	 perpendicular	 to	 the	 calcarine	 sulcus,	 covering	
the	occipital	lobe.	In	addition,	a	T1-weighted	inplane	was	collected	with	the	same	slice	prescription	
to	align	functional	images	to	the	high-resolution	anatomical	images.	
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4.4.2	fMRI	analysis	

Preprocessing.	Anatomical	images	were	co-registered	and	segmented	into	gray/white	matter	voxels	
using	 FreeSurfer	 autosegmentation	 algorithm	 (surfer.nmr.mgh.harvard.edu).	 A	 3D	 mesh	 of	 the	
cortical	 surface	 was	 inflated	 for	 ease	 of	 visualization.	 Functional	 data	 were	 preprocessed	 and	
analyzed	 using	 custom	 software	 (http://vistalab.stanford.edu/software).	 Data	 were	 slice-time	
corrected	to	adjust	for	differences	in	acquisition	time	among	slices	in	the	1.5-sec	frame.	Data	were	
motion	corrected	 for	both	between-	and	within-scan	motion.	Finally,	data	were	high-pass	 filtered	
for	low	frequency	drift	[89]	by	multiple	moving	average	smoothing	(2	iterations,	40	seconds).	Data	
were	then	converted	to	percent	signal	change	by	dividing	each	voxel’s	signal	by	its	mean	signal.	The	
first	 four	 frames	of	 each	 run	 (6	 sec)	were	discarded	 to	 allow	 longitudinal	magnetization	 and	 the	
hemodynamic	response	to	reach	steady	state.		

Analysis.	Noise	was	removed	from	the	fMRI	data	using	GLMdenoise,	a	variant	of	the	standard	GLM	
commonly	 used	 in	 fMRI	 analysis	 [90].	 In	 brief,	 GLMdenoise	 derives	 noise	 regressors	 for	 each	
subject	by	performing	principle	components	analysis	on	noise	voxels	that	are	unrelated	to	the	task.	
The	optimal	number	of	noise	 regressors	 is	 selected	based	on	 improvement	 in	 cross-validated	R2.	
The	final	model	is	fitted	to	each	voxel’s	time	series	and	bootstrapped	100	times	over	8	runs.	Here,	
the	predictors	in	the	GLM	were	the	nine	image	categories	(4	gratings,	4	noise	patterns,	1	plaid)	and	
a	blank	period	 (a	 randomly	assigned	blank	block).	Voxel	bootstraps	were	averaged	across	voxels	
within	 a	 region	 of	 interest	 (ROI).	 The	 resulting	 100	 bootstraps	 per	 ROI	 were	 vector-length	
normalized	 and	 averaged	 across	 subjects.	 The	 beta	 estimate	 for	 each	 condition	 is	 taken	 as	 the	
median	averaged	bootstrap	and	the	standard	error	as	one-half	the	68%	confidence	interval.		

Population	receptive	field	(pRF)	model.	The	pRF	runs	were	analyzed	by	fitting	a	2D	Gaussian	to	each	
voxel,	modeling	 its	 pRF	 [91].	 The	 pRF	 is	 defined	 by	 center	 location	 (x,y	 coordinates)	 and	 spread	
(sigma).	The	resulting	maps	were	used	to	define	retinotopic	areas	V1,	V2,	and	V3	as	in	[92].		

4.5	Predicting	fMRI	signals	directly	from	ECoG	models		
The	relationship	between	fMRI	and	ECoG	signals	was	analyzed	using	a	linear	regression	model.	The	
cross-validated	R2	was	used	as	a	metric	for	model	quality	and	the	regression	coefficients	were	used	
to	test	whether	ECoG	predictors	(broadband,	gamma	and	alpha)	had	a	positive	or	negative	relation	
with	BOLD	(also	see	Supplementary	Methods).	

The	relationship	between	fMRI	and	ECoG	signals	was	analyzed	using	a	linear	regression	model:	Yi	=	
XiBi	+	intercept,	where	Y	is	a	vector	of	fMRI	beta	estimates	for	bootstrap	i	and	X	is	a	vector	of	ECoG	
broadband,	gamma	and	alpha	estimates	 for	bootstrap	 i.	The	model	was	 fitted	separately	 for	each	
cortical	site	(electrode/ROI	pair),	and	for	different	combinations	of	predictors	–	broadband	alone,	
gamma	 alone,	 alpha	 alone,	 each	 pairwise	 combination,	 and	 the	 all	 three	 predictors	 together.	 To	
measure	the	accuracy	of	the	models,	we	calculated	cross-validated	coefficient	of	determination	(R2).	
First,	the	regression	model	Yi	=	XiBi	+	intercept	was	fitted	for	half	of	the	fMRI	subjects	(1	and	2)	and	
half	 of	 the	 ECoG	 stimulus	 repetitions	 (even	 repetitions)	 and	 then	 tested	 on	 the	 other	 half	 of	 the	
fMRI	 and	 ECoG	 data	 (fMRI	 subjects	 3	 and	 4	 and	 ECoG	 odd	 stimulus	 repetitions).	 All	 R2	 and	 ΔR2	
values	reported	in	the	results	are	cross-validated	in	this	manner.	For	model	comparison,	the	same	
pattern	 of	 results	 were	 achieved	 if	 instead	 of	 cross-validation,	 we	 solved	 the	 models	 on	 the	
complete	data	sets	and	computed	the	R2	adjusted	for	the	number	of	regressors.	

To	 test	 whether	 different	 ECoG	 predictors	 (broadband,	 narrowband,	 alpha)	 had	 a	 positive	 or	
negative	relation	with	BOLD,	we	tested	whether	the	regression	coefficient	was	significantly	larger	
or	 smaller	 than	 zero.	The	 regression	 coefficient	was	 considered	 to	be	 significantly	different	 from	
zero	using	a	two-sided,	unpaired	t-test	across	electrodes.	
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