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Abstract

Neurons are typically classified according to their intrinsic firing patterns and
distinctive morphological features. However, our experiments in the CA3 field of rat
hippocampus in vitro revealed that discharge patterns change significantly following a
short period of low frequency subthreshold stimulation of the neuron’s afferents. This
effect could be reproduced by intrasomatic current pulses and was blocked by kinase
inhibitors. Cluster analysis of the firing patterns before and after conditioning revealed
systematic transitions towards adapting and intrinsic burst behaviours, irrespective of
the initial pattern exhibited by the cell. Using a conductance-based model, we
demonstrate that the observed transitions can be mediated by recruitment of calcium
and M-type potassium conductances. We conclude that CA3 neurons adapt their
conductance profile to the statistics of ongoing activity in their embedding circuits,
making their intrinsic firing pattern not a constant signature, but rather the reflection
of long-term circuit activity.

Author summary

Various anatomical types of neuron generate characteristic patterns of action potential
discharge in response to intra-somatic injections of step currents. Together with the
cell’s morphology and molecular markers, these patterns have been used to classify
neuronal phenotypes. However, in this study we show that in the case of hippocampal
CA3 neurons this discharge behavior is not as characteristic as generally assumed.
Instead, the dynamics of a neuron’s supra-threshold output behavior may change
significantly over a time scale of many minutes in response to sub-threshold input.
Although this input is too small to evoke a spike response, the neurons nevertheless
appear to adjust their membrane conductances by a mechanism that involves
phosphorylation. Future suprathreshold step inputs will then elicit a different
characteristic pattern of spikes. These results suggest that instead of being relatively
static input-output devices, CA3 neurons modify their fundamental configuration of
operation according to long-term statistics of the small on-going signals that they
receive from other members of their embedding circuit.
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Introduction 1

It is widely accepted that the diversity of morphological, molecular, and 2

electrophysiological properties exhibited by neurons of the neocortex and hippocampus 3

reflects functionally distinct classes of cells [1–7]. In particular, neurons have been 4

classified electrophysiologically according to the pattern of their action potential 5

discharge in response to applied intra-somatic step currents. Many studies have 6

reported that excitatory and different types of inhibitory neurons, identified by 7

morphology and molecular markers, exhibit distinct firing patterns [6, 8–13]. These 8

responses may be for example: adapting, accelerating, bursting, or fast spiking. With 9

rare exceptions [14], the patterns are assumed to be a sufficiently stable property of a 10

neuron to be used as a basis for phenotypic classification [6,15–17]. A prominent view is 11

that genetic factors determine both the morphology and the distinct firing patterns of 12

individual neurons [15]. However, there are substantial reasons to doubt that discharge 13

patterns are indeed static properties of neurons. The discharge response of a neuron 14

depends on the distribution and activations of the membrane conductances that it 15

expresses [6, 18]. This distribution is subject to homeostatic control including up- or 16

down-regulation of conductances in response to the neuron’s own activity [19–21]. For 17

example, somatogastric ganglion (STG) neurons of the lobster change their firing 18

patterns in response to network isolation by changing the balance between inward and 19

outward currents [19]. Furthermore, neurons have conserved molecular pathways that 20

link network activity to the recruitment of genes and signaling factors implicated in 21

neural excitability [22,23], and activity-dependent maturation is indeed necessary for 22

the emergence of the whole spectrum of electrical types [24, 25]. In final agreement with 23

this hypothesis, a recent study shows for the first time that the electrical properties of 24

different types of basket cells can be interchanged in response to neural activity [26]. 25

These lines of evidence suggest that the firing pattern is not a static characteristic of 26

the cell, but rather the consequence of adaptive mechanisms that adjust the behavior of 27

the neuron in response to the patterns of activity in its embedding network. We have 28

explored this hypothesis using whole-cell recordings from neurons in the CA3 region of 29

rat hippocampus in organotypic cultures. The discharge patterns of neurons in response 30

to constant current injection were characterized before and after a conditioning phase of 31

periodic subthreshold synaptic stimulation. It was found that pre-conditioned cells 32

could indeed be classified according to the type of their discharge pattern. However, 33

conditioning by subthreshold synaptic input elicited significant changes in the behavior 34

of most of the neurons examined, requiring substantial re-classification of their type. 35

This effect was reproduced when conditioning the cells via intra-somatic current pulses. 36

The effect was blocked by adding protein kinase A (PKA) and protein kinase C (PKC) 37

inhibitors to the recording pipette, suggesting that changes are mediated at the single 38

cell level via phosphorylation. We used a conductance-based single compartment neuron 39

model to explore which changes in the neuronal conductance profile could underlay the 40

observed changes in discharge pattern. We found that the results can be explained by a 41

recruitment of voltage dependent calcium and M-type potassium ion channels. We 42

conclude that CA3 neurons can indeed adapt their output patterns in response to 43

circuit activity by by possibly tuning key conductances. 44
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Fig 1. Firing pattern transitions occur in CA3 neurons after subthreshold paired-pulse
stimulation of afferents. Three examples of neurons in the CA3 area presenting different
morphologies and different firing patterns in control conditions. The discharge patterns were measured
by injection of step currents of increasing amplitude. Control measurements (gray traces, left) were
followed by stimulation of the mossy fibers. The upper trace shows all voltage traces elicited upon
different levels of current injection on that cell. Two sample traces of this set are shown below. EPSPs
(middle panel) were evoked in response to a stimulation with double current pulses, separated by 20 ms
and repeated 500 times at 1 Hz. The series of repeated pulses are shown superimposed. A sample trace
is highlighted in red. The inset shows the configuration of recording and stimulating electrodes (on the
CA3 region of the hippocampus and on the dentate gyrus, respectively). Below, the morphology
obtained by labeling the cells with biocytin is shown. After the conditioning, patterns were measured
again (blue traces, right). A) Pyramidal cell switches from non-adapting burst to intrinsic burst firing.
B) Pyramidal cell switches from delay accelerating to intrinsic burst continuous pattern. C) Bipolar cell
switches from non-adapting continuous to adapting continuous firing (scale bars = 50µm). D) Mean
Fraction of Spikes for the population in the first and second half of the voltage trace (green and yellow
rectangle below the trace, respectively) for both control and conditioned cases. A significant
redistribution on the fraction of spikes is observed after the conditioning, where the fraction of spikes on
the first half is increased while it decreases in the second half (n=50, p=1.92e-6, two-sided Wilcoxon
signed rank test). E) Empirical Cumulative Distribution Function for the data shown in D. Every
individual cell, for both control and conditioned cases, is represented as the number of spikes for the
first half of the trace minus the spikes for the second half (n=50)
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Results 45

0.1 Firing patterns of CA3 neurons change after subthreshold 46

stimulation 47

Whole-cell patch clamp recordings of CA3 neurons were performed in rat hippocampal 48

organotypic cultures. The intrinsic firing patterns of the neurons were recorded before 49

and after conditioning by extracellular stimulation of the mossy fibers originating in the 50

dentate gyrus. The conditioning stimuli consisted of paired pulses (0.1 ms duration 51

pulses, interval 10 – 20 ms) applied at 1 Hz, and repeated 500 times for a total period of 52

approximately 8 minutes. The amplitude of the pulses was adjusted for each recorded 53

cell to elicit only subthreshold excitatory post-synaptic potentials (EPSPs). This mossy 54

fiber stimulation protocol is a modification of that described by Brandalise and 55

Gerber [27,28], which has been previously shown to elicit heterosynaptic subthreshold 56

plasticity in CA3 pyramidal-pyramidal synapses. The firing patterns of neurons were 57

assessed with a sequence of constant current injections. For convenience, we used the 58

terminology of the Petilla classification [15] to label these patterns. Interestingly, we 59

observed that after the conditioning protocol, the Petilla discharge label had to be 60

adapted for most of the cells, independently of their initial firing type. For example, the 61

pyramidal cell shown in Fig 1A had a non-adapting burst pattern before stimulation 62

(gray traces). After conditioning (blue traces), this response changed to intrinsic burst. 63

The same transition was observed for the pyramidal cell on panel 1B, whose initial 64

pattern was delayed accelerating. The bipolar cell on panel 1C switched from 65

non-adapting continuous to adapting continuous firing. We observed that the most 66

common transition performed by the cells was towards adapting and intrinsic burst 67

patterns. Indeed, the quantification of the mean fraction of spikes in the first half versus 68

the second half of the voltage for the population of recorded cells showed a distribution 69

of the spikes in favor of the first half (Figs 1D, 1E) (n=50). This result supports our 70

observations that the main pattern transitions are towards adapting and intrinsic burst 71

behaviors after the conditioning. These changes in firing pattern were present in most 72

cells immediately after the stimulation protocol, and were stable at least 15 minutes 73

after the stimulation. The mossy fiber conditioning was followed by a significant 36 MΩ 74

(25%) decrease in input resistance (Rin), (from 144.8 ± 73.0MΩ to 108.4 ± 65.3MΩ, 75

two-sided Wilcoxon signed rank test, p=1.1e-5). There was also a significant 5 mV (7%) 76

depolarization of the resting membrane potential (Vm) (-65.3 ± 5.0mV) with respect to 77

resting level (-70.4 ± 5.7mV, two-sided Wilcoxon signed rank test, p=2.3e-5, n = 50). 78

However, the firing pattern changes could not be induced neither by simply holding the 79

resting membrane potential at different values (see Fig S1, n = 10), nor by the 80

step-currents used to measure the discharge patterns (see Fig S1, n = 15). No 81

significant changes in Vm and Rin in cells were found in unconditioned cells (Vm: -69.3 82

± 2.0mV, -69.1 ± 1.9mV, paired t-test, p=0.64, Rin: 148.8 ± 56.1MΩ, 158.9 ± 55.6MΩ, 83

paired t-test, p=0.063, n = 15). Intracellular dialysis could also be excluded as the 84

cause of the pattern transitions, as firings did not change spontaneously over time (see 85

Fig S1). In addition, we assessed that the effect was also present under conditions where 86

dialysis was minimized (see Fig S2, n = 15). 87

0.2 Firing pattern transitions occur also via somatic 88

conditioning and are blocked by protein kinase A and C 89

inhibitors 90

We attempted to resolve if synaptic input was necessary to elicit the changes, or 91

whether they could be induced directly at the soma. To this end, we used intra-somatic 92

injection of paired step current pulses whose parameters were chosen to elicit a similar 93
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Fig 2. CA3 firing pattern transitions occur upon somatic conditioning and are blocked
by kinase inhibitors. A) Example of an intrasomatic conditioned cell that switch from delay
accelerating (gray traces) to intrinsic burst firing (blue traces). The conditioning protocol is shown in
the middle column. EPSPs were evoked by injection of paired current steps, of 50 ms in duration and
separated by 20 ms. The double steps were repeated 500 times at 1 Hz. The series of repeated pulses
are shown superimposed. A sample trace is shown in red. B) Mean Fraction of Spikes for the
population in the first and second half of the voltage trace for both control and conditioned cases. A
significant redistribution on the fraction of spikes occurs after the conditioning. The fraction of spikes
on the first half is increased while it decreases in the second half (n=12, p=0.0024, two-sided Wilcoxon
signed rank test). C) Empirical Cumulative Distribution Function for the data shown in B. Every
individual cell is represented as the number of spikes for the first half of the trace minus the spikes for
the second half (n=12). D) Example of a mossy fiber conditioned cell (as described in Fig 1) under the
presence of H-89 and Go 6983 (PKA and PKC inhibitors) on the intracellular pipette. The cell presents
a delay accelerating pattern in control conditions and remains under such pattern after the conditioning
protocol is applied. E) Mean Fraction of Spikes for the population in the first and second half of the
voltage trace for both control and conditioned cases. The redistribution of the fraction of spikes was not
significant after the conditioning (n=13, p=0.266, two-sided Wilcoxon signed rank test). F) Empirical
Cumulative Distribution Function for the data shown in D. Every individual cell is represented as the
number of spikes for the first half of the trace minus the spikes for the second half (n=13).
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somatic voltage response compared to that generated by the mossy fiber stimulation 94

(Fig 2). This direct subthreshold somatic stimulus evoked changes in discharge pattern 95

that were similar to those elicited by the indirect mossy stimulation. The cell in Fig 2A 96

displayed a delay accelerating firing pattern in control conditions and underwent a 97

transition towards intrinsic burst pattern after somatic conditioning. The population 98

data showed a significant redistribution in the fraction of spikes in favor of the first half 99

of the trace versus the second half after the conditioning (Figs 1B and C) (n=12). In 100

this result we observed the same tendency of neurons to become adapting and intrinsic 101

burst after conditioning. Furthermore, due to the nature of the conditioning at the 102

soma, this result also suggests that the mechanism inducing the firing pattern change is 103

not localized to synapses, but rather acts at a more central, probably somatic or 104

proximal dendritic level. We next sought to identify what internal mechanism could be 105

responsible for the firing pattern transitions. The firing pattern of the cell depends on 106

the distribution of membrane ion channels that the cell presents at its membrane [18]. 107

A possible mechanism would act upon this distribution. Due to the time scale of the 108

response (on the order of minutes) we ruled out protein synthesis of new channels on 109

the membrane. An alternative would be channel phosphorylation, a mechanism known 110

to affect the conductance on a relatively short timescale [29]. We reproduced the 111

conditioning protocol in the presence of the PKA and PKC inhibitors H-89 and Go 6983 112

in the intracellular recording pipette. On Fig 2D a cell whose firing pattern in control 113

conditions was delay accelerating is shown. After mossy fiber conditioning in the 114

presence of the inhibitors the cell remained under this pattern. 84% of cells showed no 115

visible modulation of the Petilla label pattern (11 out of the 13 cells). Panels 2E and F 116

show the population response for cells stimulated under these conditions. No significant 117

redistribution of the spikes was found on the presence of the inhibitors (n=13). These 118

results suggest that phosphorylation is implicated in the mechanism of firing pattern 119

transition. 120

0.3 Cluster analysis of experimental traces: quantification of 121

identity changes in neurons 122

We observed that the conditioning induced firing pattern changes from more regular 123

patterns towards early bursting and adapting patterns. We sought to quantify these 124

changes using hierarchical clustering methods [16,30,31] to establish more objectively 125

which discharge type to associate to every response, and to quantify the frequencies of 126

transitions between them. Previous studies have used clustering methods to quantify the 127

similarity between vectors of features extracted from the voltage traces, such as action 128

potential (AP) amplitude, firing rate, or accommodation index [16,30,31]. However, 129

those metrics are not suitable for of our dataset, because several features commonly 130

used in those methods are unaffected by the conditioning. For example, AP amplitude, 131

width and afterhyperpolarization (AHP) showed no difference before and after the 132

stimulation (AP amplitude: 78.63 ± 14.95mV, 75.60 ± 9.77mV, paired t-test, p=0.11, 133

AP half width: 1.11 ± 0.26ms, 1.10 ± 0.24ms, paired t-test, p=0.74, AHP: 13.62 ± 134

3.76mV, 12.66 ± 4.15mV, paired t-test, p=0.12, n = 50). Consequently, we chose to use 135

Dynamic Time Warping (DTW) as a comparison measure, because it operates directly 136

on the action potential sequence rather than relying on a pre-defined set of features (see 137

Methods for a detailed explanation). Feature vectors of the instantaneous firing rate of 138

the voltage traces were compared pairwise using the DTW algorithm. As an internal 139

control, vectors coming from the same set of step current injections of a cell were treated 140

independently. The results of the cluster analysis of discharge patterns are shown in Fig 141

3. We set the threshold of the clustering tree at a level that separates the traces into 5 142

distinct families. The threshold was chosen large enough to yield sufficient structure to 143

PLOS 6/31

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 11, 2017. ; https://doi.org/10.1101/084152doi: bioRxiv preprint 

https://doi.org/10.1101/084152
http://creativecommons.org/licenses/by-nc-nd/4.0/


1000

2000

3000

D
T

W
 d

is
ta

n
c
e

A

B

C

2 sec

4
0

 m
V

2 sec

0
.4

 H
z

Fig 3. Hierarchical clustering of experimental discharge traces. A) Dendrogram of clustered
traces. The data included in the cluster corresponds to the mossy fiber conditioned cells of Fig 1. Two
main families can be identified: one containing adapting and bursting traces, together with delayed
spiking patterns (left branch); and another branch containing regular and accelerating traces (right
branch) (n=50). B) Representative traces from each cluster. Below, average instantaneous firing rate
over all traces belonging to the same cluster. Middle lines indicate the mean; light outer lines indicate
standard deviations. The instantaneous firing rate (in Hz) is normalized to 1. C) Transitions observed
between firing patterns before and after conditioning. Each cell is assigned to a single cluster
(represented as a box) for both the control and conditioned cases. Arrows indicate transitions between
types whenever a cell changed cluster. Self-loops indicate that the firing pattern was retained after
conditioning. Numbers indicate percentages of observed transitions, and the number of cells in each
category under control conditions is displayed next to each pattern type. Cells tend to transition
towards adapting and bursting patterns following conditioning (n = 43). Seven cells were assigned as
unclassified.
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interpret the hierarchy in terms of recognized response types [15]. Representative traces 144

of each family are shown in Fig 3B. The average of the firing rate vectors of every 145

cluster is depicted beneath each representative trace. The clustering algorithm captures 146

well the typical time courses of the firing patterns. The right branch of the cluster tree 147

contains accelerating and non-adapting firing patterns, while the other contains 148

adapting and intrinsic bursting patterns together with a smaller group of traces that 149

have delayed spiking profiles (Fig 3A). The consistency of the algorithm was confirmed 150

by its successful clustering of independent feature vectors derived from the same set of 151

current injections (same cell under the same conditions) into a single cluster. Indeed, in 152

86% of cases (43 of the 50 cells) the algorithm successfully allocated the majority of 153

vectors from the same set of current injections into single clusters. Vectors from the 7 154

remaining cells were not consistently classified. For 50% of the cells all of their voltage 155

traces fell into the same cluster, and for 90% of the cells at least 50% did (see Fig S3). 156

The allocation of some responses from the same cell into more than a single cluster does 157

however follow a biological logic. For example, for cells classified as accelerating, some 158

of their voltage traces could reasonably fall into the non-adapting cluster because 159

acceleration may vanish at high current injections. A similar reasonable misclassification 160

is possible for adapting traces. In this case low current injections may be classified as 161

non-adapting because the currents are not high enough to elicit adaptation (see Fig S4). 162

In particular, many of the traces belonging to the delayed spiking cluster come from 163

cells whose traces at low current injections were assigned to the accelerating cluster, or 164

belonged to non-adapting cells with spiking delay. The transitions between cluster types 165

induced by the stimulation protocol are shown in Fig 3C. This figure considers only 166

those cells in which responses both before and after conditioning could be clearly 167

assigned to a cluster. In total, 68% of the cells (n = 50) changed their original cluster as 168

a result of subthreshold conditioning. This quantitative result supports the qualitative 169

observation that cells tend to transition towards more adapting and intrinsic burst 170

profiles. 70% of cells initially belonging to the non-adapting cluster exhibited such 171

changes in response (14 cells), with 35% moving into the intrinsic burst category, and 172

35% exhibiting adapting spike patterns. 5 of the 6 cells from the adapting cluster (83%) 173

switched to the intrinsic burst type. Most of the cells for which the firing pattern did 174

not change were already in the most common target states of transitions. For example, 175

89% of the intrinsic bursting cells did not change cluster. This provides further evidence 176

for a predominantly unidirectional change of firing patterns in response to conditioning. 177

The 7 cells that could not be consistently classified under control conditions were all 178

correctly classified after the stimulation. They showed the same transition tendencies: 5 179

moved into the intrinsic bursting cluster, the other 2 became adapting. 180

0.4 A conductance based model explains the transitions 181

between firing patterns 182

The consistent transition towards adapting and intrinsic bursting behaviors suggests a 183

common underlying mechanism for most cell types. Our results showing that 184

phosphorylation inhibition blocks firing pattern change after conditioning (Fig 2) 185

support the hypothesis that the prime candidate for this mechanism is a change in the 186

profile of active conductances contributing to action potential discharge dynamics. We 187

explored this possibility using simulations of action potential discharge in a 188

conductance-based single compartment neuron model containing 9 voltage and calcium 189

gated ion channels (see Methods). The densities and kinetics of these channels were 190

derived from experimental measurements of CA3 pyramidal neurons [12]. We tuned 191

only their maximum conductances to reproduce the discharge patterns observed in our 192

experiments. The allowed ranges of maximum conductances were restricted to those 193
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Fig 4. Hierarchical clustering of the model-generated discharge traces mapped to the
experimental traces. Every experimental trace was matched to a model trace using the DTW
algorithm as a search tool on a model database of traces. Hierarchical clustering was then applied to
the model traces. A) The clustering algorithm distinguishes four main families, which correspond to
adapting, intrinsic burst, non-adapting and accelerating patterns. Below the dendrogram, a
representative model trace of every cluster is depicted. The single compartment model could reproduce
the sample experimental traces of Fig 3. The exact conductance values used to produce every model
pattern and the amount of current injection are shown in the Table S1. Underneath, average
instantaneous firing rate within each cluster with its standard deviation (n = 50) B) Conductance road
map showing the key conductances responsible for a transition in firing pattern on the model generated
traces. The main channels implicated are gCa, gCaK, gKd and gKm. C) Distribution of the
conductance vectors of the model traces clustered in (A) in 3D space. Axes correspond to: calcium
conductance variable (gCa); calcium-dependent potassium channel (gCaK); and potassium channel
(gKm). The dots are color coded according to their cluster assignment. D) Distribution of the
conductance vectors in 3D space of the model traces matched to cells in control conditions E)
Distribution of the conductance vectors of traces matched to cells after conditioning. Conditioned cells
present a higher content of gCa and gKm.
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reported in the literature [12]. In order to explain the experimental transitions, we 194

compared the performance of the clustering procedure on the model and the 195

experimental data. In a first step, the maximal conductance densities of the model were 196

tuned to match the various experimentally observed firing patterns. This tuning was 197

performed manually, and the match to the traces was qualitative. The absolute values 198

for the conductances required to match the main experimental categories (Fig 3: 199

adapting, intrinsic burst, delay spiking, accelerating and non-adapting) are reported in 200

Table S1. We also were able to reproduce the experimental traces in the 201

morphologically realistic model described by Hemond et al. [12] (see Fig S5). Although 202

the maximal conductance values had to be adjusted to satisfy the different impedance 203

of the more detailed morphology, the same key channels are responsible for each 204

category of firings both the single compartment and in the realistic CA3 model. In a 205

second step, a database of representative ranges of conductances that could plausibly 206

explain the discharge patterns observed experimentally was generated using the single 207

compartment model. To do this, the maximal conductances of the different channels 208

were swept through ranges that would likely encompass the experimentally observed 209

patterns (see Table S2 for the exact ranges). In this way a total of 861 conductance 210

profiles were generated. We obtained the discharge response to different levels of current 211

injection for each conductance profile, giving a total of 5166 voltage traces with their 212

associated conductance profiles. Every single experimental trace (coming from both, 213

control and conditioned cases) was matched against the collection of traces in the model 214

database using the DTW algorithm. The best fit was then selected, allowing us to 215

obtain an estimate of the conductance profile likely to be present in the experimental 216

neuron. These estimates also define the subset of model traces that best represent their 217

experimental counterparts. This subset was then fed to the same hierarchical clustering 218

procedure that was previously performed for the experimental data (Fig 3). The result 219

of hierarchical clustering of the model traces is shown in Fig 4A. There are four main 220

families, corresponding to adapting, intrinsic bursting, accelerating and 221

non-accommodating behavior. The classification of the model traces is very similar to 222

the experimental one. We noted however the absence of the small class of 223

delayed-spiking patterns (second cluster of Fig 3), which in the case of the model were 224

allocated mostly to the accelerating cluster. The transition diagram of Fig 4B represent 225

the crucial conductances determining the transitions between discharge patterns, 226

obtained during the first step of manual tuning. These are gKm, gCaK, gCa and gKd. 227

In this manner, for the delayed discharge pattern, the presence of gKd is required for a 228

delayed onset of the spiking, and the slow inactivation of gKd is important for 229

generating the accelerating discharge pattern. In the case of the adapting and intrinsic 230

burst patterns, the inclusion of gKm and gCa (given the presence of basal levels of 231

gCaK) is necessary for the slowing down of the action potentials after the initial 232

discharge. In panel 4C each point indicates the location of an experimental discharge 233

response matched to the model in conductance space. The color of a point shows its 234

cluster assignment. There is a systematic segregation of the data, indicating how the 235

discharge classes of Fig 4A conform to localized regions of conductance space. This 236

correspondence of firing patterns and biophysical parameters offers an interpretation of 237

the causes of transitions between firing behaviors induced by mossy fiber stimulation 238

(Fig 3C). The shift towards adapting and intrinsic bursting behavior after the 239

conditioning corresponds to an increase in calcium related, and gKm conductances 240

(Figs 4D,E). 241
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1 Discussion 242

We have shown that the characteristic firing patterns of neurons in the CA3 region of 243

the hippocampus can be modified by subthreshold stimulation of the soma. The effect 244

was elicited either indirectly by stimulation of the mossy fibers, or directly by somatic 245

current injection. The change was present immediately after the 8 minute conditioning 246

protocol, suggesting that the mechanism underlying the transition operates on a 247

timescale of at most, a few minutes. The effect was abolished under the presence of 248

PKA and PKC inhibitors, indicating that phosphorylation of conductance channels over 249

the duration of the conditioning is necessary for the firing pattern changes. Hierarchical 250

cluster analysis showed that the transitions observed are more likely towards adapting 251

and intrinsic burst responses. We were able to reproduce the experimentally observed 252

changes in firing in simulations of a conductance-based model of neuron 253

electrophysiology. We found that the shift in responses towards adapting and intrinsic 254

burst can be explained by recruitment of calcium and M-type potassium conductances. 255

These results indicate that suprathreshold discharge behavior of neurons on the time 256

scale of seconds can be modified by the statistics of ongoing subthreshold activity on a 257

much longer time scale. 258

1.1 Previously reported changes in firing pattern 259

Activity dependent changes on the intrinsic firing properties of neurons have been 260

reported extensively, although the attention has been restricted primarily to the 261

modulation of firing rates for homeostatic plasticity [20,32–34]. Regarding the dynamics 262

of the discharge, plasticity has been reported in lobster, with activity isolation being a 263

crucial component in shaping the patterns [35]. Modulation of the delay spiking pattern 264

in the hippocampus [36,37] and in the cortex [26] have been shown to be induced by 265

network activity or conditioning pulses. Induction of the burst pattern after status 266

epilepticus has also been reported in hippocampus [38] while Thompson and 267

colleagues [39] have shown reductions in post-burst AHP and accommodation in CA3 268

neurons after eye-blink conditioning. These studies favor the hypothesis that is the 269

current network status of CA3 the responsible of shaping the discharge pattern of 270

neurons in this region. In this manner, the firing pattern transitions that we observe are 271

likely to be elicited when disturbing the basal activity that the neurons were receiving 272

on the CA3 network. 273

This study was performed on organotypic cultures, derived from brain slices of 274

newborn rats that are incubated for three weeks using the roller-tube technique [40]. 275

Organotypic cultures have been used extensively to characterize electrophysiological 276

properties of hippocampal neurons and it is know that the tissue preserves the 277

anatomical organization of the adult hippocampus, as well as its connectivity and 278

characteristic spontaneous activity [41,42]. Most of the studies cited in this chapter 279

were done in cultures or juvenile acute brain slices, indicating that the plasticity of the 280

patterns is not unique to the organotypic preparation. It would be interesting to know 281

however whether this type of plasticity is also prominent in the adult brain and if it also 282

happens, at the same time scale, in other brain areas such as the cerebral cortex. 283

1.2 Modulation of cell excitability via conductance changes 284

Activity dependent changes of conductance have been extensively studied, and shown to 285

be triggered even by learning paradigms [39,43,44]. The work of Turrigiano et al. [35] 286

suggested that a calcium dependent mechanism could modulate the neural conductances 287

in STG lobster neurons, and that this would translate into changes in the cells’ firing 288

patterns. Later work showed that depolarizing pulses at 1Hz could alter the density of 289
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the calcium-dependent outward current ICaK and the transient outward current IA in 290

the STG [45]. These studies led to theories of homeostatic plasticity [20,33], which 291

propose that cells maintain both the turnover of ion channels, and a stable level of 292

activity, to compensate for changes in synaptic strength. However the time scale of such 293

mechanisms typically extends over hours, and presumably involves processes of gene 294

expression [46], whereas in our experiments the changes were observed immediately 295

after conditioning. Aizenman and Linden [47] observed rapid changes of excitability of 296

cerebellar cells after synaptic stimulation, and proposed a calcium-dependent 297

modification though phosphorylation of gCaT and gCaK to account for the observed 298

changes. Interestingly, these are the same candidate channels that we have identified as 299

underlying the discharge pattern changes in this study. Supporting these lines, rapid up- 300

or down-regulation of ion channel conductance via phosphorylation or vesicle 301

modulation due to calcium signaling has been extendedly demonstrated [22,29,43] and 302

it has been shown that ion channels possess a complex of scaffold proteins containing 303

certain protein kinases that could selectively regulate channel conductance through 304

phosphorylation [29]. This mechanism could provide a link between the activity of the 305

network and the specific conductance recruitment. An alternative explanation to the 306

conductance recruitment is that continuous stimulation of the neuron may alter the ion 307

concentrations in the cellular environment; for example, by altering intracellular 308

potassium and calcium concentrations [48,49]. However, our simulations show that the 309

decay time constant of the intracellular calcium is too short to allow significant 310

accumulation over the period of conditioning (see Fig S6A-C). Even if the time constant 311

were greatly increased, the accumulation of calcium during conditioning would be 312

insufficient to elicit a significant change in firing pattern (see Fig S6D). Regarding 313

potassium, our extracellular concentration was less than that required [48] for the 314

changes in pattern that we observe. On the other hand, the abolition of the effect by 315

the inhibition of phosphorylation points towards an induction of a biochemical pathway 316

as the cause of the conductance increase. 317

1.3 Candidate conductances for the firing pattern transitions 318

Our model suggests that the likely candidates for eliciting any type of transitions 319

through the firing pattern space of CA3 cells are gKd, gKm and gCa coupled with 320

gCaK. We are aware that alternative channels could elicit a similar dynamical response. 321

The effect on the spike delay mediated by a slow inactivating hyperpolarizing current, 322

such as gKd can also be elicited by a slow non-inactivating depolarizing current such as 323

gNap. Thus, it is possible that different cells recruit different set of conductances 324

depending on their initial conductance profile. However, the candidates we propose have 325

been previously reported to shape the spiking response of the cell via activity dependent 326

mechanisms. For example, it is well established in the epilepsy literature that gCaT is 327

strongly associated with the switch to bursting mode in hippocampal cells [38, 50] while 328

gKd in the hippocampus and similar potassium conductances in the cortex have been 329

shown to be up- or down-regulated according to network activity and modulate the 330

delay firing response of the cell [26, 36,37]. Modulation of the M-type current upon 331

activity has also been shown in the hippocampal region CA1 [51] and in CA3 [52], with 332

the latter group reporting that transient subthreshold depolarizing pulses are more 333

effective in the modulation of the current. 334

The conditioning protocol elicited stereotypic transitions of pattern towards 335

adapting or intrinsic burst patterns. However, it was not equally likely for all cell types 336

to perform such transitions. For example, accelerating cells moved towards regular 337

patterns with higher probability than the rest of patterns (Fig 3C). We speculate that 338

either the initial density of channels favors the different likelihood of transitions, or that 339

a cell on such initial state must necessarily become regular during the transition to any 340
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other pattern. An alternative is that there may be some cell types that obey distinct 341

rules. For example, we noticed that 4 cells from the non-adapting cluster had high firing 342

rates under control conditions (see Fig S7). Two of these had smooth cell morphologies. 343

The other two cells correspond to very densely spiny cells, with stellate morphologies. 344

Interestingly, although transitions towards bursting or classic adapting behaviors were 345

not observed on these cells, there was a modulation on the delay of the first spike in 346

both cell types, suggesting that the stimulation protocol had a differential effect on this 347

particular neural population. 348

One of the typical transitions that we observe in our dataset is the switch of cells 349

towards bursting behaviors. We emphasize that this is not the only transition that is 350

induced, but special attention should be given to the burst mechanism. It is known 351

from the literature that different types of cells can present this dual behavior. For 352

example, relay cells on the thalamus become bursty upon hyperpolarization because of 353

T-type conductance inactivation [53]. In our case, after the induction protocol, the cells 354

depolarized 5 mV in average, so we rule out this hyperpolarization mechanism. The 355

main form of discharge of CA3 cells have been known to be either regular or 356

bursting [12]. Although the firing pattern transitions were abolished in the presence of 357

PKA and PKC inhibitors, 2 cells out of 13 showed still transitions to intrinsic burst. 358

This could be likely due to failure of diffusion of inhibitors from the electrode, but we 359

cannot exclude a different mechanism for this type of transition (for example, through 360

different kinase pathways). 361

1.4 Functional implications of firing pattern modulation 362

The fact that neurons possess the internal machinery to mediate the observed transitions 363

raises questions about the computational consequences of such behavior. As proposed 364

by Shin et al. [54], a neuron that can dynamically adapt its output firing in response to 365

its input statistics would have important advantages. If such neuron could adjust its 366

threshold and dynamic range upon activity, it could respond to stimuli over a broad 367

range of amplitudes and frequencies without compromising the sensitivity and dynamic 368

range of the cell. Spike frequency accommodation has the characteristics of a high-pass 369

filter [55]. Since our conditioning stimuli occurred at constant frequencies, the cells may 370

have recruited a specific set of conductances that shift their integration properties so as 371

to gain sensitivity in the new spectrum range. Differences in filtering properties of brain 372

stem neurons have also been shown to facilitate the extraction of spatial information 373

from natural sounds [56] and most of the conductances that we identify in this study 374

have been shown to be frequency resonance candidates [57–59]. These resonance 375

properties of cells may have important functional implications for neural activity and 376

brain rhythms [60,61]. In addition, modeling studies have shown that a neuron able to 377

adapt to its own input statistics is able to maximize the mutual information between its 378

input and output firing rates [62]. This type of effect can emerge following firing rate 379

homeostasis rules and promote metaplasticity [63]; on the other hand it can be their 380

cause [64]. Finally, this fast adaptability of the firings may also be important for 381

specific memory acquisition on the hippocampus [39, 65]. Further studies will be needed 382

in order to unravel the role that such firing pattern transitions may have for 383

computations in neural circuits. A first step towards this goal must be to explore more 384

generally how the form and frequency spectrum of somatic input signals on the long 385

time scale affect the distinct firing patterns that neurons exhibit on the short scale. 386
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2 Conclusion 387

We have shown that hippocampal neurons in rat organotypic cultures can rapidly adapt 388

their supratheshold action potential discharge patterns in response to subthreshold 389

paired pulse conditioning stimuli delivered to their somata either by activation of their 390

synapses, or directly by intrasomatic current injection. We propose that these changes 391

are mediated via phosphorylation by recruitment of calcium and M-type potassium 392

conductances, conditional on the statistics of their somatic input currents. Such a 393

mechanism would allow the neuron to adapt its output behavior to the requirements of 394

the network in which it is embedded. Our results also imply that the discharge 395

characteristics of neurons in this hippocampal region are not constant and may not 396

provide a reliable descriptor of a neural phenotype. 397

Materials and Methods 398

All experiments were conducted in accordance with guidelines and regulations of the 399

cantonal veterinary office of Zurich; License Nr 81-2014. 400

2.1 Electrophysiological Recordings 401

Rat hippocampal organotypic cultures [40] of average postnatal age 21 days were 402

transferred to a recording chamber and mounted on an upright microscope (Axioskop 403

FS1; Zeiss). The cultures were superfused with an external solution (pH7.4) containing 404

(in mM) 148.8 Na+, 2.7 K+, 149.2 Cl−, 2.8 Ca2+, 2.0 Mg2+, 11.6 HCO−
3 , 0.4 405

H2PO
−
4 , 5.6 D-glucose, and 10 mg/l Phenol Red. All experiments were performed at 406

34 ◦C. Whole-cell recordings of CA3 neurons were obtained with patch pipettes (4-7 407

MΩ). Pipettes were filled (in mM) with 126 Kgluconate, 4 NaCl, 1 MgSO4 , 0.1 408

BAPTA− free, 0.05 BAPTA− Ca2+, 15 glucose, 3 ATP , 5 HEPES (pH was 409

adjusted to 7.2 with KOH) 0.1 GTP , and 10.4 byocitin. IPSPs in the recorded cells 410

were reduced by adding picrotoxin (1 mM) to the intracellular patch solution in order 411

to elicit reliable depolarization in the cell. 412

The recording pipettes were manually positioned under microscope control. 413

Recorded neurons were located mostly in the pyramidal cell layer. Electrophysiology 414

and subsequent histology in a subset of the cells recorded suggest that the neurons 415

described below include both pyramidal cells and smooth cells. 416

Current-voltage relationships were determined by step command potentials and had 417

duration of 1 s to ensure steady-state responses. Data were recorded using an Axopatch 418

200B amplifier (Molecular Devices). Series resistance was monitored regularly, and was 419

typically between 5 and 15 MΩ. Cells were excluded from further analysis if this value 420

changed by more than 20% during the recording. Junction potential and bridge was not 421

corrected. 422

Mossy fibers were stimulated with a bipolar tungsten electrode. The intensity of the 423

stimulus was adjusted to evoke subthreshold post-synaptic potential responses of 15 mV 424

on average in the recorded neuron (minimal stimulation + 20% stimulation intensity). 425

Action potential discharges were evoked by injected current steps (-0.08 up to 1.8 426

nA; step increment 0.05 - 0.15 nA, depending on the input resistance of the recorded 427

cell) each lasting 5 seconds. After this control, the neurons were conditioned by mossy 428

fibers activation, consisting of a double pulse (0.1 ms duration pulses, interval 10 - 20 429

ms) at a frequency of 1 Hz, repeated 500 times. Thus, the conditioning period was 430

approximately 8 minutes. Immediately after this conditioning, the firing pattern of the 431

neuron was assessed again using the same step protocol. The step protocols were 432

repeated 3 times with 5 min intervals to assess stability. In a subset of experiments, 433
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mossy fiber subthreshold responses were mimicked by injecting somatically and at a 434

frequency of 1 Hz double step current pulses of 50ms of duration and 20ms of interstep 435

interval. The amplitude of the pulse was adjusted in order to get a depolarization of 15 436

mV on average. 437

2.2 Histology 438

Hippocampal slice cultures were prepared for morphological assessment by fixing in 439

freshly prepared 4% paraformaldehyde in 0.1 M phosphate buffer (PB) at pH 7.4 440

overnight at 4 ◦C; washing three times in phosphate-buffered saline (PBS, 1.5 mM 441

KH2PO4, 8.5 mM Na2HPO4, 137 mM NaCl, and 3 mM KCl, pH 7.4); and 442

permeabilizing at room temperature in PBS that contained 10% heat-inactivated 443

donkey serum, and 1% Triton X-100. Then they were incubated overnight at 4 ◦C with 444

streptavidin conjugated with Alexa (546λ). The cultures were washed again three times 445

in PBS, and then mounted in Fluorostab (Bio-Science Products AG, Emmenbrucke, 446

Switzerland) and coverslipped. High-resolution images were obtained using laser 447

scanning confocal microscopy (Leica TCS SP2, Leica Microsystems, Heidelberg, 448

Germany). 449

2.3 Data analysis 450

Signals were digitized at 4 kHz for current clamp and 5 kHz for voltage clamp. These 451

data were analyzed off-line using pCLAMP 10 (Molecular Devices) and MatlabR2011b 452

(MathWorks). Analysis of the voltage traces was performed similar to Chen et al. 453

(2015). The average resting membrane potential of each neuron was estimated as the 454

mean membrane potential during the first 100 ms of current-injection protocol (before 455

injection of the step-current pulses). Input resistance was obtained by measuring the 456

voltage drop across the hyperpolarizing trace of the step-current pulses. APs were 457

located using median filtering, and the threshold was inferred as the point at which the 458

derivative of the voltage trace exceeded 5 mV/ms. AP amplitude was measured from 459

threshold-to-peak and AP afterhyperpolarization (AHP) from the threshold-to through. 460

Half-width was estimated as the full width at half-maximal amplitude. Statistical 461

comparisons between conditions were performed using either a paired t-test or a 462

two-sided Wilcoxon signed rank test, after checking the data for normality using a 463

one-sample Kolmogorov-Smirnov test. 464

2.4 Cluster analysis of discharge traces 465

The firing patterns of the neurons were categorized by hierarchical clustering of their 466

discharge patterns. The dataset consisted of all voltage traces recorded from neurons in 467

response to step-wise current injections with different amplitudes, including recordings 468

before and after conditioning. For any one neuron, the collection of responses to 469

different current injections represents the signature of the electrical type. However, for 470

inherent verification of our cluster procedure, we chose to treat each response 471

independently. In this way successful clustering could be confirmed by its ability to 472

assign responses from the same neuron into the same category. 473

The clustering measured similarity of a feature vector derived from the voltage 474

traces. First the recorded voltage traces were converted into a time series of the 475

instantaneous firing rates. The instantaneous firing rate at each spike was taken as 476

1/Inter-spike-Interval (ISI). Then the instantaneous rates where linearly interpolated 477

across the spike times at 1 ms time intervals over 6 seconds (5 second current injection 478

step, plus 1 second on and offset), and normalized by the maximum firing rate. Finally, 479

a characteristic feature vector of a common length of 600 elements was obtained by 480
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down-sampling the interpolated rate traces by a factor of 10, in order to make them 481

computationally tractable to the similarity measurement. 482

Similarity distances between pairs of traces were calculated using the Dynamic Time 483

Warping (DTW) measure [66]. DTW takes into account that two similar signals can be 484

out of phase temporarily, and aligns them in a non-linear manner through dynamic 485

programming [67]. The algorithm takes two time series Q = 〈q1, q2, . . . , qn〉 and 486

C = 〈c1, c2, . . . , cm〉 and computes the best match between the sequences by finding the 487

path of indices that minimizes the total cumulative distance 488

DTW(Q,C) = min
K∑

k=1

wk (1)

where wk is the cost of alignment associated with the kth element of a warping path 489

W . A warping path starts at q1 and c1 respectively, and finds a monotonically 490

increasing sequence of indices ik and jk, such that all elements qi in Q and cj in C are 491

visited at least once, and for the final step of the path iend = n and jend = m holds. 492

The optimal DTW distance is the cumulative distances y(i, j), corresponding to the 493

costs of the optimal warping path 〈q1, . . . , qi〉 and 〈c1, . . . , cj〉. This distance can be 494

computed iteratively by dynamic programming: 495

y(i, j) = d(qi, cj) + min{y(i− 1, j − 1), y(i− 1, j), y(i, j − 1)} (2)

where d(qi, cj) is the absolute difference between the elements of the sequence. The 496

optimal warping path is obtained by backtracking from the final element y(n,m), and 497

finding which of the three options (increasing i only, increasing j only, or increasing i 498

and j simultaneously) led to the optimal warping distance, until i = 1, j = 1 is reached. 499

A warping window constraint of 10% of the vector size was chosen [67]. 500

The pairwise DTW distances were used to perform hierarchical clustering by Ward’s 501

algorithm [68]. The number of classes increases with the level of the hierarchy. We 502

choose to cut the tree at a level that provided sufficient structure to interpret the 503

hierarchy in terms of recognized response types (for example, Ascoli et al. [15]). 504

Every recording for a given cell was treated as an independent observation, and 505

could in principle be assigned to any cluster. If the electrophysiological state of the cell 506

is expressed in all of its responses, then we expect that all the independent observations 507

derived from that cell should be assigned to the same cluster. However, traces derived 508

from current injections to the same cell in different conditions (pre- or post-stimulation) 509

are expected to be assigned to different clusters if there is significant change in the 510

underlying electrophysiological state. 511

In fact the independent traces did not cluster perfectly. Instead, the majority of 512

independent observations derived from a given state clustered together and there were a 513

few that fell into other clusters. Therefore, we chose to label the electrical type of each 514

cell according to the cluster that contained the mode of the traces for one set of current 515

injections. Cells for which no clear dominant cluster could be identified, e.g. because 516

half of the traces fell into one cluster, and half of them into another, were labeled as 517

unclassified. A cluster transition was recognized whenever the cell was assigned to 518

different clusters before and after the stimulation protocol. 519

The analysis was performed using custom-written software in MatlabR2011b. The 520

implementation of the DTW algorithm was obtained from Matlab Central 521

(http://www.mathworks.com/matlabcentral/fileexchange/43156-dynamic-time- 522

warping–dtw). 523
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2.5 Neuron simulation model 524

A single cylindrical compartment, conductance-based neuronal model was used for all 525

simulations. The length and diameter of the cylinder are set at equal dimensions to 526

avoid spatial discretization problems in a single compartment [69,70]. The passive 527

properties associated with the model were obtained from Hemond et al. [12]. We set the 528

length and diameter of our compartment to 50 µm. The active properties were modeled 529

by including appropriate voltage and calcium gated ion channels whose density and 530

kinetics were obtained from experimental recordings performed in CA3 neurons [12]. 531

The simulations were performed using NEURON [71]. We choose an integration step of 532

25 µs, which was approximately 1% of the shortest time constant in the model. The 533

voltage- and time-dependent currents followed the Hodgkin and Huxley formalism 534

(1952): 535

C · dV
dt

= −(INa + IKdr + IKd + IKA + IKm + ICaK + ICaL + ICaT + ICaN + ILeak) (3)

Each current Ix is described by the equation 536

I(v,t) = ḡ ·m · h · (V(t) − E) (4)

where ḡ is the maximal conductance, m and h are activation and inactivation terms, 537

V is the membrane potential, and E the reversal potential of the channel. The reversal 538

potentials for Na+ and K+ were ENa = 50 mV and EK = -85 mV, respectively. The 539

equations describing the different channel kinetics (m,h) for every current were 540

obtained from Hemond et al. [12]. Following this reference, the three calcium 541

conductances (T, N and L) were incorporated into a single parameter gCa. 542

The set of maximal conductance values that are consistent with all our 543

experimentally observed firing patterns are shown in the Fig S1. The intracellular 544

calcium dynamics were modeled [12], as follows: 545

d[Ca2+]i
dt

=
ICa

2Fv
− [Ca2+]i − 0.0001

τCa
(5)

The first term of the above equation describes the change caused by Ca2+ influx 546

into a compartment with volume v. F is the Faraday constant, ICa is the calcium 547

current and τCa is the time constant of Ca2+ diffusion. 548

The occasional decrease in spike amplitude seen in some of the experimental traces is 549

probably due to sodium inactivation. We choose not to include this feature in the 550

model, because it does not affect the overall dynamics of the spike discharge itself. 551
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Conductances Ranges 1 2 3
gKdr 0.015 : 0.05 : 0.04
gKa 0.01 : 0.01 : 0.09
gCa 0 0.2 : 0.1 : 0.6 0.8 : 0.1 : 1
gCaK 0 : 0.1 : 0.9
gKm 0 0.4 : 0.1 : 1
gKd 0 : 0.1 : 0.3 0.4 : 0.05 : 0.8 0.9 : 0.1 : 1
I 0.45 : 0.05 : 0.65 0.75 : 0.05 : 1 1.75 : 0.05 : 1.95
Total conductance vectors 861
Total traces 5166

Table S2. Range of maximal conductance values used to generate the model database of
voltage traces. A model database of voltage traces, which includes all the observed experimental
firing patterns, was generated by varying 6 maximal conductances (gKdr, gKa , gCa , gCaK , gKm
and gKd ) over a given range. Each row in the table lists the ranges of conductance values employed in
every channel. The different ranges of conductances (columns) were produced in order to account for
the different firing patterns reproduced in the model. Different ranges of current were also needed to
reveal the different firing types. A total of 861 conductance vectors were generated by combining the
different conductances. The firing pattern of every conductance vector was produced at several levels of
step-current injection, obtaining a total of 5166 voltage traces. Note that gCaT , gCaN and gCaL are
englobed under the single parameter gCa.
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Fig S1. Stability controls. Firing pattern transitions are not elicited by step current injection alone.
A) Examples of two cells whose firing pattern have been measured by step-wise current injection
(protocol showed in the inset). The cells do not show changes in firing pattern after 15 min of recording.
B) Mean Fraction of Spikes for the population in the first and second half of the voltage trace for both
control and conditioned cases. No significant redistribution on the fraction of spikes is observed (n = 15,
p=0.583, two-sided Wilcoxon signed rank test). C) Empirical Cumulative Distribution Function for the
data shown in B. Every individual case is represented as the number of spikes for the first half of the
trace minus the spikes for the second half. D) Firing pattern transitions are not elicited by sustained
shifts in membrane potential. Examples of two cells that have been hold at different membrane
potentials through steady current injection (-70, -80 and -60 approximately). After changing the holding
potential of the recorded neuron the firing patter was measured by step-wise current injection (protocol
showed in the inset). No transitions of firing pattern were observed at any of the different holding
potentials. E) Mean Fraction of Spikes for the population in the first and second half of the voltage
trace for every condition. No significant redistribution on the fraction of spikes is observed (Vm 60 vs
70, p=0.652; Vm 60 vs 80, p=0.084; Vm 70 vs 80, p=0.695) (n = 10, two-sided Wilcoxon signed rank
test)). F) Empirical Cumulative Distribution Function for the data shown in E. Every individual case is
represented as the number of spikes for the first half of the trace minus the spikes for the second half.
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Fig S2. Firing pattern transitions on CA3 neurons are not induced by intracellular
dialysis. A) Two cells patched with high resistance pipettes (10MΩ). Two sample control cells that
exhibit non-adapting (upper panel) and accelerating (lower panel) firing pattern. After conditioning,
both change to intrinsic burst firing pattern. The mossy fiber stimulation protocol is shown in middle
panel. B) Mean Fraction of Spikes for the population in the first and second half of the voltage trace
for both control and conditioned cases. A significant redistribution on the fraction of spikes is observed
after the conditioning, where the fraction of spikes on the first half is increased while it decreases in the
second half (n=10, p=0.048, two-sided Wilcoxon signed rank test). C) Empirical Cumulative
Distribution Function for the data shown in B. Every individual case is represented as the number of
spikes for the first half of the trace minus the spikes for the second half.

PLOS 27/31

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 11, 2017. ; https://doi.org/10.1101/084152doi: bioRxiv preprint 

https://doi.org/10.1101/084152
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 30 40 50 60 70 80 90 100

5

15

25

35

45

% of voltage traces in assigned cluster

%
 o

f 
c
e
lls

Fig S3. Clustering performance on the step-wise voltage traces. The capacity of the
clustering algorithm to group together independent voltage traces derived from the same set of current
injections was evaluated. Histogram x-axis accounts for the percentage of voltage traces from the same
set that are assigned to a unique cluster. Y-axis, shows the percentage of cells that fulfill the x
condition. Ideal performance of the algorithm would allocates 100% of voltage traces coming from same
set of current injections to the same cluster. For most of the cells, at least half of the voltage traces fall
into one cluster, and almost 45% of the cells have all traces (100%) assigned to same cluster (n=50).
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Fig S4. Misclassified voltage traces from an assigned cell.Each panel shows the percentage of
voltage traces of the cells assigned to a given cluster, which have been assigned by the algorithm to the
other clusters. For example, first panel shows that 30% of voltage traces of cells classified as
Accelerating fall into the Non-Adapting cluster. At higher current injection the accelerating pattern is
lost. Because of high firing rate the algorithm now classifies the traces as non-adapting . Numbers on
the x axis correspond to the different cluster classes. 1-Accelerating, 2-Non-Adapting, 3-Delayed,
4-Intrinsic Burst, 5-Adapting. Last panel shows the distribution of voltage traces of unclassified cells.
(n=50)
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Fig S5. Firing pattern transitions can be reproduced in both, a single compartment
model and a realistic CA3 pyramidal model. We find that the key ion channels responsible of
the firing pattern transitions are kept in both the single compartment model and the realistic one. The
upper trace represents the model traces reproduced on the CA3 realistic pyramidal cell, and below the
same firing pattern on the single cylinder is shown. The maximal conductance values used to reproduce
every pattern are shown in the Table S2.
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Increase in Intracellular calcium effect on pattern

Calcium Acumulation under the Stimulation Protocol
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Fig S6. Firing pattern transitions in the model are not due to calcium accumulation. A)
Protocol applied to the model cell: 1 Hz current stimulation by double current pulses that elicited a
depolarization of 10 mV, repeated 500 times. B) Comparison of model pulses with those elicited in the
soma of experimental cells. C) Due to kinetics of calcium decay, the ion does not accumulate over
period of stimulation (black trace). Decay must be much longer for calcium to accumulate significantly
(green trace). D) Hypothetical increase in intracellular increase has little effect on pattern of discharge,
even when increased 1000 fold (from left to right).
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Fig S7. Selected cells with high frequency firing do not switch to adapting or intrinsic
burst firings. A) Biocytin filled spiny cell with stellate morphology. B) Smooth cell with rounded
somata and short dense dendritic arbor. Firing patterns in control (upper) and after stimulation
(bottom) are shown beneath each cell for both the stellate (C) and the smooth cell (D). The neurons
present a non-adapting pattern both, before and after conditioning. Middle panel shows EPSPs elicited
in the cell via mossy fiber stimulation. Note that after conditioning, cells do not change the generic
Petilla firing pattern mode (Fast Spiking), although there is a visible modulation on the delay to first
spike (’ramping response’). Scale bar = 50µm
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