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Abstract 

Humans and animals are capable of evaluating actions by considering their long-run future 
rewards through a process described using model-based reinforcement learning (RL) algorithms. 
The mechanisms by which neural circuits perform the computations prescribed by model-based 
RL remain largely unknown; however, multiple lines of evidence suggest that neural circuits 
supporting model-based behavior are structurally homologous to and overlapping with those 
thought to carry out model-free temporal difference (TD) learning. Here, we lay out a family of 
approaches by which model-based computation may be built upon a core of TD learning.  The 
foundation of this framework is the successor representation, a predictive state representation 
that, when combined with TD learning of value predictions, can produce a subset of the 
behaviors associated with model-based learning at a fraction of the computational cost.  Using 
simulations, we delineate the precise behavioral capabilities enabled by evaluating actions using 
this approach, and compare them to those demonstrated by biological organisms.  We then 
introduce two new algorithms that build upon the successor representation while progressively 
mitigating its limitations.  Because this framework can account for the full range of observed 
putatively model-based behaviors while still utilizing a core TD framework, we suggest that it 
represents a neurally plausible family of mechanisms for model-based evaluation. 
 

Author Summary 
	
According to standard models, when confronted with a choice, animals and humans rely on two 
separate, distinct processes to come to a decision. One process deliberatively evaluates the 
consequences of each candidate action and is thought to underlie the ability to flexibly come up 
with novel plans.  The other process gradually increases the propensity to perform behaviors that 
were previously successful and is thought to underlie automatically executed, habitual reflexes.  
Although computational principles and animal behavior support this dichotomy, at the neural 
level, there is little evidence supporting a clean segregation.  For instance, although dopamine — 
famously implicated in drug addiction and Parkinson’s disease — currently only has a well-
defined role in the automatic process, evidence suggests that it also plays a role in the 
deliberative process.  In this work, we present a computational framework for resolving this 
mismatch.  We show that the types of behaviors associated with either process could result from 
a common learning mechanism applied to different strategies for how populations of neurons 
could represent candidate actions. In addition to demonstrating that this account can produce the 
full range of flexible behavior observed in the empirical literature, we suggest experiments that 
could detect the various approaches within this framework. 
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Introduction 
 
A key question in both neuroscience and psychology is how the brain evaluates candidate actions 
in complex, sequential decision tasks. In principle, computing an action’s expected long-run 
cumulative future reward (or value) requires averaging rewards over the many future state 
trajectories that might follow the action. In practice, the exact computation of such expectations 
by dynamic programming or tree search methods may be prohibitively expensive, and it is 
widely believed that the brain simplifies the computations occurring at decision time, in part by 
relying on “cached” (pre-computed) long-run value estimates [1].  
 
Such caching of values is the hallmark of prominent temporal difference (TD) learning theories, 
according to which prediction errors reported by phasic dopamine responses update these cached 
variables [2–4]. This, in turn, provides a neuro-computational account of inflexible stimulus-
response habits, due to the fact that TD learning cannot update cached values in response to 
distal changes in reward (e.g., following reward devaluation). The computationally cheap but 
inflexible “model-free” nature of TD learning, which relies only on trial-and-error interactions 
with the environment, contrasts with the flexible but computationally expensive “model-based” 
nature of dynamic programming and tree search methods, which rely on an explicit internal 
model of the environment. Due to the complementary properties of model-free and model-based 
value computation, it has been suggested that the brain makes use of both in the form of parallel 
RL systems that compete for control of behavior [1]. 
 
Although flexible choice behavior seems to demonstrate that humans and animals may use 
model-based evaluation in some circumstances, very little is known about how this is actually 
implemented in the brain. Suggestively, but also confusingly, multiple lines of evidence suggest 
that the dopamine system and its key targets are implicated not just in the model-free behaviors 
that theory endows them with, but also in the more flexible choice adjustments that seem to 
reflect model-based learning [5–11]. This is particularly perplexing for the standard account 
because typical model-based algorithms do not make use of a TD prediction error of the sort 
associated with dopamine and instead store internal variables (specifically, predictions about 
immediate “one-step” rather than long-run consequences of actions), which require different 
update rules and error signals [12, 13].  Additionally, at choice time, such algorithms require 
computations that are structurally different than those typically prescribed to the dopaminergic-
striatal circuitry [14]. 
 
In this article, we revisit and extend a different reinforcement learning algorithm, based on the 
successor representation (SR) [15,16; see also 17-21],  a predictive state representation that can 
endow TD learning with some aspects of model-based value computation, such as flexible 
adjustment following reward devaluation.  That the SR, when combined with TD learning, can 
produce such flexible behavior makes it a promising candidate for a full solution to the puzzle of 
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dopaminergic involvement in model-based learning.  However, this approach, in its original 
form, results in behavioral inflexibilities that make it inadequate. The SR simplifies planning by 
relying on caching a set of intermediate quantities, expectations about cumulative future state 
occupancies. For this reason, unlike model-based learning, it is incapable of solving many tasks 
that require adjusting to changes in contingencies between actions and their long-run 
consequences (e.g. [22,23]).   
 
Below, we first use simulations to delineate the precise behavioral consequences of these 
inflexibilities and evaluate them with respect to the empirical literature.  We then introduce two 
new versions of the SR that progressively mitigate these limitations, and again simulate their 
expected consequences in terms of flexible or inflexible choice behavior.  The first variant gains 
flexibility by minimizing pre-computation so that only the agent’s action selection policy is 
cached. We show that this caching predicts errors that could in principle be behaviorally 
detectable, but have not been elicited by standard experimental tasks. Our second variant, which 
integrates and repurposes aspects of Sutton’s Dyna architecture [24], eliminates even this 
limitation by using replay of previous experiences to update a cached SR.  Both of these 
approaches can account for human and animal behavior in a wide range of planning tasks, and 
also provide an explanation as to why model-based and model-free learning should rely on 
overlapping neural substrates.  Overall, these approaches represent a family of plausible and 
computationally efficient hypothetical mechanisms for the full range of flexible behaviors 
associated with model-based learning, which could provide a clear theoretical foundation for 
future experimental work. 
 

Results 
 

Formalism: Model-based and model-free reinforcement learning 
 
We begin by briefly reviewing the formalism of reinforcement learning in a Markov decision 
process (MDP), which provides the foundation for our simulations (see [22] or [23] for a fuller 
presentation).  
 
An MDP is defined by a set of states, a set of actions, a reward function ! !  over states, and a 
state transition distribution, ! !! !,! , where a denotes the chosen action. States and rewards 
occur sequentially according to these one-step functions, driven by a series of actions; the goal is 
to learn to choose a probabilistic policy over actions, denoted by !, that maximizes the expected 
cumulative discounted reward (value), denoted by !! ! . The value function is defined 
recursively as the sum of the state’s immediate reward, ! ! , and the value of its successor state 
!’, averaged over possible actions, !, and transitions that would occur if the agent chose 
according to !: 
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                                 !! ! =  ! ! + ! !(!|!)! ! !! !,! !!(!!)!!                             (1) 
 
Here, ! is a parameter controlling temporal discounting. The value function under the optimal 
policy is given by: 
 
                                   !∗ ! =  ! ! + !max! !(!!|!,!)!∗(!!)!!                                     (2) 
 
Knowledge of the value function can help to guide choices. For instance, we can define the state-
action value function as the value of choosing action ! and following ! thereafter: 
 
                                    !! !,! = ! ! + ! ! !! !,! !!(!!)!!                                           (3) 
 
Then at any state one could choose the action that maximizes !! !,! . (Formally this defines a 
new policy, which is as good or better than the baseline policy !; analogously, equation 2 can be 
used to define the optimal state-action value function, the maximization of which selects optimal 
actions.) Note that it is possible to write a recursive definition for ! in the same manner as 
equation 1, and work directly with the state-action values, rather than deriving them indirectly 
from !. For expositional simplicity, in this article, we work instead with ! wherever possible 
(mainly because this is easier to depict visually, and simplifies the notation), and accordingly we 
assume in our simulations that the agent derives ! using equation 3 for guiding choices. This is 
not intended as a substantive claim; indeed, the last algorithm we propose will work directly with 
Q values. 
 
The problem of reinforcement learning is then reduced to learning to predict the value function 
!!(!) or !∗(!). There are two main families of approaches. Model-based algorithms learn to 
estimate the one-step transition and reward functions, !(!!|!,!) and !(!),  from which it is easy 
to compute !∗ (or !∗) using equation 2.  This typically involves unrolling the recursion in 
equation 2 into a series of nested sums, an algorithm known as value iteration. The alternative, 
model-free, approach exemplified by TD learning bypasses estimating the one-step model. 
Instead, it directly updates a cached estimate of the value function itself. In particular, following 
a transition ! → !′, a reward prediction error, !, is calculated and used to update !(!): 
 
                                                        ! = ! ! + !" !! − !(!)                                        (4) 
 

!(!) ← !(!)+ !!"! 
 
where !!" is a learning rate parameter.   
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The TD update rule is derived from the recursion in equation 1: each step iteratively pushes the 
left hand side of the equation, !(!), closer to ! ! + !" !!  which is a one-sample estimate of 
the right hand side.  
 
Finally, analogous sample-based updates may also be conducted offline (e.g., between steps of 
actual, “online” experience). This is a key insight of Sutton’s Dyna architecture [21] (see also 
[24]).  The approach, like TD, caches estimates of !(!).  Here TD learning is supplemented by 
additional offline updates, notably by executing equation 4 for a single state transition and 
reward (!,!, !, !’). Rather than coming from direct, online experiences, these ersatz experiences 
can either be sampled from a learned one-step model’s probability distributions !(!!|!,!) and 
!(!), or instead simply replayed, model-free, from stored episodes of raw experience !,!, !, !’ . 
Either way, given sufficient iterations of sampling between steps of real experience, this 
approach can substitute for explicit value iteration and produce estimates at each step 
comparable to model-based approaches that more systematically solve equations 1 or 2. 
 
A further distinction, which will become important later, is that between on-policy methods, 
based on equation 1, and off-policy methods, based on equation 2. On-policy methods estimate a 
policy-dependent value function !! ! , whereas off-policy methods directly estimate the 
optimal value function !∗ ! . Typically, model-based methods are off-policy (since having 
learned a one-step model it is possible to use equation 2 to directly compute the optimal policy); 
whereas different TD learning variants can be either on- or off-policy. For example, the SARSA 
algorithm is on-policy, whereas the Q-learning algorithm is off-policy [25]. 
 

Model-free and model-based learning in the brain 
 
Due to the similarity between the phasic responses of midbrain dopamine neurons, and the TD 
prediction error ! (equation 4), it has long been suggested that this system implements TD 
learning [2,3].  More specifically (e.g. [4]; Fig 1a) it has been suggested that values ! or ! are 
associated with the firing of medium spiny neurons in striatum, as a function of an input state (or 
state-action) representation carried by their afferent neurons in frontal cortex, and that learning of 
the value function is driven by dopamine-mediated adjustment of the cortico-striatal synapses 
connecting these neurons. Selection among these striatal value representations would then drive 
action choice. Although not entirely uncontroversial, a great deal of evidence about dopamine 
and its targets supports this hypothesis (see [26,28] for fuller reviews). 
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Fig. 1. Cortico-striatal loops and reinforcement learning. a) Canonical circuit for TD learning.  
A dopaminergic prediction error, signaled in substantia nigra pars compacta (SnC) and ventral 
tegmental area (VTA), updates the value of cortically represented states and actions by 
modifying cortico-striatal synapses.  Depending on value, represented in striatum, actions are 
passed through to basal-ganglia action systems.  b) Results of rodent lesion studies.  Lesions to a 
cortico-striatal loop passing through dorsomedial (DM) striatum prevent model-based learning.  
This area receives input from ventromedial prefrontal cortex and projects, via globus pallidus, to 
dorsomedial nucleus of the thalamus.  Lesions to cortico-striatal loop passing through 
dorsolateral (DL) striatum prevent model-free learning.  This area receives input from sensory 
and motor areas of cortex and projects, via globus pallidus, to posterior nucleus of the thalamus.  
In addition to receiving similar dopaminergic innervation from substantia nigra pars compacta 
(SnC), such loops are famously thought to be homologous to one another. 
 
 
Such models provide a neural implementation of Thorndike’s early law of effect, the 
reinforcement principle according to which rewarded actions (here, those paired with positive 
prediction error) tend to be repeated [29].  However, the hypothesis that animals or humans rely 
exclusively on this principle to make decisions has long been known to be false, as demonstrated 
by a line of learning experiments whose basic logic traces to rodent spatial navigation 
experiments by Tolman [22] (for modern variants, see [6,27,30–32]). 
 
To facilitate simulation and analysis, we here frame the logic of these experiments in terms of 
“grid-world” spatial MDPs. Framed this way, such experiments can be divided into two 
categories. These require subjects to adjust to two different sorts of local changes in the 
underlying MDP. Experience with these changes is staged so as to reveal whether they are 
relying on cached values or recomputing them from a representation of the full MDP.  
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Accordingly, revaluation tasks, such as latent learning and sensory preconditioning, examine 
whether animals appropriately adjust behavior following changes in !(!), such as a newly 
introduced reward (Fig 2a).  Analogously, contingency change (e.g., detour or contingency 
degradation) tasks examine whether animals appropriately adjust behavior following changes in 
!(!!|!,!), such as a blocked passageway (Fig 2b). Model-free RL is insensitive to these 
manipulations because it caches cumulative expected rewards and requires additional learning to 
update the stored !.  Conversely, model-based algorithms, which use the one-step model directly 
to compute ! at decision time, react flexibly to any experience that affects it. That animals can 
flexibly adapt their behavior following such manipulations has been interpreted as evidence for 
their use of model-based RL [1]. 
 

 
Fig. 2. Grid-world representation of Tolman’s tasks.  Dark grey positions represent maze 
boundaries.  Light grey positions represent maze hallways.  a) Latent learning: following a 
period of randomly exploring the maze (starting from S) the agent is notified that reward has 
been placed in position R.  We examine whether the agent’s policy immediately updates to reflect 
the shortest path from S to R.  b) Detour:  after the agent learns to use the shortest path to reach 
a reward state R from state S, a barrier is placed in state B.  After the agent is notified that state 
B is no longer accessible from its neighboring state, we examine whether its policy immediately 
updates to reflect the new shortest path to R from S.  
 

The puzzle of model-based learning 
	
A further set of rodent lesion studies has used reward devaluation tasks to suggest that apparently 
model-based and model-free behaviors (i.e., behavior that is either flexible or insensitive 
following reward devaluation) depend on dissociable sets of brain areas (e.g. [5,33]). This led to 
the hypothesis (e.g., [1,34,35]) that these two forms of reinforcement learning depend on 
competing systems in the brain—the dopaminergic TD system previously described, plus a 
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second – less clearly understood – circuit supporting model-based behavior. The accompanying 
presumption has been that the model-based system does not rely on a dopaminergic prediction 
error signal, because the prediction error of equation 3 is specifically useful for directly learning 
long-run cumulative values !, whereas the idea of model-based learning is to derive these 
iteratively by stringing together short-term predictions from a learned one-step model [12,36]. 
 
However, neither the rodent lesion data nor another body of work studying the neural correlates 
of model-based learning in humans suggests such a clean differentiation between the 
dopaminergic-striatal circuit (supposed to support TD) and some other presumably non-
dopaminergic substrate for model-based learning. Instead, lesions suggest each type of learning 
is supported by a different subregion of striatum, together with connected regions of cortex (Fig 
1b) and basal ganglia. This suggests that model-based and model-free systems may map onto 
adjacent but structurally parallel cortico-basal ganglionic loops [37], thus perhaps involving 
analogous (striatal) computations operating over distinct (cortical) input representations [38].  
 
Also contrary to a strict division between systems, both dorsomedial and dorsolateral striatal 
territories have similar interrelationships with dopamine [39], though the involvement of their 
differential dopaminergic input in devaluation sensitivity has not been completely assessed [40]. 
Research on humans’ learning in a two-step MDP (which has similar logic to devaluation 
studies) supports the causal involvement of dopamine in model-based learning [7–10]. 
Furthermore, dopaminergic recordings in rodents [11] (though see [37]), and neuroimaging of 
prediction error signals in human striatum [6] suggest that these signals integrate model-based 
evaluations.  
 
Altogether, this research supports the idea that model-based evaluations are at least partly 
supported by the same sort of dopaminergic-striatal circuit thought to support TD learning, 
though perhaps operating in separate cortico-striatal loops. This suggestion, if true, provides 
strong hints about the neural basis of model-based behavior. However, it also seems puzzlingly 
inconsistent with the textbook [25]  picture of model-based learning. 
 
First, as mentioned previously, the internal variables used by typical model-based approaches are 
different from the TD value function, and require different update signals than the TD prediction 
error that dopamine is thought to represent. Specifically, following an experienced transition, the 
TD prediction error is used to update a cached estimate of the long-run value function, !(!). In 
contrast, typical model-based approaches do not maintain or directly update long-run value 
estimates between decisions.  Instead, following experienced transitions, such approaches will 
update an estimate of the one-step transition function, !(!’|!,!) as well as the immediate reward 
function !(!).  The update signals required to learn these quantities are markedly different from 
the dopaminergic TD error.  For instance, unlike the TD prediction error and the well-
demonstrated phasic dopaminergic response [41], an update signal for learning !(!) would not 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 27, 2016. ; https://doi.org/10.1101/083857doi: bioRxiv preprint 

https://doi.org/10.1101/083857


be active following presentation of a cue that reliably predicts future rewards.  What then is the 
role then of dopaminergic activity, directed at dorsomedial striatum, for model-based learning? 
 
Additionally, the computations required to obtain the key decision variable (the long-run state-
action value) at decision time for TD and typical model-based approaches are quite different. 
Whereas TD approaches can simply retrieve the stored long-term value associated with a state 
(or, in the case of linear approximation TD, take the inner product of a vector-valued state 
representation and learned weights), typical approaches to model-based learning utilize some 
iterative computation like value iteration at choice time to aggregate one-step predictions into a 
long-run value prediction. How is it that dopaminergic-striatal circuitry thought to perform TD 
learning could participate such structurally different computations for both acquisition and 
retrieval? The modeling in the remainder of this article explores directions for resolving this 
mismatch. 
 

A framework for solution: the successor representation 
 
The research reviewed above suggests that model-based RL may be accomplished using 
computations that are homologous to those used in model-free RL.  How can this be? In fact, it is 
known that evaluations with some features of model-based learning can result from TD learning 
over a different input representation.  As shown by Dayan [15], equation 1 can reformulated as: 
 
                                    !! ! =  !! !, !! !(!!)!!                                                                     (5) 
  
Here, !! is a matrix of expected cumulative discounted future state occupancies, measuring the 
cumulative time expected to be spent in each future state !′, if one were to start in some state ! 
and follow policy ! (Fig 3):  
      
                            !! !, !! = ! !!! !! = !!  !

!!! !! = ! ,                                                  (6) 
 
where ! ⋅ = 1 if its argument is true and 0 otherwise. Thus, this form rearranges the expectation 
over future trajectories in equation 1 by first computing expected occupancies for each state, then 
summing rewards obtained in each state over these. 
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Fig. 3. Example state representations. a) Agent position (diamond) in a maze whose hallways 
are indicated by grey.  b) Punctate representation of the agent’s current state.  Model-free 
behavior results from TD computation applied to this representation c,d) Possible successor 
representations of agent’s state.  Model-based behavior may result from TD applied to this type 
of representation.  The successor representation depends on the action selection policy the agent 
is expected to follow in future states. The figures show the representation of the current state 
under a random policy (c) versus a policy favoring rightward moves (d). 
 
!! can also be used as a set of basis functions for TD learning of values.  Specifically, we 
represent each state using a vector of features given by the corresponding row of ! (Fig 3), i.e. 
by the future occupancies expected for each state !!. Then we approximate !! !  by some 
weighted combination of these features:  
 
                                    !! ! =  !! !, !! !(!!)!!                                                                    (7) 
 
Comparing equations 5 and 7 demonstrates this approximation will be correct when the weight 
!(!!) for each successor state corresponds to its one-step reward ! !! . One way to learn these 
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weights is using standard TD learning (adapted for linear function approximation rather than the 
special case of a punctate state representation). In particular, following a transition ! → !′, each 
index ! of w is updated: 
 
                                                 ! ! ← ! ! + !!"!!!(!, !)                                          (8) 
       
Here, ! is defined as in equation 4.   
 
Altogether, this algorithm suggests a strategy for using different inputs into a common 
dopaminergic/TD learning stage to produce different sorts of value predictions (see also [16]).  
In particular, whereas model-free valuation may arise from TD mapping of a punctate 
representation of the current state (Fig 3b) in sensory and motor cortex to values in dorsolateral 
striatum (Fig 1b), at least some aspects of model-based valuation may arise by analogous TD 
mapping of the successor representation (Fig 3c,d) in prefrontal cortex or hippocampus to values 
in dorsomedial striatum (Fig 1b). This is possible because the successor matrix !  has a 
predictive aspect reflecting knowledge of the state transitions ! !! !,! , at least in terms of 
aggregate occupancy, separate from the states’ rewards ! ! .  
 
Next we explore the consequences of this architecture for typical behavioral tests of model-based 
evaluation, and in particular diagnose why it is only capable of explaining behavior on a subset 
of these tests. 
 

Strategies for learning the successor representation 
 
To simulate learning using the successor representation, we need to also simulate how the 
successor matrix !! is itself produced from experience.  !! can be defined through a recursive 
equation that is directly analogous to equations 1 and 2:  
 
 
                                   !! !, : =  !! + !  !!(!, !!)!! !!, :!! ,                                          (9) 
 
where !! is the vector of all zeros except for a 1 in the sth position and !! is the one-step state 
transition matrix that is dependent on !, !! !, !! =  ! ! !! ! !! !,! .  Similar to how 
approaches to estimating ! are derived from equations 1 and 2, one could derive analogous 
approaches to estimating !! from equation 9.  Specifically, one could utilize a “model-based” 
approach that would learn !! and use it to derive a solution for !!. Alternatively, a TD learning 
approach could be taken to learn !!  directly, without use of a one-step model !! . (This 
approach is analogous to model-free TD methods for learning !, though it is arguably not really 
model-free since !!is itself a sort of long-run transition model.) This TD learning approach 
would cache rows of M and update them after transitioning from their corresponding states, by 
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moving the cached row closer to a one-sample estimate of the right hand side of equation 9. 
Lastly, such TD updates could also occur offline, using simulated or previously experienced 
samples.  This approach for learning !!would be comparable to the Dyna approach for learning 
!.  In the following sections, we explore the behavioral consequences of each these strategies. 
 

Algorithm 1: The original successor representation (SR-TD) 
 
The original SR [15] (which we call SR-TD) constructed !! using a TD learning approach.  
This approach caches rows of !!and incrementally updates them after transitioning from their 
corresponding states. Specifically, following each state transition ! → !′ each element of row s 
is updated as follows: 
 
                 !! !, :  ←  !! !, : + !!"[!! + !!! !!, : −  !! !, : ],                   (10) 
 
where !! is the vector of all zeros except for a 1 in the sth position.  To simulate SR-TD, we 
have the agent learn !!and w in parallel, updating each (according to equations 5 and 10) at 
each transition; and sample actions according to an !-greedy policy (see Methods). 
 

SR-TD can solve some reward revaluation tasks. SR-TD is able to produce behavior 
analogous to model-based learning in some reward revaluation tasks that defeat simple TD 
learning.  To demonstrate this, we simulated the behavior of SR-TD in a grid-world version of 
Tolman’s latent learning task (Fig 2a). The agent first explores the grid-world randomly. Next, it 
learns that reward is available at position R (importantly, by being placed repeatedly at R and 
receiving reward, but not experiencing trajectories leading there from any other location). 
Finally, in a test probe starting at location S, the agent’s ability to transfer this training into a new 
behavioral policy is measured.  
 
Fig 4a shows SR-TD performance on a latent learning task: SR-TD can, without further learning, 
produce a new policy reflecting the shortest path to the rewarded location (Fig 4a). In contrast, a 
standard model-free TD learner operating with a non-predictive state representation cannot solve 
latent learning problems: it would learn nothing about paths around the maze from the reward 
training, and would have to discover the path to the new reward from scratch by additional 
exploration (simulations not shown). For similar reasons, SR-TD can solve sensory 
preconditioning (e.g. [32]) and reward devaluation tasks (e.g. [6,27,30,31]), both of which turn 
on an analogous ability to update behavior when state transition probabilities are held constant 
but reward values are changed. 
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Fig. 4. Behavior of SR-TD: a) SR-TD can solve some latent learning tasks. Median value 
function (grayscale) and implied policy (arrows) are shown immediately after SR-TD learns 
about reward in latent learning task.  b) SR-TD can only update predicted future state 
occupancies following direct experience with states and their multi-step successors. For 
instance, if SR-TD were to learn that s’’ no longer follows s’, it would not be able to infer that 
state s’’ no longer follows state s.  Whether animals make this sort of inference is tested in the 
detour task. c) SR-TD cannot solve detour problems.  Median value function (grayscale) and 
implied policy (arrows) are shown after SR-TD encounters barrier in detour task. SR-TD fails to 
update decision policy to reflect the new shortest path. 
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SR-TD cannot solve transition revaluation tasks. However, SR-TD is limited in its ability to 
react correctly to other seemingly similar manipulations. Because !! reflects long-run 
cumulative state occupancies, rather than the individual one-step transition distribution, 
! !’ !,! , SR-TD cannot adjust its valuations to local changes in the transitions without first 
updating !!at different locations. This inflexibility prevents SR-TD from flexibly adjusting 
value estimates after learning about changes in transition structure (“transition revaluation”; Fig 
4b). Consider a grid-world version of Tolman’s detour task (Figs 2b and 4c). Here, the agent is 
first trained to seek reward at R, starting from S. Later, a blockade is introduced at B. Again, the 
agent is allowed to experience this change only locally, by learning about the consequences of 
trying to go right at the spot immediately to the left of the blockade. The states to the right are no 
longer accessible from this state, but this change is not reflected in !! for the start state. From 
equation 10, it can be seen that this update can only occur from direct experience, i.e., a series of 
new trajectories starting at S and encountering the barricade. Thus, SR-TD fails to reduce the 
value of states that previously led to this path (Fig 4c), and would approach the barricade rather 
than taking a detour on the first visit back to S.  Because there is at least some evidence from the 
early literature [42] that animals can adapt correctly to detour situations, we suggest that this 
inflexibility prevents SR-TD from being a plausible mechanism for the full repertoire of model-
based behavior.  
 

Algorithm 2: Dynamic recomputation of the successor representation (SR-MB) 
 
Here, we explore a novel “model-based” approach, SR-MB, for constructing !!.  SR-MB learns 
a one-step transition model, !! and uses it to derive a solution to equation 9.  One key constraint 
on a model-based implementation suggested by the data is that the computation should be staged 
in a way consistent with the architecture suggested by Fig 2a. Specifically, the TD architecture in 
Fig 2a suggests that, because the states are represented in cortex and weights (which capture 
information about rewards) and value are represented in downstream cortico-striatal synapses 
and medium spiny striatal neurons, information about !(!) and !(!) should not be used in the 
online construction of states.  For the SR approach, this implies that M be constructed without 
using direct knowledge of !(!) or !(!). As we see below, this serial architecture – a cortical 
state-prediction stage providing input for a subcortical reward-prediction stage – if true, would 
impose interesting limitations on the resulting behavior. 
 
To construct !!, SR-MB first learns the one-step state transition matrix !!, implemented in our 
simulations through separate learning of ! !! !,!  as well as ! ! ! , the agent’s previously 
expressed decision policy (see Methods).  Prior to each decision, !!is used to compute a solution 
to equation 9: 
 
                                                      !! =  (! − !!!)!!                                  (11) 
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Given !!and !, SR-MB forms ! and ! values in the same way as SR-TD.   
 
SR-MB can solve transition revaluation tasks. Using an updated  !! to recompute !! at 
decision time ensures that behavior is sensitive to changes in the transition structure.  We 
demonstrate this by showing that unlike SR-TD, SR-MB successfully solves Tolman’s detour 
task in addition to latent learning. In the detour task, after discovering the barrier, SR-MB 
immediately adjusts its policy to the new shortest path (Fig 5a).  SR-MB thus produces the two 
behaviors that are considered signatures of model-based RL: immediate adjustment of decision 
policy following learned changes in either reward structure (latent learning) or transition 
structure (detour problem).  However, unlike typical model-based approaches, it does so by 
utilizing TD to map a learned state representation to value estimates and thus provides solution 
for how model-based behaviors could arise from the architecture in Fig 2a. 
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Fig. 5. Behavior of SR-MB. a) SR-MB can solve the detour task. Median value function 
(grayscale) and implied policy (arrows) after SR-MB encounters barrier.  b) SR-MB determines 
successor states relative to a cached policy.  If SR-MB learned from previous behavior that it 
will always select action a1, the value of s would become insensitive to changes in reward at s2’.  
C) Novel “policy” revaluation task. After a phase of random exploration, we place a reward in 
location R1.  The agent completes a series of trials that alternatively start from locations S1 and 
S2 and end when R1 is reached.  We then place a larger reward in location R2 and record the 
agent’s value function and implied policy upon encountering it.  d) SR-MB cannot solve the 
novel “policy” revaluation task.  Median value function and implied policy recorded 
immediately after SR-MB learns about reward placed in location R2.  Notice that if the agent 
were to start from location S1, its policy would suboptimally lead it to the smaller reward at R1. 
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SR-MB is limited by policy dependence. Given that SR-MB reproduces previously examined 
animal behavior in planning tasks, we next sought to determine whether there were any tasks, 
perhaps not yet explored in the empirical literature, that could differentiate it from approaches 
that utilize “full” model-based value iteration.  A key feature of SR-MB, as well as SR-TD, is 
that it computes !! with respect to a policy !.  For SR-MB, !! is computed using ! ! ! , 
which is learned through observation of previous actions.  Because !! is policy dependent, so 
are the value estimates that it produces. SR-TD and SR-MB are thus “on-policy” methods – their 
estimates of  !! can be compared to the estimates of a traditional model-based approach used to 
solve equation 1.  In fact, if weights, !(!) are taken to have reached asymptotic values !(!), 
then SR-MB is algebraically equivalent to doing standard model-based value iteration to solve 
equation 1.  
 
The key feature of this strategy is its dependence on the exploration policy !. A natural question 
is whether a similar approach could be used to define !∗ – the successor states expected under 
the optimal policy – which would, in turn provide the state input for solving for !∗, the optimal 
long-run values. This is an important distinction, as we will see below, because new learning 
about parts of the MDP can moot the previously expressed policy ! (and hence invalidate the 
associated successor matrix and values). But this problem is not simple to fix, given the 
architectural constraints we have suggested. In particular, defining equation 9 with respect to the 
optimal policy would require replacing !! with T*: the one-step transition matrix corresponding 
to the optimal policy, !∗(!, !’)  =  !(!’|!,!∗), where !∗ is the action in state ! that maximizes 
future rewards.  Computing !∗ online, however, would require access to !(!), which would 
violate the suggested serial staging of the computation, that ! be constructed without using 
reward information.  
 
Policy dependence thus defines both the major limitation as well as the empirical signature of 
SR-MB.  Unlike standard value iteration, separating the state prediction and reward prediction 
stages of the algorithm serially implies that the algorithm must plan using values that are derived 
with respect to the policy that prevailed during learning. 
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SR-MB cannot solve novel policy revaluation tasks. What are the behavioral implications of 
planning using !! rather than !∗?  Consider a situation where state !’ can be reached from state 
! using action !, but SR-MB learned from past behavior that ! ! !  is near 0 (Fig 5b).  Then it 
will not include rewards at !’ in the value of !, even if separately learning (say, by visiting !’ but 
not in a trajectory starting from !) that !’ is the most rewarding state reachable from !. In other 
words, caching of the policy at ! blinds the agent (without further exploration and relearning) to 
changes in the reward function that should change that policy. Value iteration based on equation 
2 does not have this limitation because the max operation would look ahead to the reward at !’ to 
determine whether it should be included.   
 
These considerations suggest a novel revaluation task (Fig 5c).  Here, SR-MB first performs 
many trials where R1 is rewarded, so that it learns a policy that takes it away from the bottom 
right corner of the maze. Next, a larger reward is introduced at R2. Despite having learned about 
this reward (by starting at S2), the agent would choose to head toward R1 from S1, due to 
caching of the incorrect policy along the way (Fig 5d). This task demonstrates that SR-MB 
produces errors that could in principle be behaviorally detectable, but have not been exercised by 
standard experimental tasks. 
 
Given the empirical plausibility of SR-MB, we can consider how the computation in equation 11 
may be actually carried out.  One potential mechanism is recurrent neural networks.  It can be 
shown that !! is the attractor state of a network with one node for each state, and connection 
weight matrix !!!  (see [17]). This essentially corresponds to value iteration on ! . An 
alternative would involve using sample-based backups – analogous to Sutton’s Dyna architecture 
[24], but using samples (!,!, !’) with equation 10 to update cached rows of !! rather than the 
value function !. As for values, such samples could be either directly replayed from stored 
experience episodes, or generated from a transition model !!. Given sufficient offline replay 
prior to each decision (and because of the basic analogy between sample-based and value 
iteration-based solutions to equation 9), this mechanism essentially amounts to a different 
implementation of the on-line construction of !! discussed here, with similar advantages and 
disadvantages. However, in the next section, we explore how this approach, when combined with 
learning about the state-action value function ! (rather than the state value function !), can be 
used to solve the off-policy planning problem. 
 

Algorithm 3: Off-policy experience resampling (SR-Dyna) 
 
Here we introduce a third approach towards solving equation 9, SR-Dyna, which can be 
compared to Sutton’s Dyna approach [24] for solving equations 1 and 2.  Akin to how Dyna 
replays experienced transitions offline to update estimates of !(!), SR-Dyna replays experienced 
transitions to update the successor matrix.  When this approach is combined with an ‘off-policy’ 
update rule, similar to Q learning, to update the successor matrix offline, it is capable of solving 
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the off-policy planning problem.  Utilizing this type of update however, requires us to work with 
a state-action version of the successor representation, !, which can be used directly to form ! 
values [43,44].   The key idea here is to define future occupancy not over states but over 
state/action pairs, which we denote !". Analogous to equation 3, !! can then be expressed: 
 
                               !!(!") = ! !", !!!!!!!! !(!!!′),         (12) 
  
! is a matrix of expected cumulative discounted future state-action visitations, i.e. given that you 
are starting with state ! and action !, the cumulative (discounted) expected number of times you 
will encounter each other state/action pair: 
 
                     ! !", !!!! =  ! !!!(!!! = !!!!)|!"!!

!!! = !" .         (13) 
 
! can then be used as a linear basis for learning !(!,!), using the SARSA TD algorithm to learn 
a weight for each column of H.  In particular, when state-action !’!’ is performed after state 
action !", a prediction error is calculated and used to update w: 
                 
                                        ! = ! !" + !" !′!! − !(!")                     (14) 
                                        
                                   ! ! ← ! ! + !!"!"(!", !), for all ! 
 
Like !, ! can be defined recursively: 
 

! !, : =  !!" + !  !!(!", !′!!)! !′!!, :
!!

 

where !!  is the one-step state-action transition matrix, 
!! !", !!!! =  ! !! !,!!!!! !(!!|!!). As with SR-TD, this recursion can be used to derive 
a TD-like update rule by which an estimate of H can be iteratively updated: 
 
                                  ! !",⋅  ← ! !",⋅ + !!"[!!" + !" !!!!,⋅ −  ! !",⋅ ]                  (15) 
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SR-Dyna can utilize off-policy updates.  As with SR-MB, it is also possible to derive ! from 
!! !", !!!!  using an explicit “model-based” solution analogous to equation 9.  However, here, 
we investigate the approach of updating ! off-line (e.g., between trials or during rest periods) 
using replay of experienced trajectories.  The key assumption we make is that this off-line replay 
can implicate both the state and reward (cortical and basal ganglia) stages of Figure 1b, giving 
rise to an off-policy update of H with respect to the policy !∗ that is optimal given the current 
rewards. By comparison, as articulated above, we assumed such policy maximization was not 
possible when computing the successor representation ! on-line for SR-MB, since this entire 
computation was supposed to happen in cortex at decision time, upstream of the striatal reward 
learning stage. 
 
Following each transition, SR-Dyna stores the sample (!,!, !’).  Then in between decisions, SR-
Dyna randomly selects (with a recency weighted bias) ! samples (with replacement).  For each 
sample, it updates H as follows: 
 
                            ! !",⋅  ← ! !",⋅ + !!"[!!" + !" !!!!∗,⋅ −  ! !",⋅ ]                      (16) 
 
where  

!′∗ = !"#$!"!! ! !!!!, !!!!!!
!!!!!!

!(!′′!′′) 

 
That is, when H updates from previously experienced samples, it performs an off-policy update 
using the best action it could have chosen, rather than the one it actually chose.  
 

SR-Dyna can solve policy revaluation tasks. Given sufficient sampling (large enough !), this 
off-policy updating not only permits SR-Dyna to solve the detour task (Fig 6a), but also to solve 
the novel policy revaluation task (Fig  6b).  SR-Dyna can thus produce behavior identical to 
“full” model-based value iteration.  However, it has the potential advantage that updating can 
take place fully off-line and thus offload computation to situations that may be ecologically 
convenient such as sleep or wakeful rest.  
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Fig. 6. Behavior of SR-Dyna. a) SR-Dyna can solve the detour task.  Median value function 
(grayscale) and implied policy (arrows) after SR-DYNA encounters the barrier. b) SR-Dyna can 
solve the novel “policy” revaluation task. Median value function (grayscale) and implied policy 
(arrows) after SR-Dyna learns about the new larger reward. 
 
Discussion 
 
Despite evidence that animals engage in behaviors suggestive of model-based planning, we have 
little knowledge of how these computations are actually performed in the brain. Indeed, what 
evidence we have – particularly concerning the involvement of dopamine in these computations 
– seems difficult to reconcile with the standard computational picture of planning by tree search 
using a learned model. We have here proposed variants of the SR that can address this question, 
serving as empirically consistent mechanisms for some or indeed all of the behaviors associated 
with model-based learning. Moreover, these are each built as utilizing a common TD learning 
stage for reward expectancies, allowing them to fit within the systems-level picture suggested by 
rodent lesion studies, and also explaining the involvement of dopamine in model-based 
valuation. In particular, they each envision how model-based learning could arise from the same 
dopaminergic TD learning associated with simple model-free learning, operating over a different 
and more elaborated cortical input representation.  
 
We have focused our simulations on choice behavior, and have not presented our theories' 
analogous predictions about the responses of neurons, such as DA cells, thought to signal 
decision variables. However, whenever the SR algorithms' expectations about action values 
incorporate "model-based" information (such as latent learning, Fig 4a) neural signals related to 
those predictions and to prediction errors would be similarly informed. Thus the theories predict 
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systematic expectancy-related effects in the modeled dopamine response, tracking the 
differences in choice preference relative to the standard “model-free” accounts, which are blind 
to reward contingencies in these tasks. This observation offers an explanation for several reports 
that the phasic DA response (or analogous prediction-error related BOLD signals in humans) 
tracks apparently model-based information [6,11]. Consider the sensory preconditioning task (the 
Pavlovian analogue of latent learning). Here, following a pre-conditioning phase in which 
stimulus B is repeatedly presented as following stimulus A, a conditioning phase occurs in which 
stimulus B is paired with reward.  Since, at this point in the experiment, A has neither been 
followed by reward nor by a stimulus itself previously paired with reward, pure model-free 
approaches estimate the value of A, ! !  to be 0.  They thus predict that presenting A to the 
animal at this point in the experiment, !!, would not elicit a dopaminergic response (e.g.  
! !! = ! !! +  ! !! − !" !! − 1 = ! !! = ! ! = 0).  In contrast recent experiments 
have observed that presenting A elicits a significant phasic dopaminergic response [11].  The SR 
can account for this because once B is paired with reward, A instantly gains value because it 
predicts future occupancy of B.  Thus, the reward prediction error considered in equation 8, 
which uses SR estimates of !(!), would be greater than 0 (see also [20]).   
 
Situations like this, in which prediction errors constructed using either SR or model-free value 
estimates diverge, raise interesting questions for the architecture in Fig 1. b.  If dorsomedial and 
dorsolateral striatum are to respectively represent model-based and model-free values 
simultaneously, then this seems to imply two separate prediction errors: one containing SR value 
estimates, directed at dorsomedial striatum, and one containing model-free value estimates 
directed at dorsolateral striatum.  There is in fact recently mounting evidence that dopaminergic 
neurons project different signals to different subareas of striatum, though this work has so far 
focused on the dorsal-ventral axis (and on states vs. actions) rather than medial-lateral [45,46].  
Future work should explore whether separate information may also be projected to the 
dorsomedial versus dorsolateral areas.   Another possibility, however, is that at any given time, 
net value predictions are derived by some weighted combination of punctate (model-free) and 
predictive (SR) state representations, which would then drive both choices and a single net 
reward prediction error. Changes in the differential reliance on these inputs, over time, would 
then drive changes in behavioral strategy, and differences in the accompanying dopamine 
response. Indeed, there is some evidence that as rodents gradually alter their behavioral strategy 
from model-based to model-free learning with overtraining, activity in dorsomedial striatum 
becomes less structured while activity in dorsolateral striatum becomes more structured, perhaps 
suggesting that at any given point in time only one of these areas is carrying sufficient 
information to construct either SR or model-free value estimates [47]. 
 
Although our presentation culminated with proposing an algorithm (SR-Dyna) that can in 
principle perform equivalently to full model-based learning using value iteration, this need not be 
the only goal and there need not be only a single answer. The behaviors associated with model-
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based learning may not have unitary sources in the brain but may instead be multiply determined, 
and all of the algorithms we have considered are viable candidate pieces of a larger set of 
decision systems. Notably, the experiments we have highlighted as suggesting striatal or 
dopaminergic involvement in “model-based” learning and inspiring the present work all use 
extremely shallow planning problems (e.g. operant lever pressing, two-stimulus Pavlovian 
sequences, or two-step MDPs) together with reward revaluation designs. Even SR-TD is 
sufficient to explain these. It may well be that planning in other tasks, like chess, or in spatial 
mazes, is supported by entirely different circuits that really do implement something like tree 
search; or that they differentially require replay, like SR-Dyna. Also, although replay-based 
approaches go a long way, value computation at choice time using more traditional model-based 
approaches is likely needed at the very least to explain the ability to evaluate truly novel options 
(like the value of “tea jelly”; [48]) using semantic knowledge. 
 
Relatedly, if the brain might cache both endpoint decision variables like !, or their precursors 
like !, update either or both with off-line replay, and optionally engage in further model-based 
recomputation at choice time, then the arbitration or control question of how the brain prioritizes 
all this computation to harvest rewards most effectively and efficiently becomes substantially 
more complicated than previously considered. The prioritization of replay – which memories to 
replay when – becomes particularly important.  Still, principles of efficient cost-benefit 
management might apply, extending those that have been considered for simpler, binary model-
based vs. model-free tradeoffs [1,35,49] . 
 
It is also worth considering the evidence against the simplest approaches. The main 
counterexamples to SR-TD are transition revaluation and detour tasks. Apart from the classic 
work of Tolman and Honzik [42], the original results of which are actually quite mixed (see 
[50]), there is surprisingly little evidence to go on.  A number of different studies have shown 
that healthy animals will normally choose the shortest alternative route after learning about a 
blockade preventing a previously preferred route (e.g. [51–53]).  However, in these studies, the 
animal learns about the blockade after starting from the maze starting location.  Thus, unlike in 
our simulations in which the animal learns about the blockade in isolation, animals in these tasks 
would have the opportunity to learn from direct experience that maze locations leading up to the 
blockade are no longer followed by maze locations further along the previously preferred path.  
Such tasks could thus potentially be solved by SR-TD.  Studies that show that animals will take a 
shortcut to a goal that is discovered along a preferred path present a somewhat cleaner test for 
SR-TD [54,55]; however it is often difficult to interpret a potential role of exploration or visual 
(rather than cognitive map) guidance in the resulting behavior. Work in humans, however, seems 
to more clearly suggest an ability to solve detour tasks without re-learning [56]. Simon and Daw 
[23] for instance directly assessed SR-TD’s fit to human subjects’ choice adjustments in a 
changing spatial maze, and found it fit poorly relative to traditional model-based learning.  
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 27, 2016. ; https://doi.org/10.1101/083857doi: bioRxiv preprint 

https://doi.org/10.1101/083857


Overall, additional careful work that measures how animals respond to transition changes, 
learned in isolation, is needed.  Whereas Tolman’s other early reward revaluation experiments 
(latent learning) have been conceptually replicated in many modern, non-spatial tasks like 
instrumental reward devaluation and sensory preconditioning, the same is not true of detours.  
Indeed, the modern operant task that is often presented as analogous to detours, so-called 
instrumental contingency degradation (e.g., [57]), is not functionally equivalent.  In such tasks, 
the association between an action and its outcome is degraded through introduction of 
background rewards.  However, because the information about the changed contingency is not 
presented separately from the rest of the experience about actions and their rewards, unlike all 
the other tests discussed here, contingency degradation can be solved by a simple model-free 
learner that re-learns the new action values.  The puzzle here is actually not how animals can 
solve the task, but why they should ever fail to solve it. This has thus led to a critique not of 
model-based but of model-free learning theories [38]. 
 
In any case, the modeling considerations proposed here suggest that more careful laboratory 
work on “transition revaluation” type changes to detect use of SR-TD, is warranted. Similarly, 
“policy revaluations” along the lines of that in Fig 5 would be useful to detect to what extent 
planning along the lines of SR-MB is contributing. Finally, although SR-Dyna in principle can 
perform model-based value computation, this depends on sufficient replay. The SR-Dyna 
hypothesis suggests the testable prediction that behavior should degrade to SR-TD under 
conditions when replay can contribute less; thus manipulations of factors like rest period length 
or distractor tasks (see [27]) would be expected to titrate behavior between SR-TD and pure 
model-based computations, and thus modulate the ability to solve detour tasks or policy 
revaluations. 
 
As pointed out in [27], Sutton’s original Dyna algorithm – in which experience replayed offline 
is used to update action values ! or ! directly – offers another avenue toward solving some of 
the puzzles motivating this work. Specifically, enough offline replay can also mimic model-
based evaluation, and if such replay simply activates the same circuits used for online TD 
learning, then such model-based behaviors would be dopamine-dependent. This is a promising 
piece of the puzzle, but such heavy reliance on replay to underpin all behavioral flexibility seems 
unrealistic. Among our innovations here is to suggest that replay can also be used to learn and 
update a successor representation !, which then confers many of the other advantages of model-
based learning (such as flexibility in the face of reward devaluation) without the dependence on 
further replay to replan. Further research (particularly dissecting exactly how behavior degrades 
when replay is prevented) will be needed to distinguish the contributions of these two Dyna 
mechanisms from each other, and from other options like SR-MB or true model-based planning, 
none of which are mutually exclusive. 
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As with Sutton’s Dyna, SR-Dyna dovetails nicely with neural evidence about memory replay.  
Specifically, the subsequent reactivation of patterns of hippocampal activity that characterize a 
prior experience, seem well suited to support the sort of off-line updates imagined by both Dyna 
approaches.  However, the SR-Dyna approach, in which such hippocampal replay phenomena 
may update a (presumably pre-frontal) successor matrix, lines up neatly with complimentary 
system theories in the memory literature, according to which such hippocampal replay plays a 
role post-encoding stabilization of memories by restructuring how information is represented 
across neocortical networks [58,59].  Such a connection should be explored in future research. 
 
Although this paper has focused on the behavioral consequences of planning using various forms 
of the SR, another line of evidence supporting the proposal is that predictive representations 
seemingly consistent with the successor representation have been observed in multiple brain 
regions. For instance, in human neuroimaging it has been found that hippocampal representation 
of a fractal image becomes more similar to images that tend to follow it [60,61], and similar 
results have been found in prefrontal cortex [62]. It has also been suggested that hippocampal 
place fields themselves might encode the SR [18].   
 
Finally, the SR may contribute to a number of other cognitive processes. Above we noted that 
there is evidence that areas of medial temporal lobe seem to encode predictive representations. In 
line with this, it has been noted that there is a close correspondence between the update rule used 
by SR-TD and update rules in the temporal context model of memory [19]. Also, recent 
approaches to reinforcement learning in the brain have advocated for a hierarchical approach in 
which punctate actions are supplemented by temporally abstract policies [63]. In this context, it 
has been suggested that the SR may be useful for discovering useful temporal abstractions by 
identifying bottlenecks in the state space that can then be used to organize states and action into a 
hierarchy [18,64].  The efficacy of the SR for model-based RL opens the possibility that the 
brain accomplishes planning, action chunking, and grouping episodic memories using a common 
mechanism. 
 
Overall, this article has laid out a family of candidate mechanistic hypotheses for explaining the 
full range of behaviors typically associated with model-based learning, while connecting them 
with the circuitry for model-free learning as currently understood.  In addition to the transition 
and policy revaluation behavioral experiments suggested above, future neuroimaging work could 
seek evidence for these hypotheses.  Specifically, failures to flexibly update decision policies 
that are caused by caching of either the successor representation (as in SR-TD or SR-Dyna with 
insufficient replay) or a decision policy (as in SR-MB) should be accompanied by neural markers 
of non-updated future state occupancy predictions.  Such neural markers could be identified 
using representational similarity analysis (e.g. [65]), cross-stimulus suppression (e.g. [66]) or 
through use of category specific, decodable, visual stimuli (e.g. [67]).  Similar work in 
experimental animals such as rodents (e.g. [45]) could use the full range of invasive tools to trace 
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the inputs to dorsomedial vs. dorsolateral striatum, so as to examine the information represented 
there and how it changes following the various sorts of revaluation manipulations discussed here. 
As has been the case for model-free learning, the emergence of an increasingly clear and 
quantitative taxonomy of different candidate algorithms is likely to guide this work and help to 
elucidate the neural basis of model-based learning. 
 
Methods 
 
General Simulation Methods 
 
All simulations were carried out in 10x10 (N = 100 states) grid-worlds in which the agent could 
move in any of the four cardinal directions, unless a wall blocked such a movement.  States with 
rewards contained a single action.  Upon selecting that action, the agent received the reward and 
was taken to a terminal state.  Each task was simulated with each algorithm 500 times.  For each 
simulation, we recorded the agent’s value function at certain points.  For SR-Dyna, which 
worked with action values rather than state values, the state value function was computed as the 
max action value available in that state.  Figures display the median value, for each state, over 
the 500 runs.  To determine the implied policy for the median value function, we computed, for 
each state, which accessible successor state had the maximum median value. 
 
Specific Task Procedures 
 
Latent learning task. The latent learning task was simulated in the grid-world environment 
shown in Fig. 2a.  Starting from position S, the agent first took 25000 steps exploring the maze. 
After exploration, the reward in position R1 was raised to 10.   To learn about the reward, the 
agent completed a single step, starting from position R1, 20 times.  We then recorded the state 
value function. 
 
Detour task. The detour task was simulated using the grid-world environment shown in Fig. 2b.  
Starting from position S, the agent first took 10000 steps exploring the maze. The reward in 
position R was then increased to 10.  The agent then completed 5 trials, starting from position S 
that ended when the reward was reached.  A wall was then added to in position B.  To learn 
about the wall, the agent completed a single step, starting from the position immediately left of 
the wall, 40 times.  We then recorded the state value function. 
 
Novel revaluation task. The novel revaluation task was simulated using the environment in Fig. 
5c. The agent first completed the entire latent learning task.  After successfully reaching position 
R1 from position S, the agent then completed 20 trials.  Each trial alternately started at S1 or S2 
and ended when the agent reached position R1. We then set the reward in position R2 to 20. To 
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learn about the new reward, the agent completed one step, starting from position R2, 20 times.  
We then recorded the state value function. 
 
Additional Details on Algorithms 
 
Original successor representation (SR-TD). SR-TD computed !(!) using two structures: the 
successor matrix, !(!, !’) and a weight vector, !(!).  At the beginning of each simulation, M 
was initialized as an identity matrix; however, rows corresponding to terminal states were set to 
0. The weight vector was initialized as ! =  !. Following each transition, M and ! were 
updated using equations (8) and (9).  Prior to each choice, ! was computed using equation (7).  
Q-values for each action in state a were then computed as !(!,!)  =  !(!’) where !’ is the state 
that deterministically follows action a in state s.   
 
Recomputation of the successor matrix (SR-MB). This algorithm starts each task with a basic 
knowledge of the ‘physics’ of grid-world: which successor state, !’, would follow each action !" 
in a situation in which !" is available (e.g. not blocked by a wall).  It also stores and updates, for 
each state !, As, the set of actions currently available in state ! as well as a policy !(!|!), which 
stores the probability of selecting action a in state ! (as learned from the agent’s own previous 
choices).  As was initialized to reflect all four cardinal actions being available in each state.  Each 
row ! were initialized as a uniform distribution over state-actions, !(!|!) = 0.25.   
 
After performing action ! in state ! and transitioning to state !’, As’ was updated to reflect which 
actions are available in state !’ and ! is updated using a delta rule: 

! : |! ← !!!! + (1−  !!)! : |!  
 
where !! is a free parameter. 
 
Prior to each choice, the model computed each row, s, of one-step transition matrix T as follows:  
 

! !, : = ! !|!!∈!! !!!
! !|!!∈!!

 

 
where !!! is a vector zeros of length ! with a 1 in position corresponding to state !’ and !’ is the 
state to which action ! in state ! deterministically leads.  ! was then used to compute ! using 
equation 10.  Computation of ! and ! was then the same as in SR-TD. 
 
Episodic replay algorithm (SR-Dyna). This algorithm computed !(!") using two structures: a 
state-action successor matrix, !(!", !’!’) and weight vector !(!").  At the beginning of each 
simulation, the successor matrix !  was initialized to an identity matrix; however rows 
corresponding to terminal states were set to 0.  The weight vector was initialized to ! =  !.  The 
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algorithm also stored every sample (!,!, !’) . After performing action !  in state !  and 
transitioning to state !’ the sample (!’,!’, !’) was stored, and H and w were updated according to 
equations (13) and (14).  Following each step, we also selected 40 one-step samples (according 
to recency weighted probabilities with replacement) from the stored history, and replayed each to 
update H according to equation 15. Following transitions in which a learned change occurred to 
either the reward function or available actions, 70,000 one-step samples were selected and used 
to update the model.  Samples were drawn by selecting an integer, corresponding to an 
experienced transition (where 0 corresponds to the transition that most recently occurred).  
Integers were selected randomly according to an exponential distribution with ! = !/5 where N 
is the number of transitions experienced so far in the task. 
 
Parameters. All algorithms converted Q-values to actions using an !-greedy policy which 
selects the highest-valued action with probability 1 – !, and chooses randomly with probability !. 
For all models, ! was set to 0.1.  In addition, all models used a discount parameter ! = 0.95 and a 
weight learning rate paremter !! = 0.1.  In addition to these parameters, SR-TD and SR-Dyna 
used a successor-matrix learning rate of !!"  = 0.4. and SR-MB used a policy learning rate of 
!!= 0.1. 
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