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ABSTRACT10

In recent years, deep neural networks (DNNs) have revolutionized the field of computer vision and image processing. In
medical imaging, algorithmic solutions based on DNNs have been shown to achieve high performance on tasks that previously
required medical experts. So far DNN-based solutions for disease detection have been proposed without quantifying their
uncertainty in a decision. In contrast, a physician knows whether she is uncertain about a case and will consult more
experienced colleagues if needed. Here we propose to estimate the uncertainty of DNNs in medical diagnosis based on a
recent theoretical insight on the link between dropout networks and approximate Bayesian inference. Using the example of
detecting diabetic retinopathy (DR) from fundus photographs, we show that uncertainty informed decision referral improves
diagnostic performance. Experiments across different networks, tasks and datasets showed robust generalization. Depending
on network capacity and task/dataset difficulty, we surpass 85% sensitivity and 80% specificity as recommended by the NHS
when referring 0%−20% of the most uncertain decisions for further inspection. We analyse causes of uncertainty by relating
intuitions from 2D visualizations to the high-dimensional image space, showing that it is in particular the difficult decisions that
the networks consider uncertain.

11

Introduction12

In recent years, deep neural networks (DNNs)1 have revolutionized computer vision2 and gained considerable traction in13

challenging scientific data analysis problems3. By stacking layers of linear convolutions with appropriate non-linearities4,14

abstract concepts can be learnt from high-dimensional input alleviating the challenging and time-consuming task of hand-crafting15

algorithms. Such DNNs are quickly entering the field of medical imaging and diagnosis5–13, outperforming state-of-the-art16

methods at disease detection or allowing one to tackle problems that had previously been out of reach. Applied at scale, such17

systems could considerably alleviate the workload of physicians by detecting patients at risk from a prescreening examination.18

Surprisingly, however, DNN-based solutions for medical applications have so far been suggested without any risk-19

management. Yet, information about the reliability of automated decisions is a key requirement for them to be integrated20

into diagnostic systems in the healthcare sector14. No matter whether data is short or abundant, difficult diagnostic cases are21

unavoidable. Therefore, DNNs should report - in addition to the decision - an associated estimate of uncertainty15, in particular22

since some images may be more difficult to analyse and classify than others, both for the clinician and the model, and the23

transition from ”healthy” to ”diseased” is not always clear-cut.24

Automated systems are typically evaluated by their diagnostic sensitivity, specificity or area under receiver-operating-25

characteristic (ROC) curve, metrics which measure the overall performance on the test set. However, as a prediction outcome26

can decide whether a person should be sent for treatment, it is critical to know how confident a model is about each prediction.27

If we were to know which patients are difficult to diagnose, humans and machines could attend especially to these, potentially28

increasing the overall performance. In fact, if the machine was making most mistakes when uncertain about a case, one could29

devise a strategy mimicking typical medical decision making. When faced with a difficult case and feeling uncertain about a30

decision a junior doctor will consult a more experienced colleague. Likewise, a diagnostic algorithm could flag uncertain cases31

as requiring particular attention by medical experts.32

Bayesian approaches to uncertainty estimation have indeed been proposed to assess the reliability of clinical predictions16–19
33

but have not been applied to the large-scale real-world problems that DNNs can target. Outside the medical domain, the34
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integration of the Bayesian idea and DNNs is an active topic of research20–30, where the practical value of these ideas has yet to35

be demonstrated.36

Due to its ease of use and inherent scalability, a recent insight from Gal & Ghahramani28, 29, 31 is particularly promising.37

Using dropout networks32, 33, where parts of the units are inactivated during training to avoid overfitting, one can compute an38

approximation to the posterior distribution by sampling multiple test predictions with dropout turned on. This allows one to39

perform approximate but efficient Bayesian inference by using existing software implementations. Another advantage of this40

approach is that it can be applied to already trained networks.41

Here we assess whether this allows us to retrieve informative uncertainty estimates for a large-scale, real world disease42

detection problem. Diabetic retinopathy (DR) is one of the leading causes of blindness in the working-age population of43

the developed world34. If the symptoms are detected in time, progress to vision impairment can be averted but the existing44

infrastructure is insufficient and manual detection is time-consuming. With the increase in the global incidence of diabetes35,45

clinicians now recognize the need for a cost-effective, accurate and easily performed automated detection of DR to aid the46

screening process34, 36, 37. Previous recommendations of the British Diabetic Association (now Diabetes UK) are often cited47

as 80% sensitivity and 95% specificity [37–39, and references therein] but the current minimum thresholds set by the NHS48

Diabetes Eye Screening programme are 85% sensitivity and 80% specificity for sight-threatening diabetic retinopathy14.49

Using a Bayesian DNN, we achieve state-of-the-art results for diabetic retinopathy detection. The computed measure50

of uncertainty allowed us to refer a subset of difficult cases for further inspection, resulting in substantial improvements in51

detection performance in the remaining data. This finding generalized across different model architectures, detection tasks and52

datasets. In practice, patients whose samples result in uncertain decisions would either be sent for further screening tests or53

referred directly to a specialist. We further explore the causes of uncertainty in our scenario. Intuitions illustrated on a 2D toy54

problem are used to understand how uncertainty might behave in the high-dimensional image space. This allowed us to predict55

the kind of application relevant scenarios for which the assessed uncertainty is informative.56

Results57

Here we tackle two major questions: first, we evaluate whether model uncertainty obtained from dropout networks at test time58

is useful for ranking test data by their prediction performance without knowing the latter. In the second part, we open the black59

box in order to learn what makes some predictions uncertain.60

Predicting diabetic retinopathy with a measure of (un)certainty61

Diabetic retinopathy datasets62

We used a DNN-based approach to detect diabetic retinopathy (DR) from fundus images. Our main dataset is taken from a63

previous Kaggle competition40. This dataset consists of 35,126 training images and 53,576 test images, graded into five stages64

of DR by clinicians according to the following scale41: 0 - No DR, 1 - Mild, 2 - Moderate, 3 - Severe and 4 - Proliferative DR.65

The percentage of images labelled with No DR is about 73% in both the training and test dataset.66

In order to measure the true generalization of our insights we in addition applied all networks to the publicly available Messidor67

dataset42. This dataset comprises 1,200 images divided into the following categories: 0 - No DR, 1 - Mild non-proliferative, 2 -68

Severe non-proliferative, 3 - Most serious DR.69

Disease detection tasks70

Because the question of whether a patient has to be sent to a physician at all, is of high priority, we reduced the problem to a71

binary classification task. Therefore we split the data into a ”healthy” versus ”diseased” set by grouping some of the classes. In72

order to analyse how model uncertainty behaves for different tasks, we varied the disease onset level. If set to 1, the classes73

except for 0 are in the ”diseased” category resulting in a detector for mild DR (or more severe) whereas for disease onset level74

2, classes {0,1} are considered ”healthy” and moderate DR (or more severe levels) are in the ”diseased” group.75

Network architectures76

We used two different network architectures for our experiments: (1) The publicly available network architecture and weights43
77

provided by the participant who ranked 5th out of 661 teams in the Kaggle DR competition40, which we will call JFnet. (2) A78

network trained de novo for the question at hand.79

The JFnet comprises 13 convolutional layers, 3 fully connected layers and a concatenation layer combining information80

from the contralateral eyes of a patient. Convolutional layers are interleaved with 5 max pooling layers, fully connected layers81

are interleaved with two feature pooling and dropout (pdrop = 0.5) layers each. All non-linearities are ReLUs44 or Leaky82

ReLUs45 (leakiness 0.5) except for the softmax output layer46. We recast the original model’s five output units (trained for83

Kaggle DR’s level discrimination task) to our binary tasks by summing the output of respective units.84

Our own network architecture was inspired by the monocular part of the JFnet (which in turn is VGG-like47), with the85

fully connected part replaced by the concatenation of a global mean and a global max pooling layer, followed by a softmax86
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Figure 1. Bayesian model uncertainty for diabetic retinopathy detection. (a)-(c), left: Exemplary fundus images with
human label assignments in the titles. (a)-(c), right: Corresponding approximate predictive posteriors (Eq. 6) over the softmax
output values p(diseased|image) (Eq. 1). Predictions are based on µpred (Eq. 7) and uncertainty is quantified by σpred (Eq. 8).
Examples are ordered by increasing uncertainty from left to right. (d) Distribution of uncertainty values for all Kaggle DR test
images, grouped by correct and erroneous predictions. Label assignment for ”diseased” was based on thresholding µpred at 0.5.
Given a prediction is incorrect, there is a strong likelihood that the prediction uncertainty is also high.
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output layer. Because the JFnet relies on both images of a given patient being present and has dropout only towards the end of87

the network, we also trained two networks (one for each disease detection task) that do not rely on eye blending. In order to88

increase the amount of network parameters that are treated in a Bayesian manner29, we added dropout (pdrop = 0.2) after each89

convolutional layer and denote these networks as Bayesian convolutional neural networks (BCNNs).90

Bayesian model uncertainty91

We measured the uncertainty associated with the predictions of the DNNs described above, exploiting a relationship between92

dropout networks and a Bayesian posterior28. Typically, the softmax output of a classification network denotes a single93

prediction given a sample. In case of DR detection from a fundus image (see fig. 1 (a) left, for a ”diseased” example) a trained94

network would output the probability that the given image is ”diseased” (fig. 1 (a), right). The softmax probability is based95

on a single set of network parameters, whereas in a Bayesian setting one aims for the predictive posterior (compare eq. 2),96

i.e. a distribution over predictions (in our case the softmax values) obtained by integrating over the distribution over possible97

parameters.98

The predictive posterior of a neural network is hard to obtain. However, Gal and colleagues28 showed that by leaving99

dropout turned on at test time, we can draw Monte Carlo samples from the approximate predictive posterior (for details see100

Methods). We will summarize each predictive posterior distribution by its first two moments. The predictive mean µpred (Eq. 7)101

will be used for predictions and the predictive standard deviation σpred (Eq. 8) as the associated uncertainty.102

Based on a fundus image, a DNN can be certain (1(a)) or more or less uncertain (1(b)-(c)) about its decision, as indicated103

by the width of the predictive posterior distribution: For example, an image can be classified as certainly diseased, where all104

sampled predictions are 1.0, such that σpred = 0 (Fig. 1 (a)). A different example is classified as ”healthy”, but the network105

predictions are more spread out (σpred = 0.14) (Fig. 1 (b)). The predicted label is still correct, because µpred = 0.36 < 0.5.106

Finally, some examples produce high uncertainty in the DNN (σpred = 0.27) and result in an erroneous ”diseased” prediction107

(µpred = 0.68 > 0.5) (Fig. 1 (c)).108

If high model uncertainty was indicative of erroneous predictions, this information could be leveraged to increase the109

performance of the automated system by selecting appropriate subsets for referral for further inspection. Indeed, model110

uncertainty was higher for incorrect predictions (Fig. 1 (d)). This means that σpred (a quantity that can be evaluated at test time)111

can be used to rank order prediction performance (a quantity unknown at test time), in order to mimic the human clinical work112

flow. In face of ambiguous decisions, further information should be obtained.113

Uncertainty rank orders prediction performance114

Performance improvement via uncertainty-informed decision referral115

We analysed the feasibility of this idea by performing predictions (using the BCNN trained for disease onset 1 on the Kaggle116

DR training images) for all Kaggle DR test images and sorted the predictions by their associated uncertainty. We then referred117

predictions based on various levels of tolerated uncertainty for further diagnosis and measured the accuracy of the predictions118

(thresholded at 0.5) for the remaining cases (Fig. 2 (a)).119

We observed a monotonic increase in prediction accuracy for decreasing levels of tolerated model uncertainty, which120

translates to the same behaviour when monitoring the fraction of retained data instead (Fig. 2 (b), blue curve). As a control121

experiment, we compared with randomly selected predictions, that is without using uncertainty information (Fig. 2 (b), green122

curve). For less than 2% decisions referred for further inspections, the 95% confidence intervals of the two scenarios are already123

non-overlapping. Uncertainty is hence informative about prediction performance, here measured by accuracy.124

Performance improvement for different costs, networks, tasks and datasets125

Here we build on the idea of uncertainty informed decision referral introduced above (Fig. 2) and assess whether performance126

improvements are robust across different settings. So far (Fig. 1, 2), predictions had been converted to labels by thresholding127

the predictive mean at 0.5. In a medical setting however, different costs are associated with false positive and false negative128

errors. These can be controlled by the decision threshold at which the diseased probability given an image is converted to the129

category ”diseased”. A complete picture can be obtained by the decision system’s receiver-operating-characteristic, which130

monitors sensitivity over 1 - specificity pairs for all conceivable decision thresholds. The quality of such a ROC curve can be131

summarized by its area under the curve (AUC), which varies between 0.5 (chance level) and 1.0 (best possible value).132

133

ROC AUC improves monotonically with decreasing levels of uncertainty (Fig. 3 (a, left)). In addition, ROC curves for all134

Kaggle test images as well as under 10,20 and 30% decision referral reveal that both sensitivity and specificity consistently135

improved (Fig. 3 (a, right)). These results were found to be robust for a variety of settings, that is for different networks136

(Bayesian CNN (Fig. 3, 1st row) vs. JFnet (Fig. 3, 2nd row), different tasks (disease onset 1 (Fig. 3, left double column) vs.137

disease onset 2 (Fig. 3, right double column)) and different datasets (BCNN on Kaggle (Fig. 3, 1st row) vs. BCNN on Messidor138
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randomly referred

Figure 2. Improvement in accuracy via uncertainty-informed decision referral. (a) The prediction accuracy as a
function of the tolerated amount of model uncertainty. (b) Accuracy is plotted as a fraction of retained data. The green curve
shows the effect of rejecting the same number of samples randomly, that is without taking into account information about
uncertainty.

(Fig. 3, 3rd row)).139

140

We trained the Bayesian CNNs exclusively on Kaggle DR training images. As we initialized the weights43 with those of the141

JFnet, in principle information from the test set could make our generalization estimate inaccurate, because the JFnet had been142

repeatedly submitted to Kaggle and Kaggle DR test data had been used for pseudo labelling. To provide a report of the true143

generalization performance, we used the Messidor database, which had never been used for either of our networks (Fig. 3,144

(e,f)). For a summary of the different configurations and comparison with prior state-of-the-art we refer to table 1.145

Even though our primary aim was not to achieve high performance, we surpassed the requirements of both the NHS and146

the British Diabetic Association (Fig. 3) for (automated) patient referral for several settings and perform on par with the non-147

ensembling approach of Antal & Hajdu38. We also performed similar ensembling38, by selecting an optimal (forward-backward148

search while monitoring AUC) ensemble of 100 networks from a much larger pool of dropout networks by controlling the149

random seeds. Performance improvements however were marginal and did not generalize to test data (data not shown), probably150

because this compromises the stochastic nature of the regularizing effects of dropout.151

The JFnet outperformed the Bayesian CNN across the different configurations, probably due to the missing eye blending in152

the latter case. In addition, the better performance for moderate DR detection (onset 2) as compared to mild DR detection153

(onset 1) across networks and datasets is in line with the more pronounced expression of symptoms as the disease progresses.154

Comparison across datasets reveals that for both tasks, the models performed better on Messidor than on Kaggle data (compare155

Fig. 3 (a) vs. (e) and (b) vs. (f)). Specifically, we achieved both the BDA and NHS requirements on Messidor without having to156

refer decisions whereas for Kaggle data we have to refer 0−30% of the data, depending on the recommendation, task difficulty157

and network capacity. It has been reported previously that about 10%48 of the Kaggle DR images were considered ungradable158

according to national UK standards. We want to emphasize that the proposed uncertainty informed decision referral did not rely159

on labels for such cases, that is we could detect problematic images in an unsupervised way.160
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(a)                                                                                      (b)

(c)                                                                                      (d)

(e)                                                                                      (f)

disease onset: mild DR

BCNN

Kaggle

disease onset: moderate DR

JFnet

Kaggle
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Figure 3. Improvement in receiver-operating-characteristics via uncertainty-informed decision referral for different
networks (1st vs. 2nd row), tasks (left vs. right double column), and datasets (1st vs. 3rd row). Different costs
associated with false positive and false negative errors are captured by the ROC characeteristics. (a, left) ROC AUC
over the fraction of retained data under uncertainty informed (blue) and random (green) decision referral for a Bayesian CNN,
trained for disease onset 1 and tested on Kaggle DR. (a, right) Exemplary ROC curves for different fractions of retained data.
Panels (b)-(f) have the same layout. National UK standards for the detection of sight-threatening diabetic retinopathy (in49

defined as moderate DR) from the BDA (80%/95% sensitivity/specificity, dark green dot) and the NHS (85%/80%
sensitivity/specificity, bright green dot) are given in all subpanels with exemplary ROC curves. (b) same as (a), but for disease
onset 2. (c) For the original JFnet, recast for disease onset 1, tested on Kaggle DR. (d) Same as (c), but for disease onset 2. (e)
Same network as in (a), but tested on Messidor. (f) Same network as in (b), but tested on Messidor.
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Dataset Architecture Task 100% data 90% data 80% data 70% data
AUC AUC AUC AUC

Kaggle DR Bayes. CNN (0) vs (1,2,3,4) 0.889 0.898 0.908 0.918
CI: [0.885-0.892] CI: [0.894-0.902] CI: [0.904-0.912] CI: [0.914-0.922]

Kaggle DR Bayes. CNN (0, 1) vs (2,3,4) 0.927 0.938 0.947 0.956
CI: [0.924-0.930] CI: [0.935-0.941] CI: [0.944-0.950] CI: [0.953-0.959]

Kaggle DR JFnet (0) vs (1,2,3,4) 0.911 0.918 0.925 0.932
CI: [0.908-0.914] CI: [0.914-0.921] CI: [0.921-0.929] CI: [0.928-0.935]

Kaggle DR JFnet (0, 1) vs (2,3,4) 0.947 0.953 0.954 0.956
CI: [0.944-0.950] CI: [0.949-0.956] CI: [0.951-0.958] CI: [0.952-0.960]

Messidor Bayes. CNN (0) vs (1,2,3) 0.936 0.948 0.956 0.968
CI: [0.922-0.949] CI: [0.935-0.960] CI: [0.943-0.968] CI: [0.956-0.978]

Messidor Bayes. CNN (0, 1) vs (2,3) 0.955 0.965 0.973 0.978
CI: [0.943-0.967] CI: [0.953-0.975] CI: [0.962-0.983] CI: [0.967-0.988]

Messidor Single best38 (0) vs (1, 2, 3) 0.936 - - -
Messidor Ensemble38 (0) vs (1, 2, 3) 0.989 - - -

Table 1. Model performance (measured by AUC) with two different datasets, architectures and tasks when data with higher
uncertainty levels is referred to further inspection.

What causes uncertainty?161

Next we asked what causes the networks to consider the prediction about an image uncertain. In order to build an intuitive162

understanding of uncertainty estimates, we trained a simple Bayesian neural network (3 hidden layers with 100 units each) with163

dropout layers interleaved (pdrop = 0.5) on a 2D toy classification problem (Fig. 4).164

The network learns the non-linear hyperplane (defined by p(y = 1|x,θ) = 0.5) that separates the two classes (Fig. 4 (a))165

shown as the network’s softmax output when evaluated traditionally, that is with dropout turned off at test time. The first (Fig. 4166

(b), eq. 7) and second moment (Fig. 4 (c), eq. 8) of the approximate predictive posterior (Eq. 6) in turn are more spread out167

along directions orthogonal to the separating hyperplane. Predictions with low confidence (i.e. high uncertainty, compare Fig.168

1) may simply by chance be correct (Fig. (4)). Vice versa, erroneous predictions with low uncertainty may be attributed to169

outliers. As real world data ((e.g. fig. 1 (d))) may suffer from label noise, particularly confident predictions may be evaluated as170

incorrect because of wrong labels. Most importantly however, the network seems to show high uncertainty predominantly for171

the difficult cases - i.e. those that reside in the vicinity of the decision boundary (Fig. 4 (c)).172

In the following we devised two experiments that aimed to assess whether these considerations generalize to the high-173

dimensional image space for DR detection. Is it predominantly difficult diagnostic decisions that carry a high uncertainty?174

We want to emphasize that while this may seem obvious, it is far from guaranteed that the approximation of the approximate175

predictive posterior is quantitatively good enough to identify such cases.176

The first experiment makes use of the gradual progression of disease levels from 0 to 4 in case of Kaggle DR data. We177

probed what happened to images neighbouring the healthy/diseased boundary defined by our two tasks with different disease178

onset level. To this end, we quantified the proportion of the different disease levels in the data referred for further inspection for179

various uncertainty thresholds (Fig. 5).180

As the minimum σpred increases, there is a shift from the prior distribution (shown on the vertical axis at σpred = 0) towards181

those disease levels that are adjacent to the healthy/diseased boundary (black lines in Fig. 5 (a) & (b)). For mild DR defining182

the disease onset and large tolerated uncertainties, disease levels 0 and 1 dominate the pool of referred data (Fig. 5 (a)). If we183

shifted the disease onset to moderate DR, in an analogous manner disease levels 1 and 2 dominated the referred data sets for184

high tolerated uncertainties (Fig. 5 (b)). As a side note, depending on the therapeutic possibilities - moderate DR detection (Fig.185

5 (a)) might be preferable to mild DR detection (Fig. 5, (a)) as the uncertainty still detected level 1 patients in the latter case186

but reduced the amount of healthy patients sent for referral. In summary, figure 5 suggests that it is in particular the difficult187

diagnostic cases close to the decision boundary that carry a high uncertainty with their predictions.188
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Figure 4. Illustration of uncertainty for a 2D binary classification problem. (a) Conventional softmax output obtained by
turning off dropout at test time (Eq. 1). (b) Predictive mean of approximate predictive posterior (Eq. 7). (c) Uncertainty,
measured by predictive standard deviation of approximate predictive posterior (Eq. 8). The softmax output (a) is overly
confident (only a narrow region in input space assumes values other than 0 or 1) when compared to the Bayesian approach (b,
c). Uncertainty (c) tends to be high for regions in input space that are close to the decision boundary. Colour-coded dots in all
subplots correspond to test data the network has not seen during training.
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Figure 5. Predominant decision referral for disease levels neighbouring healthy/diseased boundary. The relative
proportions of different disease levels within the referral dataset are shown for uncertainty greater or equal to the value
indicated on the x-axis. There is a change in the relative proportion of classes compared to the prior distribution (tolerated
uncertainty = 0, i.e. the entire test dataset is flagged for referral) towards the classes directly neighbouring the healthy/diseased
boundary (depicted by a black line) as the tolerated uncertainty increases. (a) Disease onset level is mild DR (1). Disease levels
0 and 1 neighbour the healthy/diseased boundary and dominate the referral dataset under high uncertainty. (b) Disease onset
level is moderate DR (2). In analogy to (a), disease levels 1 and 2 neighbour the healthy/diseased boundary and dominate the
decision referral populations with high uncertainty values.

The second experiment to analyse whether the proposed uncertainty measure captures predominantly difficult diagnostic189

cases makes use of the availability of both eyes’ images for each patient in case of Kaggle DR data. Even though therapeutic190

intervention is typically based on a patient level diagnosis, the contra-lateral eye of a given patient may be in a different state191

and therefore carry a different label. A strong correlation of the two eyes’ disease states was leveraged to improve performance192
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by many Kaggle competition participants40. However, even after compilation of the 5-class problem to the binary disease193

detection problem, 5−10% of images categorized as diseased have images from the contra-lateral eye with a disagreeing label.194

Whether the corresponding patients are diseased or not is therefore unclear. By measuring the proportion of images whose195

contra-lateral ground truth label is different for the referred and retained data sets respectively (Fig. 6), we got another view196

onto the proposed uncertainty for difficult images. Indeed, images from patients with one healthy and one diseased eye are197

more likely to be referred for further inspection than retained (Fig. 6). For both disease detection tasks (compare Fig. 6 (a)/(b)198

for mild/moderate DR as disease onset respectively) this is particularly pronounced in the high uncertainty regime.199

referred referred

Figure 6. Decision referral of images from ambiguous patients. (a) Disease onset is mild DR (1). (b) Disease onset is
moderate DR (2). Both subplots show the relative proportion of images from ambiguous patients in the referred (blue) and
retained (green) data buckets for various tolerated uncertainty values. Patient level ambiguity is defined by images whose
contra-lateral eye (from the same patient) carries a different label. Note that the decision referral of images is based on the
uncertainty from a single image (using the BCNN). Ground truth labels and the contra-lateral eye information are only used as
meta information for evaluation purposes. Especially in the high uncertainty regime, images from ambiguous patients are more
likely to be referred for further inspection than accepted for automatic decision.
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Discussion200

Here we showed that it is feasible to associate deep learning based predictions about the presence of DR in fundus photographs201

with uncertainty measures that are informative and interpretable. Using the recently identified connection between dropout202

networks and approximate Bayesian inference28, 29, we computed meaningful uncertainty measures without needing additional203

labels for an explicit uncertain category. Computing this uncertainty measure was efficient, as computing the approximate204

predictive posterior for one image took us about ≈ 200ms.205

We achieved state-of-the art performance (Table 1) for DR detection under several settings (Fig. 3), in particular with a206

Bayesian CNN trained on Kaggle DR and tested on Messidor. The performance achieved by our networks met the requirements207

for UK national standards for automatically diagnosing DR. For all settings we could improve performance in terms of ROC208

AUC (Fig. 3) by referring uncertain, that is difficult (Fig. 4, 5, 6) cases for further inspection. Acquiring further opinions209

naturally integrates into the traditional clinical work flow as well as into a human-machine loop in which especially attended,210

difficult cases could be fed back into the model for its continuous improvement50.211

We observed slightly worse performance on Kaggle data as compared to Messidor. We want to point out, that the quality of212

the former dataset was questioned previously - albeit informally, both by competition participants40 as well as by clinicians48.213

The extent to which the set of images considered uncertain by our approach overlaps with the images considered ungradable or214

wrongly labelled by humans is, however, unclear. Because images considered ungradable by clinical specialists may coincide215

with difficult diagnostic cases, these should be identifiable via high uncertainties from our approach. Easy decisions for images216

with wrong labels in turn should cause wrong predictions with low uncertainty. Both situations could hence be identified by our217

approach and be used to selectively reduce label noise and improve model performance.218

The scope of which scenarios our approach is able to deal with can be understood by our results regarding the causes of219

uncertainty. We showed that it is in particular the difficult decisions that are considered uncertain by the networks, both for the220

2D toy examples (Fig. 4) as well as for the high-dimensional image case (Fig. 5 & 6). In addition, it may seem desirable from a221

practical point of view for bad quality images (e.g. due to under-illumination or out-of-focus image captioning) or non-fundus222

images (e.g. due to database noise) to be considered uncertain. Neither of the two cases can however be reliably detected via a223

high uncertainty because there is no guarantee that the corresponding image transformations are in any way linked to regions of224

high uncertainty (Fig. 4). Images far from the training data in turn can be detected as long as they matter for the task - that is as225

long as they reside in the vicinity of the (extrapolated) decision boundary.226

We conclude that this work successfully demonstrated the benefits and applicability of uncertainty in deep learning51 for227

disease detection. This paradigm can be applied to other medical tasks and datasets as initial work on image registration52 and228

genome data53 has already shown. We also believe that segmentation27 and regression54 problems which are omnipresent in229

biomedical imaging and diagnostics could largely benefit from taking uncertainty into account.230

Methods231

General DNN methodology232

Software and code availability233

We used the deep learning framework Theano55(0.9.0dev1.dev-RELEASE) together with the libraries Lasagne56(0.2.dev1)234

and Keras57(1.0.7). Network trainings and predictions were performed using a NVIDIA GeForce GTX 970 and a GeForce235

GTX 1080 with cuda versions 7.5/8 and cuDNN 4/5. Our reimplementation of the JFnet together with the provided weights43,236

achieved a quadratic weighted kappa score (the performance measure used by the Kaggle DR competition) of 0.8160/0.8311237

on the private/public leaderboard test sets respectively (on the original 5 class problem), for comparison we refer to the238

competition website40. All code and models for fast DR detection under uncertainty will be publicly available upon publication239

at https://bitbucket.org/cleibig/disease-detection.240

Image preprocessing241

All images were cropped to a squared centre region and resized to 512x512 pixels. In order to compensate for the decreased242

network depth in case of the Bayesian CNNs we additionally subtracted the local average colour for contrast enhancement243

purposes as described58 and used13 previously. Images fed to the JFnet were normalized the same way as had been used for244

training by the author43, whereas those fed to the BCNNs were standard normalized for each colour channel separately.245

Network training246

We trained one Bayesian CNN for each disease detection task using 80% of the Kaggle DR training data. We minimized the
cross-entropy plus regularization terms (Eq. 5) using stochastic gradient descent with a batch size of 32 and Nesterov updates
(momentum=0.9). All parameters were initialized with the weights from the JFnet. Final weights were chosen based on the
best ROC AUC achieved on a separate validation set (20% of Kaggle DR training data) within 30 training epochs. The learning
rate schedule was piecewise constant (epoch 1-10: 0.005, epoch 11-20: 0.001, epoch 21-25: 0.0005, epoch 26-30: 0.0001).
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L2-regularization (λ = 0.001) was applied to all parameters, L1-regularization (λ = 0.001) to only the last layer in the network.
Data augmentation was applied to 50% of the data in an epoch. Affine transformations were composed by drawing uniformly
from ranges for zooming (±10%), translating (independent shifts in x- and y-directions by ±25 pixels), and rotating (±π).
Transformed images were in addition flipped along the vertical and/or the horizontal axis if indicated by respective draws from
a Binomial distribution (µ = 0.5). Effects of class imbalance onto the stochastic gradient were compensated by attributing
more weight to the minority class, given by the relative class frequencies in each mini-batch59 p(k)mini−batch. To achieve this,
we reweighed the cross-entropy part of the cost function (compare eq. 5) for a mini-batch of size n to:

− 1
Kn

n

∑
i=1

log e f (xi,θ(ω̂i)k)

∑ j e f (xi,θ(ω̂i) j)

p(k)mini−batch

We fixed the amount of dropout for the convolutional layers to pdrop = 0.2, because this was a good compromise between getting247

a reasonable performance and uncertainty measures. We observed convergence problems for larger pdrop when initializing the248

Bayesian CNNs with the pretrained weights from the network without dropout between conv. layers. Gradually increasing249

dropout during training could potentially ease convergence. Alternatively, the dropout rates could be learnt via variational250

dropout25.251

Approximate Bayesian model uncertainty for deep learning252

Recently, it was shown28 that a multi-layer-perceptron (i.e. a stack of densely connected layers) with dropout after every weight253

layer is mathematically equivalent to approximate variational inference46 in the deep Gaussian process (GP) model60, 61. This254

result holds for any number of layers and arbitrary non-linearities. Next, this idea was extended to incorporate convolutional255

layers29, potentially loosing the GP interpretation, but preserving the possibility to obtain an approximation to the predictive256

posterior in a Bayesian sense. Here, we summarize the core idea for deep classification networks and highlight in particular the257

difference between the Bayesian perspective and the classification confidence obtained from the softmax output.258

Softmax vs. Bayesian uncertainty259

DNNs (with or without convolutional layers) for classifying a set of N observations {x1, ...,xi, ...,xN} into a set of associated260

class memberships {y1, ...,yi, ...,yN} with yi ∈ {1, ...,K}, and K the number of classes, can be trained by minimizing the261

cross-entropy between the distribution of the true class labels and the softmax network output:262

p(yi = k|xi,θ) =
e f (xi,θk)

∑ j e f (xi,θ j)
(1)

Equation (1) denotes the probability that the observation xi belongs to class k, if propagated through the network function f263

with all parameters summarized by θ , i.e. weights Wi and biases bi of all layers i ∈ {1, ...,L}. For the example of disease264

detection from images, we have a single unit whose output denotes the probability for the presence of the disease in a given265

image.266

Cross-entropy minimization results in a single best parameter vector θ , constituting the maximum-likelihood solution. L2-267

regularization, typically used to prevent overfitting, is equivalent to putting a Gaussian prior on the network parameters, resulting268

in a maximum-a-posteriori (MAP) solution.269

A fully probabilistic treatment in a Bayesian sense, however, would consider a distribution over network parameters instead of270

a point estimate. By integrating over the posterior p(θ |X,y,x∗) given the entire training data {X,y} and a new test sample x∗271

one would like to obtain the predictive posterior distribution over class membership probabilities:272

p(y∗|X,y,x∗) =
∫

p(y∗|θ)p(θ |X,y,x∗)dθ (2)

Whereas equation (1) determined a single value specifying the probability that an image belongs to the diseased class, the273

predictive posterior (Eq. 2) defines a distribution of such predictions, that is the probability values that a single image is274

diseased. Intuitively, the width of the predictive posterior should reflect the reliability of the predictions. For large training data275

sets, the parameter point estimates (from maximum-likelihood or MAP) may correspond to the mean or mode of the predictive276

posterior, resulting in a potentially strong relationship between the width of the predictive posterior and the softmax output,277

however this is not guaranteed. Indeed we’ve found that only for the original JFnet the softmax output may be used as a proxy278

for (prediction instead of model) uncertainty (values close to 0.5 were considered uncertain, data not shown), whereas the279

Bayesian treatment worked for all investigated scenarios.280
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Bayesian convolutional neural networks with Bernoulli approximate variational inference281

In practice, equation (2) is intractable and a common way to find approximating solutions is via variational inference. We282

assume the true posterior to be expressible in terms of a finite set of random variables ω . The posterior is then approximated by283

the variational distribution q(ω) as follows:284

p(θ |X,y,x∗)≈
∫

p(θ |x∗,ω)p(ω|X,y)dω ≈
∫

p(θ |x∗,ω)q(ω)dω (3)

Maximizing the log evidence lower bound with respect to the approximating distribution q(ω):285

LV I :=
∫

p(y|X,ω)q(ω)dω−KL(q(ω||p(ω))) (4)

has two effects. The first term maximizes the likelihood of the training data {X,y}, whereas the second term takes care of286

approximating the true distribution p(ω) by q(ω) . The key insight from Gal & Ghahramani was then to link equation (4) with287

dropout training. Here, we will summarize the derivations31 in words. The integral in eq. (4) is still intractable and therefore288

approximated with Monte Carlo sampling. This results in the conventional softmax loss for dropout networks, for which units289

are dropped by drawing from a Bernoulli prior with probability pdrop for setting a unit to zero. The KL term in (4) was shown31
290

to correspond to a L2-regularization term in dropout networks. Summing up, approximate variational inference with a Bernoulli291

approximating distribution can be performed with the following loss:292

L̂V I := Ldropout =−
N

∑
i=1

log
e f (xi,θ(ω̂i)k)

∑ j e f (xi,θ(ω̂i) j)
+λ

L

∑
i=1
||θi(ω̂i)||2 ω̂i ∼ q(ω) (5)

We use ω̂i as a shorthand notation for stating that in order to decide whether a unit is dropped, we independently sample from293

a Bernoulli distribution (with probability pdrop) for each unit in all layers for each training sample. Note that Monte Carlo294

sampling from q(ω) is equivalent to performing dropout during training, hence we get the Bayesian network perspective as295

well for already trained models.296

Obtaining model uncertainty at test time297

Obtaining model uncertainty for a given image is as simple as keeping the dropout mechanism switched on at test time298

and performing multiple predictions. The width of the distribution of predictions is then a reasonable proxy for the model299

uncertainty. More formally expressed, we replace the posterior with the approximating distribution (Eq. 3) and plug it into the300

expression for the predictive posterior (2):301

p(y∗|X,y,x∗)≈
∫

p(y∗|x∗,ω)q(ω)dω (6)

We then approximate the integral by Monte Carlo sampling and compute the predictive mean (to be used for a final prediction302

on a test image):303

µpred ≈
1
T

T

∑
t=1

p(y∗|x∗,θ(ω̂t)) (7)

as well as the predictive standard deviation as a proxy for the uncertainty associated with this prediction:304

σpred ≈
1

T −1

√
T

∑
t=1

(p(y∗|x∗,θ(ω̂t))−µpred)2 (8)

For this work, we fixed T = 100 because it was shown by29 to suffice. The test predictions could be performed in parallel, but305

even a serial implementation takes less than 200ms per image.306

Analysis of results307

All density plots are based on Gaussian kernel density estimates, for which the bandwidth was chosen based on Scott’s method62.308

All line plots are based on the entire data and the 95% confidence intervals were obtained from 104 bootstrap samples.309
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