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Abstract 

Background 

Causes of the association between lower cognitive ability and poorer health remain unknown, 

but may reflect a shared genetic aetiology as indicated by previous research. This study 

examines the causal genetic associations between cognitive ability and physical health 

outcomes. 

Method 

We carried out Mendelian randomization analyses using the inverse variance weighted 

method to test for causality between later life cognitive ability, educational attainment (as a 

proxy for cognitive ability in youth), BMI, height, systolic blood pressure, coronary artery 

disease, and type 2 diabetes in the UK Biobank sample (N = 112 151). Sensitivity analyses 

were performed using MR-Egger regression. 

Results 

BMI, systolic blood pressure, coronary artery disease and type 2 diabetes showed negative 

associations with cognitive ability, while height was positively associated with cognitive 

ability. The Mendelian randomization analyses provided no evidence for a casual association 

from health to cognitive ability. In the other direction, higher educational attainment 

predicted lower BMI, systolic blood pressure, coronary artery disease, type 2 diabetes, and 

taller stature. The Mendelian randomization analyses indicated partly causal associations 

from educational attainment to health, however when adjusting for bias using the MR-Egger 

regression, these effects disappeared.  

Conclusions 

The lack of consistent evidence for causal associations between cognitive ability, educational 

attainment, and physical health could be explained by violations of the Mendelian 

randomization assumptions, including biological pleiotropy. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 1, 2016. ; https://doi.org/10.1101/084798doi: bioRxiv preprint 

https://doi.org/10.1101/084798


3 
 

 

Key messages 

• Cognitive ability and physical health outcomes are positively associated.  

• Mendelian randomization analyses indicated that educational attainment influenced 

physical health outcomes. 

• Sensitivity analyses, using MR-Egger regression, indicated that these associations 

were biased due to violations of the Mendelian randomization assumptions.  
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Introduction 

Lower cognitive ability, lower educational attainment and greater cognitive decline are all 

associated with poorer health outcomes1-3. Some of these associations possibly arise because 

of the effect of lower cognitive ability in childhood on later life health, others because 

illnesses may lower cognitive ability in later life. The causes of these associations are unclear, 

but may reflect a shared genetic aetiology. Recent papers have reported genetic associations 

between cognitive ability and educational attainment, and a number of physical and mental 

health traits and diseases4-6. These4, 6, and other7-9, papers have shown successful use of 

educational attainment as a proxy for cognitive ability, showing phenotypic correlations 

between educational attainment and general cognitive ability around 0.509  and a genetic 

correlation of 0.724. 

 

Some of the reciprocal phenotypic associations between cognitive and physical health 

variables, and their genetic correlations, are as follows. Short stature has been consistently 

linked with lower cognitive ability10, 11. Molecular genetic studies have indicated positive 

genetic correlations between height and cognitive ability4, 12, as well as between height and 

education attainment4, 5. Higher polygenic scores for height have been associated with better 

cognitive ability in adulthood4.   

 

Multiple studies have shown associations between cognitive ability and cardiovascular risk 

factors. For example, lower childhood cognitive ability is associated with subsequent high 

blood pressure13 and obesity14. However, higher BMI in mid-life15 and both hypertension and 

hypotension16 are associated with lower cognitive ability and greater cognitive decline in later 

life. A negative genetic correlation has been identified between BMI, but not blood pressure, 

and educational attainment and cognitive ability in mid to late life4, 5 and a polygenic score 
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for higher BMI is associated with lower cognitive ability in mid to late life and lower 

educational attainment4, whereas a polygenic score for higher systolic blood pressure is 

associated with lower educational attainment, but higher cognitive ability in mid to late life4.  

 

Similarly, associations have been identified between cognitive ability and cardio metabolic 

diseases. Childhood cognitive ability has been associated with developing diabetes17 and 

coronary artery disease18 later in life. Diabetes19 and coronary artery disease20, 21 in midlife 

have been associated with greater cognitive decline later in life. A polygenic risk score for 

type 2 diabetes is associated with lower educational attainment, but not with cognitive ability 

in mid to late life4, although one has been associated with reduced cognitive decline22. To 

date no significant genetic correlation between diabetes and cognitive ability has been 

identified4, 5. A polygenic risk score for coronary artery disease is associated with lower 

educational attainment and lower mid to late life cognitive ability4, and a negative genetic 

correlation was identified between coronary artery disease and educational attainment4, 5, but 

not cognitive ability in mid to late life4. 

 

The question arises, are the genetic associations caused by: 1) genes influencing health 

traits/diseases, and then those health traits/diseases subsequently influencing cognitive 

ability; 2) genes influencing cognitive ability, and then cognitive ability subsequently 

influencing health traits/diseases; 3) genes influencing general bodily system integrity23 that 

influences both cognitive ability and health traits/diseases?  

 

To try to make some progress in understanding causality of the correlation between cognitive 

ability and a number of physical and mental health traits we used a bi-directional Mendelian 

randomization (MR) with Egger regression approach24. MR uses genetic variants as proxies 
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for environmental exposures and is subject to the following assumptions: 1) the genetic 

variants are associated with the exposure; 2) the genetic variants are only associated with the 

outcome of interest via their effect on the exposure (i.e., there is no biological pleiotropy, also 

called the exclusion restriction); and 3) the genetic variants are independent of confounders. 

Figure 1 shows the Mendelian randomization study model; the instrumental variable, based 

on genome-wide significant SNPs from independent studies for the exposure, is used to 

estimate if the exposure (e.g. BMI) causally influences the outcome (e.g. cognitive ability). 

Individual single nucleotide polymorphisms (SNPs) are often found to be weak instruments 

for investigating causality because they often have small effect sizes. Using multiple SNPs 

can increase the strength of the instrument. However, this increases the chance of violating 

the MR assumptions, specifically violation of the assumption that the genetic variant affects 

the outcome via a different pathway than via the exposure. In the present study, Egger 

regression was used as a sensitivity analysis to test for such violations. We used multiple 

genetic variants for a number of health-related traits and diseases, previously identified in a 

genome-wide association study, as instrumental variables to see if they predicted cognitive 

ability (verbal-numerical reasoning) in mid to later life in the UK Biobank. We then used 

genome-wide significant educational attainment SNPs as an instrumental variable to test 

whether genetic differences associated with educational attainment (a proxy measure of 

cognitive ability in early life6, 8) predicts later life health outcomes in the UK Biobank. 

 

Methods 

Sample 

This study uses baseline data from the UK Biobank Study, a large resource for identifying 

determinants of human diseases in middle aged and older individuals25. UK Biobank received 

ethical approval from the Research Ethics Committee (reference 11/NW/0382). This study 
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has been completed under UK Biobank application 10279. Around 500 000 community-

dwelling participants aged between 37 and 73 years were recruited and underwent 

assessments between 2006 and 2010 in the United Kingdom. This included cognitive and 

physical assessments, providing blood, urine and saliva samples for future analysis, and 

giving detailed information about their backgrounds and lifestyles, and agreeing to have their 

health followed longitudinally. For the present study, genome-wide genotyping data were 

available on 112�151 individuals (58�914 females) aged 40–70 years (mean age=56.9 

years, s.d.=7.9) after the quality control process which is described in more detail elsewhere4.  

 

Measures 

Body mass index 

Body mass index (BMI) was calculated as weight(kg)/height(m)2, and measured using an 

impedance measure, i.e. a Tanita BC418MA body composition analyser, to estimate body 

composition. We used the average of the two methods when both measures were available (r 

= 0.99); if only one measure was available, that measure was used (N = 1629). 291 

individuals did not have information on BMI. One outlier was excluded based on visual 

inspection of the BMI distribution (BMI > 50). 111 712 individuals had valid BMI and 

genetic data.  

 

Height 

Standing and sitting height (cm) were measured using a Seca 202 device. We used standing 

height and excluded one individual based on the visual inspection of the height distribution 

with a standing height < 125 cm and a sitting/standing height ratio < 0.75. 111 959 had valid 

height and genetic data. 
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Systolic blood pressure  

Systolic blood pressure was measured twice, a few moments apart, using the Omron Digital 

blood pressure monitor. A manual sphygmomanometer was used if the digital blood pressure 

monitor could not be employed (N = 6652). Systolic blood pressure was calculated as the 

average of measures at the two time points (for either automated or manual readings). 

Individuals with a history of coronary artery disease were excluded from the analysis (N = 

2513). Following the recommendation by Tobin, Sheehan et al26, 15 mmHg was added to the 

average systolic blood pressure of individuals taking antihypertensive medication (N = 10 

988). Individuals with a systolic blood pressure (after correcting for medication) more than 4 

SD from the mean were excluded from future analyses (N = 75). After all exclusions, 106 

759 individuals remained with valid blood pressure and genetic data. 

 

Coronary artery disease 

UK Biobank participants completed a touch screen questionnaire on past and current health, 

which included the question “Has a doctor ever told you that you have had any of the 

following conditions? heart attack/angina/stroke/high blood pressure/none of the above/prefer 

not to answer”. This was followed by a verbal interview with a trained nurse who was made 

aware if the participant had a history of certain illnesses and confirmed these diagnoses with 

the participant. For the present study, coronary artery disease was defined as a diagnosis of 

myocardial infarct or angina, reported during both the touchscreen and the verbal interview 

(N = 5288). The control group (N = 104 784) consisted of participants who reported none of 

the following diseases (based on the non-cancer illness code provided by UK Biobank): 

myocardial infarction, angina, heart failure, cerebrovascular disease, stroke, transient 

ischaemic attack, subdural haemorrhage, cerebral aneurysm, peripheral vascular disease, leg 

claudication/intermittent claudication, arterial embolism. 
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Type 2 diabetes 

Type 2 diabetes case-control status was created using the same method as described by Wood 

et al27. Cases included participants who reported type 2 diabetes or generic diabetes during 

the nurse interview, started insulin treatment at least one year after diagnosis, were older than 

35 years at the time of diagnosis, and did not receive a diagnosis one year prior to baseline 

testing (N = 3764). The control group consisted of participants who did not fulfil these 

criteria, and did not report a diagnosis of type 1 diabetes, diabetes insipidus and gestational 

diabetes (N = 108 015). 

 

Years of education 

As part of the sociodemographic questionnaire in the study, participants were asked, “Which 

of the following qualifications do you have? (You can select more than one)”. Possible 

answers were: “College or University Degree/A levels or AS levels or equivalent/O levels or 

GCSE or equivalent/CSEs or equivalent/NVQ or HND or HNC or equivalent/Other 

professional qualifications e.g. nursing, teaching/None of the above/Prefer not to answer”. 

For the present study, a new continuous variable was created measuring ‘years of education 

completed’. This was based on the ISCED coding, using the 1997 International Standard 

Classification of Education (ISCED) of the United Nations Educational, Scientific and 

Cultural Organization28. See the Table 1 for further details. For the current study, years of 

education was used a proxy phenotype for cognitive ability4, 6, 8. A total of 111 114 

individuals had valid data for the years of education variable. 

 

Cognitive ability  
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Cognitive ability was measured using a 13-item touchscreen computerized verbal-numerical 

reasoning test. The test included six verbal and seven numerical questions, all with multiple-

choice answers, with a two-minute time limit. An example verbal item is: ‘Stop means the 

same as?’ (possible answers: ‘Pause/Close/Cease/Break/Rest/do not know/prefer not to 

answer’). An example numerical item is: Which number is the largest’ (possible answers: 

‘642/308/987/714/253/do not know/prefer not to answer’). The cognitive ability score was 

the total score out of 13 (further detail can be found in Hagenaars et al.4). A total of 36 035 

had valid cognitive ability and genetic data. 

 

Covariates 

All analyses were adjusted for the following covariates: age when attending assessment 

centre, sex, genetic batch and array, and the first ten genetic principal components for 

population stratification. 

 

Instrumental variables 

SNPs used in the instrumental variables were extracted from the imputed UK Biobank 

genotypes interim release including 112 151 individuals after quality control. Details on the 

quality control process have been published previously4. All instrumental variables were 

created based on SNPs that reached genome-wide significance in the largest available GWAS 

in European samples for the variables of interest (BMI29, height27, systolic blood pressure30, 

coronary artery disease31, type 2 diabetes32 and educational attainment33). SNPs out of Hardy-

Weinberg equilibrium (HWE, p < 1×10-6), with an imputation quality below 0.9, or 

individual genotypes with a genotype probability below 0.9 were excluded from the 

instrumental variables. The individual variants were recoded as 0, 1 or 2 according to the 

number of trait increasing alleles. Table 1 includes information on the number of SNPs 
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included, the reference paper, and the amount of variance explained by the instrumental 

variables for the corresponding variable of interest. Supplementary Table 1a-f provides 

details of the included SNPs. 

 

Statistical analysis 

Phenotypic associations 

We performed linear regression analysis using BMI, height, systolic blood pressure, coronary 

artery disease, and type 2 diabetes to predict cognitive ability. We regressed BMI, height, and 

systolic blood pressure against educational attainment in a linear regression model; coronary 

artery disease and type 2 diabetes were regressed against educational attainment in logistic 

regression models.  

 

Mendelian randomization analysis 

The Mendelian randomization analysis was performed using inverse variance weighted 

regression analysis based on SNP level data, with each instrumental variable (IV) consisting 

of multiple SNPs24. The inverse variance weighted method is based on a regression of two 

vectors with the intercept constrained to zero; the genetic variant with the exposure 

association, and the genetic variant with the outcome association (Figure 1). By constraining 

the intercept to zero, this method assumes that all variants are valid instrumental variables. 

We performed an association analysis between each SNP in the instrumental variable for the 

exposure and the exposure itself (IV - exposure), as well as between the instrumental variable 

for the exposure and the outcome (IV - outcome). We then used the vector of the instrumental 

variable-outcome association analyses against the vector of the instrumental variable-

exposure analyses. This association (vector IV - outcome ~ vector IV - exposure) was 

weighted by the standard error of the original IV-outcome association, to correct for minor 
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allele frequency, as described by Bowden et al24. If the inverse variance weighted method 

indicated a significant effect, we used MR-Egger regression as a sensitivity analysis to test 

for violations of the instrumental variable assumptions24. This method is similar to the inverse 

variance weighted method, but uses an unconstrained intercept. The MR-Egger regression 

will give a bias-adjusted estimate, as it uses a weaker version of the exclusion restriction, by 

assuming that the associations of the genetic variants with the exposure, and the direct effect 

of the genetic variants on the outcome are independent of each other. This tests for directional 

pleiotropy, as the instrumental variable is not constrained by the instrumental variable 

assumptions. 
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Results 

Health outcomes predicting cognitive ability 

BMI, height, systolic blood pressure, and coronary artery disease predicted performance on 

the verbal-numerical reasoning test of cognitive ability (Table 3). A 1 SD higher BMI was 

associated with a 0.05 SD lower score for cognitive ability. A 1 SD greater height was 

associated with a 0.18 SD higher score for cognitive ability. A 1 SD higher systolic blood 

pressure was associated with a 0.05 SD lower score for cognitive ability. Individuals with 

coronary artery disease had, on average, a 0.27 SD lower score for cognitive ability. 

Individuals with type 2 diabetes had, on average, a 0.06 SD lower score for cognitive ability. 

The inverse variance weighted analyses, with the five health outcomes as the exposures, and 

cognitive ability as the outcome, did not provide any genetic causal evidence for any of these 

associations. 

 

Education predicting health outcomes 

Educational attainment, as measured by years of education, predicted BMI, height, systolic 

blood pressure, type 2 diabetes and coronary artery disease (Table 4, Figure 2). In every case, 

the inverse variance weighted method showed a causal effect of educational attainment on the 

health outcomes. However, the bias adjusted effect from the MR Egger regression indicated 

that the association between educational attainment and the five health outcomes was 

influenced by a violation of the MR assumptions. This suggested that there is no genetic 

causal association from educational attainment to health outcomes. The full results can be 

found in Table 4 and Figure 2. 
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Discussion 

This study was designed to investigate causes of the well replicated finding that lower 

cognitive ability is associated with poorer health outcomes1-3. It used a bidirectional MR 

approach to investigate this. We found no consistent evidence for causal association between 

cognitive ability, in middle and older age, and several health outcomes. Inverse weighted MR 

analysis indicated that number of years of education (a proxy measure of cognitive ability in 

early life4, 8) may lead to lower BMI, greater height, lower systolic blood pressure and a 

reduced chance of coronary artery disease. However, the MR Egger sensitivity analyses 

indicated that these associations were driven by a violation of the MR assumptions.  

 

The lack of causal associations could possibly indicate pleiotropy between health and 

cognitive ability, meaning that sets of genetic variants have independent effects on different 

phenotypes, rather than a set of genetic variants causally influencing cognitive ability via the 

related health exposure or vice versa. This would violate the assumption that the genetic 

variants only influence the outcome via the exposure, and not via other pathways. The idea of 

pleiotropy between health and cognitive ability is consistent with the theoretical construct of 

bodily system integrity23, whereby a latent trait is manifest as individual differences in how 

effectively people meet cognitive and health challenges from the environment, and which has 

some genetic aetiology.  

 

The MR Egger regression results highlight the importance of performing sensitivity analyses 

in an MR framework. For example, the paper by Bowden et al.24 applied MR-Egger 

regression to data previously published on the causal effects of blood pressure on coronary 

artery disease30. The original study showed causal effect of genetic variants for blood 
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pressure on coronary artery disease, which indicated directional pleiotropy. The MR Egger 

regression by Bowden et al.24 subsequently showed that the bias-adjusted estimates were 

closer to null and non-significant. Many of the original causal estimates in our study between 

educational attainment and health outcomes indicated directional pleiotropy, however the MR 

Egger regression indicated that the instrumental variable assumptions were violated. 

 

Strengths of this study include the large sample size of UK Biobank, the participants of which 

all took the same cognitive tests, completed the same questionnaires and answered the same 

interview questions, in contrast to most genetic studies, where assessments across different 

cohorts often vary. A further strength is the fact that all of the UK Biobank genetic data were 

processed in a consistent matter, on the same platform and at the same location. The genetic 

variants on which the instrumental variables originated used the largest available GWAS at 

moment of testing.  

 

Limitations of this study include the fact that cognitive ability was only measured on a subset 

of the UK Biobank participants and that it was a bespoke test. A second major limitation was 

that there is no published large genome-wide association study of cognitive ability in early 

life from which we could obtain genetic variants to use as an instrumental variable. 

Therefore, we used genome-wide significant SNPs associated with educational attainment as 

our early life cognitive ability instrument.  

 

Instrumental variables for cardiovascular disease, type 2 diabetes, blood pressure, and 

educational attainment explain a small amount of the variance in the exposure. A good/strong 

instrumental variable would be expected to explain a substantial amount of the variance of 

the exposure. The current study used the same dataset (UK Biobank) for estimating the 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 1, 2016. ; https://doi.org/10.1101/084798doi: bioRxiv preprint 

https://doi.org/10.1101/084798


16 
 

association of the variants with the exposure and outcome. This could lead to bias in the 

results, as the association between the variants and the exposure is likely to be overestimated, 

because variants are chosen due to the association with the exposure in the analysed dataset. 

This could lead to overestimation of the association with the outcome, also called the Beavis 

effect or winner’s curse34. 

 

Overall, this study found phenotypic cognitive-physical health associations, but did not find 

consistent evidence for causal associations between cognitive ability and physical health. 

This could be due to biological pleiotropy or violations of the instrumental variable 

assumptions. Future work should focus on stronger instrumental variables, as well as better 

case-control ascertainment. 
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Figure 1. Model for Mendelian randomization study. The instrumental variable, based on genome-wide significant SNPs from independent 
studies for the exposure, is used to estimate if the exposure (e.g. BMI) causally influences the outcome (e.g. cognitive ability). The instrumental 
variable should be unrelated to potential confounders of the exposure-outcome association and should only affect the outcome via the exposure. 
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Table 1. Coding for years of education in UK Biobank based on the ISCED coding. 

UK Biobank degree level 
UK Biobank 

code 

ISCED 

code 

Years of 

education 
N 

College or university degree 1 5 
20 (19 

+1) 
33852 

A levels/AS levels or equivalent 2 3 13 12560 

O levels/GCSEs or equivalent 3 2 10 24802 

CSEs or equivalent 4 2 10 6064 

NVQ or HND or HNC or equivalent 5 NA NA 7788 

Other professional qualification eg: nursing, 

teaching 
6 NA NA 5776 

None of the above -7 1 7 20272 

Prefer not to answer -3 NA NA 953 
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Table 2. Information about instrumental variables.  

Phenotype SNPs 
included 

total 
SNPs N Reference Unavailable in 

UK Biobank 
HWE p < 1 × 
10-6 

imputation 
< 0.9 R2 % 

BMI 72 75 236,231 
Locke et al. Nature 2015; 518: 
197-206. PMID: 25673413 

1  
(rs2033529) 

3 
(rs17001654, 
rs2075650, 
rs9925964) 

0 1.50% 

Height 395 405 253,288 Wood et al. Nat Genet 2014; 11: 
1173-86. PMID: 25282103 

3 
(rs1420023, 
rs2413143, 
rs567401) 

5 
(rs4953951, 
rs7692995, 
rs915506, 
rs3790086, 
rs1401795) 

2 
(rs7534365, 
rs11683207) 

13.68% 

Systolic blood 
pressure 25 25 69,395 

Ehret et al. Nature 2011; 478: 
103-109. PMID: 21909115 0 0 0 0.65% 

Coronary artery 
disease 25 25 

22,233 
cases; 
64,762 
controls 

Schunkert et al. Nat Genet 2011; 
43: 333-338. PMID: 21378990 0 0 0 0.28% 

Type 2 diabetes 18 18 

12,171 
cases; 
56,862 
controls 

Morris et al. Nat Genet 2012; 44: 
981-990. PMID: 22885922 

0 0 0 0.15% 

Educational 
attainment 

68 74 293,723 
Okbay et al. Nature 2016; 533: 
539-542. PMID: 27225129 

2 
(rs6799130, 
rs61160187) 

4 
(rs6799130, 
rs61160187, 
rs7131944, 
rs7306755) 

0 0.76% 
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Table 3. Phenotypic and genetic associations, using Mendelian randomization analysis, between five health instrumental variables and cognitive 
ability, using the verbal-numerical reasoning test. Significant associations are in bold. OR, odds ratio; MR-IVW, Mendelian randomization - 
inverse variance weighted method. 

Cognitive ability Phenotypic: health outcomes – cognitive ability MR-IVW:  health SNPs – cognitive ability 

SNPs (nr) Beta SE p Beta SE p 

BMI (72) -0.0490 0.005 1.51×10-20 -0.0664 0.064 0.3035 

Height (395) 0.1816 0.008 5.53×10-124 0.020 0.017 0.2288 

Systolic blood pressure (25) -0.0492 0.006 2.24×10-17 -0.0089 0.089 0.9207 

Coronary artery disease (25) -0.2651 0.026 4.62×10-25 -0.0188 0.099 0.8507 

Type 2 diabetes (18) -0.0634 0.029 0.0292 0.0287 0.070 0.6882 
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Table 4. Phenotypic and genetic associations, using Mendelian randomization analysis, between the educational attainment instrumental variable 
and five health outcomes. Significant associations are in bold. OR, odds ratio; MR-IVW, Mendelian randomization - inverse variance weighted 
method; MR-Egger, Mendelian randomization – Egger regression. 
 Educational attainment – health outcomes Educational attainment SNPs (68) – health outcomes 

Phenotypic MR-IVW MR-Egger 

 Beta SE p Beta SE p Beta SE p 

BMI -0.1376 0.003 < 1.00×10-300  -0.3102 0.051 6.38×10-8 -0.1940 0.100 0.0559 

Height 0.1040 0.002 < 1.00×10-300 0.2192 0.057 0.0003 0.1359 0.112 0.2299 

Systolic blood pressure -0.0751 0.003 7.12×10-130 -0.1616 0.042 0.0003 -0.1040 0.083 0.2166 

Type 2 diabetes OR: 0.8094 0.019 1.88×10-27 -0.1172 0.033 0.0006 0.0218 0.062 0.7258 

Coronary artery disease OR: 0.7018 0.018 6.79×10-91 -0.0653 0.030 0.0318 -0.0167 0.059 0.7761 

not certified by peer review
) is the author/funder. A

ll rights reserved. N
o reuse allow

ed w
ithout perm

ission. 
T

he copyright holder for this preprint (w
hich w

as
this version posted N

ovem
ber 1, 2016. 

; 
https://doi.org/10.1101/084798

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/084798


24 
 

Figure 2. Comparison of phenotypic (x-axis) and genetic (y-axis) associations with 95% 
confidence intervals between educational attainment (exposure) and five health variables 
(outcomes). For the purpose of the figure, the assocation between height and educational 
attainment have been flipped, with a negative association indicating lower height and lower 
educational attainment. 
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