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Brain dynamics span multiple spatial and temporal scales, from fast spiking neurons to 

slow fluctuations over distributed areas. No single experimental method links data 

across scales. Here, we bridge this gap using The Virtual Brain connectome-based 
modelling platform to integrate multimodal data with biophysical models and support 

neurophysiological inference. Simulated cell populations were linked with subject-
specific white-matter connectivity estimates and driven by electroencephalography-

derived electric source activity.  The models were fit to subject-specific resting-state 

functional magnetic resonance imaging data, and overfitting was excluded using 5-fold 
cross-validation. Further evaluation of the models show how balancing excitation with 

feedback inhibition generates an inverse relationship between α-rhythms and 
population firing on a faster time scale and resting-state network oscillations on a slower 

time scale. Lastly, large-scale interactions in the model lead to the emergence of scale-
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free power-law spectra. Our novel findings underscore the integrative role for 

computational modelling to complement empirical studies. 
 

Empirical approaches to characterizing the neural mechanisms that govern brain 

dynamics often rely on the simultaneous use of different acquisition modalities.  These data 

can be merged using statistical models, but the inferences are constrained by the scales of 

measurement, rendering a mechanistic understanding of multiscale dependencies elusive. 

Mathematical modelling has played a central role for interpreting multiscale data in many 

areas of science, including physics, chemistry, and biology. Computational modelling 

accelerates the identification of principles that bridge spatiotemporal scales serving as the 

quantitative link between experimental results1, 2. 

 Here, we use the open-source connectome-based modelling platform The Virtual 

Brain3-7 (thevirtualbrain.org) to develop large-scale brain network models. The innovation in 

this paper is to model individual brains using empirical neuroimaging data to constrain large-

scale dynamics.  Person-specific white-matter connectivity sets the framework for individual 

dynamical systems models that are driven with electroencephalography (EEG) source 

imaging activity derived from the same persons. The source activity serves as biologically-

based approximation of synaptic input currents8-10 and replaces the more common use of 

noise-driven dynamics (Fig. 1).   

The modelling effort reported here addresses three frequently reported empirical 

phenomena: (i) negative correlations between resting state functional magnetic resonance 

imaging (fMRI) and EEG α-power fluctuations observed by simultaneous EEG-fMRI11-13; (ii) 

α-rhythm based gating by inhibition14, 15; and (iii) scale-freeness of fMRI and EEG signals16-18 

as illustrated in Supplementary Video 1. 

A recent focus of neuroscience has been on intrinsic neural dynamics and their relation to 

brain structure and functional capacity19-21.  Much of this was motivated by observations from 

fMRI studies of the so-called “Resting-State Networks” (RSN), which showed coherent 

spatiotemporal dynamics in the absence of an explicit task22-24. Support for a neuronal basis 

comes from concurrent fMRI and intracortical recordings25, 26, simultaneous EEG-fMRI11-13, 27, 

28 and magnetoencephalography29, 30 studies that independently detected the spatial patterns of 

RSNs. Several studies report negative correlations between cortical fMRI blood oxygen 

level–dependent (BOLD) contrast signals and EEG-derived α-rhythm power11, 12, 31, 32.  EEG 

α-rhythms have traditionally been interpreted as a sign of cortical “idling”33. This notion is 

now extended by a growing body of research that emphasizes their role for information 
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processing34. Importantly, attention, perceptual awareness and cognitive performance are 

rhythmically modulated by α-power and phase35-38. The roles of α-rhythms for mediating top-

down control, timing of oscillations and directing attention by blocking task-irrelevant 

pathways are central to prevailing hypotheses termed ‘gating by inhibition’ and ‘pulsed 

inhibition’14, 15. Intracellular recordings showed that inhibition is inseparable from excitatory 

events, resulting in ongoing excitation-inhibition balance (E/I balance)39, 40. Finally, despite 

widespread interest in criticality and its ubiquity in nature18 the origin of power-law scaling 

observed in both fMRI and EEG data is unclear16, 17.  A key point of consideration across the 

three phenomena we describe in the context of the present paper is that the computational 

model was not explicitly constructed to address each of them.  Rather we used an empirically 

constrained connectome-based brain network model to provide plausible multiscale 

explanations that link these phenomena and uncover underlying mechanisms. 

 

Prediction of individual fMRI time series 

 

 
 
Figure 1. Hybrid modelling framework. Person-specific hybrid brain network models are 

networks of local neural population models that are driven by empirical activity, rather than 

noise. Population models represent the activity of individual brain regions. These local 

models are globally coupled by structural connectomes extracted from diffusion-weighted 

MRI (dw-MRI) using brain parcellations obtained from T1-weighted MRI (T1w-MRI). 

Population models are injected with region-wise EEG source activity approximating locally 

generated synaptic input currents9, 10. This enables person-specific simulations. Simulated 

whole-brain fMRI time series are fitted with empirical fMRI time series that were acquired 

simultaneously with EEG. 5-fold cross-validation was performed to guard against overfitting.  

The underlying simulated neural activity (firing rates and synaptic activity) is analysed to 

reveal links between mesoscopic dynamics and neuroimaging signals. Excitatory postsynaptic 

currents (EPSCs) tend to be strongly correlated with the electric fields in their vicinity, while 

inhibitory postsynaptic currents (IPSCs) are anticorrelated with EPSCs8, 39, 40. Here, EPSCs 
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are derived from EEG and IPSCs result from modelled inhibitory population activity. 

Synaptic gating (the fraction of open channels of neural populations) was transformed to 

region-wise fMRI signals using the Balloon-Windkessel forward model41. In contrast to noise-

driven models that only capture stationary features, hybrid models as used here are able to 

predict the ongoing temporal dynamics of fMRI time series. 

 

Using exhaustive searches, we fitted parameters for brain network models of 15 human adult 

subjects, who all had T1-weighted, diffusion-weighted and simultaneous resting state EEG-

fMRI data (Fig. 1). For each brain network model, three parameters were varied to maximize 

the fit between empirical and simulated fMRI: the scaling of excitatory white-matter coupling 

and the strengths of the inputs injected into excitatory and inhibitory populations. Besides 

tuning these three global parameters to maximize fMRI fit, we also tuned all local inhibitory 

coupling strengths in order to obtain biologically plausible firing rates in excitatory 

populations. For this second form of tuning, termed feedback inhibition control (FIC), 

average population firing rates were the sole optimization criterion, without any consideration 

of prediction quality, which was only dependent on the three global parameters (see 

Methods). FIC is required to compensate for excess or lack of excitation resulting from the 

large variability in white-matter coupling strengths obtained by MRI tractography, which is a 

prerequisite to obtain plausible ranges of population activity that is relevant for some of the 

following results (Figs. 4 and 5). Prediction quality was measured as the average correlation 

coefficient between all simulated and empirical region-wise fMRI time series of a complete 

cortical parcellation over 20.7 minutes length (TR = 1.94s, 640 data points) thereby 

quantifying the ability of the model to predict the activity of 68 parcellated cortical regions. 

Accounting for the large-scale nature of fMRI resting-state networks, the chosen parcellation 

size provides a parsimonious trade-off between model complexity and the desired level of 

explanation. What this parcellation may lack in spatial detail, it gains in providing a full-brain 

coverage that can reliably reproduce ubiquitous large-scale features of empirical data, which 

we further present below. To exclude overfitting and limited generalizability, we performed 

5-fold cross-validation. For each subset (fold), the fMRI data were randomly divided into an 

80% sample as training segment and a 20% sample as testing segment. Furthermore, despite 

that large range of possible parameters, the search converged to a global maximum 

(Supplementary Fig. 1). Therefore, we ensured that when the model has been fit to a subset 

of empirical data, that it was able to generalize to new or unseen data. In contrast to model 
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selection approaches, where the predictive power of different models and their complexity are 

compared against each other, we here use only a single type of model. 

The hybrid model simulation results were compared with three control scenarios: (i) a model 

where local dynamics were driven by noise, (ii) a variant of the hybrid model that used 

random permutations of the region-wise EEG source activity time series and (iii) a statistical 

model where ongoing α-band power fluctuation of EEG source activity was convoluted with 

the canonical hemodynamic response function (henceforth called α-regressor). The first two 

controls are brain network models; the third is inspired by traditional analyses of empirical 

EEG-fMRI data.  The combination of 5-fold cross validation and comparison against these 

control scenarios further reinforces the explanatory utility of the hybrid computational model. 

 

 
Figure 2. Person-specific fMRI time series prediction. a, Example time series of the hybrid 

model and the three control scenarios. The hybrid model shows good correspondence with 

empirical fMRI waveforms compared to control network models. The α-regressor correlates 

comparably strong, but negatively, with empirical fMRI. b, Mean values of correlation 

coefficients between all simulated and empirical region time series (~20 minutes) for all 

subjects (errorbars indicate standard errors of the mean; values for the α-regressor were 

inverted for illustration purposes). Time series predictions from the hybrid model yield 
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significantly higher correlations than control network models. c, Standard deviation (s.d.) of 

RSN time courses correlates with fMRI time series prediction quality. Dots plot the s.d. of 

each of the nine RSN time courses in each of the 15 subjects versus the prediction quality of 

fMRI time series for all regions underlying the respective RSN. Prediction quality varies over 

regions and subjects; the hybrid model predicts an fMRI region time series better when its 

corresponding RSN time course has a high s.d., i.e., when RSN activity dominates the fMRI 

signal of that region. d, Prediction of the temporal dynamics of RSNs. Upper row: spatial 

activation patterns of group-ICA RSNs. Middle row: mean correlation coefficients between 

RSN temporal modes and hybrid model simulation results, respectively α-regressor. Lower 

row: mean sliding window (length = 100 fMRI scans = 194 s; one fMRI scan step width) 

correlations for the upper and lower quartiles of window-wise RSN temporal mode s.d.. Left 

and right bars show the average correlations for the upper and lower quartiles of window-

wise s.d. for the hybrid model and the α-regressor. Prediction quality of RSN temporal 

activity is significantly improved during epochs of high RSN activation. Asterisks indicate 

significant differences compared to the source activity model (*p < .05, **p < .01, two-

sample t-test). 

 

Visual inspection of example time series showed good reproduction of characteristic 

slow RSN oscillations by the hybrid model and the α-regressor (albeit inverted for the latter), 

but poor reproduction of temporal dynamics in the case of noise and random permutations 

models (Fig. 2a). To quantify prediction quality, we computed the mean over all correlation 

coefficients between simulated and empirical fMRI time series for each parameter set and 

each of the four setups (i.e., hybrid model and the three control setups). Predictions from the 

hybrid model correlated significantly better with empirical fMRI time series than predictions 

from the two random models (Fig. 2b). Five-fold cross-validation showed no significant 

difference of prediction quality between training and validation data sets (p = .97, two-sample 

t-test) and between validation data sets and prediction quality for the full time series (p = .34, 

two-sample t-test). Predictions from the α-regressor were slightly less accurate (note that as 

α-power is inversely correlated with fMRI activity, correlation coefficients were inverted for 

comparison). 

We performed a group-level spatial independent component analysis (ICA) on the 

empirical fMRI data to compare simulation results with RSN activity (Fig. 2d). To account 

for temporal variation of prediction quality, we computed sliding-window correlations (100 

fMRI scans = 194 s window length; one fMRI scan step width). Average prediction quality 
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was largest for the hybrid model for eight out of nine RSNs (Fig. 2d). As with region-wise 

fMRI, correlation coefficients of the hybrid model and the α-regressor were comparably 

good, while the control network models performed poorly. We found that prediction quality 

varied over time, regions and subjects. Window-wise prediction quality was highly correlated 

with the standard deviation of RSN temporal modes (Fig. 2c). That is, the higher the temporal 

activation of a RSN (in a given subject, region and time window) the better the prediction of 

its activation time series. As a consequence, epochs in the upper quartile of RSN standard 

deviations were significantly better predicted than epochs in the lower quartile (Fig. 2d). 

Similarly, the strength of functional networks (measured by average FC between all region-

pairs) correlated with prediction quality (r=0.5 ± 0.32, mean ± s.d.), indicating that epochs of 

high functional network activity were better predicted than epochs that are characterized by 

uncorrelated activity. 

 
Figure 3. Empirical FC prediction. In contrast to the α-regressor, the hybrid model 

concurrently predicts empirical time series dynamics (Fig. 2, 4-6) and FC. a, b, Mean 

correlation coefficients between predicted and empirical FC for the three model types and the 

α-regressor (errorbars indicate standard errors). FC was computed for long (static FC; 

computed over ~20 min) and short epochs (dynamic FC; average sliding window correlation; 

100 fMRI scans window length; one fMRI scan step width). The hybrid model yields 

significantly higher individual FC correlations than noise model and α-regressor. Results 

were compared for the parameter set that generated the best fMRI time series prediction (a) 

and the parameter set that yielded the best FC predictions for each subject (b). c, Comparison 

of average FC of empirical data and hybrid model results, respectively α-regressor results. 

Dots show pairwise FC values for all region-pairs for the full length of the time series 

averaged over all subjects. Asterisks indicate significant differences compared to the hybrid 

model (*p < .05, **p < .01, two-sample t-test). 

 

In contrast to time series prediction, the α-regressor performed poorly for estimating 

FC. Compared to the α-regressor, all three model-based approaches provided significantly 

better predictions of subject-specific long-term FC (computed over ~20 min between all 68 

ROIs) and functional connectivity dynamics (Fig. 3). Furthermore, FC matrices obtained from 
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hybrid model simulations correlated significantly higher with empirical activity than 

predictions obtained from the noise-driven model (Fig. 3a, b). Interestingly, correlations for 

hybrid and random permutation models were effectively the same, likely because the large-

scale network dynamics that drive the emergence of FC would be relatively preserved when 

permuting injected activity. Prediction of group-average FC (all pairwise FC values averaged 

over all subjects) was higher for the hybrid model compared to the α-regressor (Fig. 3c). 

 

E/I balance generates α-phase related firing 

After fitting the 15 person-specific hybrid models, we analysed the local population activity 

underlying predicted fMRI time series to infer the neurodynamic mechanisms. Simulated 

dynamics result from fitting three global model parameters: the scaling of global white-matter 

coupling and the strengths of inputs injected into excitatory and inhibitory populations. The 

optimized hybrid model reproduced the inverse relationship between α-phase and firing rates 

observed in invasive recordings42 (Fig. 4a). To investigate these fast-acting dynamics related 

to α-phase, we computed grand average waveforms of modelled synaptic inputs, population 

firing rates and synaptic gating, all time-locked to the zero-crossings of α-cycles (Fig. 4b). 

Resulting waveforms illustrate the relation of α-oscillations to population activity and how 

the ongoing balancing of rhythmic excitatory and inhibitory inputs generated pulsed 

inhibition.  
 

 
Figure 4. Excitation-inhibition balance underlies the empirically observed inverse 

relationship between neuronal firing and α-oscillations42. Hybrid models that were fitted to 

person-specific fMRI time series reproduced the invasively observed rhythmic inhibition of 

firing relative to α-cycle phase (pulsed inhibition) on a faster time scale. a, Population firing 

rates were highest during the trough and lowest during the peak of α-cycles. Firing rates 

were divided into six bins according to α-cycle segments and normalized relative to the mean 

firing rate of each cycle. The observed pattern resembles empirical findings42. b, Grand 
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average waveforms (shaded areas indicate standard errors of the mean) of population inputs 

and outputs were computed time locked to α-cycles of EEG source activity (black, column II). 

In optimized models, inhibitory population inputs (blue, column III) were dominated by 

EPSCs (red); left axes denote currents going into excitatory populations, right axes denote 

currents going into inhibitory populations. Consequently, firing rates and synaptic gating of 

inhibitory populations (blue) in columns VI and VII closely followed source activity shape 

(FOC (column VII) = fraction of open channels). As a consequence, IPSCs resulting from 

feedback inhibition (blue, column III) showed an inverted pattern; their amplitude at 

excitatory populations was about three times larger than EPSCs, also reproducing empirical 

observations8, 43. Accordingly, excitatory population input, firing rates and synaptic gating 

(red; columns IV, VI, VII) were inverted relative to the α-cycle.  

 

As noted above, we injected region-wise EEG source activity into corresponding 

network nodes in order to simulate biologically realistic EPSCs (Fig. 1). In hybrid models, 

which were optimized for highest empirical fMRI time series fit and biological plausibility of 

average firing rates, EPSCs dominated inputs to inhibitory populations. Consequently, the 

sum of synaptic input currents to inhibitory populations closely followed the shape of EPSCs. 

As a result of the monotonic relationship between input currents and output firing rates of 

populations (defined by Eqs. 3 and 4, see Methods), the waveform of inhibitory firing rates 

and synaptic gating also closely followed injected EPSCs. As increasing input to inhibitory 

populations leads to increasing inhibitory effect and vice versa, resulting feedback inhibition 

(i.e. IPSC) waveforms were inverted to injected EPSCs; that is, excitation and inhibition were 

balanced during each cycle, which is in accordance with published electrophysiology results8, 

40. Consequently, IPSCs peaked during the trough of the α-phase and were lowest during the 

peak of the α-phase. The previously fitted synaptic coupling strength parameters determined 

the relative contribution of excitation and inhibition. Fitting the models to fMRI activity 

resulted in a biologically plausible ratio8, 43 of EPSCs to IPSCs, with IPSC amplitudes being 

about three times larger than EPSC amplitudes (Fig. 4b). As per other empirical 

observations8, 43, we ensured the EPSC amplitudes at excitatory populations are smaller than 

IPSC amplitudes by constraining parameters such that the standard deviation of injected 

source activity was larger for inhibitory populations, i.e., ωBG
(E) < ωBG

(I). Specifically, we 

scanned 12 different ratios of both parameters ωBG
(I) / ωBG

(E) with values between 5 and 200. 

Because IPSCs have dominated excitatory population inputs, firing rates of excitatory 

populations showed a similar shape as feedback inhibition currents, i.e., they peaked during 
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the trough of the α-cycle and fell to their minimum during the peak of the α-cycle, 

reproducing their empirical relationship42. 

 In summary, the mesoscopic activity underlying fMRI predictions showed a rhythmic 

modulation of firing rates on the fast time scale of individual α-cycles in accordance with 

empirical observations42. Model activity revealed that periodic microstates of excitation and 

inhibition resulted from the ongoing balancing of EPSCs by feedback inhibition currents. 

 
‘Pulsed inhibition’ generates fMRI oscillations 

We next focused on the interaction between α-power fluctuations and population dynamics to 

identify the mechanism underlying the inverse relationship between α-power and fMRI12. To 

isolate the effects of α-waves and separate it from other EEG rhythms, we replaced the EEG-

source activity in the optimized model for each subject with artificial α-activity consisting of 

a 10 Hz sine wave that contained a single brief high power burst in its centre (using the single 

parameter set for which the highest average prediction quality over all subjects was obtained, 

Supplementary Fig. 1) and computed grand average waveforms over all resulting region 

time series (Fig. 5a).  As for fMRI prediction, local inhibition strengths for each node were 

tuned using FIC to obtain biologically realistic firing rates. 

 
Figure 5. α-power fluctuations generate alternating states of excitation and inhibition that 

lead to fMRI oscillations. a, To isolate the mechanism underlying α-power-related inhibition, 

subject-specific models were injected with artificial α-activity. Each region received ten 
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minutes of 10 Hz sine oscillations that contained a single brief high power burst (first 

column; black: centre part of injected artificial α-activity, orange: α-power). While positive 

deflections of the α-wave generated positive deflections of ongoing firing rates of inhibitory 

populations, large negative deflections were bounded by the physiological constraint of 0 Hz 

(blue, fifth column; moving average in black). That is, inhibitory populations rectified α-

oscillations such that only the positive half of the wave remained. As a result, average per-

cycle feedback inhibition increased for increasing α-power, and the average firing rates, 

synaptic gating and ultimately fMRI signals (red; fifth, sixth and seventh column) decreased. 

b, To identify the relationship between fMRI and α-rhythms we injected models with 10 Hz 

sine waves where ongoing power was modulated similar to empirical α-rhythms (0.01 – 0.03 

Hz). Similarly to a, but for a longer time frame, inhibitory populations rectified negative 

deflections, which introduced the α-power modulation as a new frequency component into 

firing rates and fMRI time series. 

 

 We analysed waveforms of model state variables and found, as expected, that average 

per-cycle firing rates and fMRI activity decreased in response to the α-burst (Fig. 5a). 

Notably, this behaviour emerged despite the fact that injected activity was centred at zero, i.e., 

positive and negative modulations of input currents were balanced. The reason for the 

observed asymmetric response to increasing power levels originated from inhibitory 

population dynamics: while positive deflections of α-cycles generated large peaks in ongoing 

firing rates of inhibitory populations, negative deflections were bounded by 0 Hz (Fig. 5a). 

Because of this rectification of high-amplitude negative half-cycles, average per-cycle firing 

rates of inhibitory populations increased with increasing α-power. As a result, also feedback 

inhibition had increased for increasing α-power, which in turn led to increased inhibition of 

excitatory populations, decreased average firing rates, synaptic gating variables and ultimately 

fMRI amplitudes. 

We next analysed the relationship between fMRI oscillations and α-power. We 

generated artificial α-activity consisting of a 10 Hz sine wave that was amplitude modulated 

by slow oscillations (cycle frequencies between 0.01 and 0.03 Hz) and injected it into the 

models of all subjects using the same parameters as for the single α-burst (Fig. 5b). As in the 

previous experiment, inhibitory populations filtered negative α-deflections during epochs of 

increased power. This half-wave rectification led to increased average per-cycle firing rates in 

proportion to signal power, which introduced a new slow frequency component into the 

resulting time series. The activity of inhibitory populations can be compared to envelope 
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detection used in radio communication for AM signal demodulation. The new frequency 

component introduced by half-wave rectification of α-activity modulated feedback inhibition, 

which in turn modulated excitatory population firing rates. Interestingly, the resulting 

oscillation of firing rates was propagated to synaptic dynamics where the large time constant 

of NMDAergic synaptic gating (τNMDA = 100 ms vs. τGABA = 10 ms) led to an attenuation of 

higher frequencies. The low-pass filtering property of the hemodynamic response additionally 

attenuated higher frequencies such that in fMRI signals only the slow frequency components 

remained.  To restate: ongoing α-power fluctuations create a slow phase modulation of firing 

rates and synaptic activity; the low-pass filtering properties of slow synaptic gating and 

hemodynamic responses attenuate higher frequencies such that only slow oscillations remain 

in fMRI signals. 

In summary, we found that increased α-power led to an increased activation of 

inhibitory populations. Resulting feedback inhibition generates fMRI oscillations, which can 

explain the empirically observed anticorrelation between α-power and fMRI. 

 
Global coupling controls scale-freeness 

Empirical fMRI power spectra follow a power-law distribution P ∝ f β, where P is power, f is 

frequency and β the power-law exponent, which is an indicator of criticality and scale-free 

dynamics44. In accordance with systematic analyses44, average power-law spectra of our fMRI 

data obeyed power-law distributions with exponents βemp = -0.97  (βemp = -0.82 when the 

frequency range was limited to frequencies < 0.1 Hz as in Ref [44]) for empirical and βsim = -

0.76 for simulated data (Fig. 6a and Supplementary Fig. 2); time series were tested for scale 

invariance using rigorous model selection criteria (see Methods). Our previous results (Fig. 5) 

associated resting-state fMRI oscillations with EEG by identifying a neural mechanism that 

transforms instantaneous EEG source power fluctuations into fMRI oscillations. Surprisingly, 

however, the spectrum of EEG source power had a considerably smaller negative exponent 

than fMRI (βα-band = -0.56 for α-power and βwide-band = -0.53 for wide-band power). 

Comparison of power spectra indicated that power-law fits of simulated fMRI spectra had a 

higher negative exponent than power-law fits of instantaneous source power spectra because 

the power of slower oscillations increased relative to the power of faster oscillations (Fig. 6a 
and Supplementary Fig. 2). Model dynamics transform input activity such that the amplitude 

of output oscillations increased inversely proportional to their frequency. The effect is visible 

in Fig. 5b, where fMRI, synaptic and firing rate amplitudes of slow oscillations were larger 

than amplitudes of fast oscillations, despite equally large amplitudes of input α-power 
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oscillations. In comparison, simulation results obtained for deactivated large-scale coupling, 

but an otherwise identical setup, did not show this frequency-dependent amplification (Fig. 
6b). Without large-scale coupling the power-law exponent of simulated fMRI (βsim_Gzero = -

0.53) was close to the exponent of injected EEG source activity power (βwide-band = -0.53). We 

studied the link between large-scale excitation, local inhibition and scale-free dynamics by 

analysing simulation results for different settings of global coupling and local feedback 

inhibition. To isolate the effect of global coupling and exclude that this frequency-dependent 

amplification is due to feedback inhibition control (see Methods) and to disentangle the 

effects of global excitation and local inhibition, we used a single weight for all inhibitory 

couplings and obtained a consistent, but more drastic effect: when global coupling and FIC 

were both deactivated, simulated fMRI showed strongly decreased scale invariance (the 

scaling exponent α = 0.56 obtained by detrended fluctuation analysis was close to α = 0.5, 

which indicates uncorrelated white noise), which demonstrated the crucial role of global 

coupling for the emergence of scale invariance and long-range correlations (Supplementary 

Fig. 2 and 3). Screening of subject-specific parameter spaces showed that the power-law 

exponent of simulated fMRI depended on the balance of large-scale excitation and local 

inhibition: the 2D distribution of prediction quality (fMRI time series and functional 

connectivity) and critical exponent showed a characteristic diagonal pattern, which 

demonstrates the necessity of proper balance of large-scale excitation and local inhibition for 

optimal prediction (Supplementary Fig. 3).  
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Figure 6. Large-scale coupling controls scale-free fMRI dynamics. a, Empirical fMRI power 

spectra show power-law scaling with exponent βemp = -0.97. In accordance, the power-law 

exponent of simulated fMRI was close to the empirical value (βsim = -0.76). Previous results 

showed that the model transformed ongoing EEG source power fluctuation into fMRI 

oscillations. Notably, however, alpha power time series had a considerably flatter power 

spectrum slope (βα-band = -0.56, βwide-band = -0.53) than fMRI. Simulation results that were 

obtained for deactivated large-scale coupling had a similarly flat spectrum (βzeroG = -0.53). 

Parameter space exploration suggests that the emergence of scale-free fMRI power spectra 

depends on the proper balancing of recurrent large-scale excitation with local inhibition 

(Supplementary Figs. 2 and 3). When large-scale coupling was absent or inadequately 

balanced, prediction quality decreased and models produced flatter spectra or no scale 

invariance at all. b, Grand average waveforms of simulation results using the same artificial 

α-rhythm input as in Fig. 5b, but with disabled large-scale coupling. In contrast to Fig. 5b, 

the resulting firing rates, synaptic gating and fMRI waveforms showed no frequency-

amplitude dependence. Comparison of model dynamics between both scenarios suggests that 

gradually accumulating self-reinforcing excitation through large-scale coupling leads to 

frequency-dependent amplification that augments slower oscillations more than faster 

oscillations, which results in the emergence of scale invariance. 

 

DISCUSSION 
 

Connectome-based computational modelling has helped to provide new insights into large-

scale network dynamics related to phenomena such as resting-state networks45. We build from 

this foundation by more explicitly integrating empirical data to constrain the model dynamics. 

Subject-specific connectomes and biophysically based brain models were driven by their own 

EEG-derived approximations of locally generated synaptic input currents and fit to their own 

fMRI time series. The optimized models enabled inferences about mesoscopic dynamics 

underlying fMRI resting state activity. We reinforce the validity of the model by showing that 

the underlying emerging processes, which were not explicitly incorporated in the model, 

reproduce neurophysiological results. The novel approach forms an integrative framework to 

construct hypotheses derived from the generated model activity, while remaining sensitive to 

constraints provided by empirical evidence. Thereby, it links data to theory by uniting models 

of neural dynamics with empirical observations across modalities and spatiotemporal scales. 
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We demonstrate how this framework can be used for the systematic study of individual brain 

activity by identifying neural mechanisms underlying person-specific resting-state fMRI 

activity, the inhibitory effect of EEG α-rhythms and the emergence of scale-free dynamics. 

Power-law relationships between frequency and amplitude of oscillations are omnipresent in 

nature; the identified mechanism—increased amplification of slower processes through 

prolonged recurrent excitation—may have implications for other areas of science. The 

observed co-emergence of long-range correlations and power-law scaling may point to a 

unifying explanation within the theory of self-organized criticality, as previously proposed by 

others46. 

Fitting models with subject-specific fMRI time series configured network interaction such 

that mesoscopic dynamics emerged that are consistent with other empirical data at that scale. 

Estimated parameters, like the strengths of local and global coupling, created dynamical 

regimes that were characterized by ongoing E/I balance, which we also found to be a key 

mechanism underlying fMRI resting-state oscillations and α-inhibition. Our findings 

mechanistically link electrical activity to hemodynamic oscillations and thereby add to 

accumulating evidence suggesting that RSNs originate from neuronal activity11-13, 25, 26, 29, 30 

rather than being a purely hemodynamic phenomenon that is only correlated, but not caused 

by it32, 47, 48. Likewise, our results provide a mechanistic explanation for the emergence of 

power-law spectra that is based on large-scale interaction of brain regions. Our identified 

mechanism suggests a neural origin in line with empirical results that connect E/I balance to 

scale-free dynamics49 and recurrent excitation to states of high or low activity in local 

circuits50. Our major results are integrated and visualized in Supplementary Video 1. 

Source activity injection aims to increase the biological realism of brain simulation. 

Computational models by necessity omit features of the real system for the sake of simplicity, 

generality and efficiency. Adding such features increases degrees of freedom, but may also 

render parameter spaces intractable and increases the risk of over-fitting. Injection of 

empirical activity is a way to systematically probe sufficiently abstract neural systems while 

maintaining biologically realistic behaviour. Thereby, the approach aims to balance a level of 

abstraction that is sufficient to provide insights with being detailed enough to guide 

subsequent empirical study.  

The present approach proved promising for general decoding of mesoscopic neural 

information processing mechanisms. The ability to selectively target and perturb person-

specific whole-brain models will contribute to our mechanistic understanding of neural 

information processing and its relation to brain function and dysfunction. 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 3, 2016. ; https://doi.org/10.1101/085548doi: bioRxiv preprint 

https://doi.org/10.1101/085548
http://creativecommons.org/licenses/by-nd/4.0/


 

METHODS 
 

Computational model. The model used in this study is based on the large-scale dynamical 

mean field model used by Deco and colleagues51, 52. Brain activity is modelled as the network 

interaction of local population models that represent cortical areas. Cortical regions are 

modelled by interconnected excitatory and inhibitory neural mass models. In contrast to the 

original model, excitatory connections were replaced by injected EEG source activity. The 

dynamic mean field model faithfully approximates the time evolution of average synaptic 

activities and firing rates of a network of spiking neurons by a system of coupled non-linear 

differential equations for each node i: 

 

Here, ri
(E,I) denotes the population firing rate of the excitatory (E) and inhibitory (I) population 

of brain area i. Si
(E,I) identifies the average excitatory or inhibitory synaptic gating variables of 

each brain area, while their input currents are given by Ii
(E,I). In contrast to the model used by 

Deco et al.51 that has recurrent and feedforward excitatory coupling, we approximate 

excitatory postsynaptic currents IBG using region-wise aggregated EEG source activity that is 

added to the sum of input currents Ii
(E,I). This approach is based on intracortical recordings that 

suggest that EPSCs are non-random, but strongly correlated with electric fields in their 

vicinity, while IPSCs are anticorrelated with EPSCs8-10. The weight parameters ωBG
(E,I) rescale 

the z-score normalized EEG source activity independently for excitatory and inhibitory 

populations. G denotes the large-scale coupling strength scaling factor that rescales the 

structural connectivity matrix Cij that denotes the strength of interaction for each region pair 𝑖 

and j. All three scaling parameters are estimated by fitting simulation results to empirical 
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fMRI data by exhaustive search. Initially, parameter space (n-dimensional real space with n 

being the number of optimized parameters) was constrained such that the strength of 

inhibition was larger than the strength of excitation, satisfying a biological constraint. 

Furthermore, for each tested parameter set (containing the three scaling parameters mentioned 

above) the region-wise parameters Ji that describe the strength of the local feedback inhibitory 

synaptic coupling for each area 𝑖 (expressed in nA) are fitted with the algorithm described 

below such that the average firing rate of each excitatory population in the model was close to 

3.06 Hz (i.e. the cost function for tuning parameters Ji was solely based on average firing 

rates and not on prediction quality). The overall effective external input I0=0.382 nA is scaled 

by WE and WI, for the excitatory and inhibitory pools, respectively. ri
(E,I)denotes the neuronal 

input-output functions (f-I curves) of the excitatory and inhibitory pools, respectively. All 

parameters except those that are tuned during parameter estimation are set as in Deco et al.51. 

BOLD activity was simulated on the basis of the excitatory synaptic activity S(E) using the 

Balloon-Windkessel hemodynamic model41, 53. 

Feedback inhibition control. Using standard parameters of the original model, the excitatory 

populations of isolated nodes have an average firing rate of 3.06 Hz, which conforms to the 

Poisson-like cortical in vivo activity of ~3 Hz54-56. For coupled populations, firing rates change 

in dependence of the employed structural connectivity matrix and injected input. To 

compensate for a resulting excess or lack of excitation, a local regulation mechanism, called 

feedback inhibition control (FIC), was used. The approach was previously successfully used 

to significantly improve FC prediction as well as for increasing the dynamical repertoire of 

evoked activity and the accuracy of external stimulus encoding51. Despite the mentioned 

advantages of FIC tuning, it brings the disadvantage of increasing the number of open 

parameters of the model. To prove that prediction quality is not due to FIC, but solely due to 

the three global parameters and to exclude concerns about over-parameterization or that FIC 

may be a potentially necessary condition for the emergence of scale-freeness, we devised a 

control model that did not implement FIC, but used a single global parameter for inhibitory 

coupling strength. Instead of tuning the 68 individual local coupling weights individually, 

only a single global value for all inhibitory coupling weights Ji was varied. We compared the 

effect of FIC on time series prediction quality and found no significant difference in 

prediction quality to simulations that used only a single value for all local coupling weights Ji 

per subject (p = .92, two-sample t-test). In contrast to simulations that are driven by noise51, 

FIC parameters for injected input must be estimated for the entire simulated time series, since 

the non-stationarity of stimulation time series leads to considerable fluctuations of firing rates. 
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Therefore, we developed a local greedy search algorithm for fast FIC parameter estimation 

based on the algorithm in Deco et al.51. To exert FIC, local inhibitory synaptic strength is 

iteratively adjusted until all excitatory populations attained a firing rate close to the desired 

mean firing rates for the entire ~20 minutes of activity. During each iteration, the algorithm 

performs a simulation of the entire time series. Then, it computes the mean firing activity over 

the entire time series for each excitatory population and adapts Ji values accordingly, i.e., it 

increases local Ji values if the average firing rate over all excitatory populations during the k-

th iteration r̂k is larger than 3.06 Hz and vice versa. In contrast to the algorithm by Deco et al., 

the value by which Ji is changed is dynamically adapted in dependence of the firing rate 

obtained during the current iteration  

Ji
k+1 = Ji

k + (r ̂k-3.06)τk,  (7) 

where Ji
k denotes the value of feedback inhibition strength of node i and τk denotes the 

adaptive tuning factor during the k-th iteration. In the first iteration, all Ji values are initialized 

with 1 and τk is initialized with 0.005. The adaptive tuning factor is dynamically changed 

during each iteration based on the result of the previous iteration: 

τk+1 = (Σi(Ji
k-1 - Jk)) / (r ̂k-1 - r ̂k). (8) 

For the case that the result did not improve during the current iteration, i.e.,  

|r ̂k – 3.06| ≥ |r ̂k-1 – 3.06|, (9) 

the adaptive tuning factor is decreased by multiplying it with 0.5 and the algorithm continues 

with the next iteration. After 12 iterations, all Ji values are set to the values they had during 

the iteration k where |r ̂k – 3.06| was minimal.  

 

MRI preprocessing.  Structural and functional connectomes from 15 healthy subjects (age 

range: 18 – 31 y., 8 female) were extracted from full data sets (diffusion-weighted MRI, T1-

weighted MRI, EEG-fMRI) using a local installation of the automatic pipeline developed by 

Schirner et al.57. MRI measurements were acquired with 32-channel Siemens 3 Tesla Trio 

systems at the Berlin Center for Advanced Neuroimaging, Berlin, Germany. Extracted 

structural connectivity approximates the strengths and time-delays of interaction between 

regions as mediated by white matter fiber tracts. Heterogeneous conduction delays between 

distant cortical areas are neglected in this study and set to 1 ms for each connection. Strength 

matrices Cij were divided by their respective maximum value for normalization. In short, the 

pipeline proceeds as follows: for each subject a three-dimensional high-resolution T1-

weighted image (1 mm isotropic) image was used to divide cortical gray matter into 68 

regions according to the Desikan-Killiany atlas using FreeSurfer’s58 automatic anatomical 
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segmentation and registered to diffusion data. The gyral-based brain parcellation is generated 

by an automated probabilistic labelling algorithm that has been shown to achieve a high level 

of anatomical accuracy for identification of regions while accounting for a wide range of 

inter-subject anatomical variability59. The atlas was successfully used in previous modelling 

studies and provided highly significant structure-function relationships4, 57, 60. Probabilistic 

white matter tractography and track aggregation between each region-pair was performed as 

implemented in the automatic pipeline and the implemented distinct connection metric 

extracted. This metric weights the connection strength between two regions according to the 

gray-matter/white-matter interface areas of both regions used to connect these regions and not 

by the number of raw tracks, since this number is biased by different anatomical features57. 

After preprocessing, the cortical parcellation mask was registered to fMRI resting-state data 

(T2-weighted echo planar imaging with blood oxygen level-dependent contrast; TR = 1940 

ms; voxel size = 3 mm isotropic; eyes-closed resting-state) of subjects and average fMRI 

signals for each region were extracted. The first five images of each scanning run were 

discarded to allow the MRI signal to reach steady state. To identify RSN activity a spatial 

Group ICA decomposition was performed for the fMRI data of all subjects using FSL 

MELODIC (MELODIC v4.0; FMRIB Oxford University, UK, Beckmann and Smith (61)) 

with the following parameters: high pass filter cut off: 100 s, MCFLIRT motion correction, 

BET brain extraction, spatial smoothing 5 mm FWHM, normalization to MNI152, temporal 

concatenation, dimensionality restriction to 30 output components. ICs that correspond to 

RSNs were automatically identified by spatial correlation with the nine out of the ten well-

matched pairs of networks of the 29,671-subject BrainMap activation database as described in 

Smith et al.62 (excluding the cerebellum network). 

 

EEG preprocessing. Details of EEG preprocessing are described in supplementary material of 

Schirner et al.57. First, to account for slow drifts in EEG channels all channels were high-pass 

filtered at 1.0 Hz (standard FIR filter). Imaging Acquisition Artefact (IAA) correction was 

performed using Analyser 2.0 (v2.0.2.5859, Brain Products, Gilching, Germany). The onset 

of each MRI scan interval was detected using a gradient trigger level of 300 µV/ms. 

Incorrectly detected markers, e.g. due to shimming events or heavy movement, were manually 

rejected. To assure the correct detection of the resulting scan start markers each inter-scan 

interval was controlled for its precise length of 1940 ms (TR). For each channel a template of 

the IAA was computed using a sliding average approach (window length: 11 intervals) and 

subsequently subtracted from each scan interval. For further processing, the data was down 
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sampled to 200 Hz, imported to EEGLAB and low-pass filtered at 60 Hz. ECG traces were 

used to detect and mark each instance of the QRS complex in order to identify 

ballistocardiogram (BCG) artifacts. The reasonable position and spacing of those ECG 

markers was controlled by visual inspection and corrected if necessary. To correct for BCG 

and artifacts induced by muscle activity, especially movement of the eyes, a temporal ICA 

was computed using the extended Infomax algorithm as implemented in EEGLAB. To 

identify independent components (ICs) that contain BCG artifacts the topography plot, 

activation time series, power spectra and heartbeat triggered average potentials of the 

resulting ICs were used as indication. Based on established characteristics, all components 

representing the BCG were identified and rejected, i.e., the components were excluded from 

back-projection. The remaining artificial, non-BCG components, accounting for primarily 

movement events especially eye movement, were identified by their localization, activation, 

spectral properties and ERPs. Detailed descriptions of EEG and fMRI preprocessing have 

been published elsewhere27, 63-65. 

 

Biologically based model input. EEG source imaging was performed with the freely available 

MATLAB toolbox Brainstorm using default settings and standard procedure for resting-state 

EEG data as described in the software documentation66. Source space models were based on 

the individual cortical mesh triangulations as extracted by FreeSurfer from each subject’s T1-

weighted MRI data and downsampled by Brainstorm. From the same MRI data, head surface 

triangulations were computed by Brainstorm. Standard positions of the used EEG caps (Easy-

cap; 64 channels, MR compatible) were aligned by the fiducial points used in Brainstorm and 

projected onto the nearest point of the head surface. Forward models are based on Boundary 

Element Method head models computed using the open-source software OpenMEEG and 

15002 perpendicular dipole generator models located at the vertices of the cortical surface 

triangulation67, 68. The sLORETA inverse solution was used to estimate the distributed 

neuronal current density underlying the measured sensor data since it has zero localization 

error69. EEG data was low-pass filtered at 30 Hz and imported into Brainstorm. There, the 

epochs before the first and after the last fMRI scan were discarded and the EEG signal was 

time-locked to fMRI scan start markers. Using brainstorm routines, EEG data was projected 

onto the cortical surface using the obtained inversion kernel and averaged according to the 

Desikan-Killiany parcellation that was also used for the extraction of structural and functional 

connectomes and region-averaged fMRI signals. The resulting 68 region-wise source time 

series were imported to MATLAB, z-score normalized and upsampled to 1000 Hz using 
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spline interpolation as implemented by the Octave function interp1. To enable efficient 

simulations, the sampling rate of the injected activity was ten times lower than model 

sampling rate. Hence, during simulation identical values have been injected during each 

sequence of ten integration steps. 

 

Simulation and analysis. Simulations were performed with a highly optimized C 

implementation of the used model on the supercomputers JUROPA and JURECA at the 

Juelich Supercomputing Centre. The model was implemented using several code optimization 

strategies that considerably increase execution speed, which enabled an exhaustive brute-

force parameter space scan using 3888 combinations of the parameters G and ωBG
(E,I) for each 

subject. Each of these combinations was computed 12 times to iteratively tune Ji values. As 

control setup, further simulations were performed with random permutations of the input time 

series. Therefore, each source activity time series was randomly permutated (individually for 

each region and subject) using the Octave function randperm() and injected into simulations 

using all parameter combinations that were previously used. As an additional control situation 

the original dynamic mean field model as described in Deco et al.51 was simulated for the 15 

SCs. Here, the parameters G and JNMDA were varied and FIC tuning was performed using the 

same algorithm as used for the source activity injection model. The simulation and FIC 

optimization process was identical for all three models. The length of the simulated time 

series for each subject was 21.6 minutes. Simulations were performed at a model sampling 

rate of 10,000 Hz. BOLD time series were computed for every 10th time step of excitatory 

synaptic gating activity using the Balloon-Windkessel Model41. From the resulting time series 

every 1940th step was stored in order to obtain a sampling rate of simulated fMRI that 

conforms to the empirical fMRI TR of 1.94 s. The first 11 scans (21.34 s) of activity were 

discarded to allow model activity and simulated fMRI signal to stabilize. For each subject and 

modelling approach the simulation result that yielded the highest average correlation between 

all 68 empirical and simulated regions time series for all tested parameters was used for all 

analyses. A five-fold cross-validation scheme was performed on the EEG injection model 

data. Therefore, the data was divided into two subsets: 80 % as training subset and 20 % as 

testing subset. Prediction quality was estimated using the training set, before trained models 

were asked to predict the testing set. Resulting prediction quality was compared between 

training and test data set and between test data set and the data obtained from fitting the full 

time series. To assess time-varying prediction quality, a correlation analysis was performed in 

which a window with a length of 100 scans (194 s) was slid over the 68 pairs of empirical and 
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simulated time series and the average correlation over all 68 regions was computed for each 

window. For RSN analysis, only those regions were compared with the temporal modes of 

RSNs that had a spatial overlap of at least 40 % of all voxels belonging to the respective 

region. For the estimation of signal correlation, the computation of entries of FC matrices and 

as a measure of similarity of FC matrices Pearson’s linear correlation coefficient was used. 

FC matrices were compared by stacking all elements below the main diagonal into vectors 

and computing the correlation coefficient of these vectors. FC dynamics prediction quality 

was estimated by computing the mean correlation obtained for all window-wise correlations 

of a sliding window analysis of empirical and simulated time series (window-size: 100 scans 

= 194 s).  

For computation of average power spectral densities (PSDs) of empirical and simulated 

signals, region time series were selected using rigorous model selection criteria to ensure 

scale invariance of the analysed time series; on average 79 % of all 1020 region-wise time 

series (15 subjects x 68 regions) for the seven analysed signal types (empirical fMRI, 

simulated fMRI, simulated fMRI without global coupling, simulated fMRI without FIC, 

simulated fMRI without FIC and without global coupling, alpha power, alpha-regressor) 

tested as scale-free; for every signal type every subject had at least five regions to test as 

scale-free. PSDs were computed using the Welch method as implemented in Octave, 

normalized by their total power and averaged. Resulting average frequency spectra were fitted 

with a power-law function f(x) = axβ using least-squares estimation in the frequency range 

0.01 Hz and 0.17 Hz which is identical to the range for which the test for scale invariance was 

performed. Frequencies below were excluded in order to reduce the impact of low-frequency 

signal confounds and scanner drift, frequencies above that limit were excluded to avoid 

aliasing artefacts in higher frequency ranges (TR = 1.94 s, hence Nyquist frequency is around 

0.25 Hz). In order to compare the scale invariance of our empirical fMRI data with results 

from previous publications44, we also computed spectra in a range that only included 

frequencies < 0.1 Hz.  

In order to adequately quantify scale invariance we applied rigorous model selection to every 

time series to identify power-law scaling and excluded all time series from analyses that were 

described better by a model other than a power-law. Nevertheless, we compared the obtained 

results from this strict regime with results obtained when all time series were included and 

found them to be qualitatively identical. To test for the existence of scale invariance we used 

a method that combines a modified version of the well-established detrended fluctuation 

analysis (DFA) with Bayesian model comparison70. DFA is, in contrast to PSD analyses, 
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robust to both stationary and nonstationary data in the presence of confounding (weakly non-

linear) trends. Rather than averaging the mean squared fluctuations over consecutive intervals 

as in conventional DFA, this method uses the values per interval to approximate the 

distribution of mean squared fluctuations with kernel density estimation. This allows for 

estimating the corresponding log-likelihood as a function of interval size without presuming 

the fluctuations to be normally distributed, as in the case of conventional DFA, which gives a 

non-parametric estimate of the log-likelihood for fitted models. Furthermore, conventional 

DFA does not provide any means to determine whether a power law is present or not. It is 

important to note, that a simple linear fit of the detrended fluctuation curve without proper 

comparison of the obtained goodness of fit with that of other models would entirely ignore 

alternative representations of the data different than a power law. For quantification of the 

goodness of fit with simple regression its corresponding coefficient of determination, R2, is 

ill-suited as it measures only the strength of a linear relationship and is inadequate for 

nonlinear regression71. Here, we assess power-law scaling in the context of DFA, i.e. the 

optimality of a straight line fit of fluctuation magnitude against interval size in a log-log 

representation, with non-parametric model selection using the Bayesian information criterion 

in order to compare the linear model against alternative models. Details of the used method 

can be found elsewhere70. Briefly, the method first estimates the cumulative sum of each time 

series. Next, signals are divided into non-overlapping intervals of increasing length, for a 

range of window sizes (48 time windows in steps from 3 to 50 data points). Then, for each 

interval the linear trend is removed and the root mean squared (RMS) fluctuation for each 

detrended interval is computed. Interval size is plotted against the RMS magnitude of 

fluctuations in a log-log representation and model-fits with 11 different models are computed 

using maximum likelihood estimation and compared to the linear fit. A straight line on the 

log-log graph indicates scale invariance expressed as F(n)∝nα, with n the interval size, F(n) 

detrended fluctuation and α, the scaling exponent, which represents the slope of the straight 

line fit (α ≅ 0.5, indicates uncorrelated white noise, while in the case of α > 0.5 the auto-

correlation function decays slower than the auto-correlation function of Brownian motion, 

indicating long-term ‘memory’). Lastly, likelihoods are used to compute Bayesian 

information criteria (BIC) for each model, which are used to select among models. BIC take 

into account model accuracy (as quantified by maximum likelihood) and model complexity, 

which scores the number of free parameters used in the different models. Optimality in the 

context of BIC therefore yields a maximally accurate while minimally complex explanation 

for data, i.e., the optimal compromise between goodness-of-fit and parsimony. For the 
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different signals the majority of time series were tested as being scale free: 83 % for empirical 

fMRI, 69 % for simulated fMRI, 71 % for simulated fMRI with deactivated FIC, 83 % for 

simulated fMRI with deactivated global coupling, 86 % for simulated fMRI with deactivated 

global coupling and FIC, 90 % for alpha power and 70 % for the alpha-regressor. 

To compute grand average waveforms, state-variables were averaged over all 15 subjects and 

68 regions (N=1020 region time series) time-locked to the zero crossing of the α-amplitude, 

which was obtained by band-pass filtering source activity time series between 8 and 12 Hz; to 

obtain sharp average waveforms, all α-cycle epochs with a cycle length between 95 and 105 

ms were used (N=4,137,994 α-cycle). For computing ongoing α-power time courses, 

instantaneous power time series were computed by taking the absolute value of the analytical 

signal (obtained by the Hilbert transform) of band-pass filtered source activity in the 8 – 10 

Hz frequency range; the first and last ~50 s were discarded to control for edge effects. To 

compute the alpha regressor, power time series were convolved with the canonical 

hemodynamic response function, downsampled to fMRI sampling rate and shifted relative to 

fMRI time series to account for the lag of hemodynamic response. The highest negative 

average correlation over all 68 region-pairs obtained within a range of +/-3 scans shift was 

used for comparison with simulation results.  
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1. Supplementary Data 

 

	
Supplementary Figure 1. Parameter space exploration results. a-c, 2d parameter space heat 

maps show average time series correlation over all 68 regions obtained from the hybrid model 

for different combinations of the three varied parameters G, ωBG
I and ωBG

E (the latter depicted 

as ratio ωBG
I / ωBG

E); results were averaged over all subjects. Parameter values that yielded the 

highest average correlation were used for simulations with artificial alpha input (marked with 

an asterisk). We confirmed identifiability of the model by showing that parameter space 

search converges towards a single optimal solution yielding best predictions. 

 

 

 

 
Supplementary Figure 2. Power spectral densities (averaged over all subjects and regions) 

and power-law fits for empirical and simulated fMRI, ongoing alpha power time series of 

EEG source activity input and the alpha regressor. For comparison with simulation results 

shown in Figure 6a, the models used here implemented no feedback inhibition control (FIC), 

i.e., a single value for all local inhibitory connection parameters Ji was used. Empirical and 

simulated fMRI spectra have a large power-law exponent, i.e. a steeper slope, compared to 

ongoing alpha power or wide-band power (βα-band = -0.56, βwide-band = -0.53). To analyse the 

effect of large-scale network interaction, simulated fMRI was computed with and without 

long-range coupling. To exclude that power-law spectra emerge despite absent large-scale 

coupling, local inhibition was tuned such that the model produced highest fMRI time series 

predictions. Without long-range coupling, simulated fMRI showed a similar exponent as 
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injected source activity. When large-scale coupling was activated and global excitation was 

properly balanced with local inhibition, the exponent was closer to the exponent of empirical 

fMRI (Suppl. Fig. 3). 

 

 
Supplementary Figure 3. Parameter space exploration of the simplified hybrid model 

(without FIC, i.e., using a single value for all local inhibitory connection parameters Ji) for an 

exemplary subject. Colours indicate the average correlations between simulated and empirical 

data (a-c) and the absolute difference between exponents of power-law fits with empirical and 

simulated power spectral densities (d), averaged over all regions. The distributions of the 

different metrics suggest a link between prediction quality (of raw fMRI, RSNs and FC and 

the power-law exponent β) and the relative strengths of long-range coupling G and local 

inhibition Ji. A diagonal pattern in heat maps indicates that prediction quality and power-law 

exponents depend on the balancing of large-scale excitation with local inhibition. The plots 

illustrate that when large-scale coupling was absent or inadequately balanced, models did not 

produce scale-free behaviour and prediction quality decreased.  
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