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Abstract: FST and kinship are key parameters often estimated in modern population genetics
studies. Kinship matrices have also become a fundamental quantity used in genome-wide associa-
tion studies and heritability estimation. The most frequently used estimators of FST and kinship
are method of moments estimators whose accuracies depend strongly on the existence of simple
underlying forms of structure, such as the island model of non-overlapping, independently evolving
subpopulations. However, modern data sets have revealed that these simple models of structure
do not likely hold in many populations, including humans. In this work, we provide new results
on the behavior of these estimators in the presence of arbitrarily complex population structures.
After establishing a framework for assessing bias and consistency of genome-wide estimators, we
calculate the accuracy of FST and kinship estimators under arbitrary population structures, char-
acterizing biases and estimation challenges unobserved under their originally assumed models of
structure. We illustrate our results using simulated genotypes from an admixture model, con-
structing a one-dimensional geographic scenario that departs nontrivially from the island model.
Using 1000 Genomes Project data, we verify that population-level pairwise FST estimates underes-
timate differentiation measured by an individual-level pairwise FST estimator introduced here. We
show that the calculated biases are due to unknown quantities that cannot be estimated under the
established frameworks, highlighting the need for innovative estimation approaches in complex pop-
ulations. We provide initial results that point towards a future estimation framework for generalized
FST and kinship.
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1 Introduction

In population genetics studies, one is often interested in characterizing structure, genetic differenti-
ation, and relatedness among individuals. Two quantities often considered in this context are FST

and kinship. FST is a parameter that measures structure in a subdivided population, satisfying
FST = 0 for an unstructured population and FST = 1 if every SNP has fixated in every subpopu-
lation. More specifically, FST is the probability that alleles drawn randomly from a subpopulation
are “identical by descent” (IBD) relative to an ancestral population [1, 2]. The kinship coefficient is
a measure of relatedness between individuals defined in terms of IBD probabilities, and it is closely
related to FST [1].

The most frequently used FST estimators are derived and justified under the “island model”
assumption, in which subpopulations are non-overlapping and have evolved independently from
a common ancestral population. The Weir-Cockerham (WC) FST estimator assumes islands of
differing sample sizes and equal FST per island [3]. The “Hudson” FST estimator assumes two
islands with different FST values [4]. These FST estimators are ratio estimators derived using the
method of moments to have unbiased numerators and denominators, which gives approximately
unbiased ratio estimates [3–5], and they are important contributions used widely in the field.

Kinship coefficients are now commonly calculated in population genetics studies to capture
structure and relatedness. They are utilized in principal components analyses and linear-mixed
effects models to correct for structure in Genome-Wide Association Studies (GWAS) and to estimate
genome-wide heritability [6–15]. The most commonly used kinship estimator for genotype data
[9, 10, 13–18] is also a method of moments estimator whose operating characteristics are largely
unknown in the presence of structure. As we show here, the required assumption for this popular
estimator to be accurate is that the average kinship be zero, which implies that the population must
be unstructured.

Recent genome-wide studies have revealed that humans and other natural populations are struc-
tured in a complex manner that violate the assumptions of the above estimators. This has been
observed in several large human studies, such as the Human Genome Diversity Project [19], the 1000
Genomes Project [20], and other contemporary [21, 22] and archaic populations [23, 24]. Therefore,
there is a need for innovative approaches designed for complex population structures. To this end,
we reveal the operating characteristics of these frequently used FST and kinship estimators in the
presence of arbitrary forms of structure with the goal of identifying new estimation strategies for
FST and kinship.

We generalized the definition of FST for arbitrary population structures in the first paper in
this series [25]. Additionally, we derived connections between FST and three models: arbitrary
kinship coefficients [1, 26], individual-specific allele frequencies [27, 28], and admixture models [29–
31]. Here, we study existing FST and kinship method of moments estimators in models that allow
for arbitrary population structures (see Fig. 1 for an overview of the results). First, we obtain new
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strong convergence results for a family of ratio estimators that includes FST and kinship estimators.
Next, we calculate the convergence values of these estimators under arbitrary population structures,
where we find biases that are not present under their original assumptions about structure. We
characterize the limit of the standard kinship estimator for the first time, identifying complex
biases or distortions that have not been described before. We construct an admixture model, which
represents a form of structure distinct from the island model, to illustrate our theoretical findings
through simulation. We analyze 1000 Genomes Project populations to illustrate their non-island
nature, and measure differentiation that is missed by the Hudson FST estimator. We identify a new
direction for estimating FST and kinship in a nearly unbiased fashion, which is the topic of our next
paper in this series [32].

2 Models and definitions

Here we summarize new arbitrary population structure models, definitions, and results presented
in detail in the first paper in this series [25] (Fig. 1). We assume a complete matrix of m SNPs and
n individuals. We concentrate on biallelic genotypes xij for SNP i and individual j, encoded as the
number of reference alleles: xij = 2 is homozygous for the reference allele, xij = 0 is homozygous
for the alternative allele, and xij = 1 is heterozygous. We assume the existence of a panmictic
ancestral population T characterized by ancestral reference allele frequencies pTi ∈ (0, 1) for every
SNP i.

2.1 The kinship model and the generalized FST

Under the kinship model, individuals receive their alleles as determined by their inbreeding and
kinship coefficients. The inbreeding coefficient fTj of j is the probability that two alleles at a
random SNP of individual j are IBD [33]. Similarly, the kinship coefficient ϕTjk of j and k is the
probability that two alleles chosen at random from each individual and at a random SNP are IBD
[1]. The ancestral population T determines what is IBD: only relationships since T count toward
IBD. The first two moments of the genotypes are

E[xij |T ] = 2pTi , (1)

Cov(xij , xik|T ) = 4pTi
(
1− pTi

)
ϕTjk, (2)

where self-kinship is ϕTjj = 1
2

(
1 + fTj

)
[1, 2, 26, 33]. Lastly, if S is a panmictic population that

evolved from T , then fTS is the value of fTj shared by all individuals j in S relative to T , and equals
Wright’s FST for this subdivided population [2].

The generalized FST definition that we proposed [25] requires the notion of local populations,
needed to mirror at the individual level Wright’s distinction between structural inbreeding due to
the population structure from local inbreeding [2]. The local population Lj of individual j is the
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most recent ancestral population of j [25]. Similarly, the jointly local population Ljk of a pair of
individuals j and k is the most recent ancestral population shared by j and k, which is ancestral
to both Lj and Lk [25]. For T ancestral to Lj or Ljk, as needed, we have three parameter pairs:
“total” (fTj , ϕ

T
jk), “local” (f

Lj

j , ϕLjk

jk ), and “structural” (fTLj
, fTLjk

) kinship and inbreeding coefficients,
related by [25]

fTj = fTLj
+ f

Lj

j

(
1− fTLj

)
,

ϕTjk = fTLjk
+ ϕ

Ljk

jk

(
1− fTLjk

)
.

(3)

A locally outbred individual has fLj

j = 0 and therefore fTj = fTLj
. Similarly, a pair of locally unrelated

individuals have ϕLjk

jk = 0 and therefore ϕTjk = fTLjk
. The generalized FST is given by

FST =

n∑

j=1

wjf
T
Lj
, (4)

where wj > 0,
∑n

j=1wj = 1 are weights chosen to capture the sampling procedure of individuals
[25]. The individual-level pairwise FST is the special case of Eq. (4) for n = 2 individuals, given by

Fjk =
f
Ljk

Lj
+ f

Ljk

Lk

2
=

fTLj
+fTLk

2 − fTLjk

1− fTLjk

, (5)

where the second equality holds for any T ancestral to Ljk [25].

2.2 The coancestry model for individual-specific allele frequencies

Previous FST estimators are often in terms of population allele frequencies [2–5]. Our earlier pro-
posed coancestry model [25] extends previous models [5, 34] of population allele frequencies to
individuals. The individual-specific allele frequency (IAF) is denoted πij ∈ [0, 1] for SNP i and
individual j [27, 28]. In our model, IAFs are random variables drawn from T according to the
population structure, with covariances between individuals j and k parametrized by the individual-
specific coancestry coefficients θTjk. We assume that the IAF moments and genotypes are drawn
as

E[πij |T ] = pTi , (6)

Cov(πij , πik|T ) = pTi
(
1− pTi

)
θTjk, (7)

xij |πij ∼ Binomial(2, πij). (8)

We derived the following correspondence between coancestry and kinship coefficients by marginal-
izing πij from this model and comparing to Eqs. (1) and (2) [25]:

θTjk =




fTj if j = k,

ϕTjk if j 6= k.
(9)
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For this reason, and the similarities between Eqs. (1) and (2) and Eqs. (6) and (7), estimators based
on genotypes can be readily restated in terms of IAFs, and viceversa. Due to Eq. (8), individuals
in the coancestry model are locally outbred and unrelated, a key difference from the more general
kinship model, so fTLj

= θTjj and f
T
Ljk

= θTjk for j 6= k also hold. Therefore, FST in this model equals

FST =
n∑

j=1

wjθ
T
jj . (10)

3 Assessing the accuracy of genome-wide estimators

Many FST and kinship coefficient method of moments estimators are “ratio estimators”, a class that
tends to be biased and have no closed form expectation [35]. In the literature, the expectation of a
ratio is frequently approximated with a ratio of expectations [3–5]. Specifically, estimators are often
called “unbiased” if the ratio of expectations is unbiased, even though the ration estimator itself
may be biased. Here we characterize the behavior of two ratio estimator families calculated from
genome-wide data, detailing conditions where this previous approximation is justified and providing
additional criteria to assess the accuracy of such estimators.

The general problem involves random variables ai and bi calculated from genotypes at each SNP
i, such that E[ai] = Aci and E[bi] = Bci and the goal is to estimate A

B . A and B are constants
shared across SNPs (given by FST or ϕTjk), while ci depends on the ancestral allele frequency pTi and

varies per SNP. The problem is that the single SNP estimator ai
bi

is biased, since E
[
ai
bi

]
6= E[ai]

E[bi]
= A

B

[35]. Below we study two estimator families that combine SNPs to better estimate A
B .

The solution we recommend is the “ratio-of-means” estimator Âm

B̂m
, where Âm = 1

m

∑m
i=1 ai,

and B̂m = 1
m

∑m
i=1 bi, which is common for FST estimators [3–5]. Note that E

[
Âm

]
= Ac̄m and

E
[
B̂m

]
= Bc̄m, where c̄m = 1

m

∑m
i=1 ci. We will assume bounded terms (|ai|, |bi| ≤ C for some

finite C), a convergent c̄m → c, and Bc 6= 0, which are satisfied by common estimators. Given
independent SNPs, we prove almost sure convergence to the desired quantity (Appendix A.1),

Âm

B̂m
=

1
m

∑m
i=1 ai

1
m

∑m
i=1 bi

a.s.−−−−→
m→∞

A

B
, (11)

a strong result that implies E
[
Âm

B̂m

]
→ A

B , justifying previous work [3–5]. Moreover, the error

between these expectations scales with 1
m (Appendix A.2), just as for standard ratio estimators

[35]. Although real SNPs are not independent due to genetic linkage, this estimator will perform
well if the effective number of independent SNPs is large.

Another approach is the “mean-of-ratios” estimator 1
m

∑m
i=1

ai
bi
, used often to estimate kinship

coefficients [9, 10, 13–18] and FST [20]. If each ai
bi

is biased, their average across SNPs will also

be biased, even as m → ∞. However, if E
[
ai
bi

]
→ A

B for all SNPs i = 1, . . . ,m as the number of
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individuals n→∞, and Var
(
ai
bi

)
is bounded, then

1

m

m∑

i=1

ai
bi

a.s.−−−−−→
n,m→∞

A

B
.

Therefore, mean-of-ratios estimators must satisfy more restrictive conditions than ratio-of-means
estimators, as well as both large n and m, to estimate A

B well.

4 FST estimation based on the island model

4.1 The island model FST estimator for infinite population sample sizes

Here we study the Weir-Cockerham (WC) [3] and “Hudson” [4] FST estimators, which assume
the island model. These method of moment estimators have small sample size corrections that
remarkably make them consistent as the number of independent SNPs m goes to infinity for finite
numbers of individuals. However, these small sample corrections also make the estimators more
notationally cumbersome than needed here. In order to illustrate clearly how these estimators
behave, both under the island model and arbitrary structure, here we construct simplified versions
that assume infinite sample sizes per population. This simplification corresponds to eliminating
statistical sampling, leaving only genetic sampling to analyze [36]. Note that our simplified estimator
nevertheless illustrates the general behavior of the WC and Hudson estimators under arbitrary
structure, and the results are equivalent to those we would obtain under finite sample sizes of
indivduals.

The Hudson FST estimator compares two populations [4]; we present a generalized Hudson
estimator for K populations in Appendix B. Let us assume that population sample sizes are infinite,
so allele frequencies are known. Let j index populations rather than individuals, n be the number
of populations, and πij be the allele frequency in population j at SNP i. In this special case, both
WC and Hudson simplify to the following island model FST estimator:

p̂Ti =
1

n

n∑

j=1

πij , (12)

σ̂2
i =

1

n− 1

n∑

j=1

(
πij − p̂Ti

)2
, (13)

F̂ island
ST =

∑m
i=1 σ̂

2
i∑m

i=1 p̂
T
i

(
1− p̂Ti

)
+ 1

n σ̂
2
i

. (14)

The goal is to estimate FST of Eq. (10) with uniform weights (wj = 1
n ∀j), under our coancestry

model defined in Eqs. (6) – (8).
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4.2 FST estimation under the island model

Under the island model, θTjk = 0 for j 6= k, the estimator of Eq. (14) can be derived directly using
the method of moments (Appendix C.1). Given the IAF moment Eqs. (6) and (7), the expectations
of the two recurrent terms of Eq. (14) are

E

[
1

m

m∑

i=1

σ̂2
i

∣∣∣∣∣T
]

= p(1− p)TFST,

E

[
1

m

m∑

i=1

p̂Ti
(
1− p̂Ti

)
∣∣∣∣∣T
]

= p(1− p)T
(

1− FST

n

)
, where

p(1− p)T =
1

m

m∑

i=1

pTi
(
1− pTi

)
.

Eliminating p(1− p)T and solving for FST in this system of equations recovers the estimator of
Eq. (14).

Before applying the convergence result of Eq. (11), we test that its assumptions are met. The
SNP i terms are ai = σ̂2

i and bi = p̂Ti
(
1− p̂Ti

)
+ 1

n σ̂
2
i , which satisfy E[ai] = Aci and E[bi] = Bci

with A = FST, B = 1, and ci = pTi
(
1− pTi

)
. Further, c̄m → c = E

[
pTi
(
1− pTi

)]
6= 0 over the pTi

distribution across SNPs. Lastly, since πij , p̂Ti ∈ [0, 1] hold, then 0 ≤ σ̂2
i ≤ 1 and 0 ≤ p̂Ti

(
1− p̂Ti

)
≤

1
4 , and since n ≥ 2, C = 1 bounds both |ai| and |bi|. Therefore, for independent SNPs,

F̂ island
ST

a.s.−−−−→
m→∞

FST.

4.3 FST estimation under arbitrary coancestry

Now we consider applying the island FST estimator to non-island settings. The key difference is
that θTjk 6= 0 for every (j, k) will be assumed in our coancestry model of Eqs. (6) and (7). In this
general setting, (j, k) may index either populations or individuals. The two terms of F̂ island

ST now
satisfy

E

[
1

m

m∑

i=1

σ̂2
i

∣∣∣∣∣T
]

= p(1− p)T
(
FST − θ̄T

) n

n− 1
,

E

[
1

m

m∑

i=1

p̂Ti
(
1− p̂Ti

)
∣∣∣∣∣T
]

= p(1− p)T
(
1− θ̄T

)
,

where θ̄T = 1
n2

∑n
j=1

∑n
k=1 θ

T
jk is the mean coancestry with uniform weights. There are two equa-

tions but three unknowns: FST, θ̄T , and p(1− p)
T
. Island models satisfy θ̄T = 1

nFST, which allows
for the consistent estimation of FST. Therefore, the new unknown θ̄T precludes consistent FST

estimation without additional assumptions.
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The island model FST estimator converges more generally to

F̂ island
ST

a.s.−−−−→
m→∞

n
(
FST − θ̄T

)

n− 1 + FST − nθ̄T
=
FST − 1

n−1

(
nθ̄ − FST

)

1− 1
n−1

(
nθ̄ − FST

) , (15)

where it should be noted that
1

n− 1

(
nθ̄ − FST

)
=

1

n(n− 1)

∑

j 6=k
θjk

is the average of all between-individual coancestry coefficients, a term that appears in a related result
for populations [5]. Therefore, under arbitrary structure the island model estimator’s bias is due
to the coancestry between individuals (or islands in the traditional, non-overlapping subpopulation
setting).

Since 1
nFST ≤ θ̄T ≤ FST (Appendix D), this estimator has a downward bias in non-island

settings: it is asymptotically unbiased (F̂ island
ST

a.s.−−−−→
m→∞

FST) only when θ̄T = 1
nFST, while bias is

maximal when θ̄T = FST, where F̂ island
ST

a.s.−−−−→
m→∞

0. For example, if θTjk ≈ FST for most pairs of

individuals, then θ̄T ≈ FST as well, and F̂ST ≈ 0. Therefore, the magnitude of the bias of F̂ island
ST is

unknown if θ̄T is unknown, and small F̂ island
ST may arise even if FST is very large.

4.4 Consistent estimator of the individual-level pairwise FST

The individual-level pairwise FST, equal to FST for n = 2 and denoted by Fjk, is always an island
model since T = Ljk must the most recent ancestral population shared by (j, k) and satisfies
θ
Ljk

jk = 0 [25]. Hence, Fjk can be estimated consistently using F̂ island
ST of Eq. (14) with n = 2, which

simplifies to

F̂jk =

∑m
i=1(πij − πik)2

∑m
i=1 πij(1− πik) + πik(1− πij)

a.s.−−−−→
m→∞

θTjj+θTkk
2 − θTjk
1− θTjk

= Fjk, (16)

where the limit is stated for general T 6= Ljk and matches Fjk under the coancestry model [25].
To obtain an estimator of Fjk that uses genotypes, we replace πij by

xij
2 in Eq. (16) and convert

kinship to inbreeding coefficients using fTj = 2ϕTjj − 1, resulting in

F̂jk = 2

( ∑m
i=1(xij − xik)2

∑m
i=1 xij(2− xik) + xik(2− xij)

)
− 1

a.s.−−−−→
m→∞

fTj +fTk
2 − ϕTjk
1− ϕTjk

, (17)

which converges to Fjk in Eq. (5) if j and k are locally outbred and locally unrelated (fLj

j = fLk
k =

ϕ
Ljk

jk = 0). For general values of fLj

j , fLk
k , and ϕLjk

jk ,

F̂jk
a.s.−−−−→

m→∞

Fjk − ϕLjk

jk +
f
Lj
j

(
1−fTLj

)
+f

Lk
k

(
1−fTLk

)
2

(
1−fTLjk

)
1− ϕLjk

jk

, (18)
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which is obtained by substituting Eq. (3) into Eq. (17) and rearranging. Since ϕLjk

jk is the only
negative term in Eq. (18), local kinship can result in negative F̂jk estimated from genotypes.

To compare our individual-level estimates to Hudson estimates between the two populations Su
and Sv that are not necessarily panmictic, consider the following average F̂jk across populations
and its limit assuming locally outbred and locally unrelated individuals:

ˆ̄Fuv =
1

|Su||Sv|
∑

j∈Su

∑

k∈Sv

F̂jk
a.s.−−−−→

m→∞

1

2|Su||Sv|
∑

j∈Su

∑

k∈Sv

f
Ljk

Lj
+ f

Ljk

Lk
(19)

If Su and Sv are panmictic populations, then Lj = Su, Lk = Sv, and Ljk = Luv, so every pair
and their average F̂jk, ˆ̄Fuv

a.s.−−−−→
m→∞

1
2

(
fLuv
Su

+ fLuv
Sv

)
match the limit of the Hudson estimator. In

Section 7, we show empirically that ˆ̄Fuv tends to be larger than the corresponding Hudson estimate
when Su and Sv are structured.

4.5 Coancestry estimation as a method of moments

Since the generalized FST is given by coancestry coefficients θTjj in Eq. (10), a new FST estimator
could be derived from estimates of θTjj . Here we attempt to define a method of moments estimator
for θTjk, and find an underdetermined estimation problem, just as for FST.

Given IAFs and Eqs. (6) and (7), the first and second moments that average across SNPs are

E

[
1

m

m∑

i=1

πij

∣∣∣∣∣T
]

= p̄T , (20)

E

[
1

m

m∑

i=1

πijπik

∣∣∣∣∣T
]

= p2
T

+ p(1− p)T θTjk, (21)

where p̄T = 1
m

∑m
i=1 p

T
i , p2

T
= 1

m

∑m
i=1

(
pTi
)2, and p(1− p)T = p̄T − p2

T
is as before.

Suppose first that only θTjj are of interest. There are n estimators given by Eq. (21) with j = k,
each corresponding to an unknown θTjj . However, all these estimators share two nuisance parameters:

p̄T and p2
T
. While p̄T can be estimated from Eq. (20), there are no more equations left to estimate

p2
T
, so this system is underdetermined. The estimation problem remains underdetermined if all

n(n+1)
2 estimators of Eq. (21) are considered rather than only the j = k cases. Therefore, we cannot

estimate coancestry coefficients consistently using only the first two moments and without additional
assumptions.

5 Characterizing a kinship estimator and its relationship to FST

Estimation of kinship coefficients is an important problem, particularly for GWAS approaches that
control for population structure [6–18, 37, 38]. Additionally, kinship coefficients are closely related
to the generalized FST of Eq. (4) and the biases of F̂ island

ST in Eq. (15) (since coancestry and kinship
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coefficients are related by Eq. (3)). In this section, we focus on a standard kinship method of
moments estimator and calculate its limit for the first time (Fig. 1). We study estimators that
use genotypes or IAFs, and construct FST estimators from their kinship estimates. We find biases
comparable to those of F̂ island

ST , and define unbiased FST estimators that require knowing the mean
kinship or coancestry, or its proportion relative to FST. Lastly, we present a new kinship method
of moments estimator with a uniform bias, which facilitates the estimation of the unknown mean
kinship parameter needed to unbias kinship and FST estimates (Fig. 1).

5.1 Characterization of the standard kinship estimator

Here we analyze a standard kinship estimator that is in frequent use [9, 10, 13–18]. We generalize
this estimator to use weights in estimating the ancestral allele frequencies, and we write it as a
ratio-of-means estimator due to the favorable theoretical properties of this format as detailed in
Section 3:

p̂Ti =
1

2

n∑

j=1

wjxij , (22)

ϕ̂Tjk =

∑m
i=1

(
xij − 2p̂Ti

) (
xik − 2p̂Ti

)

4
∑m

i=1 p̂
T
i

(
1− p̂Ti

) . (23)

The estimator in Eq. (23) resembles the sample genotype covariance, but centers by SNP i rather
than by individuals j and k, and normalizes by estimates of 4pTi

(
1− pTi

)
. We also derive the

estimator of Eq. (23) directly using the method of moments (Appendix C.2). The weights in
Eq. (22) must satisfy wj > 0 and

∑n
j=1wj = 1, so p̂Ti ∈ [0, 1] and E

[
p̂Ti
∣∣T
]

= pTi hold.
Assuming the moments of Eqs. (1) and (2), we find that Eq. (23) converges to

ϕ̂Tjk
a.s.−−−−→

m→∞

ϕTjk − ϕ̄Tj − ϕ̄Tk + ϕ̄T

1− ϕ̄T , (24)

where ϕ̄Tj =
∑n

k′=1wk′ϕ
T
jk′ and ϕ̄T =

∑n
j′=1

∑n
k′=1wj′wk′ϕ

T
j′k′ . (See Appendix E for moments

involving xij and p̂Ti that lead to Eq. (24).) Therefore, the bias of ϕ̂Tjk varies per j and k. Analo-
gous distortions have been observed for sample covariances of genotypes [39]. Similarly, inbreeding
coefficient estimates derived from Eq. (23) converge to

f̂Tj = 2ϕ̂Tjj − 1
a.s.−−−−→

m→∞

fTj − 4ϕ̄Tj + 3ϕ̄T

1− ϕ̄T . (25)

The limits of the ratio-of-means versions of two more fTj estimators [14] are, if p̂Ti uses Eq. (22),

f̂T,IIj = 1−
∑m

i=1 xij(2− xij)
2
∑m

i=1 p̂
T
i

(
1− p̂Ti

) a.s.−−−−→
m→∞

fTj − ϕ̄T
1− ϕ̄T ,

f̂T,IIIj =

∑m
i=1 x

2
ij −

(
1 + 2p̂Ti

)
xij + 2

(
p̂Ti
)2

2
∑m

i=1 p̂
T
i

(
1− p̂Ti

) a.s.−−−−→
m→∞

fTj + ϕ̄T − 2ϕ̄Tj
1− ϕ̄T .

(26)
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The estimators of Eqs. (23) and (26) are unbiased when p̂Ti is replaced by pTi [10, 14], and
are consistent when p̂Ti is consistent [27]. Surprisingly, p̂Ti of Eq. (22) is not consistent (it does
not converge almost surely) for arbitrary population structures, which is at the root of the bias of
Eq. (24). In particular, although p̂Ti is unbiased, its variance (see Appendix E),

Var
(
p̂Ti
∣∣T
)

= pTi
(
1− pTi

)
ϕ̄T , (27)

may be asymptotically non-zero as n → ∞, since pTi ∈ (0, 1) is fixed and limn→∞ ϕ̄
T may take

on any value in [0,1] for arbitrary population structures. Further, ϕ̄T → 0 as n → ∞ if and only
if ϕTjk = 0 for almost all pairs of individuals (j, k). These observations hold for any weights such
that wj > 0,

∑n
j=1wj = 1. An important consequence is that the plug-in estimate of pTi

(
1− pTi

)
is

biased (Appendix E),
E
[
p̂Ti
(
1− p̂Ti

)∣∣T
]

= pTi
(
1− pTi

) (
1− ϕ̄T

)
,

which is present in all estimators we have studied.

5.2 Estimation of coancestry coefficients from IAFs

Here we form a coancestry coefficient estimator analogous to Eq. (23) but using IAFs. Assuming
the moments of Eqs. (6) and (7), this estimator and its limit are

p̂Ti =
n∑

j=1

wjπij , (28)

θ̂Tjk =

∑m
i=1(πij − p̂Ti )(πik − p̂Ti )∑m

i=1 p̂
T
i

(
1− p̂Ti

) a.s.−−−−→
m→∞

θTjk − θ̄Tj − θ̄Tk + θ̄T

1− θ̄T , (29)

where θ̄Tj =
∑n

k=1wkθ
T
jk and θ̄T =

∑n
j=1

∑n
k=1wjwkθ

T
jk are analogous to ϕ̄Tj and ϕ̄T . Eq. (28)

generalizes Eq. (12) for arbitrary weights. Thus, use of IAFs does not ameliorate the estimation
problems we have identified for genotypes. Like Eq. (27), p̂Ti of Eq. (28) is not consistent because
Var

(
p̂Ti
∣∣T
)

= pTi
(
1− pTi

)
θ̄T , which causes the bias observed in Eq. (29).

5.3 Plug-in FST estimator from inbreeding or coancestry estimates

Since the generalized FST is defined as a mean inbreeding coefficient in Eq. (4), or equivalently a
mean self-coancestry coefficient in Eq. (10), here we study FST estimators constructed as either
F̂ST =

∑n
j=1wj f̂

T
j or F̂ST =

∑n
j=1wj θ̂

T
jj . Although the previous f̂Tj and θ̂Tjj are biased, we never-

theless plug them into our definition of FST so that we may study how bias manifests. Note that we
do not recommend utilizing these FST estimators in practice, but we find these results informative
for identifying how to proceed in deriving new estimators.
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Remarkably, the three fTj estimators of Eqs. (25) and (26) give exactly the same plug-in F̂ST if
the weights in FST and p̂Ti of Eq. (22) match, namely

F̂ST =

n∑

j=1

wj f̂
T
j =

∑m
i=1

∑n
j=1wj

(
xij − 2p̂Ti

)2

2
∑m

i=1 p̂
T
i

(
1− p̂Ti

) − 1
a.s.−−−−→

m→∞

FST − ϕ̄T
1− ϕ̄T , (30)

where the limit assumes locally outbred individuals so FST =
∑n

j=1wjf
T
j holds. The analogous FST

estimator for IAFs and its limit are

F̂ST =
n∑

j=1

wj θ̂
T
jj =

∑m
i=1

∑n
j=1wj

(
πij − p̂Ti

)2
∑m

i=1 p̂
T
i

(
1− p̂Ti

) a.s.−−−−→
m→∞

FST − θ̄T
1− θ̄T . (31)

The estimators of Eqs. (30) and (31) for individuals and their limits resemble those of classical
FST estimators for populations of the form σ2

p

p̄(1−p̄) [5, 34]. F̂ST of Eq. (31) for uniform weight is
also GST for a biallelic locus [40] if we treat individuals j as populations and combine SNPs as a
ratio-of-means estimator. Compared to F̂ island

ST of Eq. (14), F̂ST of Eq. (31) admits arbitrary weights
and, by forgoing bias correction under the island model, is a simpler target of study.

Like F̂ island
ST of Eq. (14), F̂ST of Eqs. (30) and (31) are downwardly biased since 0 ≤ ϕ̄T , θ̄T .

F̂ST of Eq. (31) may converge arbitrarily close to zero since θ̄T can be arbitrarily close to FST

(Appendix D). Moreover, although ϕ̄T ≈ θ̄T for large n (due to Eq. (9)), in extreme cases ϕ̄T

can exceed FST under the coancestry model (where θ̄T ≤ ϕ̄T holds) and also under extreme local
kinship, where F̂ST of Eq. (30) converges to a negative value.

5.4 Adjusted consistent FST estimators and the “bias coefficient”

Here we explore two adjustments to F̂ST from IAFs of Eq. (31) that rely on having minimial
additional information needed to correct its bias. If θ̄T is known, the bias in Eq. (31) can be
reversed, yielding the consistent estimator

F̂ ′ST = F̂ST(1− θ̄T ) + θ̄T
a.s.−−−−→

m→∞
FST. (32)

Consistent estimates are also possible if a scaled version of θ̄T is known, namely

s =
θ̄T

FST
=

∑n
j=1

∑n
k=1wjwkθ

T
jk∑n

j=1wjθ
T
jj

, (33)

which we call the “bias coefficient” and has interesting properties. This coefficient measures the
strength of the covariances relative to the variances, and satisfies 0 ≤ s ≤ 1 (Appendix D). The
limit of Eq. (31) in terms of s is

F̂ST
a.s.−−−−→

m→∞
FST

1− s
1− sFST

. (34)
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Treating the limit as equality and solving for FST yields the following consistent estimator:

σ̂2
i =

1

1− s
n∑

j=1

wj(πij − p̂Ti )2, (35)

F̂ ′′ST =
F̂ST

1− s(1− F̂ST)
=

∑m
i=1 σ̂

2
i∑m

i=1 p̂
T
i

(
1− p̂Ti

)
+ sσ̂2

i

a.s.−−−−→
m→∞

FST. (36)

Note that σ̂2
i and F̂ island

ST from Eqs. (13) and (14) are the special case of Eqs. (35) and (36) for
uniform weights and s = 1

n ; hence, F̂
′′
ST generalizes F̂ island

ST .
Lastly, using either Eq. (31) or Eq. (34), the relative error of F̂ST converges to

1− F̂ST

FST

a.s.−−−−→
m→∞

θ̄T (1− FST)

FST
(
1− θ̄T

) = s
1− FST

1− sFST
, (37)

which is approximated by s if FST � 1, hence the name “bias coefficient”.

5.5 A new direction for FST and kinship estimation

Here, we outline a new estimation framework for kinship coefficients that has properties favorable
for obtaining nearly unbiased estimates. These new kinship estimates can then also be utilized for
FST estimation. We summarize our ideas here and then fully develop the estimation framework and
study its operating characteristics in the next paper in this series [32].

Applying the method of moments to Eqs. (1) and (2), we derive the following estimator,

ϕ̂T,new
jk =

∑m
i=1(xij − 1)(xik − 1)− 1

4
∑m

i=1 p̂
T
i

(
1− p̂Ti

) + 1
a.s.−−−−→

m→∞

ϕTjk − ϕ̄T
1− ϕ̄T , (38)

which compares favorably to the standard estimator of Eq. (24) by having a uniform bias in the
limit, controlled by the sole parameter ϕ̄T . If ϕ̄T were known, Eq. (38) could be adjusted to yield
unbiased kinship estimates:

ϕ̃T,new
jk = ϕ̂T,new

jk

(
1− ϕ̄T

)
+ ϕ̄T

a.s.−−−−→
m→∞

ϕTjk.

Remarkably, Eq. (38) itself can be used to estimate ϕ̄T : assuming minj,k ϕ
T
jk = 0 and a large number

of SNPs m, then

min
j,k

ϕ̂T,new
jk ≈ − ϕ̄T

1− ϕ̄T ,

from which ϕ̄T can be solved. However, additional steps can be taken to provide a more stable
estimate than that based on minj,k ϕ̂

T,new
jk [32]. Our improved kinship estimator will result in a

plug-in FST estimator with increased accuracy.
The analogous coancestry estimator using IAF is

θ̂T,new
jk =

∑m
i=1

(
πij − 1

2

) (
πik − 1

2

)
− 1

4∑m
i=1 p̂

T
i

(
1− p̂Ti

) + 1
a.s.−−−−→

m→∞

θTjk − θ̄T
1− θ̄T .
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Lastly, note that the inbreeding coefficient estimator derived from Eq. (38) using f̂T,new
j = 2ϕ̂T,new

jj −1

equals f̂T,IIj of Eq. (26), so the resulting plug-in FST estimator equals that of Eq. (30). Therefore,
Eq. (38) by itself does not directly yield a new FST estimator.

6 An admixture simulation illustrates challenges in FST and kinship
estimation

6.1 Overview of simulations

We simulate genotypes from two models to illustrate our results when the true population structure
parameters are known. One is an island model, the other an admixture model differing from
the island model by its pervasive covariance, and designed to induce large biases in existing FST

estimators (Fig. 2). Both simulations have n = 1000 individuals, m = 300, 000 SNP loci, and
K = 10 islands or intermediate populations. These simulations have FST = 0.1, comparable to
estimates between human populations [4].

Our island model satisfies the Hudson estimator assumptions: populations are independent, and
each population Su has a different FST value of fTSu

(Fig. 2A). Ancestral allele frequencies pTi are
drawn uniformly in [0.01, 0.5]. Allele frequencies pSu

i for Su and SNP i are drawn independently
from the Balding-Nichols (BN) distribution [41] with parameters pTi and fTSu

. Every individual
j in island Su draws alleles randomly with probability pSu

i . Population sample sizes were drawn
randomly (Appendix F).

Our admixture model is a “BN-PSD” model [9, 17, 25, 27, 42, 43], which we analyzed in our
previous paper in this series [25]. The intermediate populations are islands that draw pSu

i from the
BN model, then each individual j constructs its allele frequencies as πij =

∑K
u=1 p

Su
i qju, which is

a weighted average of pSu
i with the admixture proportions qju of j and u as weights (which sat-

isfy
∑K

u=1 qju = 1, as in the Pritchard-Stephens-Donnelly [PSD] admixture model [29–31]). We
constructed qju that model admixture resulting from spread by random walk of the intermediate
populations along a one-dimensional geography, as follows. Intermediate populations Su are placed
on a line with differentiation fTSu

that grows with coordinate (Fig. 3A). Upon differentiation, indi-
viduals in each Su spread with random walks, a process modeled by Normal densities (Fig. 3B).
Admixed individuals derive their ancestry proportional to these Normal densities, resulting in a
genetic structure governed by geography (Fig. 3C, Fig. 2B) and departing strongly from the island
model (Fig. 3D). The amount of spread was chosen to give s = 0.5, which by Eq. (37) results in a
large bias for F̂ST (in contrast, the island simulation has s = 0.1). See Appendix F for additional
details regarding these simulations.
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6.2 Weir-Cockerham and Hudson FST estimators misapplied to an admixed
population

Our admixture simulation illustrates the large biases that can arise if the WC and Hudson FST

estimators are misapplied to non-island populations to estimate the generalized FST. First, we test
these estimators in our island model. This simulation satisfies the assumptions of the Hudson esti-
mator (which we generalized for K population islands in Appendix B), so it is consistent (Fig. 4A).
The WC estimator assumes that fTSu

= FST for all u, which does not hold; nevertheless, WC has
a small bias (Fig. 4A). For comparison, we added the “plug-in” FST estimator of Eq. (30) (weights
from Appendix F), which is derived from the kinship estimator of Eq. (23) and does not have island
model corrections. Since the number of islands K is large, the plug-in estimator has a small relative
bias of about s = 1

K = 10%; greater bias is expected for smaller K.
To apply the WC and Hudson estimators to the admixture model, individuals are assigned to

“populations” grouping by their maximum admixture proportions (Fig. 3D). Both WC and Hudson
estimates are smaller than the true FST by nearly half, as predicted by the limit of F̂ island

ST of
Eq. (15) (Fig. 4C). By construction, the plug-in F̂ST also has a large relative bias of about s = 50%;
remarkably, the WC and Hudson estimators suffer from comparable biases. Thus, the island model
corrections of the WC and Hudson estimators are insufficient for estimating FST in our admixture
scenario.

6.3 Evaluation of individual-level pairwise FST estimators

Fig. 5A shows the matrix of true individual-level pairwise FST values, Fjk, for every pair of indi-
viduals in our simulation. Fjk is a distance between pairs of individuals, with Fjk = 0 for pairs
from the same population and increasing values for more distant population pairs. Larger θTjk lead
to smaller Fjk (see Eq. (16)), hence the θTjk (Fig. 2B) and Fjk (Fig. 5A) matrices are negatively
correlated.

Both of our consistent Fjk estimators perform well, using IAFs (Eq. (16), Fig. 5B) and genotypes
(Eq. (17), Fig. 5C). Estimates from genotypes have a greater root-mean-squared error (RMSE, 3.43%
relative to the mean Fjk) than the estimates from true IAFs (RMSE of 0.319%).

6.4 Evaluation of the standard kinship estimator

Our admixture simulation illustrates the distortions of the kinship estimator ϕ̂Tjk of Eq. (23). The
limit of Eq. (23) has a fixed bias if ϕ̄Tj = ϕ̄T for all j. For that reason, we chose fTSu

that vary per
u (Fig. 3A), which causes large differences in ϕ̄Tj per j and large distortions in ϕ̂Tjk.

Compared to the true ϕTjk (Fig. 6A, where fTj are plotted along the diagonal), ϕ̂Tjk are very dis-
torted, with an abundance of ϕ̂Tjk < ϕTjk cases, negative estimates (blue in Fig. 6B), but remarkably
also cases with ϕ̂Tjk > ϕTjk (top left corner of Fig. 6B). Our ratio-of-means estimator ϕ̂Tjk agrees with
the limit of Eq. (24) (Fig. 6C), which an RMSE of 2.14% relative to the mean ϕTjk. In contrast,
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mean-of-ratios estimates have an RMSE of 10.77% from the limit of Eq. (24) (not shown). The dis-
tortions are similar for the estimator that uses IAFs of Eq. (29) (not shown), with reduced RMSEs
from its limit of 0.32% and 8.82% for the ratio-of-means and mean-of-ratios estimates, respectively.

6.5 Evaluation of plug-in and adjusted FST estimators

We illustrate the behavior of our plug-in and adjusted FST estimators using our admixture simula-
tion. We tested IAF (Fig. 7A) and genotype (Fig. 7B) versions of our estimators. The unadjusted
plug-in F̂ST of Eq. (31) is severely biased (blue), by construction, and matches the calculated limit
for IAFs and genotypes (green dotted lines in Fig. 7, which are close because ϕ̄T ≈ θ̄T ). We also
tested the two consistent “adjusted” estimators F̂ ′ST and F̂ ′′ST of Eqs. (32) and (36), which estimate
FST quite well (blue predictions overlap the true FST red dashed line in Fig. 7). However, F̂ ′ST and
F̂ ′′ST are oracle methods, since they require parameters (ϕ̄T , θ̄T , s) that are not known in practice.

Prediction intervals were computed from estimates over 39 independently-simulated IAF and
genotype matrices (Appendix G). Estimator limits are always contained in these intervals, which
holds since the number of independent SNPs (m = 300, 000) is sufficiently large. Estimates that use
genotypes have wider intervals than estimates from IAFs; however, IAFs are not known in practice,
and use of estimated IAFs might increase noise. Genetic linkage, not present in our simulation, will
also increase noise in real data.

7 Analysis of 1000 Genomes Project populations

We analyze 1000 Genomes Project (TGP) populations [20] with the Hudson FST estimator for
two populations and our individual-level FST estimator, F̂jk, of Eq. (17). We focus on F̂jk since
it is currently our only consistent estimator for arbitrary population structures. We analyze the
20,417,698 biallelic SNP ascertained in YRI from autosomal chromosomes in the final “phase 3”
data on the TGP website (dated 2013-05-02). Of these, 14,145,759 SNPs are polymorphic in the
Hispanic populations and 8,932,115 in the European populations discussed below. Individuals in
these data are roughly locally outbred and locally unrelated [20], which is the only requirement for
the consistency of F̂jk estimated from genotypes.

First we focus on YRI, CEU, and CHB, which were analyized previously [4]. These population
pairs are geographically distant, so the island model is more likely to fit well. Indeed, Hudson esti-
mates are relatively close to F̂jk (compare upper and lower triangle of Fig. 8A). In other words, the
structure within populations is dwarfed by the structure between populations. A direct comparison
to the Hudson estimates is given by ˆ̄Fuv of Eq. (19), which averages F̂jk across populations for
j ∈ Su and k ∈ Sv. We find good agreement between Hudson estimates and ˆ̄Fuv, corroborating a
good fit of the island model (Fig. 8D).

Next, we analyze the four Hispanic populations in the TGP: PEL, MXL, CLM, and PUR.
Hispanic individuals are admixed primarily from Native American, European, and African super-
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populations. Each of these populations is structured, a consequence of variable individual admixture
proportions [27], so pairwise comparisons are poorly fit by the island model. The complex struc-
ture of these populations is confirmed by F̂jk, finding many individuals that have closer relatives
from other populations compared to some individuals from the same population (lower triangle
of Fig. 8B). Here we find that ˆ̄Fuv are always larger than their corresponding Hudson estimates
(Fig. 8E). The largest proportional discrepancy is between PUR and CLM, whose Hudson esti-
mate is 40% of ˆ̄Fuv. The Hudson estimator is solely a function of average allele frequencies and
sample sizes per population (Appendix B), so it averages out the substructure within populations,
explaining the smaller estimates observed relative to ˆ̄Fuv.

Lastly, we analyze four European populations: FIN, GBR, IBS, and TSI. We exclude CEU
due to its similarity to GBR and because it was not sampled within Europe. The structure of
European populations was previously found to disagree with the island model [44]. We confirm
structure within these populations, although differentiation is much smaller here (Fig. 8C). Notably,
proportional differences between Hudson and ˆ̄Fuv are as large within Europe (Fig. 8F) as in the
Hispanic populations (Fig. 8E). The largest proportional difference was between TSI and IBS,
whose Hudson estimate is 41% of ˆ̄Fuv. Thus, our individual-level pairwise FST estimator, F̂jk,
detects structure that is missed by island model estimators.

8 Discussion

We investigated the most commonly utilized estimators of FST and kinship, both of which can be
derived using the method of moments (Fig. 1). We determined the bias of these estimators under
models of arbitrary population structure. We calculated the bias that occurs in the FST estimator
when the island model assumption is violated. This bias is present even when individual-specific
allele frequencies are known without error. We also showed that the kinship estimator is biased
when the population is structured (particularly when the average kinship is of a similar magnitude
to the true kinship coefficient), and that the bias may be different for each pair of individuals.

Use of island model FST estimators requires taking certain precautions, as exemplified in the
Hudson FST estimator work [4]. First, the Hudson estimator is given for two populations only, since
two panmictic populations are always independent relative to their last common ancestor population.
Second, only geographically distant population pairs were compared [4], which appear internally
unstructured relative to the structure between populations. However, FST is often estimated between
closely related populations, for example, within Mexico [21], the United Kingdom [22], and between
contemporary and archaic European [23] and Eurasian populations [24]. These geographically close
populations are more likely to have comparable structure within and between populations, a case
where Hudson underestimates differentiation, just as in the Hispanic and European populations
in Fig. 8. Our analyses highlight the need for new tools that measure differentiation in complex
population structures.
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We have shown that the misapplication of existing FST estimators on non-island population
structures may lead to estimates that approach zero even when the true generalized FST is large.
Weir-Cockerham [3] and Hudson [4] FST estimates in our admixture simulation are biased by nearly
a factor of two (Fig. 4). These estimators were derived assuming independent populations, so the
observed biases arise from their misapplication to non-island populations. Nevertheless, natural
populations often do not adhere to the island model, particularly human populations [44–46].

The kinship coefficient estimator we investigated is often used to control for population structure
in GWAS and to estimate genome-wide heritability [9, 10, 13–18]. While this estimator was known
to be biased [10, 18], no closed form limit had been calculated until now. We found that kinship
estimates are biased downwardly on average, but bias also varies for every pair of individuals
(Fig. 1, Fig. 6). Thus, the use of these distorted kinship estimates may be problematic in GWAS
or estimating heritability, but to what extent remains to be determined.

We developed a theoretical framework for assessing these genome-wide ratio estimators of FST

and kinship. We proved that common ratio-of-means estimators converge almost surely to the ratio
of expectations for infinite independent SNPs (Appendix A.1). Our result justifies approximating
the expectation of a ratio-of-means estimator with the ratio of expectations [3–5]. However, mean-
of-ratios estimators may not converge to the ratio of expectations for infinite SNPs. Mean-of-
ratios estimators are potentially asymptotically unbiased for infinite individuals, but it is unclear
which estimators have this behavior. We found that the ratio-of-means kinship estimator had much
smaller errors from the ratio of expectations than the more common mean-of-ratios estimator, whose
convergence value is unknown. Thus, we recommend ratio-of-means estimators, whose asymptotic
behavior is well understood.

The Hudson estimator is a consistent estimator of the pairwise FST for two populations [4],
which is reported often [21–24, 45, 47]. We derived a consistent estimator of the individual-level
pairwise FST, Fjk, which extends the previous pairwise FST to individuals [25]. However, kinship or
FST estimates for more than two individuals cannot be recovered from Fjk estimates. Conceptually,
kinship and FST are in terms of a single ancestral population T , whereas each Fjk is relative to
a jointly local population Ljk that varies per (j, k) pair (see Eq. (5)). Practically, there is loss of
information since Fjj = 0 for every j by definition: for n individuals, there are n more ϕTjk than
Fjk parameters. We used our Fjk estimator to identify structure with individual resolution in 1000
Genomes Project populations (Fig. 8).

Accurate estimation of generalized FST and kinship coefficients in arbitrary population structures
will require further innovations, and the results provided here may be useful in leading to more robust
estimators in the future. This, in particular, is the topic we tackle in the next paper in this series
[32].
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Figure 1: Accuracy of FST and kinship estimators: overview of models and results. Our analysis

is based on two parallel models: the coancestry model for individual-specific allele frequencies (πij), and the

kinship model for genotypes (xij). The kinship (ϕT
jk, f

T
j ) and coancestry (θTjk) parameters are closely related

as shown. We use these models to study the accuracy of FST and kinship method of moment estimators

under arbitrary population structures. The bias resulting from the misapplication of the FST island model

estimator (F̂ island
ST ) to arbitrary structures is calculated under the coancestry model, while the bias in the

standard kinship model estimator (ϕ̂T
jk) and its resulting plug-in FST estimator (F̂ST) is calculated under

the kinship model. We present a new kinship estimator (ϕ̂T,new
jk ) with a uniform bias, which will be used

to obtain more accurate kinship estimates in the next paper in the series (starting from ϕ̃T,new
jk ). Lastly,

we present a new pairwise FST estimator for two individuals (F̂jk) that is unbiased for the true pairwise

FST that we introduced in our previous work. Note that estimation of FST and Fjk from genotypes requires

individuals to be locally outbred and locally unrelated.
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Figure 2: Coancestry matrices of our simulations. Both simulations have n = 1000 individuals
along both axes, K = 10 populations (islands or intermediate), and FST = 0.1. Color corresponds
to θTjk between individuals j and k. A) The island model has θTjk = 0 between islands, and varying
θTjj per island, resulting in a block-diagonal covariance matrix. B) Our admixture scenario models a
1D geography with extensive admixture and intermediate population differentiation that increases
with coordinate. Individuals are ordered by their coordinate in the 1D geography.
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Figure 3: 1D admixture scenario. We model a 1D geography population that departs strongly
from the island model. A) K = 10 intermediate populations, placed equidistant on a line, evolve
independently with FST increasing with x-coordinate. B) Once differentiated, these intermediate
populations spread by random walks modeled by Normal densities. C) n = 1000 individuals,
sampled in equal intervals in the same range, are admixed proportionally to the previous Normal
densities. D) To apply the WC and Hudson FST estimators, individuals are assigned to populations
(“islands”) by their majority ancestry.
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Figure 4: Weir-Cockerham and Hudson FST estimators misapplied to our admixture
model. The WC, Hudson, and “kinship plug-in” F̂ST estimator of Eq. (30), are evaluated on
simulated genotypes from our two models (Fig. 2): A) the island model assumed by the Hudson
FST estimator, and B) our admixture scenario, a non-island model constructed so F̂ST ≈ 1

2FST.
The estimator limit of Eq. (15) (green dotted line) overlaps the true FST (red dashed line) in
(A) but not (B). Estimates (blue) include 95% prediction intervals (too narrow to see) from 39
independently-simulated genotype matrices for each model (Appendix G).

26

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 27, 2016. ; https://doi.org/10.1101/083923doi: bioRxiv preprint 

https://doi.org/10.1101/083923
http://creativecommons.org/licenses/by-nd/4.0/


A) Pairwise FST B) IAF estimate C) Genotype est.

0
0.

05
0.

1
0.

15
pa

irw
is

e 
F

S
T

in
di

vi
du

al
s

Figure 5: Consistent individual-level pairwise FST estimates. Consistency of our individual-
level pairwise FST estimators is demonstrated in our admixture simulation. Plots show n = 1000

individuals along both axes, and color corresponds to Fjk between individuals j and k. A) True
pairwise FST matrix. The pairwise FST measures the mean differentiation of each pair of individual
from their last common ancestor, and is negatively correlated with coancestry. B) Estimate from
IAFs. C) Estimate from genotypes.
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Figure 6: Bias in kinship estimates. Bias for the “standard” kinship coefficient estimator is
illustrated in our admixture simulation. Plots show n = 1000 individuals along both axes, and color
corresponds to ϕTjk between individuals j and k, except the diagonal (j = k) shows fTj = 2ϕTjj − 1

for a comparable scale. A) True kinship matrix. B) ϕ̂Tjk of Eq. (23) estimated from simulated
genotypes. C) Theoretical limit of ϕ̂Tjk estimator of Eq. (24) as the number of independent SNPs
goes to infinity.
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Figure 7: Evaluation of plug-in and adjusted FST estimators. The plug-in and adjusted
FST estimators are evaluated using our admixture simulation. All adjusted estimators are “oracle”
methods, since θ̄T , ϕ̄T , s are usually unknown. A) Estimation from IAFs: “plug-in” estimator is F̂ST

from Eq. (31); “Adj. θ̄T ” is F̂ ′ST from Eq. (32); “Adj. s” is F̂ ′′ST from Eq. (36). B) For genotypes,
the “plug-in” estimator is given in Eq. (30), and the adjusted estimators use ϕ̄T rather than θ̄T .
Lines: true FST (red dashed line), limits of biased estimators (green dotted lines, which differ
slightly per panel). Estimates (blue) include 95% prediction intervals (too narrow to see) from 39
independently-simulated genotype matrices for our admixture model (Appendix G).
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Figure 8: Comparison of pairwise FST estimates on 1000 Genomes Project populations.
Comparison of “population-level” Hudson FST estimates (upper triangle of A-C) and our “individual-
level” pairwise FST estimates (lower triangle of A-C). All SNPs were ascertained in YRI. In (A-C),
individuals in each population were ordered using their individual-level pairwise FST submatrix
and the “seriate” function of R package “seriation” with default options. A) Geographically distant
populations (310 individuals) are well approximated by the island model. YRI: Yoruba in Ibadan,
Nigeria; CEU: Utah Residents with Northern andWestern European Ancestry; CHB: Han Chinese in
Beijing, China. B) Hispanic populations (347 individuals) are structured due to variable individual
admixture proportions from primarily Native American, European, and African populations. PEL:
Peruvians from Lima, Peru; MXL: Mexican Ancestry from Los Angeles USA; CLM: Colombians
from Medellin, Colombia; PUR: Puerto Ricans from Puerto Rico. C) European populations (404
individuals) are closely related and geographically proximal. TSI: Toscani in Italy; FIN: Finnish in
Finland; GBR: British in England and Scotland; IBS: Iberian Population in Spain. D-F) Population-
level (Hudson) FST estimates are uniformly smaller than ˆ̄Fuv (see text) for all pairs of populations.
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Appendices

A Accuracy of ratio estimators

A.1 Almost sure convergence of ratio-of-means estimators with independent
and uniformly bounded terms

Here we prove that Âm

B̂m

a.s.−−−−→
m→∞

A
B , where Âm = 1

m

∑m
i=1 ai and B̂m = 1

m

∑m
i=1 bi give the ratio-of-

means estimator described in the main text. It suffices to prove Âm
a.s.−−−−→

m→∞
Ac and B̂m

a.s.−−−−→
m→∞

Bc 6=
0, from which the result follows using the continuous mapping theorem [48, 49]. The proof for Âm
follows, which applies analogously to B̂m. Our ai are independent but not identically distributed,
since they depend on pTi that varies per SNP, so the standard law of large numbers does not apply
to Âm. We show almost sure convergence using Kolmogorov’s criterion for the Strong Law of Large
Numbers [50], which is satisfied for bounded Var(ai). Since |ai| ≤ C <∞ for all i and some C (see
main text), then E[a2

i ] ≤ C2, so Var(ai) ≤ C2. Therefore, Âm
a.s.−−−−→

m→∞
limm→∞ E

[
Âm

]
= Ac, as

desired.

A.2 Order of error of expectations

The error of the ratio of expectations from the expectation of the ratio is given by

εm = E

[
Âm

B̂m

]
− E[Âm]

E[B̂m]
= −

Cov
(
Âm

B̂m
, B̂m

)

E
[
B̂m

] = − 1

m2Bc

m∑

i=1

m∑

j=1

Cov

(
ai

B̂m
, bj

)
,

which follows from Cov(X,Y ) = E[XY ] − E[X] E[Y ] [51] and expanding the covariance. Previous
work on ratio estimators [35, 51] assumes IID ai and bi, which does not hold for SNPs. Assuming
independent SNPs (Cov(ai, bj) = 0 for i 6= j) and large m so B̂m ≈ Bc is practically independent
of any given ai and bj , then

εm ≈ −
1

mB2c2

[
1

m

m∑

i=1

Cov(ai, bi)

]
.

Since ai, bi are bounded, |Cov(ai, bi)| ≤ C2 for the same C of the previous section, so

|εm| ≤
C2

mB2c2
,

holds for some large enough m and C. Hence εm = O
(

1
m

)
is as for standard ratio estimators [35].

B Generalized Hudson FST estimator

The Hudson FST estimator compares two populations [4]. We generalize this estimator for n inde-
pendent populations, where FST equals the mean pairwise FST for every pair of populations. We
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average numerators and denominators of the pairwise estimator before computing the ratio. Let j
index the n populations, nj be the number of individuals sampled from j, and p̂ij be the sample
allele frequency in j for SNP i, then

p̄i =
1

n

n∑

j=1

p̂ij ,

σ̂2
i =

1

n− 1

n∑

j=1

(p̂ij − p̄i)2,

F̂Hudson
ST =

∑m
i=1 σ̂

2
i − 1

n

∑n
j=1

p̂ij(1−p̂ij)
2nj−1∑m

i=1 p̄i(1− p̄i) + 1
n σ̂

2
i

,

which consistently estimates FST in island models.

C Derivation of method of moment estimators

C.1 FST island model estimator

Assuming the coancestry model of Eqs. (6) and (7) for islands (θTjk = 0 for j 6= k), the first and
second moments of the IAFs are:

E[πij ] = pTi , (C.1)

E
[
π2
ij

]
=
(
pTi
)2

+ pTi
(
1− pTi

)
θTjj , (C.2)

E [πijπik] =
(
pTi
)2 if j 6= k. (C.3)

FST = 1
n

∑n
j=1 θ

T
jj appears by averaging Eq. (C.2) over j:

E


 1

n

n∑

j=1

π2
ij


 =

(
pTi
)2

+ pTi
(
1− pTi

)
FST. (C.4)

Since Eq. (C.1) has the same value for every j, and Eq. (C.3) as well for every j 6= k, we average
these to reduce estimation variance. The results are in terms of p̂Ti = 1

n

∑n
j=1 πij :

E
[
p̂Ti
]

= E


 1

n

n∑

j=1

πij


 = pTi , (C.5)

E
[(
p̂Ti
)2]

= E


 1

n2

n∑

j=1

n∑

k=1

πijπik


 =

(
pTi
)2

+ pTi
(
1− pTi

) 1

n
FST. (C.6)
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FST also appears in Eq. (C.6) because j = k terms are introduced in the double sum. Subtracting
Eq. (C.4) and Eq. (C.6) in turn from Eq. (C.5) results in:

E


p̂Ti −

1

n

n∑

j=1

π2
ij


 = pTi

(
1− pTi

)
(1− FST) ,

E
[
p̂Ti
(
1− p̂Ti

)]
= pTi

(
1− pTi

)(
1− 1

n
FST

)
.

To reduce variance further, we average across SNPs, giving

E


 1

m

m∑

i=1


p̂Ti −

1

n

n∑

j=1

π2
ij




 = p(1− p)T (1− FST) ,

E

[
1

m

m∑

i=1

p̂Ti
(
1− p̂Ti

)
]

= p(1− p)T
(

1− 1

n
FST

)
,

where p(1− p)T = 1
m

∑m
i=1 p

T
i

(
1− pTi

)
. Eliminating p(1− p)T and solving for FST in this system

of equations results in the following FST estimator:

F̂ST =

∑m
i=1

(
1
n

∑n
j=1 π

2
ij −

(
p̂Ti
)2)

∑m
i=1

(
p̂Ti
(
1− p̂Ti

)
+ 1

n

(
1
n

∑n
j=1 π

2
ij − p̂Ti

)) (C.7)

This estimator is simplified noting that 1
n

∑n
j=1 π

2
ij appears in the IAF sample variance,

σ̂2
i =

1

n− 1

n∑

j=1

(
πij − p̂Ti

)2
=

n

n− 1


 1

n

n∑

j=1

π2
ij −

(
p̂Ti
)2

 ,

so substituting it into Eq. (C.7) recovers Eq. (14) as desired:

F̂ST =

∑m
i=1 σ̂

2
i∑m

i=1 p̂
T
i

(
1− p̂Ti

)
+ 1

n σ̂
2
i

.

C.2 Standard kinship estimator

Here we assume the kinship model of Eqs. (1) and (2). Since Eq. (1) is the same for all individuals
j, we average these first moments to reduce variance:

E




n∑

j=1

wjxij


 = 2pTi .

Each ϕTjk appears once per (j, k) pair in Eq. (2), recast here in terms of the sample covariance:

E
[(
xij − 2pTi

) (
xik − 2pTi

)]
= 4pTi

(
1− pTi

)
ϕTjk.
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Variance in the kinship estimate is reduced by averaging across SNPs, yielding:

E

[
1

m

m∑

i=1

(
xij − 2pTi

) (
xik − 2pTi

)
]

= 4ϕTjk
1

m

m∑

i=1

pTi
(
1− pTi

)
. (C.8)

The resulting estimator of pTi is

p̂Ti =
1

2

n∑

j=1

wjxij ,

which is plugged into Eq. (C.8) and then ϕTjk is solved for, recovering Eq. (23) as desired:

ϕ̂Tjk =

∑m
i=1

(
xij − 2p̂Ti

) (
xik − 2p̂Ti

)

4
∑m

i=1 p̂
T
i

(
1− p̂Ti

) .

D Mean coancestry bounds

Here we prove that, for any weights such that wj > 0,
∑n

j=1wj = 1,

0 ≤ θ̄T ≤ FST ≤ 1

holds, and for uniform weights 1
nFST ≤ θ̄T also holds. Furthermore, θ̄T = FST holds iff θTjk = FST

for all (j, k), and θ̄T = 1
nFST holds for island models.

The Cauchy-Schwarz inequality for covariances implies θTjk ≤
√
θTjjθ

T
kk. Therefore,

θ̄T =
n∑

j=1

n∑

k=1

wjwkθ
T
jk ≤




n∑

j=1

wj

√
θTjj




2

≤
n∑

j=1

wjθ
T
jj = FST,

where the second inequality follows from Jensen’s inequality, since x2 is a convex function. Since
θTjj ≤ 1, then FST ≤ 1 as well. Equality in the second bound requires θTjj = FST for all j, and
equality in the first bound requires θTjk = θTjj , so that θ̄T = FST requires θTjk = FST for all (j, k).
Since all wj , θTjk ≥ 0, then

0 ≤
n∑

j=1

w2
j θ
T
jj ≤ θ̄T ,

where the second inequality follows from dropping j 6= k terms from the double sum of θ̄T . The
case wj = 1

n gives 1
nFST ≤ θ̄T , with equality for island models by construction.

E Moments of estimator building blocks

Here we calculate first and some second moments for “building block” quantities that recur in our
estimators, particularly terms involving xij and p̂Ti , and which enable us to calculate the limits of
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our estimators. Below are examples for genotypes, which follow from Eqs. (1) and (2); calculations
for IAFs follow analogously from Eqs. (6) and (7) (not shown).

E
[
p̂Ti
∣∣T
]

= E


1

2

n∑

j=1

wjxij

∣∣∣∣∣∣
T


 =

1

2

n∑

j=1

wj E[xij |T ] =

n∑

j=1

wjp
T
i = pTi ,

E[xijxik|T ] = Cov(xij , xik|T ) + E[xij |T ] E[xik|T ] = 4
(
pTi
(
1− pTi

)
ϕTjk +

(
pTi
)2)

,

E
[
xij p̂

T
i

∣∣T
]

= E

[
1

2

n∑

k=1

wjxijxik

∣∣∣∣∣T
]

=
1

2

n∑

k=1

wj E[xijxik|T ]

= 2

n∑

k=1

wj

(
pTi
(
1− pTi

)
ϕTjk +

(
pTi
)2)

= 2
(
pTi
(
1− pTi

)
ϕ̄Tk +

(
pTi
)2)

,

Var
(
p̂Ti
∣∣T
)

= Var


1

2

n∑

j=1

wjxij

∣∣∣∣∣∣
T


 =

1

4

n∑

j=1

n∑

k=1

wjwk Cov(xij , xik|T ) = pTi
(
1− pTi

)
ϕ̄T ,

E
[(
p̂Ti
)2∣∣∣T

]
= Var

(
p̂Ti
∣∣T
)

+ E
[
p̂Ti
]2

= pTi
(
1− pTi

)
ϕ̄T +

(
pTi
)2
,

E
[
p̂Ti
(
1− p̂Ti

)∣∣T
]

= pTi
(
1− pTi

) (
1− ϕ̄T

)
.

F Admixture and island model simulations

F.1 Construction of population island allele frequencies

We simulate K = 10 population islands and m = 300, 000 independent SNPs. Every SNP i

draws pTi ∼ Uniform(0.01, 0.5). We set fTSu
= u

K τ, where τ ≤ 1 tunes FST. For the island model,
FST = 1

K

∑K
u=1 f

T
Su

= τ(K+1)
2K , so τ = 2KFST

K+1 gives the desired FST (τ ≈ 0.18 for FST = 0.1). For
the admixture model, τ is found numerically (τ ≈ 0.90 for FST = 0.1; see last subsection). Lastly,
pSu
i are drawn from the Balding-Nichols distribution [41]:

pSu
i |T ∼ Beta

(
pTi

(
1

fTSu

− 1

)
, (1− pTi )

(
1

fTSu

− 1

))
.

F.2 Random island sizes

We randomly generate samples sizes r = (ru) for K islands and
∑K

u=1 ru = n = 1000 individuals,
as follows. First, draw x ∼ Dirichlet (1, ..., 1) of length K and r = round(nx). While minu ru <

n
3K ,

draw a new r, to prevent small islands (they do not occur in real data). Lastly, while δ = n −∑K
u=1 ru 6= 0, a random u is updated to ru ← ru + sgn(δ), which brings δ closer to zero. The

resulting r is as desired. Weights for individuals j in Su are wj = 1
Kru

so the generalized FST

matches FST = 1
K

∑K
u=1 f

T
Su

from the island model, which Hudson estimates [25].
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F.3 Admixture proportions from 1D geography

We construct qju resulting from random-walk migrations along a one-dimensional geography. Let
xu be the coordinate of intermediate population u and yj the coordinate of a modern individual j.
We assume qju is proportional to f(|xu − yj |), or

qju =
f(|xu − yj |)∑K
v=1 f(|xv − yj |)

.

where f is the Normal density function with µ = 0 and tunable σ. The Normal density models
random walks, where σ sets the spread of the populations (Fig. 6). Our simulation uses xu = u and
yj = 1

2 + j−1
n−1K, so intermediate population span [1,K] and individuals span [1

2 ,K + 1
2 ]. For the

WC and Hudson FST estimators, individual j is assigned to the subpopulation Su with the largest
qju (Fig. 3D); thus these subpopulations have equal sample size, so wj = 1

n is appropriate.

F.4 Choosing σ and τ

Here we find values for σ (controls qjk) and τ (scales fTSu
) that give s = 1

2 and FST = 0.1 in the
admixture model. We previously found that θTjk =

∑K
u=1 qjuqkuf

T
Su

and FST =
∑n

j=1

∑K
u=1wjq

2
juf

T
Su

holds for the BN-PSD model [25]. In our simulation, wj = 1
n and fTSu

= u
K τ hold, so θTjk =

τ
K

∑K
u=1 uqjuqku and FST = τ

nK

∑n
j=1

∑K
u=1 uq

2
ju. Therefore,

s =
θ̄T

FST
=

1

n

∑K
u=1 u

(∑n
j=1 qju(σ)

)2

∑K
u=1 u

(∑n
j=1 q

2
ju(σ)

)

depends only on σ. A numerical root finder finds that σ ≈ 1.78 gives s = 1
2 . For fixed qju,

τ =
FST

∑K
u=1 u

(
1
n

∑n
j=1 q

2
ju

) ,

where FST is the desired value. FST = 0.1 is achieved with τ ≈ 0.901.

G Prediction intervals of FST estimators

Prediction intervals with α = 95% correspond to the range of n = 39 independent FST estimates.
In the general case, n independent statistics are given in order X(1) < ... < X(n). Then I =

[X(j), X(n+1−j)] is a prediction interval with confidence α = n+1−2j
n+1 [52]. In our case, j = 1 and

n = 39 gives α = 0.95, as desired. Each estimate was constructed from simulated data with the
same dimensions and structure as before (fixed fTSu

and qju; fixed sample sizes too for island models),
but with pTi , p

Su
i , πij , xij drawn anew.
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