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ABSTRACT 1 

Multiple and unpredictable numbers of actions are often required to achieve a goal.  In order to 2 

organize behavior and allocate effort so that optimal behavioral policies can be selected, it is 3 

necessary to continually monitor ongoing actions.  Real-time processing of information related to 4 

actions and outcomes is typically assigned to the prefrontal cortex and basal ganglia, but also 5 

depends on midbrain regions, especially the ventral tegmental area (VTA).  We were interested 6 

in how individual VTA neurons, as well as networks within the VTA, encode salient events 7 

when an unpredictable number of serial actions are required to obtain a reward.  We recorded 8 

from ensembles of putative dopamine and non-dopamine neurons in the VTA as animals 9 

performed multiple cued trials in a recording session where, in each trial, serial actions were 10 

randomly rewarded.  While averaging population activity did not reveal a response pattern, we 11 

observed that different neurons selectively tuned to low, medium, or high numbered actions in a 12 

trial. This preferential tuning of putative dopamine and non-dopamine VTA neurons to different 13 

subsets of actions in a trial allowed information about binned action number to be decoded from 14 

the ensemble activity. At the network level, tuning curve similarity was positively associated 15 

with action-evoked noise correlations, suggesting that action number selectivity reflects 16 

functional connectivity within these networks.  Analysis of phasic responses to cue and reward 17 

revealed that the requirement to execute multiple and uncertain numbers of actions weakens both 18 

cue-evoked responses and cue-reward response correlation. The functional connectivity and 19 

ensemble coding scheme that we observe here may allow VTA neurons to cooperatively provide 20 

a real-time account of ongoing behavior. These computations may be critical to cognitive and 21 

motivational functions that have long been associated with VTA dopamine neurons.  22 

23 
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INTRODUCTION 1 

Organization of goal-directed behavior requires real-time monitoring of ongoing actions. 2 

This function is typically assigned to the prefrontal cortex and striatum, but several lines of 3 

evidence demonstrate that organization of a series of behaviors also depends on VTA dopamine 4 

input to these regions (Goldman-Rakic, 1988; Robbins and Arnsten, 2009; Salamone et al., 5 

2009). For instance, lesions of VTA dopamine projections to the striatum, or antagonists of 6 

dopamine receptors, impair the capacity to perform large numbers of actions without impacting 7 

the ability to complete one (or a few) action(s) (Aberman and Salamone, 1999; Ishiwari et al., 8 

2004; Mingote et al., 2005). Additionally, VTA neurons are implicated in several cognitive 9 

constructs necessary for organizing an ongoing series of behaviors, such as working memory, 10 

attention, effort, and cognitive flexibility (Salamone and Correa, 2002; Seamans and Yang, 2004; 11 

Robbins and Arnsten, 2009; Fujisawa and Buzsaki, 2011). Thus, VTA neurons are critical for 12 

organizing, sustaining, and adapting an ongoing sequence of behaviors.  13 

Additional evidence that VTA neurons participate in structuring and organizing a 14 

behavioral series is provided by studies showing that dopamine release in nucleus accumbens 15 

precedes a series of two lever presses (Wassum et al., 2012), and dopamine neurons encode the 16 

first and last actions in a fixed response eight (FR8) reinforcement schedule (Jin and Costa, 17 

2010). These response patterns, however, do not reveal how VTA neurons encode information 18 

during a series of actions. The expansive literature on dopamine signaling has mostly used tasks 19 

that require subjects to execute a single instrumental action, or Pavlovian tasks with no explicit 20 

action requirement. These experiments have generally focused on neuronal responses before 21 

behavior is initiated or after outcomes are delivered (Ljungberg et al., 1992; Schultz et al., 1993; 22 

Montague et al., 1996; Schultz et al., 1997; Schultz, 1998; Bayer and Glimcher, 2005; Morris et 23 

al., 2006; Roesch et al., 2007; Salamone et al., 2007; Dayan and Niv, 2008; Glimcher, 2011).  24 
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Thus, little is known about how VTA neurons encode information that could be used to organize 1 

and sustain a series of actions. 2 

To begin to understand how VTA neurons monitor a series of actions in real-time, we 3 

recorded from VTA ensembles during a task where rats executed an unpredictable number of 4 

self-paced actions to earn reward. We found that individual dopamine and non-dopamine 5 

neurons fired selectively during different actions in a trial. Whereas population-averaging 6 

concealed this mosaic of activity patterns, it was possible to decode low, medium, and high 7 

numbered actions within a trial from the collective activity of all neurons. These data provide 8 

novel evidence of ensemble encoding by VTA neurons and provide critical insight into how 9 

VTA neurons may contribute to complex behaviors by encoding real-time information about 10 

ongoing actions.  11 

MATERIALS AND METHODS 12 

Subjects and Apparatus 13 

All procedures were conducted in accordance with the National Institutes of 14 

Health's Guide to the Care and Use of Laboratory Animals, and approved by the University of 15 

Pittsburgh’s Institutional Animal Care and Use Committee. Behavioral and neuronal data were 16 

collected from 10 adult, experimentally naïve, male Sprague-Dawley rats (Harlan, Frederick, 17 

MD) singly housed on a 12-hour light cycle (lights on at 7pm). These sample sizes were chosen 18 

because they are sufficient to detect behavioral and VTA neuronal effects in a variety of rat 19 

operant procedures in our lab (Kim et al., 2010; Kim et al., 2012; Kim et al., 2016). At the time 20 

of surgery, rats weighed approximately 350 grams (approximately 12 weeks of age). Under 21 

isoflurane anesthesia, 8 or 16 channel, 50 µm stainless steel, Teflon insulated, microelectrode 22 

arrays were implanted in left VTA (relative to Bregma: -5.30 mm posterior, 0.8 mm lateral, and 23 
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8.3 mm ventral). All experiments were conducted in a standard operant chamber (Coulbourn 1 

Instruments, Allentown, PA). The operant chamber had a food trough on one wall and a single 2 

nose poke port on the opposite wall. Both the food trough and nose poke port could be 3 

illuminated and were equipped with an infrared beam, which detected the animal’s entry. The 4 

operant chamber system controller was configured to send the time of behavioral and 5 

environmental events to the recording interface via standard TTL pulses and a digital interface.  6 

Behavior 7 

Each rat was given 7 days to recover from surgery and food restricted to 90% of their free 8 

feeding body weights. Rats were habituated to handling for 5 minutes per day for 3 consecutive 9 

days, before being habituated to being handled and connected to a headstage cable in the 10 

procedure room for 2 additional days. Following habituation, rats were given a single 30 minute 11 

magazine training session in the operant chamber, in which sugar pellets were delivered on a 12 

variable time 75s reinforcement schedule. When each pellet was delivered, the pellet trough was 13 

illuminated for 4s. The animal’s behavior had no programmed consequences in the magazine 14 

training session.  15 

Following the magazine training session, each animal began instrumental conditioning. 16 

During all instrumental conditioning sessions, each trial began with illumination of the nose poke 17 

port (cue light onset). This served as a discriminative stimulus that reinforcing outcomes (sugar 18 

pellets) were available (termed the ‘response period’), contingent upon the animal executing 19 

actions (nose pokes into the lit port). In each trial, actions were reinforced randomly, according 20 

to a predetermined probability. When an action was executed, the behavioral system controller 21 

randomly drew an outcome state (either reinforcement or no programmed consequence) with 22 

replacement, according to the probability of reinforcement. Each action was reinforced randomly 23 
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and independently of the animal’s action history within that trial or session. When an action was 1 

reinforced, the cue light was immediately extinguished (cue light offset) and nose pokes had no 2 

additional programmed consequences. A 0.500s delay between the final action and outcome 3 

delivery was instituted to temporally separate these events, as done in previous work (Schultz et 4 

al., 1993). Following this delay, the outcome was delivered to the animal and the food trough 5 

was illuminated. Outcomes were delivered into the food trough from a standard pellet magazine, 6 

via the operation of a smaller stepper motor and dispenser. The food trough remained illuminated 7 

and the task did not progress until the animal retrieved the outcome. Once the animal retrieved 8 

the outcome, a variable length intertrial interval (ITI) of 10-12s was initiated. In each session, 9 

180 trials were administered.  10 

In the first instrumental conditioning session, actions were reinforced with a probability 11 

of 1 (each action was reinforced) equivalent to a fixed ratio 1 (FR01) reinforcement schedule. In 12 

the second session, the probability that an action was reinforced was decreased across three 13 

blocks of trials. In the first block of 60 trials, actions were reinforced with a probability of 1 14 

(FR01). In the second block of 60 trials, each action had a 1 in 3 chance of being reinforced 15 

(random ration 3, RR03). In the third block of 60 trials, the probability was further decreased to 16 

0.2 (random ratio 5, RR05). In sessions 3 and 4, actions were reinforced with a 0.2 probability 17 

for all trials (RR05). In sessions 5-7, actions were reinforced with a probability of 0.1 for all 18 

trials (random ratio 10, RR10). In all trials but the FR01 trials, animals were required to execute 19 

an unpredictable, varying, and randomly determined number of actions per trial. Random 20 

reinforcement was utilized to limit the ability of the animal to correctly anticipate reward 21 

delivery. Actions differed from each other mainly in terms of their location within the action 22 

series in each trial (the action number within a trial, e.g. 1st action, 2nd action, 3rd action, etc.). 23 
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In each trial, each animal’s action rate was calculated as the number of actions divided by the 1 

duration of the response period. This served as a measure of behavioral conditioning and 2 

performance. Changes in behavior across sessions were assessed with repeated measure analysis 3 

of variance (ANOVA), and repeated measures contrasts were applied as appropriate (Kass et al., 4 

2014). The time interval between each action (inter-action interval) was measured for bins of 5 

low, medium, and high numbered actions (actions 1-7, 8-14, and 15-21). Statistical differences 6 

between binned inter-action intervals were assessed with repeated measures ANOVA. This 7 

measured the animal’s behavioral sensitivity to increasing action numbers throughout a trial. To 8 

examine the effects of the number of actions performed in a trial on fatigue, motivation, or 9 

attention, the number of actions performed in each trial was correlated with the latency to 10 

retrieve the reward, or initiate the next trial.  11 

Histology 12 

Following the completion of experiments, animals were perfused with saline and brains 13 

were extracted. Each brain was stored in a mixture of sucrose and formalin. The brains were then 14 

frozen and sliced in 60 µm coronal sections on a cryostat, before being stained with cresyl-violet. 15 

The location of each implant was histologically verified under light microscope according to 16 

Swanson’s brain atlas (Swanson, 2004). Animals were excluded if electrode location could not 17 

be confirmed in VTA.  18 

Electrophysiology 19 

During experiments, animals were attached to a flexible headstage cable and motorized 20 

commutator that allowed the animal to move freely about the operant chamber, with minimal 21 

disruption of behavior (Plexon, Dallas, TX). Neural data were recorded via the PlexControl 22 

software package, operating a 64-channel OmniPlex recording system (Plexon, Dallas, TX). 23 
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Neural data were buffered by a unity gain headstage and then a preamplifier. The digitized 1 

broadband signal was then band-pass filtered (100 Hz – 7 KHz). High-pass filtering can affect 2 

spike waveform shapes and neuronal identification, but with freely moving animals it is 3 

necessary to apply these filters to remove artifacts from the neuronal signal (Ungless and Grace, 4 

2012). The filter pass bands that were utilized in the current manuscript are consistent with those 5 

that have previously been used to record from dopamine containing brain regions (Schultz et al., 6 

1993; Fiorillo et al., 2003; Tobler et al., 2005). Data were digitized at 40 KHz and continuously 7 

recorded to hard disk. Voltage thresholds were applied to the digitized spike data offline (Offline 8 

Sorter, Plexon, Dallas, TX). Single units were sorted using standard techniques, and were 9 

utilized only if they had a signal to noise ratio in excess of 2/1, and were clearly separated from 10 

noise clusters and other single unit clusters. Examples of recordings and sorting are show in 11 

supplemental material (Fig. S1).  12 

A VTA neuron was classified as dopaminergic if it had broad action potentials, greater 13 

than 1.4 ms in duration, and a mean baseline firing rate less than 10 Hz. These criteria are similar 14 

to those used in previous studies (Hyland et al., 2002; Fiorillo et al., 2003; Anstrom and 15 

Woodward, 2005; Pan et al., 2005; Tobler et al., 2005; Anstrom et al., 2007; Totah et al., 2013). 16 

All remaining neurons were classified as non-dopaminergic. All analyses were conducted on the 17 

entire population of neurons that were recorded to provide a classification-free examination of 18 

the data. Our approach to VTA cell classification is consistent with classical techniques. It 19 

should be pointed out, however, that indirect identification (using electrophysiological features 20 

as opposed genotypic features) can lead to classification errors (Margolis et al., 2006; Lammel et 21 

al., 2008; Cohen et al., 2012). In general, qualitatively similar responses were observed in both 22 

groups of neurons. Units recorded in different sessions were considered separate units, as 23 
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methods to estimate neuronal identity between sessions are not widely used with VTA 1 

recordings. In total, the following numbers of neurons were recorded in each of 7 sessions: 2 

dopamine (reward responsive): 11(7), 19(10), 21(12), 29(19), 27(13), 21(9), 27(16); non-3 

dopamine (reward responsive): 31(17), 35(14), 39(27), 34(13), 25(12), 29(11), 27(9).  4 

Neuronal Data Analysis  5 

Each single unit’s spike times were binned into spike counts (0.025s bins) within a trial. 6 

Binned spike counts were aligned to all events (e.g. cue light onset, actions, time period between 7 

cue light offset and outcome delivery, and outcome delivery). A stable, four s portion of the ITI 8 

(5s to 1s prior to cue light onset) served as the neuronal activity baseline. Single unit firing rates 9 

were Z-score normalized relative to baseline and zero-centered before activity was averaged 10 

together. Each unit’s normalized activity was examined in 0.250s windows around events (cue 11 

onset: +0.050 – 0.300s, relative to cue onset; -0.125 – +0.125s, relative to the time of action 12 

execution; time period between cue offset and outcome delivery: +0.150 – 0.400s, relative to 13 

execution of the last action; outcome delivery: +0.050 – 0.300s, relative to delivery). To assess 14 

between-session changes in population-level evoked activity, windowed activity was compared 15 

with a between groups two way ANOVA, with session number and neuron type (dopamine or 16 

non-dopamine) as grouping variables. In all cases, protected Fisher’s least significant difference 17 

tests were applied as appropriate.  18 

A unit was classified as being activated or suppressed by an event if it met two criteria: 1) 19 

a significant paired samples t-test comparing raw (non-normalized) baseline firing rates with raw 20 

evoked firing rates, and 2) three or more consecutive bins of mean activity within the event-21 

window, that were in excess of a 95% confidence interval around the baseline mean. With 22 

respect to a given task event, the proportions of units classified as being activated or suppressed 23 
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were calculated. Differences in the proportions of activated units between sessions were 1 

compared with a Chi-squared test of independence. As expected, insufficient numbers of 2 

suppressed neurons (in some sessions zero) were obtained to permit reliable statistical analyses 3 

of this class of responses. Suppressed neurons are plotted for clarity, but not analyzed in detail.  4 

The terminology “action-evoked” neuronal responses refers to activity around the time of 5 

action execution, without assuming that the action is solely responsible for evoking this neuronal 6 

response. Each unit’s activity was examined as a function of action number (a unit’s mean 7 

response to each n
th

 numbered action within a trial, across all trials). These analyses were 8 

restricted to the RR10 sessions (sessions 5-7). RR10 sessions required larger numbers of actions 9 

per trial, on average, and would ensure that there were a sufficient number of higher numbered 10 

actions (e.g. actions 18, 19, 20, 21, etc.) for analysis. All action number analyses utilized actions 11 

1 through 21. While even higher numbered actions occurred in some trials, these actions 12 

occurred less frequently and were excluded from action number analyses, as there was 13 

insufficient sample size for reliable statistical analysis. To remove any effects of impending 14 

reward delivery on the action evoked neuronal responses, only unrewarded actions were used in 15 

this analysis. Preliminary analyses suggested that including rewarded actions had little effect on 16 

the results. Action evoked neuronal responses were binned into 3 bins of 7 consecutive actions 17 

representing low, medium, and high numbered actions (actions 1-7, 8-14, and 15-21, 18 

respectively). 19 

We measured correlations in spike count between pairs of dopamine neurons (n = 172), 20 

pairs of non-dopaminergic neurons (n = 276), and mixed pairs (a dopamine and a non-dopamine 21 

neuron, n = 387) in RR10 sessions. Correlations were only calculated for pairs of simultaneously 22 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 13, 2017. ; https://doi.org/10.1101/084970doi: bioRxiv preprint 

https://doi.org/10.1101/084970
http://creativecommons.org/licenses/by-nd/4.0/


11 

 

recorded neurons. Pairwise neuronal correlations were assessed in the same .250 sec windows 1 

used to quantify firing rates, using the standard Pearson’s correlation, 2 

𝑟 =  ∑
(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)

𝑠𝑥𝑠𝑦

𝑃

𝑖=1

 

where the correlation coefficient, 𝑟, is the summed product of the 𝑖𝑡ℎ point’s residual from the 3 

sample mean, 𝑥̅ or 𝑦̅, normalized by the sample standard deviation, 𝑠. Noise correlations 4 

represent the degree to which the joint activity of simultaneously recorded pairs of neurons 5 

fluctuates from trial to trial. Noise correlations were calculated on the trial-by-trial spike counts 6 

observed in each window. For actions, these evoked responses also examined according to action 7 

number within a trial, or binned action (actions 1-7, 8-14, or 15-21). Signal correlations refer to 8 

the correlation between pairs of tuning curves in simultaneously recoded neurons. We corrected 9 

for chance levels of correlation, which were estimated as the mean correlation of 1000 pairs of 10 

randomly shuffled data. Fisher’s Z transformation  11 

1

2
∗ ln  (

1 + 𝑟

1 − 𝑟
) 

was used to transform correlation coefficients for statistical comparisons. The geometric mean 12 

spike count was calculated to measure the average joint activity of each pair of neurons.  13 

Individual neurons preferred different subsets of action numbers. To determine the extent 14 

to which elapsed time since trial start or action number could account for action evoked neuronal 15 

activity, we performed a Poisson regression of spike count onto these variables. The percentages 16 

of neurons with significant coefficients are reported. To visualize the various tunings of VTA 17 

neurons to action number, each neuron’s mean activity as a function of action number is 18 

displayed. Because evoked firing rates could span a large range of values, each tuning curve was 19 
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scaled so that the maximum evoked activity was equal to 1 and the minimum evoked activity 1 

was equal to 0. Scaled tuning curves were used only for visualization. To compute the number of 2 

maxima, each tuning curve was fit with a cubic smoothing spline (smoothing parameter 0.001) 3 

and maxima were detected as points in the spline with derivatives equal to 0.  4 

Population Average Decoder 5 

A decoder classified binned action number according to the trial-averaged spike count, 6 

also averaged across neurons, on an action-by-action basis. This is called the ‘population average 7 

decoder.’ Binned action number, 𝐴, is defined as 3 bins of 7 consecutive actions (1-7, 8-14, or 8 

15-21). The classifier maximizes  9 

𝑝(𝐴|𝑅̅) ∝  𝑝(𝑅̅|𝐴)  × 𝑝(𝐴). 

Here 𝑝(𝑅̅|𝐴)represents the probability of the population averaged response occurring, given a 10 

particular action bin. The probability of an action belonging to an action bin is denoted by 𝑝(𝐴), 11 

and is uniform across action bins in the current work. That is, the prior probability for each bin, 12 

𝑝(𝐴), is 
1

3
. For these analyses, 𝑝(𝑅̅|𝐴) is calculated from the sample distributions of mean action 13 

evoked population responses as follows. First, the population average of all neurons' trial-14 

averaged responses is calculated for all actions in all bins. Next, one action is selected as a test 15 

observation. Then, 𝑝(𝑅̅|𝐴) is assumed to be the best fit Gaussian of unknown mean and variance, 16 

fit from all trials in the bin 𝐴 (excluding the test observation, if it lies in 𝐴). The result is 3 17 

smooth distributions of mean activity, corresponding to the 3 bins of action numbers. The 18 

average activity of the test observations is calculated, and classified as the most likely action bin 19 

to have evoked this response, based on the relationship between population averaged activity and 20 
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action bins in the training dataset (the actions not tested). The classifier selects the action bin 1 

most likely to have evoked the population response via 2 

𝐴∗̂ = argmax
𝐴

 𝑝(𝐴 | 𝑅∗) = argmax
𝐴

 𝑝(𝑅∗ | 𝐴) × 𝑝(𝐴). 

Here, 𝑅∗ is the population average of the held out action number. 𝐴̂∗ is the resulting estimated 3 

action bin. Testing is repeated for each action number. 4 

Ensemble Decoder 5 

Assuming 𝑅̅ is not a sufficient characterization of {𝑅𝑖}𝑖=1
𝑁  , which we will call 𝑅⃗ , 𝑝(𝑅̅|𝐴) 6 

does not thoroughly represent the information in 𝑝(𝑅⃗ |𝐴). Therefore, we instead assume relevant 7 

information is captured by a higher-dimensional representation: (𝑊𝑅⃗ |𝐴)~𝑁(𝜇𝐴, Σ). The 8 

projection, 𝑊, estimated by principal components analysis, is necessary to ensure the 9 

covariance, Σ , can be estimated by the usual pooled sample covariance, Σ̂. This maximizes the 10 

dimensionality of the space into which we project 𝑅⃗ , for a given sample size. We then maximize 11 

𝑝(𝐴|𝑊𝑅⃗ ). This maintains the varying firing rates in each unit, elicited by actions within 12 

different bins. Note that the population average decoder is the special case of this approach 13 

wherein 𝑊 is a row vector of ones. The projection and classifier can be learned with each 14 

neuron's set of evoked trial-averaged spike counts as a feature. Each action's set of observed 15 

trial-averaged spike counts, the new test observations, 𝑅 ∗⃗⃗⃗⃗⃗⃗  , are then projected via the weights 16 

estimated from the training data and classified sequentially (that is, we estimate the set of 17 

{𝜇̂𝐴}𝐴=1
3  on all the remaining action numbers, which is equivalent to training, and maximize the 18 

analogous posterior). 19 

Statistical Testing of the Decoders 20 
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To test whether the two decoders produce equal or different classification accuracy, we 1 

fit a binomial generalized linear model and controlled for action number, session, and unit type 2 

(dopaminergic versus non-dopaminergic). For each trial of action bin 𝐴, tested on decoder 𝑑, the 3 

log odds of the probability of correct classification was assumed to be linear in its covariates as 4 

given by the logistic regression function 5 

logit(𝔼[𝐼𝐴(𝐴̂) | (𝐼𝑑, 𝐼𝐴, 𝐼𝑆, 𝐼𝐷𝐴)]) = 𝛽0 + 𝛽𝑑 ⋅ 𝐼𝑑 + 𝛽𝐴 ⋅ 𝐼𝐴 + 𝛽𝑆 ⋅ 𝐼𝑆 + 𝛽𝐷𝐴 ⋅ 𝐼𝐷𝐴, 

where 𝐼𝐴(𝐴̂) is an indicator signifying correct or incorrect classification, and 𝐼𝑑, 𝐼𝐴, 𝐼𝑆, 𝐼𝐷𝐴 are 6 

indicators (or a set of indicators) for the decoder, action bin, session, and dopaminergic unit, 7 

respectively. Likelihood ratio tests were used to test the effect of each group of factors, 8 

corresponding to each feature. Additionally, statistical significance of decoder performance 9 

(versus chance levels of correct classification) at each action number was determined via 10 

permutation test. Approximations to the exact p-values can be determined by assigning classes to 11 

each action according to a uniform prior distribution, and calculating the proportion of sets of 12 

resulting classifications that perform better than the classification rates observed using the 13 

previously discussed methods.  14 

RESULTS 15 

Animals learn to execute serial actions for reward 16 

VTA activity was recorded while rats learned to execute multiple actions for random 17 

reinforcement with one sugar pellet (Fig. 1A, B). In the first session, each action was rewarded 18 

(FR01). In session 2, the reward probability was decreased from 1 to 0.2 across 3 blocks of trials. 19 

In sessions 3 and 4, actions were reinforced at a probability of 0.2 (RR05). In sessions 5 – 7, 20 

actions were reinforced at a probability of 0.1 (RR10). In all randomly reinforced trials, 21 
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unpredictable and varying numbers of actions were required, but each action was equally likely 1 

to be reinforced.  2 

Action response rates increased as reinforcement probability decreased (Fig. 1C, D), and 3 

the response rate in the final RR10 sessions was significantly higher than all other sessions (Fig. 4 

1D; F(6,24) = 4.726, p = 0.003). To investigate a potential relationship between behavioral 5 

performance and action number, we divided the RR10 data into three bins: actions 1-7 (low), 6 

actions 8-14 (medium), and actions 15-21 (high). We analyzed serial actions in trials reinforced 7 

with a probability of 0.1 (RR10 sessions, sessions 5-7), because this reinforcement schedule 8 

produced the greatest average number of actions performed per trial (Fig. 1C). Within a trial, the 9 

inter-action interval significantly increased with increasing action number bins (Fig. 1E; F(2,44) = 10 

11.020, p < 0.001). This indicated that behavior was sensitive to action number. The latency to 11 

retrieve the reward (r(3468) = -0.017, p = 0.309) or initiate responding in the next trial, however, 12 

was not correlated with binned action number (r(3445) = 0.015, p = 0.389). These data suggest that 13 

the number of actions performed in a trial did not affect behavioral responses to reward or cues.  14 

Neurophysiological recordings 15 

 A total of 375 units (in 7 sessions and from 10 rats) were recorded from electrodes 16 

histologically localized to VTA (Fig. 2). All neurons were included in these analyses because we 17 

were interested in understanding the full diversity of activity patterns in the VTA. Neurons were 18 

classified (Fig. 3) as putative ‘dopamine’ (n = 155) or ‘non-dopamine’ neurons (n=220) based on 19 

electrophysiological criteria. This classification approach permits comparison with previous 20 

work, despite potential inaccuracies (Margolis et al., 2006) and with the caveat that some 21 

dopamine neurons co-release other neurotransmitters (Tritsch et al., 2012). We did not observe 22 

strong clustering in the electrophysiological profiles of these neurons. It is important to 23 
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underscore that neurons were collected with no attempt to select for particular 1 

electrophysiological characteristics. When VTA neurons are recorded in an unbiased manner, as 2 

done here, weak clustering may be expected (Kiyatkin and Rebec, 1998). In addition to the 3 

above classification, analyses were performed on reward-responsive dopamine neurons, as this 4 

subgroup may be a more conservative estimate of dopamine neuron identity (Lak et al., 2014; 5 

Eshel et al., 2016).  6 

VTA neurons are diversely tuned to serial actions  7 

In order to understand how VTA neurons encode information during serial actions, we 8 

examined how activity was modulated by actions in RR10 sessions. Action evoked responses 9 

initiated -0.173±0.013 sec prior to actions and had an average duration of 0.313±0.012 sec (Fig. 10 

4A). Thus, the majority of neurons had response durations several hundred ms faster than the 11 

majority of inter-action intervals, and therefore, action-evoked responding was well separated 12 

between successive actions in a trial. When RR10 actions were examined according to their 13 

number within a trial (e.g. 1
st
, 2

nd
, 3

rd
 action in a trial), we observed that individual neurons fired 14 

selectively for subsets of actions (Fig. 4B, C). We observed preferential responding to low, 15 

medium, or high numbered actions within the population of simultaneously recorded neurons 16 

(Fig. 4D-F). To determine how VTA neurons responded to serial actions, we calculated each 17 

neuron’s tuning curve as a function of action number within a trial (Fig. 4G). Action tuning 18 

curves mostly had a single peak (local maxima, χ
2

(1) = 9.921, p = 0.002; neuron type, χ
2

(1) = 19 

1.267, p = 0.260), and different neurons preferred different subsets of actions (Fig. 4G,H). 20 

Tuning curve depth (maximum – minimum) did not differ significantly between putative 21 

dopamine and non-dopamine neurons (Fig. 4I; t(154) = 3.224, p = 0.084). Averaging activity 22 
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across neurons, a traditional approach to analyzing VTA neuronal data, concealed this 1 

heterogeneity in both groups of neurons (Fig. 4J).  2 

 The diversity of the tuning curves of VTA neurons suggested that network properties 3 

may be critical to information processing during serial actions. To gain insight into VTA 4 

network-based information processing, we calculated the trial-by-trial correlations in spike 5 

counts (noise correlations), and correlations between tuning curves (signal correlations) for all 6 

simultaneously recorded pairs of neurons. Noise correlations reflect functional connectivity 7 

between neurons while signal correlations reflect similarity in tuning curves (Cohen and Kohn, 8 

2011). Correlations were examined between all possible pairings of VTA neurons (dopamine – 9 

dopamine, non-dopamine – non-dopamine, and dopamine – non-dopamine).  10 

We found that noise correlations during actions were significantly lower in pairs of non-11 

dopamine neurons than pairs containing a dopamine neuron (Fig. 5A; F(2,858) = 4.052, p = .018). 12 

The magnitude of these correlations was decreased during low numbered actions compared to 13 

medium or high numbered actions (F(2,1716) = 14.625, p < .001).  It is unlikely that these 14 

differences were due to differences in spike count because the pairwise geometric mean spike 15 

count was not associated with noise correlation magnitude in any bin (low: r = 0.008, p = .805; 16 

med: r = -0.015, p = .650; high: r = -0.048, p = .158). In contrast, signal correlation strength did 17 

not differ between different pairings of VTA neurons (Fig. 5B; F(2,858) = 0.289, p = .749). There 18 

was a strong association between signal correlations and noise correlations (Fig. 5B, Table 1), 19 

suggesting that there is a high degree of functional connectivity between pools of similarly tuned 20 

neurons. This result raises the possibility that different patterns of functional connectivity 21 

contribute to the diversity of tunings to actions.  22 

 23 
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Table 1. Table depicts the correlation between action number 

signal correlations and action evoked noise correlations. Data are 
taken from RR10 sessions. Data depicted separately for each pair 
type (DA-DA, dopamine pair; DA-NDA, dopamine and non-
dopamine pair; NDA-NDA, non-dopamine pair). 

 Rho p value 

DA – DA Pair 0.571 < 0.001 

DA – NDA Pair 0.569 < 0.001 

NDA – NDA Pair 0.528 < 0.001 

 1 

Actions in a trial are accurately discriminated from VTA neuronal ensemble activity 2 

 The combination of tuning curve heterogeneity, lack of population average signal for 3 

serial actions, and the association between action-evoked signal and noise correlations suggested 4 

that information about ongoing sequences of actions may be encoded by VTA ensembles. To 5 

quantify the accuracy of this encoding mechanism, we differentiated low, medium, and high 6 

action number bins from either population-averaged activity (Fig. 6A) or the collective activity 7 

of VTA ensembles (Fig. 6B). The same cross-validated linear discriminant analysis decoding 8 

algorithms were used for both the ensemble and population-average data (see Methods). 9 

Ensemble activity was discriminated more accurately than shuffled control data (Fig. 6C; 85% 10 

accuracy versus chance levels of correct decoding [33% accuracy], permutation test, p < 0.001). 11 

In contrast, population averaged activity was decoded at chance levels (Fig. 6C; permutation test, 12 

p = 0.240). Binned action number was discriminated from ensemble activity significantly more 13 

accurately than population-averaged activity (Fig. 6C; χ
2

(1) = 21.435, p < 0.001). Discrimination 14 

was stable across sessions (χ
2

(2) = 1.097, p = 0.578), and between low, medium, and high action 15 

number bins (χ
2

(2) = 3.614, p = 0.164). There was no difference in accuracy between dopamine 16 

and non-dopamine neurons (χ
2

(1) = 1.133, p = 0.287). When reward responsiveness was also 17 

included in the model, dopamine and non-dopamine neurons were decoded at similar accuracy 18 
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(χ
2

(1) = 1.300, p = 0.254). These data suggest that real-time information about ongoing behavior 1 

is encoded by the collective activity of VTA neurons, but not the averaged activity of VTA 2 

dopamine or non-dopamine neurons. Thus, VTA ensemble activity accurately predicted the 3 

current action bin, and could be used to organize, pace, and sustain effortful behaviors.  4 

To determine if serial actions or the passage of time preferentially modulated neuronal 5 

activity, we examined the relationship between action evoked spike counts and action number, or 6 

the corresponding time within a trial. Action number predicted spike counts of a significantly 7 

larger proportion of neurons than time elapsed in a trial (χ
2

(1) = 20.643, p < 0.001; 29% versus 8 

7% of neurons, respectively). Actions did not preferentially modulate the activity of either 9 

dopamine or non-dopamine neurons (χ
2

(1) = 0.179, p = 0.673). These data suggest action-evoked 10 

activity reflected ongoing behavior and do not support a role for encoding the passage of time in 11 

this task.  12 

Neuronal responses may have represented reward anticipation (Bromberg-Martin et al., 13 

2010; Totah et al., 2013) in a manner which changed throughout a series of actions. If this were 14 

the case, the number of actions performed in a trial would be correlated with neuronal activity in 15 

a consistent direction. Thus, we examined the correlation between neuronal responses and the 16 

number of actions in each trial. Only a small proportion of dopamine and non-dopamine neurons 17 

had significant correlations between the response evoked by the first action in a trial and the 18 

number of actions in the previous trial (Table 2). Similar proportions of these neurons were 19 

positively or negatively correlated, indicating that this relationship was inconsistent between 20 

neurons (Table 2). Likewise, very few neurons had responses to the last action in each trial that 21 

were significantly correlated with the number of actions in that trial; there was no significant 22 
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difference in the proportion of dopamine and non-dopamine neurons with positive or negative 1 

correlations (Table 2).  2 

We further investigated if reward anticipation modulated neuronal responses by 3 

examining the relationship between responses evoked by the cue light turning off, reward 4 

delivery, or reward retrieval, and the number of actions performed in each trial. We found no 5 

significant differences in the proportion of dopamine or non-dopamine neurons with positive or 6 

negative correlations between responses evoked by cue onset and the number of actions in the 7 

previous trial or between cue light offset, reward delivery, or reward retrieval responses and the 8 

number of actions in the current trial (Table 2). Taken together, these results indicate that 9 

performance of serial actions did not influence encoding of reward anticipation, supporting the 10 

notion that VTA neurons encoded information about ongoing behaviors as opposed to 11 

information about time or reward anticipation in the current task. 12 

 
DA 

Positive 
Corr 

DA 
Negative 

Corr 

Non-DA 
Positive 

Corr 

Non-DA 
Negative 

Corr 

Fisher’s 
Exact Test 

Response to First Action & 
Previous Trial’s Action Number 

4 % 1.33 % 3.70 % 1.23 % P = 0.71 

Response to Last Action & 
Current Trial’s Action Number 

2.67 % 1.33 % 4.94 % 4.94 % P = 0.77 

Response to Cue On & Previous 
Trial’s Action Number 

0.00 % 2.67 % 2.47 % 1.23 % P = 0.25 

Response to Cue Off & Current 
Trial’s Action Number 

6.67 % 2.67 % 11.11 % 4.94 % P = 0.81 

Response to Delivery & Current 
Trial’s Action Number 

5.33 % 5.33 % 3.70 % 2.47 % P = 0.80 

Response to Retrieval & Current 
Trial’s Action Number 

1.33 % 1.33 % 1.23 % 1.23 % P = 0.67 

Table 2. Table depicts the percentage of neurons with significantly correlated responses between task 

events and the number of actions in each trial. Data are taken from RR10 sessions. Pearson’s 
correlations were calculated on spike counts taken from 0.25s windows around events. The far right 
column depicts the p value corresponding to a Fisher’s exact test of these proportions.  
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Reward delivery evoked responses 1 

Reward delivery evoked greater activity in dopamine neurons than in non-dopamine 2 

neurons (Fig. 7A, B; F(1,361) = 9.159, p = .003). This pattern did not change across sessions (Fig. 3 

7C; F(6,361) = 1.352, p = .233). The proportion of dopamine neurons responding to reward 4 

delivery did not vary significantly across sessions (Fig. 7D; all neurons, Χ
2

(6) = 9.289, p = .158; 5 

non dopamine, Χ
2

(6) = 13.234, p = .039). 6 

After the final action in a trial, the cue light was immediately extinguished and reward 7 

was delivered 0.5 s later. We hypothesized that cue light offset would evoke VTA responses, 8 

similar to a reward prediction error, because this event signaled new information about 9 

unpredictable outcome delivery (Montague et al., 1996; Schultz, 1998). As training progressed, 10 

cue offset evoked great activity levels (Fig. 7E; F(6,361) = 4.776, p < .001), and activated a greater 11 

proportion of neurons (Fig. 7F; all neurons, Χ
2

(6) = 45.949, p < .001; dopamine neurons, Χ
2

(6) = 12 

22.093, p = .001; non dopamine neurons, Χ
2

(6) = 29.744, p < .001). This finding confirms that we 13 

observed responses to cues and rewards that are commonly attributed to dopamine neurons 14 

(Montague et al., 1996; Schultz, 1998), but also occur in non-dopaminergic cells in the VTA 15 

(Kim et al., 2010; Cohen et al., 2012; Kim et al., 2012).  16 

Cue evoked responses 17 

When animals were required to perform a single action to earn rewards (FR01), the 18 

majority of dopamine neurons encoded cue onset (Fig. 8A), which is consistent with previous 19 

observations (Schultz, 1998; Roesch et al., 2007 ). Non-dopamine neurons followed a similar 20 

pattern (Fig. 8B). During random ratio sessions, the population response to the cue decreased 21 

significantly as response requirement increased (Fig. 8C; session, F(6,361) = 2.667, p = .015). This 22 

pattern of responding did not differ between dopamine and non-dopamine neurons (Fig. 8C; 23 
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F(1,361) = 1.543, p = .215). We found the same effects when analysis was restricted to neurons that 1 

were significantly activated by reward delivery (session, F(6,175) = 4.961, p < .001; neuron type, 2 

F(1,175) = 3.912, p = 0.050). The data among neurons not responsive to reward delivery were 3 

inconclusive, but followed the same trend (session, F(6,172) = 2.096, p = 0.056; neuron type, 4 

F(1,172) = 0.824, p = 0.365). Likewise, significantly fewer neurons were modulated by cue light 5 

onset in random ratio sessions (Fig. 8D; all VTA, Χ
2

(6) = 23.844, p = .001;
 
dopamine, Χ

2
(6) = 6 

20.109, p = .003; non-dopamine, Χ
2

(6) = 10.636, p = .100). 7 

Cue and reward evoked responses are decoupled when performing serial actions  8 

We assessed the correlation between each neuron’s responses to cue onset and reward 9 

delivery in order to understand the relationship between encoding of these events. During FR01 10 

sessions, responses evoked by these events were significantly correlated in both dopamine and 11 

non-dopamine neurons (Table 3). This correlation decreased in RR05 sessions (Table 3), and 12 

was no longer significant by RR10 sessions (Table 3). A similar pattern was observed in 13 

dopamine neurons that were activated by reward delivery (Table 3). This suggests that, although 14 

cue and reward responses are positively correlated in Pavlovian conditioning tasks (Eshel et al., 15 

2016), cue-evoked responses become decoupled from reward responses during an instrumental 16 

random reinforcement schedule. Figure 9 depicts two example neurons in the FR01 session (Fig. 17 

9A) and the final RR10 session (Fig. 9B). Note that this example neuron has similar responses to 18 

cue onset and reward delivery in the FR01 session (Fig. 9A), while the example neuron (same 19 

animal) recorded during the RR10 session does not respond to cue onset, but is activated by 20 

reward delivery (Fig. 9B).  21 

 22 

 23 
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 FR01 RR05 RR10 

Dopamine  
r = 0.653 
p = .029 

r = 0.321 
p = .023 

r = 0.096 
p = .411 

Reward responsive 
dopamine  

r = 0.496 
p = .014 

r = 0.280 
p = 0.018 

r = 0.231 
p = 0.054 

Non-dopamine 
r = 0.517 
p = .003 

r = 0.584 
p < .001 

r = 0.002 
p = .981 

Modulation of noise correlations by cue onset and reward delivery in serial action trials 1 

We calculated the signal and noise correlation between pairs of VTA neurons during cues 2 

and reward delivery in RR10 sessions. We found a significant interaction between pair type 3 

(dopamine pairs, non-dopamine pairs, and mixed pairs) and event (Fig. 10; F(4,2496) = 9.482, p < 4 

.001). There was no difference in baseline noise correlations between any pairing of VTA 5 

neurons (Fig. 10; F(2,832) = 0.855, p = .426). Noise correlations evoked by cue onset were 6 

significantly greater in pairs containing a dopamine neuron than pairs of non-dopamine neurons 7 

(Fig. 10; F(2,832) = 5.881, p = .003). There was no association between cue evoked noise 8 

correlations and pairwise cue evoked geometric mean spike counts (r = 0.008, p = .817), 9 

suggesting that mean activity level did not account for this difference. Noise correlations were 10 

strongest during reward delivery overall. Noise correlations during reward delivery did not differ 11 

significantly between pairings of neurons (Fig. 10; F(2,832) = 2.794, p = .062). These data confirm 12 

previous findings that correlated activity in VTA circuits emerges when rewarding outcomes can 13 

be earned (Joshua et al., 2009; Kim et al., 2012; Eshel et al., 2016).  14 

 15 

  16 

Table 3. Table depicts the correlation between cue onset and reward delivery 

evoked responses. Data depicted separately for dopamine neurons, reward 
responsive dopamine neurons, and non-dopamine neurons, in FR01, RR05, 
and RR10 sessions. Note that the correlation between cue and reward delivery 
evoked response magnitudes decreases from FR01 to RR10 sessions. 
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DISCUSSION  1 

 We investigated how VTA neurons encode information when animals execute an 2 

uncertain numbers of actions to earn a reward. Dopamine and non-dopamine VTA neurons were 3 

preferentially tuned to different subsets of binned action number in a manner that allowed serial 4 

actions to be accurately discriminated from the collective activity of VTA ensembles. In 5 

addition, pairs of neurons with similar action tuning curves had higher action-evoked noise 6 

correlations suggesting that VTA network properties may be critical to information processing 7 

during serial actions. Our analyses further showed that this pattern of tuning is distinct from 8 

reward prediction related activity or the passage of time. We also demonstrated that cues 9 

preceding a series of actions, unlike a single rewarded action, do not evoke neuronal responses 10 

and are decoupled from reward, suggesting that cue-related information is utilized differently 11 

when a single versus an unpredictable  series of actions are required to obtain reward.  12 

Encoding information during an action series 13 

Previous reports indicate that dopamine neurons encode errors in the predicted value of 14 

rewards as well as action values (Montague et al., 1996; Schultz, 1998; Morris et al., 2006; 15 

Roesch et al., 2007). Further, dopamine neurons phasically fire during the first and last action in 16 

a sequence, which may be critical to initiating and terminating behavior (Jin and Costa, 2010). 17 

Our data indicate that the collective activity of ensembles of VTA neurons also has the capacity 18 

to encode information about ongoing behavior in real-time.  19 

The ensemble code revealed here may be used to organize and sustain actions, which is a 20 

fundamental feature of dopamine’s role in cognition (Aberman and Salamone, 1999; Ishiwari et 21 

al., 2004; Salamone et al., 2009).  In particular, this signal could be critical for supporting the 22 

unique motivational and cognitive demands when large numbers of actions are required 23 
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(Goldman-Rakic, 1998; Aberman and Salamone, 1999; Salamone and Correa, 2002; Seamans 1 

and Yang, 2004; Robbins and Roberts, 2007; Salamone et al., 2007; Robbins and Arnsten, 2009). 2 

VTA dopamine neurons project to several networks that may utilize this signal to organize 3 

behavior. For instance, dopamine innervation of the ventral striatum is selectively required for 4 

completing a lengthy series of instrumental actions, but not for executing small numbers of 5 

actions for reward (Aberman and Salamone, 1999; Ishiwari et al., 2004; Mingote et al., 2005). 6 

Dopamine projections to the prefrontal cortex are important for working memory and related 7 

constructs that require real-time information about ongoing behavior (Goldman-Rakic, 1998; 8 

Seamans and Yang, 2004; Robbins and Roberts, 2007; Robbins and Arnsten, 2009). VTA 9 

neurons could contribute to these functions by continually encoding information throughout 10 

execution of a lengthy series of actions, allowing striatal and prefrontal networks to track goal-11 

directed effort expenditure and progress.  12 

Our analyses suggest that VTA responses do not represent the passage of time in the 13 

current task. Although dopamine responses are sensitive to the timing of reward delivery and 14 

necessary for perception of time and interval timing (Lake and Meck, 2013; Bermudez and 15 

Schultz, 2014; Parker et al., 2015; Soares et al., 2016), neuronal responses were not consistently 16 

modulated by time elapsed in a trial. Instead, activity during a series of actions was most strongly 17 

modulated by action execution. This is likely because reward delivery was not contingent upon 18 

elapsed time, and VTA neurons are sensitive to the contingency between action execution and 19 

outcome delivery. Experimental designs with an explicit contingency between elapsed time and 20 

reward delivery, such as a fixed interval reward schedule, may reveal a more complex 21 

relationship between action execution and within trial timing in the responses of VTA neurons.  22 
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We also found that the number of actions required in RR10 trials did not modulate VTA 1 

responses to the rewarded action or the first action in the next trial. This suggests that recent trial 2 

history does not affect action evoked responses at the beginning or end of a series of actions. 3 

Similarly, VTA responses to stimuli associated with reward were not consistently correlated with 4 

the number of actions that an animal performed, suggesting that VTA correlates of reward 5 

anticipation did not increase or decrease according to action number. This result was expected, as 6 

each action was reinforced with equal probability.   7 

VTA ensemble encoding  8 

 Neurons with similar action number tuning curves had higher action-evoked noise 9 

correlations in spike count, which reflect shared connectivity between neurons (Cohen and Kohn, 10 

2011). This suggests that different action number tunings may arise from unique inputs or 11 

differing connection strengths between inputs and VTA neurons with similar tunings may share 12 

connection properties. VTA receives inputs from an expansive set of afferent structures (Geisler 13 

and Zahm, 2005; Geisler et al., 2007), and the diversity of inputs that converge in VTA may 14 

contribute to preferential firing in different subsets of serial actions.  15 

 The association between noise correlations and action selectivity indicates that VTA 16 

network properties are critical to understanding how information about serial behavior is 17 

encoded. Networks can encode information redundantly or through diverse activity patterns and 18 

heterogeneous tunings naturally lead to the capacity to encode information as ensembles. 19 

Accordingly, serial actions were accurately discriminated from ensemble activity, but not from 20 

population-averaged activity. Though previous studies suggest VTA activity is highly redundant 21 

(Joshua et al., 2009; Schultz, 2010; Glimcher, 2011; Kim et al., 2012; Eshel et al., 2016), this 22 

work was limited to tasks requiring very few actions. The diversity of VTA tuning curves may 23 
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increase to match the expanded behavioral state space of serial actions compared with the limited 1 

state space of single action trials (Eshel et al., 2016). Thus, ensemble encoding of information 2 

may occur when the complexity of a task increases, such as during ongoing serial actions.  3 

Units classified as either putative dopamine or non-dopamine neurons had comparable 4 

mixed tunings to serial actions, suggesting that dopamine neurons can cooperate with non-5 

dopamine VTA neurons to encode information about serial actions. These ensemble signals 6 

consisting of multiple neurotransmitters could allow information to be decoded through multiple 7 

signaling mechanisms, which may diversify the spatiotemporal properties of this signal 8 

(Seamans and Yang, 2004; Kim et al., 2010; Barker et al., 2016). The activity of different types 9 

of VTA neurons must ultimately be coordinated and unified to represent information, and the 10 

present work demonstrates how different types of VTA neurons could collectively encode 11 

information about an ongoing series of actions.  12 

Cue and Reward Evoked Responses  13 

In the first session, animals executed a single action to earn rewards (FR01). Similar to 14 

previous studies (Ljungberg et al., 1992; Schultz et al., 1993; Morris et al., 2006; Roesch et al., 15 

2007), cue light onset at the start of the trial evoked homogenous, phasic population activation in 16 

VTA neurons. There was also a significant correlation between cue and reward delivery evoked 17 

responses. These observations are consistent with a convincing body of literature suggesting that 18 

dopamine neurons encode action value predicted by cues in the environment (Montague et al., 19 

1996; Dayan and Abbott, 2001). On the other hand, when animals were required to execute 20 

multiple and random numbers of actions (random reinforcement schedules) to earn rewards we 21 

observed weakening of two critical neuronal responses by VTA neurons: (1)-loss of cue-evoked 22 

responses and (2) decorrelation of cue and reward evoked responses. This suggests that VTA 23 
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neuronal responses to reward predictive cues are modulated by the contingency and/or contiguity 1 

between cues, action, and outcomes. When cues or discriminative stimuli are presented in FR01 2 

trials, there is often a close temporal association between cue and reward delivery, as animals 3 

tend to execute actions within several seconds to earn rewards. As only one action is required in 4 

this setting, there may be a more accurate predictive relationship between cue onset and reward 5 

delivery. Thus, the unpredictable nature of a random reinforcement schedule may prevent the cue 6 

from evoking a reward prediction error. This finding is important because while previous studies 7 

have suggested that cue-evoke reward prediction errors can be used to guide action selection in a 8 

wide variety of settings, these data are drawn largely from Pavlovian and FR01-based tasks.  9 

 Cue offset in the current task is similar to a traditional Pavlovian conditioned stimulus, 10 

as offset was completely predictive of subsequent reward delivery with high temporal contiguity 11 

(0.5 sec between offset and delivery). Consistent with previous studies in which Pavlovian 12 

associations evoke VTA responses after associations are formed (Schultz, 1998), responses 13 

evoked by cue offset grew larger in successive sessions of the task. Our experiment was not 14 

designed to dissociate the effects of learning from the effects of different reinforcement 15 

schedules on information processing, and future experiments can directly address this topic. 16 

Taken together, these data suggest VTA neurons encode real-time information about ongoing 17 

actions in conjunction with information about cues with strong contiguity and contingency with 18 

reward delivery. 19 

Conclusions 20 

Our date reveal a novel form of information processing by VTA neurons. The unique 21 

ensemble coding scheme that we observed allows heterogeneous groups of VTA neurons to 22 

provide a real-time account of ongoing behavior. This coding scheme may subserve the well-23 
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established role of dopamine in goal-directed actions, decision making, and the behavioral 1 

disorganization and amotivation associated with illnesses such as ADHD and schizophrenia.  2 
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Fig. 1. Animals learn to perform serial actions. (A) Actions (nose pokes into a lit port) 
were reinforced probabilistically with sucrose pellets (rewards). In session 1, each 
action was reinforced (�xed ratio 1, FR01). In session 2, reinforcement probability 
decreased to 0.2 in 3 trial blocks (transition, TRANS). In sessions 3-4, the probability 
of reinforcement was 0.2 (random ratio 5, RR05). In sessions 5-7, the probability of 
reinforcement was 0.1 (random ratio 10, RR10). At trial start, a cue light was illumi-
nated until the outcome was earned (blue arrow). When an action was reinforced, 
the cue light was extinguished immediately and the outcome was delivered 0.5 sec 
later. (B) Random reinforcement led to di�erent numbers of serial actions 
performed per trial. (C) Mean ± SEM number of actions required per trial. Shaded 
area depicts RR10 sessions. Serial action data were drawn from these sessions 
because these sessions required the greatest average number of actions per trial, 
and thus, had the greatest statistical power. (D) Mean ± SEM action rate in each 
session. (E) Mean ± SEM inter-action intervals in low, medium and high bins (actions 
1-7, 8-14, and 15-21) during RR10 sessions.
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Fig. 2. Locations of recording electrodes within VTA. Each dot represents the location 
of a recording array. Insets show midsagittal diagram of rodent brain with vertical lines 
representing the approximate location of the most anterior and posterior coronal 
sections shown.
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Fig. 3. Electrophysiological characterization of recorded VTA neurons. Each 
point represents a single neuron; data from all sessions are depicted. Neu-
rons with wide spike widths (>1.4 ms) and low �ring rates (< 10 Hz) were 
considered putative dopamine neurons. Crosses depict reward-responsive 
dopamine neurons. The remaining neurons were considered putative 
non-dopamine neurons. The main �gure depicts the data with the horizontal 
axis limited to 30, for better visualization of the majority of the data. Inset 
shows the same data, with the horizontal axis extended to encompass the 
full range of baseline �ring rates.  
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Fig.  4. RR10 action evoked VTA responses. (A) Scatter plot depicts response start and duration of action evoked 
responses in RR10 sessions. Each point represents the data from a single unit. (B) Data from a typical dopaminergic 
neuron that preferred low action numbers. The raster shows spikes aligned to the time of action execution (time = 0). 
Each row of the raster represents one action evoked response and rows are arranged by action number. Each arrow on 
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Fig.  4. RR10 action evoked VTA responses. (A) Scatter plot depicts response start and duration of action evoked 
responses in RR10 sessions. Each point represents the data from a single unit. (B) Data from a typical dopaminer-
gic neuron that preferred low action numbers. The raster shows spikes aligned to the time of action execution 
(time = 0). Each row of the raster represents one action evoked response and rows are arranged by action 
number. Each arrow on the right represents an action number. For each action number, the earlier occurrences 
of an Nth numbered action are arranged toward the top. Thus, the �rst row of the raster represents the �rst 
occurrence of an action number 1 (i.e. trial 1), and the second row represents the second occurrence (i.e. trial 2), 
etc. (C) Depicts the action-evoked responses of the neuron depicted in (B) conditioned on action numbers 1-20. 
Note that the neuron most strongly prefers actions 1 and 2. (D-F) Neuronal responses aligned to actions for 3 
simultaneously recorded neurons. (D) A non-dopaminergic neuron that �res preferentially during lower num-
bered actions within a trial. Data depicted as the average response evoked by actions 1-20. Data are aligned to 
the time of action execution (0.025 sec bins). Only unrewarded actions are depicted. (E-F) A pair of dopaminergic 
neurons that �re preferentially during upper-middle, and higher numbered actions, respectively. Note that both 
dopaminergic and non-dopaminergic VTA neurons �re preferentially around distinct subsets of actions.(G) 
Action number tuning curves during RR10 (0.25 sec window, centered on action). Each dopamine (left) and 
non-dopamine (right) neuron’s average, action evoked, normalized, �ring rate during execution of actions is 
plotted by color. Tuning curves are scaled to each curve’s peak (hot colors = tuning curve peak). Neurons are 
sorted by the location of the peak of the tuning function. Note the diversity of tuning curves to serial actions (H) 
Proportion neurons with 1 or 2 tuning curve maxima. (I) Mean ± SEM tuning curve depth. (J) Mean ± SEM neuro-
nal responses as a function of action number in RR10 sessions for dopamine and non-dopamine neurons. 
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Fig. 5. Correlation structure of RR10 action-evoked responses. (A) 
Mean ± SEM action evoked noise correlations between simultane-
ously recorded pairs of VTA neurons in RR10 sessions during 
actions. Noise correlations measure trial-by-trial �uctuations in 
pairwise activity. Data depicted as mean ± SEM noise correlation in 
each bin of actions. Data are plotted separately for all pairings of 
VTA neurons. (B) Mean ± SEM signal correlation (correlation 
between tuning curves) and noise correlations during RR10 actions. 
For simplicity, noise correlations are collapsed across action number 
bin. 
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Fig. 6. Decoding binned action number from VTA neuronal activity. Linear discrimi-
nant analysis (LDA) utilized action-evoked activity averaged across (A) all neurons 
(population-average), or (B) the collective activity of each neuron (ensemble). (C) The 
proportion of correctly classi�ed actions for each decoder. Dashed lines represent 
decoding of shu�ed control data. Inset to the right depicts performance of ensem-
ble and population-average decoders across consecutive sessions in dopamine and 
non-dopamine neurons. Note that ensemble activity was decoded signi�cantly more 
accurately than population averaged activity and shu�ed control. Inset data are 
collapsed across high, medium, and low action numbers and depicted separately for 
each session.  
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Fig. 7. VTA responses to rewards and reward predictive cues. Normalized mean (A) 
dopamine and (B) non-dopamine responses aligned to outcome delivery (time = 0). The 
�nal action in each trial (left arrow) occurred 0.5s prior to outcome delivery (right 
arrow). Cue light o�set was simultaneous with execution of the �nal action, which 
signaled trial completion and impending outcome delivery. Data are depicted for FR01, 
�nal RR05 session, and the �nal RR10 session. (C) Mean ± SEM responses evoked by 
reward delivery (+0.05 - +0.3s, relative to reward delivery) in both groups of neurons 
and all sessions. Dopamine responses were greater than non-dopamine neuronal 
responses. Inset depicts data from all VTA neurons plotted without respect to neuronal 
classi�cation. (D) The proportion of neurons classi�ed as either signi�cantly activated 
(solid lines) or suppressed (dashed lines) by outcome delivery. Data are depicted across 
all sessions for putative dopamine and non-dopamine neurons. Inset depicts data from 
all VTA neurons plotted without respect to neuronal classi�cation. (E) Mean ± SEM 
responses following cue o�set, during the pre-reward delivery period (+0.150 - +0.400s, 
relative to cue o�set). Data are depicted similarly to (C). In each group, the evoked 
response increased across sessions. (F) The proportion of neurons activated (solid lines) 
or suppressed (dashed lines) by cue o�set signaling future reward delivery. Data depict-
ed similarly to (D). 
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Fig. 8. VTA responses to cue onset. Normalized mean (A) dopamine and (B) non-do-
pamine responses to cue onset (time = 0). Data are depicted for the FR01 session, the 
�nal RR05 session, and the �nal RR10 session. (C) Mean ± SEM responses evoked by 
cue onset (+0.05 - +0.3s) in all groups of neurons and sessions. Data are depicted 
separately for all putative dopamine and non-dopamine neurons. Responses were 
greatest in session 1 and signi�cantly less in subsequent sessions, with no di�erence 
by neuron type. Inset depicts data from all VTA neurons plotted without respect to 
neuronal classi�cation. (D) Proportion of neurons activated (solid lines) or 
suppressed (dashed lines) by cue onset. Data are depicted across all sessions for 
putative dopamine and non-dopamine neurons. The proportion of activated dopa-
mine neurons, but not non-dopamine neurons, decreased in later sessions. Inset 
depicts data from all VTA neurons plotted without respect to neuronal classi�cation.
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Fig. 9. Example VTA responses to cue onset and reward delivery 
in �rst session (FR01) and �nal RR10 session. (A) Top left panel 
depicts representative example raster of cue evoked response 
(cue onset and time =0; trials arranged in chronological order 
starting at top). Each dash represents one spike. Smoothed 
mean response is depicted below raster. The same neuron’s 
response to reward delivery is depicted in the upper right 
panel. Note the phasic response to both cue onset and reward 
delivery in the FR01 session (top row). (B) Representative 
example neuronal responses recorded in �nal RR10 session 
(data recorded from same animal in panels (A) and (B)). Data 
depicted similarly to (A) with di�erent Y axis on bottom panels.  
Note that this neuron responds to reward delivery, but not cue 
onset. 
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Fig. 10. Correlation structure of cue and reward evoked respons-
es. Mean ± SEM noise correlation between simultaneously 
recorded pairs of VTA neurons in RR10 sessions, during baseline, 
cue onset, and reward delivery. Data depicted separately for all 
pairings of neurons.  Note that reward delivery evoked the 
largest magnitude noise correlations in all pairings. 
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Fig. S1. Representative examples of neuronal spike sorting, raw data and neuronal respons-
es. (A) Spikes from unit A, a dopamine neuron, sorted according to the �rst 2 principal 
components of all threshold crossing waveforms (left). Purple points represent spikes that 
were assigned to unit A, and gray points represent noise that was not sorted into single unit 
spikes. A raw voltage trace (band pass �ltered between 100 Hz and 7 KHz) corresponding to 
the same unit is depicted in the middle column. Examples of spikes belonging to unit A are 
notated in the trace. Unit A represents a typical cue-responsive unit. Raster plot depicts the 
unit’s response aligned to cue onset (right). Each dash represents a single spike, and each 
row represents a single trial (�rst trial in the top row). Note the increased spike density just 
after cue onset (time 0) across all trials. (B) Representative cue-o�set responsive non-dopa-
minergic neuron. Data plotted with the same conventions as (A). In this example recording, 
two units were simultaneously recorded (left). Raster (right) depicts data during the time 
period between cue o�set and reward delivery (-0.5 – 0s), with spikes aligned to the time of 
reward delivery. Note the consistent increase in spike density after cue o�set and preceding 
outcome delivery. (C) Data from a representative non-dopaminergic, outcome delivery 
responsive neuron is plotted with similar conventions as (A). Raster (right) depicts neuronal 
activity aligned to the time of outcome delivery. Note the consistent delivery evoked 
response. 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 13, 2017. ; https://doi.org/10.1101/084970doi: bioRxiv preprint 

https://doi.org/10.1101/084970
http://creativecommons.org/licenses/by-nd/4.0/

