
Incomplete dominance of deleterious alleles
contribute substantially to trait variation and
heterosis in maize

Jinliang Yang1,†,§, Sofiane Mezmouk1,2,†, Andy Baumgarten3, Edward S. Buckler4,
Katherine E. Guill5, Michael D. McMullen5,6, Rita H. Mumm7, and Jeffrey
Ross-Ibarra1,8,§

1 Department of Plant Sciences, University of California, Davis, CA 95616, USA,
2 Current address: KWS SAAT SE, Grimsehlstr. 31, 37555 Einbeck, Germany,
3 DuPont Pioneer, Johnston, IA 50131, USA,
4 US Department of Agriculture, Agricultural Research Service, Ithaca, NY 14853, USA,
5 US Department of Agriculture, Agricultural Research Service, Columbia, MO 65211,
USA,
6 Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA,
7 Department of Crop Sciences and the Illinois Plant Breeding Center, University of
Illinois at Urbana-Champaign, Urbana, IL 61801, USA,
8 Center for Population Biology and Genome Center, University of California, Davis,
CA 95616, USA.

† These authors contributed equally to this work.
§ Correspondence should be addressed to J.Y. (jolyang@ucdavis.edu) and J.R.-I.
(rossibarra@ucdavis.edu).

Abstract

Complementation of deleterious alleles has long been proposed as a major contributor
to the hybrid vigor observed in the offspring of inbred parents. We test this hypothesis
using evolutionary measures of sequence conservation to ask whether incorporating
information about putatively deleterious alleles can inform genomic selection (GS)
models and improve phenotypic prediction. We measured a number of agronomic traits
in both the inbred parents and hybrids of an elite maize partial diallel population and
re-sequenced the parents of the population. Inbred elite maize lines vary for more than
500,000 putatively deleterious sites, but show less genetic load than a comparable set of
inbred landraces. Our modeling reveals widespread evidence for incomplete dominance
at these loci, and supports theoretical models that more damaging variants are usually
more recessive. We identify haplotype blocks using an identity-by-decent (IBD) analysis
and perform genomic prediction analyses in which we weight blocks on the basis of
segregating putatively deleterious variants. Cross-validation results show that
incorporating sequence conservation in genomic selection improves prediction accuracy
for yield and several other traits as well as heterosis for those traits. Our results provide
strong empirical support for an important role for incomplete dominance of deleterious
alleles in explaining heterosis and demonstrate the utility of incorporating functional
annotation in phenotypic prediction and plant breeding.
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A key long-term goal of biology is understanding the genetic basis of phenotypic 2

variation, which is critical to many biological endeavors from human health to 3

conservation and agriculture. Although most new mutations are likely deleterious [1], 4

their importance in patterning phenotypic variation is controversial and not well 5

understood [2]. Empirical work suggests that, although the long-term burden of 6

deleterious variants is relatively insensitive to demography [3], population bottlenecks 7

and expansion, demographic changes common to many species may lead to an increased 8

abundance of deleterious alleles over shorter time scales such as those associated with 9

domestication [4] or recent human migration [5]. Even when the impacts on total load 10

are minimal, demographic change may have important consequences for the contribution 11

of deleterious variants to phenotypic variation [3, 6–8]. Together, these considerations 12

point to a potentially important role for deleterious variants in determining patterns of 13

phenotypic variation, especially for traits closely related to fitness. 14

In addition to its global agricultural importance, maize has long been an important 15

genetic model system [9] and central to debates about the basis of hybrid vigor and the 16

role of deleterious alleles [10, 11]. Rapid expansion following maize domestication likely 17

lead to an increase in new mutations and stronger purifying selection [4], but inbreeding 18

during the development of modern inbred lines may have decreased load by purging 19

recessive deleterious alleles [12]. Nonetheless, patterns of heterozygosity during 20

inbreeding [13, 14] and selection [15] suggest an abundance of deleterious alleles in 21

modern germplasm, and genome-wide association reveals an excess of associations with 22

genes segregating for deleterious protein-coding variants [16]. 23

We set out to investigate the contribution of deleterious alleles to phenotypic 24

variation and hybrid vigor in maize, creating a half-diallel population from 12 maize 25

inbred lines (Supplementary Figure S1) which together represent much of the 26

ancestry of present-day commercial U.S. corn hybrids [17, 18]. We measured a number 27

of agronomically relevant phenotypes in both parents and hybrids, including flowering 28

time (days to 50% pollen shed, DTP; days to 50% silking, DTS; anthesis-silking interval, 29

ASI), plant size (plant height, PHT; height of primary ear, EHT), grain quality (test 30

weight which is a measure of grain density, TW), and grain yield (GY). For each 31

genotype we derived best linear unbiased estimators (BLUEs) of its phenotype from 32

mixed linear models (Table S1) to control for spatial and environmental variations (see 33

Methods). 34

We estimated best-parent heterosis (BPH, Figure 1a) for each trait as the percent 35

difference between the hybrid compared to the better of its two parents (see Methods, 36

Table S2.). Consistent with previous work [19], we find that grain yield (GY) — 37

analogous to fitness in an agronomic setting — showed the highest heterosis (BPH of 38

127% ± 35%). Flowering time (DTS and DTP), although important to fitness globally 39

across wide latitudinal ranges, showed relatively little heterosis in this study as the 40

parental lines vary within a narrow range in our field trials. 41

In order to quantify the deleterious consequences of variants a priori, we resequenced 42

the 12 inbred parents to an average depth of ≈ 10× resulting in a filtered set of 13.8M 43

SNPs with a mean concordance rate of 99.1% to SNPs genotyped in previous studies 44

(Supplementary Note). We annotated variable sites in our sample using Genomic 45

Evolutionary Rate Profiling (GERP) [20] scores, a quantitative measure of the 46

evolutionary conservation of a site across a phylogeny that allows characterization of the 47

long-term fitness consequences of both coding and noncoding positions in the genome. 48

Sites with more positive GERP scores are inferred to be under stronger purifying 49

selection, and SNPs observed at such sites are thus inferred to be more deleterious. At 50

each of the 506,898 sites with GERP scores > 0, we designated the minor allele from the 51

multispecies alignment as putatively deleterious. Compared to a panel of specially 52

inbred landrace (traditionally outcrossing) lines [12], the parents of our diallel exhibited 53
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Figure 1. Heterosis and deleleterious variants. (a) Boxplots (median and in-
terquartile range) of percent best-parent heterosis (BPH). (b) Deleterious genetic load of
landrace (LR, green boxplots) and elite (MZ, blue boxplots) maize lines. Star indicates
statistically significant (P value < 0.01) difference. (c) Mean GERP scores in bins of
minor allele frequency (MAF, bin size = 0.01). Blue solid and black dashed lines define
the best-fit linear regression and its 95% confidence interval. (d) Density plots of mean
GERP scores in quartiles of recombination rates (cM/Mb). The dashed line indicates
the overall mean; means for each quartile are shown as solid lines and colors represent
quartiles that are significantly different.

a slightly decreased burden of deleterious alleles (23,000 fewer per genome, Figure 1b); 54

Deleterious allele frequencies showed a strong negative correlation with GERP score 55

across the more than 1,200 lines in maize HapMap 3.2 [21] (Figure 1c and 56

Supplementary Note) and GERP scores were highest in regions of the genome with 57

low recombination (Student’s t-test P value < 0.05; Figure 1d), especially in 58

pericentromeric regions (Supplementary Figure S2). These results match well with 59

predictions from population genetic theory [22] and previous empirical work 60

[14, 16, 23, 24], supporting the use of GERP scores as a quantitative measure of the 61

fitness effects of an observed variant. 62

We estimated the effect sizes and variance explained by deleterious (GERP > 0) 63

SNPs across hybrid phenotypes per se using a genomic best linear unbiased prediction 64

(GBLUP) [25] approach. Deleterious SNPs had larger average effects and explained 65

more phenotypic variance than randomly sampled SNPs matched for allele frequency 66

and recombination (Figure 2a). We found the cumulative proportion of dominance 67

variance explained by deleterious SNPs was higher for traits showing high heterosis 68

(Spearman correlation P value < 0.01, r = 0.9), from ≈ 0 for flowering time traits to as 69

much as 24% for grain yield (Supplementary Figure S3). Distributions of per-SNP 70

dominance k = d
a (see Methods) across traits were consistent with the cumulative 71

partitioning of variance components (Figure 2b) and matched well with previous 72
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Figure 2. Variance explained and degree of dominance (k) of GERP-SNPs
for traits per se. (a) Total per-SNP variance explained by deleterious (red lines)
and randomly sampled SNPs (grey beanplots). (b) Density plots of the degree of
dominance (k). Extreme values of k were truncated at 2 and -2 for visualization.
(c-e) Linear regressions of additive effects (c), dominance effects (d), and degree of
dominance (e) of seven traits per se against SNP GERP scores. Solid and dashed lines
represent significant and nonsignificant linear regressions, with grey bands representing
95% confidence intervals. Data are only shown for deleterious alleles with the mean
genome-wide variance explained (see Methods).

estimates [18, 26, 27]. We then evaluated the relationship between the strength of 73

selection against SNPs and their effect size, contribution to phenotypic variance, and 74

dominance. We found weak or negligible correlations between effect size and GERP 75

score for flowering time and grain quality traits, but a strong positive correlation for 76

fitness-related traits (Figure 2c-d). The variance explained by individual SNPs, 77

however is largely independent of how deleterious they are (Supplemetary 78

Figure S4), likely due to the negative correlation between frequency and effect size for 79

fitness-related traits. We see similar patterns for both analyses even removing SNPs in 80

low recombination regions where effect size might be inflated due to high levels of 81

linkage disequilibrium (Supplementary Figure S5). Finally, we observed a positive 82

relationship between GERP score and degree of dominance (k) (Figure 2e) such that 83

more deleterious alleles (larger GERP score) were more recessive (larger k for the 84

beneficial allele), simulations suggest ascertainment bias alone is unlikely to explain this 85

result (Supplementary Figure S6). Though we are unaware of previous 86

demonstrations of this realtionship across multiple traits in other multicellular 87

organisms, these finding closely follow predicted patterns of dominance in models of 88

metabolic pathways [28] and support previous empirical evidence from gene knockouts 89

in yeast [29]. 90
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Figure 3. Genomic prediction models incorporating GERP. (a-b) Total poste-
rior variance explained for traits per se (a) and heterosis (BPH) (b) under models of
additivity (red), dominance (green), and incomplete dominance (blue). (c-d) Beanplots
represent prediction accuracy estimated from cross-validation experiments for traits per
se (c) and heterosis (BPH) (d) under a model of incomplete dominance. Prediction
accuracy using estimated dominance values for each SNP is shown on the left (red) and
permutation results on the right (grey). Horizontal bars indicate mean accuracy for
each trait and the grey dashed lines indicate the overall mean accuracy. Stars above the
beans indicate prediction accuracies significantly (FDR < 0.05) higher than permuta-
tions. Results for pure additive and dominance models are shown in Supplementary
Figure S7.

As genotyping costs continue to decline, genomic prediction models are increasing in 91

popularity [30]. Most previous work on genomic prediction, however, focuses exclusively 92

on statistical properties of the models, ignoring potentially useful biological information 93

(but see Edwards et al., [31] for a recent example). We implemented a haplotype-based 94

genomic prediction model that incorporates weights based on our a priori identification 95

of deleterious alleles (see Methods and Supplementary Figure S8). We explored 96

several different models and found that a model which incorporates both the GERP 97

scores and the estimated levels of dominance (k) of deleterious alleles explained a 98

greater amount of the posterior phenotypic variance for heterosis and most traits per se 99

(Figure 3a-b). A simple additive model showed superior explanatory power for 100

flowering time, however, consistent with previous association mapping results [26]. 101

Cross-validation analyses (see Methods) showed that models incorporating observed 102

GERP scores out-performed permutations (Figure 3c-d), even after controlling for 103

differences between genic and nongenic regions (Supplementary Figure S9). Our 104

model improved prediction accuracy of grain yield by more than 4%, and improvements 105

were also seen for plant height (0.8%) and grain quality (3.3%). While our model 106

showed no improvement for traits showing low levels of heterosis (Figure 1a), including 107
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GERP scores significantly improved prediction accuracy for heterosis of both plant 108

height and grain yield (by 2.6% and 1.3% respectively). Our approach also significantly 109

improved model fit for phenotypes of all traits per se as well as heterosis for GY and 110

PHT compared to traditional models of genomic selection that use general combining 111

ability (see Methods, Table S3) calculated directly from the pedigree of the hybrid 112

population [32] (ANOVA FDR < 0.01 and difference in AIC < 0, Table S4). 113

Discussion 114

Taken together, our results provide support for an important role of deleterious variants 115

in determining phenotypic variation for traits related to fitness. In maize and other 116

organisms that have recently undergone substantial population growth, many new 117

mutations are likely deleterious [4] and a large proportion of the phenotypic variance is 118

expected to be explained by deleterious variants of small effect [6]. Though our 119

population size is small, our half-diallel crossing design and GBLUP approach 120

circumvent some of the problems with standard genome-wide association analyses, 121

including genome-wide multiple testing thresholds and the inability to assess the effects 122

of rare alleles. We show that a priori information on the fitness consequence of a variant 123

is useful in predicting effect sizes and dominance for grain yield, a close surrogate of 124

fitness in agronomic settings, as well as for correlated traits such as plant height and ear 125

height. All three traits are well explained by a model allowing for incomplete dominance 126

(Figure 3a), and incorporating GERP scores allows for improved prediction of both 127

plant height and grain yield (Figure 3c). Though GERP scores do provide information 128

for other traits (effect size for flowering time, prediction increase for grain quality), 129

these impacts are lesser as expected for traits less correlated to plant fitness 130

(Supplementary Figure S10). While the GERP scores used here reflect conservation 131

of across relatively deep phylogenetic time, future efforts may be able to increase power 132

by incorporating information from within-species polymorphism data [33] as well as 133

other types of annotations that have been shown to contribute substantially to 134

phenotypic variation (e.g. Wallace et al., [34] and Rodgers-Melnick et al., [35]). 135

Finally, our results also have implications for understanding the genetic basis of 136

heterosis. Heterosis has been observed across many species, from yeast [36] to plants 137

[37] and vertebrates [38], and a number of hypotheses have been put forth to explain 138

the phenomenon [10, 39]. Of all of these explanations, complementation of recessive 139

deleterious alleles [11, 39] remains the simplest genetic explanation, and one that is 140

supported by considerable empirical evidence [40, 41]. It remains controversial, however, 141

because complementation of purely recessive mutations cannot fully explain a number of 142

empirical observations, including patterns of heterosis and inbreeding depression in 143

polyploid plants [10, 42, 43]. Our estimates, however, indicate that most deleterious 144

SNPs show incomplete dominance (Figure 2b) for traits with high levels of heterosis, 145

and our genomic prediction models find substantial improvement in predictions of 146

heterosis when incorporating GERP scores under such a model (Figure 3d). These 147

results are in line with other empirical evidence suggesting that new mutations tend to 148

be partially recessive [44] and that GWAS hits exhibit incomplete dominance for 149

phenotypes per se among hybrids [45]. We argue that allowing for incomplete 150

dominance effectively unifies models of simple complementation with those of gene 151

dosage [43]. Combined with observations that deleterious SNPs are enriched in 152

low-recombination pericentromeric regions [24] (Figure 1d), such a model can 153

satisfactorily explain changes in heterozygosity during breeding [15, 23], enrichment of 154

yield QTL around centromeres [19], and even observed patterns of heterosis in 155

polyploids (Supplementary Figure S11). It is unlikely of course that any single 156

explanation is sufficient for a phenomenon as complex as heterosis, and other processes 157
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such as overdominance likely make important contributions (e.g. Guo et al., [46] and 158

Huang et al., [45]), but we argue here that a simple model of incompletely dominant 159

deleterious alleles may provide substantial explanatory power not only for fitness-related 160

phenotypic traits but for hybrid vigor as well. 161
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Methods 363

Plant materials and phenotypic data. We selected 12 maize inbred lines as 364

parents of a partial diallel population. Each parent in a cross was used as both male 365

and female and the resulting seed was bulked (Figure S1). Field performance of the 66 366

F1 hybrids and 12 inbred parents was evaluated along with two current commercial 367

check hybrids in Urbana, IL over three years (2009-2011) in a resolvable incomplete 368

block design with three replicates. Plots consisted of four rows (5.3 m long with row 369

spacing of 0.76 m at plant density of 74,000 plants ha−1), with all observations taken 370

from the inside two rows to minimize effects of shading and maturity differences from 371

adjacent plots. We measured plant height (PHT, in cm), height of primary ear (EHT, in 372

cm), days to 50% pollen shed (DTP), days to 50% silking (DTS), anthesis-silking 373

interval (ASI, in days), grain yield adjusted to 15.5% moisture (GY, in bu/A), and test 374

weight (TW, weight of 1 bushel of grain in pounds). 375

We estimated Best Linear Unbiased Estimates (BLUEs) of the genetic effects in 376

ASReml-R (VSN International) with the following linear model: 377

Yijkl = µ+ ςi + δij + βjk + αl + ςi · αl + ε

where Yijkl is the phenotypic value of the lth genotype evaluated in the kth block of 378

the jth replicate within the ith year; µ, the overall mean; ςi, the fixed effect of the ith 379

year; δij , the fixed effect of the jth replicate nested in the ith year; βjk, the random 380

effect of the kth block nested in the jth replicate; αl, the the fixed genetic effect of the 381

lth individual; ςi · αl, the interaction effect of the lth individual with the ith year; and ε, 382

the model residuals. We calculated the broad sense heritability (H2) of traits based on 383

the analysis of all individuals (inbred prarents, hybrid progeny, and checks) assuming 6 384

degrees of freedom (3 years of evaluation with 3 replicates each year) following the 385

equation of H2 = VG/(VG + VE/6). In the calculation of VG, we considered genetic 386

effects as random. 387

In the models, all fixed effects were significant (Wald test P value < 0.05) for all 388

traits except ASI, for which the effect of replicates within environments was not 389

significant. The BLUE values for each cross can be found in (Table S1); values across 390

all hybrids were relatively normally distributed for all traits (Shapiro-Wilk normality 391

tests P values > 0.05, Supplementary Figure S1), though some traits were highly 392

correlated (e.g. Spearman correlation (r) = 0.98 for DTS and DTP, Supplementary 393

Figure S10). 394

We estimated best-parent heterosis (BPH) as: 395

BPHmin,ij = Ĝij −min(Ĝi, Ĝj)

396

BPHmax,ij = Ĝij −max(Ĝi, Ĝj)

where Ĝij , Ĝi and Ĝj are the genetic values of the hybrid and its two parents i and 397

j. BPHmax was used for all traits except ASI, for which we calculated BPHmin. 398

General combining ability (GCA) was estimated following Falconer and Mackay [47] and 399

the estimated values can be found in (Table S3). 400

Sequencing and Genotyping. We extracted DNA from the 12 inbred lines 401

following [48] and sheared the DNA on a Covaris (Woburn, Massachusetts) for library 402

preparation. Libraries were prepared using an Illumina paired-end protocol with 180 bp 403

fragments and sequenced using 100 bp paired-end reads on a HiSeq 2000. 404

We trimmed raw sequence reads for adapter contamination with Scythe 405

(https://github.com/vsbuffalo/scythe) and for quality and sequence length (≥ 20 406
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nucleotides) with Sickle (https://github.com/najoshi/sickle). We mapped filtered 407

reads to the maize B73 reference genome (AGPv2) with bwa-mem [49], keeping reads 408

with mapping quality (MAPQ) higher than 10 and with a best alignment score higher 409

than the second best one for further analyses. 410

We called single nucleotide polymorphisms (SNPs) using the mpileup function from 411

samtools [50]. To deal with known issues with paralogy in maize [12], SNPs were 412

filtered to be heterozygous in fewer than 3 inbred lines, have a mean minor allele depth 413

of at least 4, have a mean depth across all individuals less than 30 and have missing 414

alleles in fewer than 6 inbred lines. Alignments and genotypes for each of the 12 inbreds 415

are available at iPlant (/iplant/home/yangjl/pvp_diallel_data/bam_BWA-mem). 416

Estimating effect sizes and dominance of GERP-SNPs. We used genomic 417

evolutionary rate profiling (GERP) [20] estimated from a multi-species whole-genome 418

alignment of 13 plant genomes [24]; the alignment and estimated GERP scores are 419

available at iPlant (/iplant/home/yangjl/pvp_diallel_data/GERPv2). At each SNP, 420

we assigned the minor allele (as defined by the multi-species alignment) as putatively 421

deleterious. 422

We estimated the additive and dominant effects of individual GERP-SNPs using a 423

GBLUP model [25] implemented in GVCBLUP [51]: 424

Yi = µ+
n∑
j=1

Xijaj +
n∑
j=1

Wijdj + ε

where Yi is the BLUE value of the ith hybrid, aj and dj are the additive and 425

dominant effects of the jth GERP-SNP, Xij = {2p, 2p− 1, 2p− 2}, and 426

Wij = {2p2, 2p(1− p),−2(1− p)2} are the genotype encodings for genotypes 427

A1A1,A1A2, and A2A2 of the jth SNP in the ith hybrid, respectively, and ε is the model 428

residuals. We first estimated the total variance explained under models of complete 429

additivity (dj = 0) or complete dominance (aj = 0). Then, to assess correlations 430

between SNP effects and GERP scores, we calculated the degree of dominance (k = d/a) 431

[52] for the 107,346 SNPs that each explained greater than the mean genome-wide 432

variance (total variance explained divided by total number of GERP-SNPs). 433

To compare the effect of random SNPs with GERP-SNPs, we created 10 sets of 434

random SNPs, sampled to match the minor allele frequency distribution (in bins of 10%) 435

and recombination rate (in quartiles) of deleterious SNPs. For each sampled set we fit 436

the above model and obtained the SNP effects and variance explained. 437

To test the relationship between GERP score and dominance under a simple model 438

of mutation-selection equilibrium, we estimated the selection coefficient s from the 439

relationship between effect size on yield (here treated as fitness) and GERP score. We 440

then assigned the beneficial allele at each SNP a random dominance value in the range 441

of 0 ≥ k ≥ 1 and calculated the equilibrium allele frequency p for each SNP under 442

mutation-selection balance using p =
√

µ
s for values of k > 0.98 and p = 2µ

k+1 for 443

k ≤ 0.98. We then simulated data using binomial sampling to choose SNPs in a sample 444

of size n = 12. 445

Haplotype Analysis. We imputed missing data and identified regions of identity by 446

descent (IBD) between the 12 inbred lines using the fastIBD method implemented in 447

BEAGLE [53]. We then defined haplotype blocks as contiguous regions within which 448

there were no IBD break points across all pairwise comparisons of the parental lines 449

(Supplementary Figure S8). IBD blocks at least 1 Kb in size were kept for further 450

analysis. 451

Haplotype blocks were weighted by the summed GERP scores of all putatively 452

deleterious (GERP score > 0) SNPs using a custom python script (available at 453
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https://github.com/yangjl/zmSNPtools); blocks with no SNPs with positive GERP 454

scores were excluded from further analysis. For a particular SNP with a GERP score g, 455

the homozygote for the conserved allele was assigned a value of 0, the homozygote for 456

the putatively deleterious allele a value of 2g, and the heterozygote a value of 457

(1 + k)× g, where k is the dominance estimated from the GBLUP model above. 458

Genomic Selection. The BayesC option from GenSel4 [54] was used for genomic 459

selection model training, using 41,000 iterations and removing the first 1,000 as burn-in. 460

We used the model 461

Yi = µ+
n∑
j=1

rjIij + ε

where Yi is the BLUE value of the ith hybrid, rj is the regression coefficient for the 462

jth haplotype block, and Iij is the sum of GERP scores under an additive, dominant or 463

incomplete dominant models for the ith hybrid in the jth haplotype block. 464

To conduct prediction, a 5-fold cross-validation method was used, dividing the diallel 465

population randomly into training (80%) and validation sets (20%) 100 times. After 466

model training, prediction accuracies were obtained by comparing the predicted 467

breeding values with the observed phenotypes in the corresponding validation sets. For 468

comparison, GERP scores were permuted using 50k SNP (≈ 100Mb or larger) windows 469

which were circularly shuffled 10 times to estimate a null conservation score for each 470

IBD block. Permutations were conducted on all GERP-SNPs as well as on a restricted 471

set of GERP-SNPs only in genic regions to control for GERP differences between genic 472

and nongenic regions. Cross-validation experiments using the permuted data were 473

conducted on the same training and validation sets. 474

Then, using 100% of the data, we derived the correlations between breeding values 475

estimated from the above function and observed BLUE values. Note that the 476

correlation used here is different from the prediction accuracy (r) used for the 477

cross-validation experiments, where the latter is defined as the correlation between real 478

and estimated values, but the two statistics will converge to the same value when there 479

is no error in SNP/haplotype effect estimation [55]. 480

Finally, to evaluate the utility of our genomic prediction model over a classical model 481

of general combining ability, we compared the following equations: 482

Yij = µ+GCAi +GCAj + ε (1)

483

Yij = µ+GCAi +GCAj +Gij + ε (2)

where Yij is the BLUE value of the hybrid of the ith and jth inbreds, µ is the overall 484

mean, GCAi and GCAj are the general combining abilities of the ith and jth inbreds, 485

Gij is the breeding value of the hybrid of the ith and jth inbreds as estimated by our 486

genomic prediction model, and ε, the model residuals. 487
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1 Supplementary Information 488

1.1 Genotype Comparisons. 489

We estimated the allelic error rate using three independent data sets: for all individuals 490

using 41,292 overlapping SNPs from the maize SNP50 bead chip [56]; for all individuals 491

using 180,313 overlapping SNPs identified through genotyping-by-sequencing (GBS) 492

[57]; and for B73 and Mo17 using 10,426,715 SNP from the HapMap2 project [12]. 493

Compared to corresponding SNPs identified by previous studies, a mean genotypic 494

concordance rate of 99.1% was observed. 495

1.2 Recombination Rates. 496

We estimated the deleteriousness with respect to the recombination rates (cM/Mb) 497

using GERP > 0 SNPs. We obtained the NAM genetic map from Panzea website 498

(http://www.panzea.org/) and divided the recombination rates using the three 499

quantiles (cM/Mb = 0.15 at 25%, cM/Mb = 0.55 at 50%, and cM/Mb = 1.74 at 75%). 500

As a result, the mean GERP score in low recombination regions (< 25%) is significantly 501

higher than in high recombination regions (P value < 0.05 as compare to 25-50%, P 502

value < 0.01 to 50-75%, and P value < 0.01 to > 75%, Figure 1d). 503

1.3 Deleterious Genetic Load and Allele Frequency. 504

We obtained maize HapMap3.2 [21] and computed allele frequencies across > 1,200 505

maize lines using PLINK 1.9 [58]. To compare the deleterious genetic load, we extracted 506

the genotypic data of the 23 landrace samples (i.e. the BKN lines) and our elite maize 507

parental lines from the HapMap3.2 data. We computed the number of non-major 508

GERP-SNPs divided by total number of non-missing sites as a measure of deleterious 509

genetic load carried by each line. We computed the fixed and segregating loads for 510

landrace and maize samples seperately. 511
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2 Supporting Tables 512

Table S1. BLUE values of the seven phenotypic traits. (https://github.com/RILAB/
pvpDiallel/blob/master/manuscript/Figure_Table/Table_S1.trait_matrix.

csv)

Table S2. Levels of heterosis of the seven phenotypic traits. (https:
//github.com/RILAB/pvpDiallel/blob/master/manuscript/Figure_Table/

STable_heterosis.csv)

Table S3. General combining ability and specific combining ability of the seven phe-
notypic traits. (https://github.com/RILAB/pvpDiallel/blob/master/manuscript/
Figure_Table/Table_S2.CA.csv)

Table S4. Model comparisons P values and AICs. (https://github.com/RILAB/
pvpDiallel/blob/master/manuscript/Figure_Table/Table_S5_model_comp.csv)
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3 Supporting Figures 513

B73 Mo17 PHZ51

B73

Mo17

PHZ51

a b

Figure S1. A half-diallel population and distributions of phenotypes. (a)
Twelve maize inbred lines were selected and crossed in a half-diallel fashion. Each inbred
lines was used as both male and female and the resulting F1 seed was bulked. (b)
Density plots of normalized BLUE values for the seven phenotypic traits. We used “scale”
function in R to normalize the BLUE values by first centering on zero and then dividing
the numbers by their standard deviation. The seven phenotypic traits are plant height
(PHT), height of primary ear (EHT), days to 50% pollen shed (DTP), days to 50%
silking (DTS), anthesis-silking interval (ASI), grain yield adjusted to 15.5% moisture
(GY), and test weight (TW).
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Figure S2. Distribution of mean GERP score on genetic map. Dots indicate
mean GERP scores (y-axis) in 1 cM window across the 10 maize chromosomes.
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Figure S3. Cumulative variance explained by GERP-SNPs. Additive and
dominance effects are indicated by red and blue colors respectively.
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Figure S4. Linear regressions of GERP-SNPs’ additive variance, dominance
variance and total variance of seven traits per se agaginst their GERP scores.
Solid and dashed lines represent significant and non-significant linear regressions, with
grey bands representing 95% confidence intervals. Data are only shown for the 107,346
SNPs with > 1× of the mean genome-wide variance explained.
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Figure S5. Linear regressions after filtering out GERP-SNPs located in
regions in the lowest quartiles of recombination. Solid and dashed lines represent
significant and non-significant linear regressions, with grey bands representing 95%
confidence intervals. Data are only shown for GERP-SNPs with > 1× of the mean
genome-wide variance explained and with > 1st quantile of the recombination rate
(cM/Mb).
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Figure S6. Regression of degree of dominance (k) on GERP scores for sim-
ulated data. Solid blue line indicates the regression line fitted to the simulated data
(see Methods for details).
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Figure S7. Cross-validation prediction accuracy for trait per se and heterosis.
Beanplots represent prediction accuracy estimated from cross-validation experiments for
traits per se (a, b) and heterosis (BPH) (c, d) under additive (a, c) and dominance
(b, d) models. Prediction accuracy using real data is shown on the left (red) and
permutation results on the right (grey). Horizontal bars indicate mean accuracy and
the grey dashed lines indicate the overall mean accuracy. Stars indicate significantly
(permutation FDR < 0.05) higher than cross-validation accuracy.
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Figure S8. Haplotype block identification using an IBD approach. In the
upper panel, regions in red are IBD blocks identified by pairwise comparison of the two
parental lines of a hybrid. The vertical dashed lines define haplotype blocks. In the lower
panel, hybrid genotype in each block are coded as heterozygotes (0) or homozygotes (1).
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Figure S9. Cross-validation accuracy using GERP-SNPs in genic regions.
Beanplots represent prediction accuracy estimated from cross-validation experiments for
traits per se (a, b, c) and heterosis (BPH) (d, e, f) under additive (a, d), dominance
(b, e), and incomplete dominance (c, f) models. Prediction accuracy using real data is
shown on the left (green) and permutation results on the right (grey). Horizontal bars
indicate mean accuracy and the grey dashed lines indicate the overall mean accuracy.
Stars indicate significantly (permutation FDR < 0.05) higher than cross-validation
accuracy.
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Figure S10. Pairwise correlation plots of seven phenotypic traits. The upper
right panels show the scatter plots of all possible pairwise comparisons of two traits.
Red line is a fitted smooth curve using “loess” method. In the lower left panels, the
numbers are the Spearman correlation coefficients (r) and the asterisks (*) indicate the
correlation coefficients are statistically significant (Spearman correlation test P value <
0.05). Units for various traits are plant height (PHT, in cm), height of primary ear (EHT,
in cm), days to 50% pollen shed (DTP), days to 50% silking (DTS), anthesis-silking
interval (ASI, in days), grain yield adjusted to 15.5% moisture (GY, in bu/A), and test
weight (TW, weight of 1 bushel of grain in pounds).
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Figure S11. Breeding values of diploid and simulated triploid hybrids. Each
line represents the posterior breeding values of a diploid hybrid (red circle), its best
parent (black diamond), and predicted breeding values of AAB triploid (blue square)
and ABB triploid (green triangle).
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