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Abstract.— Chromosome number is a key feature of the higher-order organization

of the genome, and changes in chromosome number play a fundamental role in

evolution. Dysploid gains and losses in chromosome number, as well as

polyploidization events, may drive reproductive isolation and lineage diversification.

The recent development of probabilistic models of chromosome number evolution in

the groundbreaking work by Mayrose et al. (2010, ChromEvol) have enabled the
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inference of ancestral chromosome numbers over molecular phylogenies and

generated new interest in studying the role of chromosome changes in evolution.

However, the ChromEvol approach assumes all changes occur anagenetically (along

branches), and does not model events that are specifically cladogenetic.

Cladogenetic changes may be expected if chromosome changes result in

reproductive isolation. Here we present a new class of models of chromosome

number evolution (called ChromoSSE) that incorporate both anagenetic and

cladogenetic change. The ChromoSSE models allow us to determine the mode of

chromosome number evolution; is chromosome evolution occurring primarily within

lineages, primarily at lineage splitting, or in clade-specific combinations of both?

Furthermore, we can estimate the location and timing of possible chromosome

speciation events over the phylogeny. We implemented ChromoSSE in a Bayesian

statistical framework, specifically in the software RevBayes, to accommodate

uncertainty in parameter estimates while leveraging the full power of likelihood

based methods. We tested ChromoSSE’s accuracy with simulations and

re-examined chromosomal evolution in Aristolochia, Carex section Spirostachyae,

Helianthus, Mimulus sensu lato (s.l.), and Primula section Aleuritia, finding

evidence for clade-specific combinations of anagenetic and cladogenetic dysploid

and polyploid modes of chromosome evolution.

(Keywords: ChromoSSE; chromosome evolution; phylogenetic models; anagenetic;

cladogenetic; dysploidy; polyploidy; whole genome duplication; chromosome

speciation; reversible-jump Markov chain Monte Carlo; Bayes factors )
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A central organizing component of the higher-order architecture of the1

genome is chromosome number, and changes in chromosome number have long2

been understood to play a fundamental role in evolution. In the seminal work3

Genetics and the Origin of Species (1937), Dobzhansky identified “the raw4

materials for evolution”, the sources of natural variation, as two evolutionary5

processes: mutations and chromosome changes. “Chromosomal changes are one of6

the mainsprings of evolution,” Dobzhansky asserted, and changes in chromosome7

number such as the gain or loss of a single chromosome (dysploidy), or the8

doubling of the entire genome (polyploidy), can have phenotypic consequences,9

a↵ect the rates of recombination, and increase reproductive isolation among10

lineages and thus drive diversification (Stebbins 1971). Recently, evolutionary11

biologists have studied the macroevolutionary consequences of chromosome changes12

within a molecular phylogenetic framework, mostly due to the groundbreaking13

work of Mayrose et al. (2010, ChromEvol) which introduced likelihood-based14

models of chromosome number evolution. The ChromEvol models have permitted15

phylogenetic studies of ancient whole genome duplication events, rapid16

“catastrophic” chromosome speciation, major reevaluations of the evolution of17

angiosperms, and new insights into the fate of polyploid lineages (e.g. Pires and18

Hertweck 2008; Mayrose et al. 2011; Tank et al. 2015).19

One aspect of chromosome evolution that has not been thoroughly studied20

in a probabilistic framework is cladogenetic change in chromosome number.21

Cladogenetic changes occur solely at speciation events, as opposed to anagenetic22

changes that occur within lineages and are not associated with speciation events.23
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Studying cladogenetic chromosome changes in a phylogenetic framework has been24

di�cult since the approach used by ChromEvol models only anagenetic changes25

and ignores the changes that occur specifically at speciation events and may be26

expected if chromosome changes result in reproductive isolation. Reproductive27

incompatibilities caused by chromosome changes may play an important role in the28

speciation process, and led White (1978) to propose that chromosome changes29

perform “the primary role in the majority of speciation events.” Indeed,30

chromosome fusions and fissions may have played a role in the formation of31

reproductive isolation and speciation in the great apes (Ayala and Coluzzi 2005),32

and the importance of polyploidization in plant speciation has long been33

appreciated (Coyne et al. 2004; Rieseberg and Willis 2007). Recent work by Zhan34

et al. (2016) revealed phylogenetic evidence that polyploidization is frequently35

cladogenetic in land plants. However, their approach did not examine the role36

dysploid changes may play in speciation, and it required a two step analysis in37

which one first used ChromEvol to infer ploidy levels, and then a second modeling38

step to infer the proportion of ploidy shifts that were cladogenetic. Since39

ChromEvol only models anagenetic polyploidization events these two modeling40

steps are inconsistent with one another.41

Here we present models of chromosome number evolution that42

simultaneously account for both cladogenetic and anagenetic polyploid as well as43

dysploid changes in chromosome number over a phylogeny. These models44

reconstruct an explicit history of cladogenetic and anagenetic changes in a clade,45

enabling estimation of ancestral chromosome numbers. Our approach also identifies46
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di↵erent modes of chromosome number evolution among clades; we can detect47

primarily anagenetic, primarily cladogenetic, or clade-specific combinations of both48

modes of chromosome changes. Furthermore, these models allow us to infer the49

timing and location of possible polyploid and dysploid speciation events over the50

phylogeny. Since these models only account for changes in chromosome number,51

they ignore speciation that may accompany other types of chromosome52

rearrangements such as inversions. Our models cannot determine that changes in53

chromosome number “caused” the speciation event, but they do reveal that54

speciation and chromosome change are temporally correlated. Thus, these models55

can give us evidence that the chromosome number change coincided with56

cladogenesis and so may have played a significant role in the speciation process.57

A major challenge for all phylogenetic models of cladogenetic character58

change is accounting for unobserved speciation events due to lineages going extinct59

and not leaving any extant descendants (Bokma 2002), or due to incomplete60

sampling of lineages in the present. Teasing apart the phylogenetic signal for61

cladogenetic and anagenetic processes given unobserved speciation events is a62

major di�culty. The Cladogenetic State change Speciation and Extinction63

(ClaSSE) model (Goldberg and Igić 2012) accounts for unobserved speciation64

events by jointly modeling both character evolution and the phylogenetic65

birth-death process. Our class of chromosome evolution models uses the ClaSSE66

approach, and could be considered a special case of ClaSSE. We implemented our67

models (called ChromoSSE) in a Bayesian framework and use Markov chain Monte68

Carlo algorithms to estimate posterior probabilities of the model’s parameters.69
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However, compared to most character evolution models, SSE models require70

additional complexity since they must model extinction and speciation processes.71

Using simulations, we examined the impact of this additional complexity on our72

chromosome evolution models’ performance. Note that ChromoSSE uses the SSE73

approach to integrate over all unobserved speciation events and in this work we do74

not investigate how chromosome number a↵ects diversification rates. Nonetheless,75

our implementation enables chromosome number dependent speciation and76

extinction rates to be estimated and this will be explored in future work.77

Out of the class of ChromoSSE models described here, it is possible that no78

single model will adequately describe the chromosome evolution of a given clade.79

The most parameter-rich ChromoSSE model has at least 12 independent rate80

parameters, however the models that best describe a given dataset (a phylogeny and81

a set of observed chromosome counts) may be special cases of the full model. For82

example, there may be a clade for which the best fitting models have no anagenetic83

rate of polyploidization (the rate = 0.0) and for which all polyploidization events84

are cladogenetic. To explore the entire space of all possible models of chromosome85

number evolution we constructed a reversible jump Markov chain Monte Carlo86

(Green 1995) that samples across models of di↵erent dimensionality, drawing87

samples from chromosome evolution models in proportion to their posterior88

probability and enabling Bayes factors for each model to be calculated. This89

approach incorporates model uncertainty by permitting model-averaged inferences90

that do not condition on a single model; we draw estimates of ancestral91

chromosome numbers and rates of chromosome evolution from all possible models92
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weighted by their posterior probability. For general reviews of this approach to93

model averaging see Madigan and Raftery (1994), Hoeting et al. (1999), Kass and94

Raftery (1995), and for its use in phylogenetics see Posada and Buckley (2004).95

Averaging over all models has been shown to provide a better average predictive96

ability than conditioning on a single model (Madigan and Raftery 1994).97

Conditioning on a single model ignores model uncertainty, which can lead to an98

underestimation in the uncertainty of inferences made from that model (Hoeting99

et al. 1999). In our case, this can lead to overconfidence in estimates of ancestral100

chromosome numbers and chromosome evolution parameter value estimates.101

Our motivation in developing these phylogenetic models of chromosome102

evolution is to determine the mode of chromosome number evolution; is103

chromosome evolution occurring primarily within lineages, primarily at lineage104

splitting, or in clade-specific combinations of both? By identifying how much of the105

pattern of chromosome number evolution is explained by anagenetic versus106

cladogenetic change, and by identifying the timing and location of possible107

chromosome speciation events over the phylogeny, the ChromoSSE models can help108

uncover how much of a role chromosome changes play in speciation. In this paper109

we first describe the ChromoSSE models of chromosome evolution and our110

Bayesian method of model selection, then we assess the models’ e�cacy by testing111

them with simulated datasets, particularly focusing on the impact of unobserved112

speciation events on inferences, and finally we apply the models to five empirical113

datasets that have been previously examined using other models of chromosome114

number evolution.115
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Methods116

Models of Chromosome Evolution117

In this section we introduce our class of probabilistic models of chromosome118

number evolution. We are interested in modeling the changes in chromosome119

number both within lineages (anagenetic evolution) and at speciation events120

(cladogenetic evolution). The anagenetic component of the model is a121

continuous-time Markov process similar to Mayrose et al. (2010) as described122

below. The cladogenetic changes are accounted for by a birth-death process similar123

to Maddison et al. (2007) and Goldberg and Igić (2012), except each type of124

cladogenetic chromosome event is given its own rate. Thus, the birth-death process125

has multiple speciation rates (one for each type of cladogenetic change) and a single126

constant extinction rate. Our models of chromosome number evolution can127

therefore be understood as a specific case of the Cladogenetic State change128

Speciation and Extinction (ClaSSE) model (Goldberg and Igić 2012), which129

integrates over all possible unobserved speciation events (due to lineages that were130

unsampled or have gone extinct) directly in the likelihood calculation of the131

observed chromosome counts and tree shape. To test the importance of accounting132

for unobserved speciation events we also briefly describe a version of the model that133

handles di↵erent cladogenetic event types as transition probabilities at each134

observed speciation event and ignores unobserved speciation events, similar to the135

dispersal-extinction-cladogenesis (DEC) models of geographic range evolution (Ree136

and Smith 2008).137
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Our implementation assumes chromosome numbers can take the value of138

any positive integer, however to limit the transition matrices to a reasonable size139

for likelihood calculations we follow Mayrose et al. (2010) in setting the maximum140

chromosome number Cm to n+ 10, where n is the highest chromosome number in141

the observed data. Note that we allow this parameter to be set in our142

implementation. Hence, it is easily possible to test the impact of setting a specific143

value for the maximum chromosome count.144

Our models contain a set of 6 free parameters for anagenetic chromosome145

number evolution, a set of 5 free parameters for cladogenetic chromosome number146

evolution, an extinction rate parameter, and a vector of Cm root frequencies of147

chromosome numbers, for a total of 12 + Cm free parameters. All of the 11148

chromosome rate parameters can be removed (fixed to 0.0) except the cladogenetic149

no-change rate parameter. Thus, the class of chromosome number evolution models150

described here has a total of 210 = 1024 nested models of chromosome evolution.151

Chromosome evolution within lineages.—152

Chromosome number evolution within lineages (anagenetic change) is153

modeled as a continuous-time Markov process similar to Mayrose et al. (2010). The154

continuous-time Markov process is described by an instantaneous rate matrix Q155

where the value of each element represents the instantaneous rate of change within156

a lineage from a genome of i chromosomes to a genome of j chromosomes. For all157

elements of Q in which either i = 0 or j = 0 we define Qij = 0. For the o↵-diagonal158
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i

j = i k = i

no change:
�ijk = �c

i

j = i+1 k = i

i

j = i k = i+1

gain:
�ijk = �c/2

i

j = i�1 k = i

i

j = i k = i�1

loss:
�ijk = �c/2

i

j = 2i k = i

i

j = i k = 2i
polyploidization:
�ijk = ⇢c/2

i

j = 1.5i k = i

i

j = i k = 1.5i

demi-
polyploidization:
�ijk = ⌘c/2

Figure 1: Modeled cladogenetic chromosome evolution events. At each spe-
ciation event 9 di↵erent cladogenetic events are possible. The rate of each type
of speciation event is �ijk where i is the chromosome number before cladogenesis
and j and k are the states of each daughter lineage immediately after cladogenesis.
The dashed lines represent possible chromosomal changes within lineages that are
modeled by the anagenetic rate matrix Q.
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elements i 6= j with positive values of i and j, Q is determined by:159

Qij =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

�ae
�m(i�1)

j = i+ 1,

�ae
�m(i�1)

j = i� 1,

⇢a j = 2i,

⌘a j = 1.5i,

0 otherwise,

(1)

where �a, �a, ⇢a, and ⌘a are the rates of chromosome gains, losses,160

polyploidizations, and demi-polyploidizations. �m and �m are rate modifiers of161

chromosome gain and loss, respectively, that allow the rates of chromosome gain162

and loss to depend on the current number of chromosomes. This enables modeling163

scenarios in which the probability of fusion or fission events is positively or164

negatively correlated with the number of chromosomes. If the rate modifier �m = 0,165

then �ae
0(i�1) = �a. If the rate modifier �m > 0, then �ae

�m(i�1) � �a, and if �m < 0166

then �ae
�m(i�1)  �a. These two rate modifiers replace the parameters �l and �l in167

Mayrose et al. (2010), which in their parameterization may result in negative168

transition rates. Here we chose to exponentiate �m and �m to ensure positive169

transition rates, and avoid ad hoc restrictions on negative transition rates that may170

induce unintended priors. Note that this assumes the rates of chromosome change171

can vary exponentially as a function of the current chromosome number, whereas172

Mayrose et al. (2010) assumes a linear function.173

For odd values of i, we set Qij = ⌘/2 for the two integer values of j resulting174
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when j = 1.5i was rounded up and down. We define the diagonal elements i = j of175

Q as:176

Qii = �
CmX

i 6=j

Qij. (2)

The probability of anagenetically transitioning from chromosome number i to j177

along a branch of length t is then calculated by exponentiation of the instantaneous178

rate matrix:179

Pij(t) = e

�Qt
. (3)

Chromosome evolution at cladogenesis events.—180

At each lineage divergence event over the phylogeny, nine di↵erent181

cladogenetic changes in chromosome number are possible (Figure 1). Each type of182

cladogenetic event occurs with the rate �c, �c, �c, ⇢c, ⌘c, representing the183

cladogenesis rates of no change, chromosome gain, chromosome loss,184

polyploidization, and demi-polyploidization, respectively. The speciation rates � for185

the birth-death process generating the tree are given in the form of a 3-dimensional186

matrix between the ancestral state i and the states of the two daughter lineages j187
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and k. For all positive values of i, j, and k, we define:188

�ijk =

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

�c j = k = i

�c/2 j = i+ 1 and k = i,

�c/2 j = i and k = i+ 1,

�c/2 j = i� 1 and k = i,

�c/2 j = i and k = i� 1,

⇢c/2 j = 2i and k = i,

⇢c/2 j = i and k = 2i,

⌘c/2 j = 1.5i and k = i,

⌘c/2 j = i and k = 1.5i,

0 otherwise,

(4)

so that the total speciation rate of the birth-death process �t is given by:189

�t = �c + �c + �c + ⇢c + ⌘c. (5)

Similar to the anagenetic instantaneous rate matrix described above, for odd values190

of i, we set �ijk = ⌘c/4 for the integer values of j and k resulting when 1.5i is191

rounded up and down. The extinction rate µ is constant over the tree and for all192

chromosome numbers.193

Note that this model allows only a single chromosome number change event194
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on a maximum of one of the daughter lineages at each cladogenesis event. Changes195

in both daughter lineages at cladogenesis are not allowed; at least one of the196

daughter lineages must inherit the chromosome number of the ancestor. The model197

also assumes that cladogenesis events are always strictly bifurcating and that there198

are no hard polytomies.199

Likelihood Calculation Accounting for Unobserved Speciation.—200

The likelihood of cladogenetic and anagenetic chromosome number evolution201

over a phylogeny is calculated using a set of ordinary di↵erential equations similar202

to the Binary State Speciation and Extinction (BiSSE) model (Maddison et al.203

2007). The BiSSE model was extended to incorporate cladogenetic changes by204

Goldberg and Igić (2012). Following Goldberg and Igić (2012), we define DNi(t) as205

the probability that a lineage with chromosome number i at time t evolves into the206

observed clade N . We let Ei(t) be the probability that a lineage with chromosome207

number i at time t goes extinct before the present, or is not sampled at the present.208

However, unlike the full ClaSSE model the extinction rate µ does not depend on209

the chromosome number i of the lineage. The di↵erential equations for these two210

probabilities is given by:211

212

dDNi(t)

dt

= �
 

CmX

j=1

CmX

k=1

�ijk +
CmX

j=1

Qij + µ

!
DNi(t)213

+
CmX

j=1

QijDNj(t) +
CmX

j=1

CmX

k=1

�ijk

 
DNk(t)Ej(t) +DNj(t)Ek(t)

!
(6)214

215
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216

217

dEi(t)

dt

= �
 

CmX

j=1

CmX

k=1

�ijk +
CmX

j=1

Qij + µ

!
Ei(t)218

+ µ+
CmX

j=1

QijEj(t) +
CmX

j=1

CmX

k=1

�ijkEj(t)Ek(t), (7)219

220

where �ijk for each possible cladogenetic event is given by equation 4, and the rates221

of anagenetic changes Qij are given by equation 1. See Figure 2 for an explanation222

of equations 6 and 7.223

The di↵erential equations above have no known analytical solution.224

Therefore, we numerically integrate the equations for every arbitrarily small time225

interval moving along each branch from the tip of the tree towards the root. When226

a node l is reached, the probability of it being in state i is calculated by combining227

the probabilities of its descendant nodes m and n as such:228

Dli(t) =
CmX

j=1

CmX

k=1

�ijkDmj(t)Dnk(t), (8)

where again �ijk for each possible cladogenetic event is given by equation 4. Letting229

D denote a set of observed chromosome counts,  an observed phylogeny, and ✓q a230

particular set of chromosome evolution model parameters, then the likelihood for231

the model parameters ✓q is given by:232

P (D, |✓q) =
CmX

i=1

⇡iD0i(t), (9)
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where ⇡i is the root frequency of chromosome number i and D

0i(t) is the likelihood233

of the root node being in state i conditional on having given rise to the observed234

tree  and the observed chromosome counts D.235
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Figure 2: Chromosome evolution through time. An illustration of chromosome
evolution events that could occur during each time interval �t along the branches of
a phylogeny. Equations 6 and 7 (subfigures a and b, respectively) sum over each pos-
sible chromosome evolution event and are numerically integrated backwards through
time over the phylogeny to calculate the likelihood. a) DNi(t) is the probability that
the lineage at time t evolves into the observed clade N . To calculate the change in
this probability over �t we sum over three possibilities: no event occurred, an anage-
netic change in chromosome number occurred, or a speciation event with a possible
cladogenetic chromosome change occurred followed by an extinction event on one of
the two daughter lineages. b) Ei(t) is the probability that the lineage goes extinct
or is not sampled at the present. To calculate the change in this probability over �t

we sum over four possibilities: no event occurred followed eventually by extinction,
extinction occurred, an anagenetic change occurred followed by extinction, or a spe-
ciation event with a possible cladogenetic change occurred followed by extinction of
both daughter lineages.
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Initial Conditions.—236

The initial conditions for each observed lineage at time t = 0 for the237

extinction probabilities described by equation 7 are Ei(0) = 1� ⇢s for all i where ⇢s238

is the sampling probability of including that lineage. For lineages with an observed239

chromosome number of i, the initial condition is DNi(0) = ⇢s. The initial condition240

for all other chromosome numbers j is DNj(0) = 0.241

Likelihood Calculation Ignoring Unobserved Speciation.—242

To test the e↵ect of unobserved speciation events on inferences of243

chromosome number evolution we also implemented a version of the model244

described above that only accounts for observed speciation events. At each lineage245

divergence event over the phylogeny, the probabilities of cladogenetic chromosome246

number evolution P ({j, k}|i) are given by the simplex {�p, �p, �p, ⇢p, ⌘p}, where247

�p, �p, �p, ⇢p, and ⌘p represent the probabilities of no change, chromosome gain,248

chromosome loss, polyploidization, and demi-polyploidization, respectively. This249

approach does not require estimating speciation or extinction rates.250

Here, we calculate the likelihood of chromosome number evolution over a251

phylogeny using Felsenstein’s pruning algorithm (Felsenstein 1981) modified to252

include cladogenetic probabilities similar to models of biogeographic range253

evolution (Landis et al. 2013; Landis in press). Let D again denote a set of254

observed chromosome counts and  represent an observed phylogeny where node l255

has descendant nodes m and n. The likelihood of chromosome number evolution at256

node l conditional on node l being in state i and ✓q being a particular set of257

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 31, 2017. ; https://doi.org/10.1101/086629doi: bioRxiv preprint 

https://doi.org/10.1101/086629
http://creativecommons.org/licenses/by/4.0/


chromosome evolution model parameter values is given by:258

259

Pl(D, |i, ✓q) =260

CmX

j=1

CmX

k=1

P ({j, k}|i)

| {z }
cladogenetic

 CmX

je=1

Pjje(tm)Pm(D, |je, ✓q)
� CmX

ke=1

Pkke(tn)Pn(D, |ke, ✓q)
�

| {z }
anagenetic

,

(10)

261

262

where the length of the branches between l and m is tm and between l and n is tn.263

The state at the end of these branches near nodes m and n is je and ke,264

respectively. The state at the beginning of these branches, where they meet at node265

l, is j and k respectively. The cladogenetic term sums over the probabilities266

P ({j, k}|i) of all possible cladogenetic changes from state i to the states j and k at267

the beginning of each daughter lineage. The anagenetic term of the equation is the268

product of the probability of changes along the branches from state j to state je269

and state k to state ke (given by equation 3) and the likelihood of the tree above270

node l recursively computed from the tips.271

The likelihood for the model parameters ✓q is given by:272

P (D, |✓q) =
CmX

i=1

⇡iP0

(D, |i, ✓q), (11)

where P

0

(D, |i, ✓q) is the conditional likelihood of the root node being in state i273

and ⇡i is the root frequency of chromosome number i.274

Estimating Parameter Values and Ancestral States.—275

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 31, 2017. ; https://doi.org/10.1101/086629doi: bioRxiv preprint 

https://doi.org/10.1101/086629
http://creativecommons.org/licenses/by/4.0/


For any given tree with a set of observed chromosome counts, there exists a276

posterior distribution of model parameter values and a set of probabilities for the277

ancestral chromosome numbers at each internal node of the tree. Let P (si, ✓q|D, )278

denote the joint posterior probability of ✓q and a vector of specific ancestral279

chromosome numbers si given a set of observed chromosome counts D and an280

observed tree  . The posterior is given by Bayes’ rule:281

P (si, ✓q, |D, ) =
P (D, |si, ✓q)P (si|✓q)P (✓q)

R

✓

CmP
s=1

P (D, |s, ✓)P (s|✓)P (✓)d✓

. (12)

Here, P (si|✓q) is the prior probability of the ancestral states s conditioned on the282

model parameters ✓q, and P (✓q) is the joint prior probability of the model283

parameters.284

In the denominator of equation 12 we integrate over all possible values of ✓285

and sum over all possible ancestral chromosome numbers s. Since ✓ is a vector of286

12 + Cm parameters and s is a vector of n� 1 ancestral states where n is the287

number of observed tips in the phylogeny, the denominator of equation 12 requires288

a high dimensional integral and an extremely large summation that is impossible to289

calculate analytically. Instead we use Markov chain Monte Carlo methods290

(Metropolis et al. 1953; Hastings 1970) to estimate the posterior probability291

distribution in a computationally e�cient manner.292

Ancestral states are inferred using a two-pass tree traversal procedure as293

described in Pupko et al. (2000), and previously implemented in a Bayesian294

framework by Huelsenbeck and Bollback (2001) and Pagel et al. (2004). First,295
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partial likelihoods are calculated during the backwards-time post-order tree296

traversal in equations 6 and 7. Joint ancestral states are then sampled during a297

pre-order tree traversal in which the root state is first drawn from the marginal298

likelihoods at the root, and then states are drawn for each descendant node299

conditioned on the state at the parent node until the tips are reached. Again, we300

must numerically integrate over a system of di↵erential equations during this301

root-to-tip tree traversal. This integration, however, is performed in forward-time,302

thus the set of ordinary di↵erential equations must be slightly altered since our303

models of chromosome number evolution are not time reversible. Accordingly, we304

calculate:305

306

dDNi(t)

dt

= �
 

CmX

j=1

CmX

k=1

�ijk +
CmX

j=1

Qji + µ

!
DNi(t)307

+
CmX

j=1

QjiDNj(t) +
CmX

j=1

CmX

k=1

�ijk

 
DNj(t)Ek(t) +DNk(t)Ej(t)

!
(13)308

309

310

311

dEi(t)

dt

=

 
CmX

j=1

CmX

k=1

�ijk +
CmX

j=1

Qji + µ

!
Ei(t)312

� µ�
CmX

j=1

QjiEj(t)�
CmX

j=1

CmX

k=1

�ijkEj(t)Ek(t), (14)313

314

during the forward-time root-to-tip pass to draw ancestral states from their joint315

distribution conditioned on the model parameters and observed chromosome316

counts. For more details and validation of our method to estimate ancestral states,317
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please see Supplementary Material Appendix 1.318

Priors.—319

Model parameter priors are listed in Table 1. Our implementation allows all320

priors to be easily modified so that their impact on results can be e↵ectively321

assessed. Priors for anagenetic rate parameters are given an exponential322

distribution with a mean of 2/ l where  l is the length of the tree  . This323

corresponds to a mean rate of two events over the observed tree. The priors for the324

rate modifiers �m and �m are assigned a uniform distribution with the range325

�3/CM to 3/Cm. This sets minimum and maximum bounds on the amount the326

rate modifiers can a↵ect the rates of gain and loss at the maximum chromosome327

number to �ae
�3 = �a0.050 and �ae

3 = �a20.1, and �ae
�3 = �a0.050 and328

�ae
3 = �a20.1, respectively.329

The speciation rates are drawn from an exponential prior with a mean equal330

to an estimate of the net diversification rate d̂. Under a constant rate birth-death331

process not conditioning on survival of the process, the expected number of lineages332

at time t is given by:333

E(Nt) = N

0

e

td
, (15)

where N

0

is the number of lineages at time 0 and d is the net diversification rate334

�� µ (Nee et al. 1994; Höhna 2015). Therefore, we estimate d̂ as:335

d̂ = (lnNt � lnN
0

)/t, (16)

where Nt is the number of lineages in the observed tree that survived to the336
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present, t is the age of the root, and N

0

= 2.337

The extinction rate µ is given by:338

µ = r ⇥ �t = r ⇥ (�c + �c + �c + ⇢c + ⌘c), (17)

where �t is the total speciation rate and r is the relative extinction rate. The339

relative extinction rate r is assigned a uniform (0,1) prior distribution, thus forcing340

the extinction rate to be smaller than the total speciation rate. The root341

frequencies of chromosome numbers ⇡ are drawn from a flat Dirichlet distribution.342

Table 1: Model parameter names and prior distributions. See the main text
for complete description of model parameters and prior distributions.  l represents
the length of tree  and Cm is the maximum chromosome number allowed.

Parameter X f(X)

Anagenetic Chromosome gain rate �a Exponential(� =  l/2)
Chromosome loss rate �a Exponential(� =  l/2)
Polyploidization rate ⇢a Exponential(� =  l/2)
Demi-polyploidization rate ⌘a Exponential(� =  l/2)
Linear component of chromosome gain rate �m Uniform(�3/Cm, 3/Cm)
Linear component of chromosome loss rate �m Uniform(�3/Cm, 3/Cm)

Cladogenetic No change �c Exponential(� = 1/d̂)
Chromosome gain �c Exponential(� = 1/d̂)
Chromosome loss �c Exponential(� = 1/d̂)
Polyploidization ⇢c Exponential(� = 1/d̂)
Demi-polyploidization ⌘c Exponential(� = 1/d̂)

Other Root frequencies ⇡ Dirichlet(1,. . . ,1)
Relative-extinction r Uniform(0, 1)

Model Uncertainty and Selection343

Model Averaging.—344
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To account for model uncertainty we calculate the posterior density of345

chromosome evolution model parameters ✓ without conditioning on any single346

model of chromosome evolution. For each of the 1024 chromosome models Mk,347

where k = 1, 2, . . . , 1024, the posterior distribution of ✓ is348

P (✓|D) =
KX

k=1

P (✓|D,Mk)P (Mk|D). (18)

Here we average over the posterior distributions conditioned on each model349

weighted by the model’s posterior probability. We assume an equal prior350

probability for each model P (Mk) = 2�10.351

Reversible Jump Markov Chain Monte Carlo.—352

To sample from the space of all possible chromosome evolution models, we353

employ reversible jump MCMC (Green 1995). This algorithm draws samples from354

parameter spaces of di↵ering dimensions, and in stationarity samples each model in355

proportion to its posterior probability. This permits inference of each model’s fit to356

the data while simultaneously accounting for model uncertainty.357

Our reversible jump MCMC moves between models of di↵erent dimensions358

using augment and reduce moves (Huelsenbeck et al. 2000; Pagel and Meade 2006;359

May et al. 2016). The reduce move proposes that a parameter should be removed360

from the current model by setting its value to 0.0, e↵ectively disallowing that class361

of evolutionary event. Augment moves reverse reduce moves by allowing the362

parameter to once again have a non-zero value. Both augment and reduce moves363

operate on all chromosome rate parameters except for �c the rate of no364
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cladogenetic change. Thus the least complex model the MCMC can sample from is365

one in which �c > 0.0 and all other chromosome rate parameters are set to 0.0,366

corresponding to a model of no chromosomal changes over the phylogeny. The prior367

probability of reducing or augmenting model Mk is Pr(Mk) = Pa(Mk) = 0.5.368

Bayes Factors.—369

In some cases we wish to compare the fit of models to summarize the mode370

of evolution within a clade. Bayes factors (Kass and Raftery 1995) compare the371

evidence between two competing models Mi and Mj372

Bij =
P (D|Mi)

P (D|Mj)
=

P (Mi|D)

P (Mj|D)
/

P (Mi)

P (Mj)
. (19)

In words, the Bayes factor Bij is given by the ratio of the posterior odds to the373

prior odds of the two models. Unlike other methods of model selection such as374

Akaike Information Criterion (AIC; Akaike 1974) and the Bayesian Information375

Criterion (BIC; Schwarz 1978), Bayes factors take into account the full posterior376

densities of the model parameters and do not rely on point estimates. Furthermore377

AIC and BIC ignore the priors assigned to parameters, whereas Bayes factors378

penalizes parameters based on the informativeness of the prior. If the prior is379

informative but overlaps little with the likelihood it is penalized more than a380

di↵use uninformative prior that allows the parameter to take on whatever value is381

informed by the data (Xie et al. 2011).382

Implementation383
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The model and MCMC analyses described here are implemented in C++ in384

the software RevBayes (Höhna et al. 2016). In Supplementary Material Appendix 1385

we validated our SSE likelihood calculations and ancestral state estimates against386

those of the R package diversitree (FitzJohn 2012). Rev scripts that specify the387

chromosome number evolution model (ChromoSSE) described here as a388

probabilistic graphical model (Höhna et al. 2014) and run the empirical analyses in389

RevBayes are available at http://github.com/wf8/ChromoSSE. The RevGadgets390

R package (available at https://github.com/revbayes/RevGadgets) contains391

functions to summarize results and generate plots of inferred ancestral chromosome392

numbers over a phylogeny.393

The MCMC proposals used are outlined in Supplementary Material394

Appendix 2. Aside from the reversible jump MCMC proposals described above, all395

other proposals are standard except for the ElementSwapSimplex move operated on396

the Dirichlet distributed root frequencies parameter. This move randomly selects397

two elements r
1

and r

2

from the root frequencies vector and swaps their values.398

The reverse move, swapping the original values of r
1

and r

2

back, will have the399

same probability as the initial move since r

1

and r

2

were drawn from a uniform400

distribution. Thus, the Hasting ratio is 1 and the ElementSwapSimplex move is a401

symmetric Metropolis move.402

Simulations403

We conducted a series of simulations to: 1) test the e↵ect of unobserved404

speciation events due to extinction on chromosome number estimates when using a405
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model that does not account for unobserved speciation, 2) compare the accuracy of406

models of chromosome evolution that account for unobserved speciation versus407

those that do not, 3) test the e↵ect of jointly estimating speciation and extinction408

rates with chromosome number evolution, 4) test for identifiability of cladogenetic409

parameters, and 5) test the e↵ect of incomplete sampling of extant lineages on410

ancestral chromosome number estimates. We will refer to each of the 5 simulations411

above as experiment 1, experiment 2, experiment 3, experiment 4, and experiment412

5. Detailed descriptions of each experiment and the methods used to simulate trees413

and chromosome counts are in Supplementary Material Appendix 3.414

For all 5 experiments, MCMC analyses were run for 5000 iterations, where415

each iteration consisted of 28 di↵erent moves in a random move schedule with 79416

moves per iteration (see Supplementary material Appendix 2). Samples were drawn417

with each iteration, and the first 1000 samples were discarded as burn in. E↵ective418

sample sizes (ESS) for all parameters in all simulation replicates were over 200, and419

the mean ESS values of the posterior for the replicates was 1470.3. See420

Supplementary Material Appendix 4 for more on convergence of simulation421

replicates. To perform all 5 experiments 2100 independent MCMC analyses were422

run requiring a total of 89170.6 CPU hours on the Savio computational cluster at423

the University of California, Berkeley.424

Summarizing Simulation Results.—425

To summarize the results of our simulations, we measured the accuracy of426

ancestral state estimates as the percent of simulation replicates in which the true427

root chromosome number 8 was found to be the maximum a posteriori (MAP)428
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estimate. To evaluate the uncertainty of the simulations, we calculated the mean429

posterior probability of root chromosome number for the simulation replicates that430

correctly found 8 to be the MAP estimate. We also calculated the proportion of431

simulation replicates for which the true model of chromosome number evolution432

used to simulate the data (as given by the table in Supplementary Material433

Appendix 3) was estimated to be the MAP model, and calculated the mean434

posterior probabilities of the true model. To compare the accuracy of model435

averaged parameter value estimates we calculated coverage probabilities. Coverage436

probabilities are the percentage of simulation replicates for which the true437

parameter value falls within the 95% highest posterior density (HPD). High438

accuracy is shown when coverage probabilities approach 1.0.439

Empirical Data440

Phylogenetic data and chromosomes counts from five plant genera were441

analyzed (see Table 2). Like in Mayrose et al. (2010) we assumed each species had442

a single cytotype, however polymorphism could be accounted for by a vector of443

probabilities for each chromosome count. Sequence data for Aristolochia was444

downloaded from TreeBASE (Vos et al. 2010) study ID 1586. Sequences for445

Helianthus, Mimulus sensu lato, and Primula were downloaded directly from446

GenBank (Benson et al. 2005), reconstructing the sequence matrices from Timme447

et al. (2007), Beardsley et al. (2004), and Guggisberg et al. (2009). For each of448

these four datasets phylogenetic analyses were performed with all gene regions449

concatenated and unpartitioned, assuming the general time-reversible (GTR)450
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nucleotide substitution model (Tavaré 1986; Rodriguez et al. 1990) with among-site451

rate variation modeled using a discretized gamma distribution (Yang 1994) with452

four rate categories. Since divergence time estimation in years is not the objective453

of this study, and only relative branching times are needed for our models of454

chromosome number evolution, a birth-death tree prior was used with a fixed root455

age of 10.0 time units. The MCMC analyses were performed in RevBayes, and were456

sampled every 100 iterations and run for a total of 400000 iterations, with samples457

from the first 100000 iterations discarded as burnin. Convergence was assessed by458

ensuring that the e↵ective sample size for all parameters was over 200. The459

maximum a posteriori tree was calculated and used for further chromosome460

evolution analyses. For Carex section Spirostachyae the time calibrated tree from461

Escudero et al. (2010) was used.462

Ancestral chromosome numbers and chromosome evolution model463

parameters were then estimated for each of the five clades. Since testing the e↵ect464

of incomplete taxon sampling on chromosome evolution inference of the empirical465

datasets was not a goal of this work, we focus here on results using a taxon466

sampling fraction ⇢s of 1.0 (though see the Discussion section for more on this).467

MCMC analyses were run in RevBayes for 11000 iterations, where each iteration468

consisted of 28 di↵erent Metropolis-Hastings moves in a random move schedule469

with 79 moves per iteration (see Supplementary Material Appendix 2). Samples470

were drawn each iteration, and the first 1000 samples were discarded as burn in.471

E↵ective sample sizes for all parameters were over 200. For all datasets except472

Primula we used priors as outlined in Table 1. To demonstrate the flexibility of our473
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Table 2: Empirical data sets analysed.

Clade Study Gene region Alignment
length (bp)

Number of
OTUs

Haploid chro-
mosome num-
bers range

Aristolochia Ohi-Toma
et al. (2006)

matK 1268 34 3 - 16

Carex section
Spirostachyae

Escudero
et al. (2010)

ITS, trnK
intron

see Escudero
et al. (2010)

24 30 - 42

Helianthus Timme et al.
(2007)

ETS 3085 102 17 - 51

Mimulus
sensu lato

Beardsley
et al. (2004)

trnL intron,
ETS, ITS

2210 115 8 - 46

Primula
section
Aleuritia

Guggisberg
et al. (2009)

rpl16 intron,
rps16 intron,
trnL intron,
trnL-trnF
spacer,
trnT-trnL
spacer,
trnD-trnT
region

5705 56 9 - 36

Bayesian implementation and its capacity to incorporate prior information we used474

an informative prior for the root chromosome number in the Primula section475

Aleuritia analysis. Our dataset for Primula section Aleuritia also included samples476

from Primula sections Armerina and Sikkimensis. Since we were most interested in477

estimating chromosome evolution within section Aleuritia, we used an informative478

Dirichlet prior {1, ..., 1, 100, 1....1} (with 100 on the 11th element) to bias the root479

state towards the reported base number of Primula x = 11 (Conti et al. 2000).480

Note all priors can be easily modified in our implementation, thus the impact of481

priors can be e�ciently tested.482
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Results483

Simulations484

General Results.—485

In all simulations, the true model of chromosome number evolution was486

infrequently estimated to be the MAP model (< 36% of replicates), and when it487

was the posterior probability of the MAP model was very low (< 0.12; Table 3).488

We found that the accuracy of root chromosome number estimation was similar489

whether the process that generated the simulated data was cladogenetic-only or490

anagenetic-only (Tables 3 and 4). However, when the data was simulated under a491

process that included both cladogenetic and anagenetic evolution we found a492

decrease in accuracy in the root chromosome number estimates in all cases.493

Experiment 1 Results.—494

The presence of unobserved speciation in the process that generated the495

simulated data decreased the accuracy of ancestral state estimates (Figure 3, Table496

3). Similarly, uncertainty in root chromosome number estimates increased with497

unobserved speciation (lower mean posterior probabilities; Table 3). The accuracy498

of parameter value estimates as measured by coverage probabilities was similar499

(results not shown).500

Experiment 2 Results.—501
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When comparing estimates from ChromoSSE that account for unobserved502

speciation to estimates from the non-SSE model that does not account for503

unobserved speciation, we found that the accuracy in estimating model parameter504

values was mostly similar, though for some cladogenetic parameters there was505

higher accuracy with the model that did account for unobserved speciation506

(ChromoSSE; Figure 4). For both models estimates of anagenetic parameters were507

more accurate than estimates of cladogenetic parameters when the true generating508

model included cladogenetic changes.509

We found that ChromoSSE had more uncertainty in root chromosome510

number estimates (lower mean posterior probabilities) compared to the non-SSE511

model that did not account for unobserved speciation. Similarly, the root512

chromosome number was estimated with slightly lower accuracy (Table 4).513

Experiment 3 Results.—514

We found that jointly estimating speciation and extinction rates with515

chromosome number evolution using ChromoSSE slightly decreased the accuracy of516

root chromosome number estimates, and further it increased the uncertainty of the517

inferred root chromosome number (as reflected in lower mean posterior518

probabilities; Table 4). Fixing the speciation and extinction rates to their true519

value removed much of the increased uncertainty associated with using a model520

that accounts for unobserved speciation (Table 4).521

Experiment 4 Results.—522

Under simulation scenarios that had cladogenetic changes but no anagenetic523

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 31, 2017. ; https://doi.org/10.1101/086629doi: bioRxiv preprint 

https://doi.org/10.1101/086629
http://creativecommons.org/licenses/by/4.0/


changes, we found that ChromoSSE overestimated anagenetic parameters and524

underestimated cladogenetic parameters (Figure 5 A), which explains the lower525

coverage probabilities of cladogenetic parameters reported above for experiment 2526

(Figure 4). When anagenetic parameters were fixed to 0.0 cladogenetic parameters527

were no longer underestimated (Figure 5 A), and the coverage probabilities of528

cladogenetic parameters increased slightly (Figure 5 B).529

Experiment 5 Results.—530

We found that incomplete sampling of extant lineages had a minor e↵ect on531

the accuracy of ancestral chromosome number estimates (Figure 6). Accuracy only532

slightly decreased as the percentage of extant lineages sampled declined from 100%533

to 50%, and decreased more rapidly when the percentage went to 10%. As534

measured by the proportion of simulation replicates that inferred the MAP root535

chromosome number to be the true root chromosome number, the accuracy of536

ancestral states estimated under ChromoSSE declined from 0.80 accuracy at 100%537

taxon sampling to 0.69 at 10% taxon sampling. Essentially no di↵erence in538

accuracy was detected between the non-SSE model that does not take unobserved539

speciation into account and ChromoSSE. Furthermore, little di↵erence in accuracy540

was detected using ChromoSSE with the taxon sampling probability ⇢s set to 1.0541

compared to ChromoSSE with ⇢s set to the true value (0.1, 0.5, or 1.0; Figure 6).542
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Figure 3: Experiment 1 results: the e↵ect of unobserved speciation events

on the maximum a posteriori (MAP) estimates of root chromosome num-

ber. Model averaged MAP estimates of the root chromosome number for 100 repli-
cates of each simulation type on datasets that included unobserved speciation and
datasets that did not include unobserved speciation. Each circle represents a simu-
lation replicate, where the size of the circle is proportional to the number of lineages
that survived to the present (the number of extant tips in the tree). The true root
chromosome number used to simulate the data was 8 and is marked with a pink
dotted line.
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Table 3: Experiment 1 results: the e↵ect of ignoring unobserved speciation

events on chromosome evolution estimates. Regardless of the true mode of
chromosome evolution, the presence of unobserved speciation events in the process
that generated the simulated data decreased accuracy in estimating the true root
state. The columns from left to right are: 1) an indication of whether or not the data
was simulated with a process that included unobserved speciation, 2) the true mode
of chromosome evolution used to simulate the data, (for description see main text
and Supplementary Material Appendix 3), 3) the percent of simulation replicates in
which the true chromosome number at the root used to simulate the data was found
to be the maximum a posteriori (MAP) estimate, 4) the mean posterior probability of
the MAP estimate of the true root chromosome number, 5) the percent of simulation
replicates in which the true model used to simulate the data was also found to be
the MAP model, and 6) the mean posterior probability of the MAP estimate of the
true model.

Unobserved
Speciation
Events
Included
When
Simulating
Data?

Mode of
Evolution
Used to
Simulate
Data

True Root
State
Estimated
(%)

Mean
Posterior of
True Root
State

True Model
Estimated
(%)

Mean
Posterior of
True Model

No Cladogenetic 93 0.92 13 0.10

No Anagenetic 89 0.91 31 0.12

No Mixed 88 0.84 0 0.0

Yes Cladogenetic 78 0.87 15 0.09

Yes Anagenetic 83 0.91 36 0.12

Yes Mixed 62 0.80 2 0.10
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Figure 4: Experiment 2 results: the e↵ect of using a model that accounts for

unobserved speciation on coverage probabilities of chromosome model pa-

rameters. Each point represents the proportion of simulation replicates for which
the 95% HPD interval contains the true value of the model parameter. Coverage
probabilities of 1.00 mean perfect coverage. The circles represent coverage proba-
bilities for estimates made using the non-SSE model that does not account for un-
observed speciation, and the triangles represent coverage probabilities for estimates
made using ChromoSSE that does account for unobserved speciation.
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Table 4: Experiments 2 and 3 results: the e↵ects of using a model that

accounts for unobserved speciation and of jointly estimating diversifica-

tion rates on ancestral chromosome number estimates. This table compares
estimates of chromosome evolution using a non-SSE model that does not account
for unobserved speciation events with ChromoSSE that does account for unobserved
speciation events (Experiment 2), and compares estimates of chromosome evolution
when jointly estimated with speciation and extinction rates versus when the true
speciation and extinction rates are given (Experiment 3). Regardless of the true
mode of chromosome evolution, the use of a model that accounts for unobserved
speciation increases uncertainty in root state estimates. The columns from left to
right are: 1) an indication of which experiment the results pertain to, 2) an indi-
cation of whether or not the estimates were made with ChromoSSE (that accounts
for unobserved speciation), 3) whether diversification rates were jointly estimated
with chromosome evolution, 4) the percent of simulation replicates in which the true
chromosome number at the root used to simulate the data was found to be the MAP
estimate, 5) the mean posterior probability of the MAP estimate of the true root
chromosome number.

Experiment
#

Estimates
Made w/
Model That
Accounted for
Unobserved
Speciation?

Speciation
and
Extinction
Rates Jointly
Estimated?

Mode of
Evolution
Used to
Simulate
Data

True Root
State
Estimated
(%)

Mean
Posterior of
True Root
State

2 No No Cladogenetic 78 0.87

2 No No Anagenetic 83 0.91

2 No No Mixed 62 0.80

2 & 3 Yes Yes Cladogenetic 78 0.81

2 & 3 Yes Yes Anagenetic 80 0.86

2 & 3 Yes Yes Mixed 61 0.72

3 Yes No Cladogenetic 78 0.84

3 Yes No Anagenetic 83 0.90

3 Yes No Mixed 62 0.76
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Figure 5: Experiment 4 results: testing identifiability of cladogenetic pa-

rameters under ChromoSSE. a) Chromosome parameter value estimates from
100 simulation replicates under a simulation scenario with no anagenetic changes
(cladogenetic only). The stars represent true values. The box plots compare pa-
rameter estimates made when anagenetic parameters were fixed to 0 to estimates
made when all parameters were free. When all parameters were free the anagenetic
parameters were overestimated and cladogenetic parameters were underestimated.
When the anagenetic parameters were fixed to 0 the estimates for the cladogenetic
parameters were more accurate. b) Coverage probabilities of chromosome evolution
parameters under the cladogenetic only model of chromosome evolution. The accu-
racy of cladogenetic parameter estimates increased when anagenetic parameters were
fixed to 0.
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Figure 6: Experiment 5 results: the e↵ect of incomplete sampling. The ac-
curacy of ancestral chromosome number estimates slightly declined as the percentage
of sampled extant lineages decreased from 100% to 50%, and decreased more quickly
once the percentage of extant lineages decreased to 10%. There was little di↵erence
between the non-SSE model (light grey) that does not take into account unobserved
speciation and ChromoSSE (medium and dark grey) which does take into account
unobserved speciation. Furthermore, little di↵erence in accuracy was detected using
ChromoSSE with the taxon sampling probability ⇢s set to 1.0 (medium grey) and
with ⇢s set to the true value (0.1, 0.5, or 1.0; dark grey). The accuracy of chro-
mosome number estimates was measured by the proportion of simulation replicates
for which the estimated MAP root chromosome number corresponded with the true
chromosome number used to simulate the data.

Empirical Data543

Model averaged MAP estimates of ancestral chromosome numbers for each544

of the five empirical datasets are show in Figures 7, 8, 9, 10, and 11. The mean545

model-averaged chromosome number evolution parameter value estimates for the546

empirical datasets are reported in Table 5. Posterior probabilities for the MAP547
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model of chromosome number evolution were low for all datasets, varying between548

0.04 for Carex section Spirostachyae and 0.21 for Helianthus (Table 6). Bayes549

factors supported unique, clade-specific combinations of anagenetic and550

cladogenetic parameters for all five datasets (Table 6). None of the clades had551

support for purely anagenetic or purely cladogenetic models of chromosome552

evolution.553

The ancestral state reconstructions for Aristolochia were highly similar to554

those found by Mayrose et al. (2010). We found a moderately supported root555

chromosome number of 8 (posterior probability 0.45), and a polyploidization event556

on the branch leading to the Isotrema clade which has a base chromosome number557

of 16 with high posterior probability (0.88; Figure 7). On the branch leading to the558

main Aristolochia clade we found a dysploid loss of a single chromosome. Overall,559

we estimated moderate rates of anagenetic dysploid and polyploid changes, and the560

rates of cladogenetic change were 0 except for a moderate rate of cladogenetic561

dysploid loss (Tables 5). There was only one cladogenetic change inferred in the562

MAP ancestral state reconstruction, which was a recent possible dysploid563

speciation event that split the sympatric west-central Mexican species Aristolochia564

tentaculata and A. taliscana.565

In Helianthus, on the other hand, we found high rates of cladogenetic566

polyploidization, and low rates of anagenetic change (Tables 5). 12 separate567

possible polyploid speciation events were identified over the phylogeny (Figure 8),568

and cladogenetic polyploidization made up 16% of all observed and unobserved569

speciation events. Bayes factors gave very strong support for models that included570
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cladogenetic polyploidization as well as anagenetic demi-polyploidization (Table 6),571

the latter explaining the frequent anagenetic transitions from 34 to 51 chromosomes572

found in the MAP ancestral state reconstruction. The well supported root573

chromosome number of 17 (posterior probability 0.91) corresponded with the574

findings of Mayrose et al. (2010).575

As opposed to the Helianthus results, the Carex section Spirostachyae576

estimates had very low rates of polyploidization and instead had high rates of577

cladogenetic dysploid change (Tables 5). An estimated 36.9% of all observed and578

unobserved speciation events included a cladogenetic gain or loss of a single579

chromosome. Overall, the rates of anagenetic changes were estimated to be much580

lower than the rates of cladogenetic changes. Bayes factors did not support either581

anagenetic or cladogenetic polyploidization (Table 6). The MAP root chromosome582

number of 37, despite being very weakly supported (0.08), corresponds with the583

findings of Escudero et al. (2014), where it was also poorly supported (Figure 9).584

In Primula, we found a base chromosome number for section Aleuritia of 9585

with high posterior probability (0.82; Figure 10), which agrees with estimates from586

Glick and Mayrose (2014). We estimated moderate rates of anagenetic and587

cladogenetic changes, including both cladogenetic polyploidization and588

demi-polyploidization (Table 5). The MAP ancestral state estimates include an589

inferred history of possible polyploid and demi-polyploid speciation events in the590

clade containing the tetraploid Primula halleri and the hexaploid P. scotica.591

Primula is the only dataset out of the five analysed here for which Bayes factors592

supported the inclusion of cladogenetic demi-polyploidization (Table 6).593
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Table 5: Mean model-averaged parameter value estimates for empirical

datasets. Rates for all parameters are given in units of chromosome changes per
branch length unit except for µ which is given in extinction events per time units.

Clade �a �a ⇢a ⌘a �m �m �c �c �c ⇢c ⌘c µ

Aristolochia 0.02 0.05 0.01 0.0 -0.01 -0.01 0.43 0.0 0.04 0.0 0.0 0.19
Carex section
Spirostachyae

0.19 0.79 0.16 0.13 0.0 0.04 2.49 2.15 0.15 0.95 0.5 2.26

Helianthus 0.0 0.02 0.0 0.03 -0.0 -0.0 0.68 0.0 0.0 0.13 0.0 0.09
Mimulus s.l. 0.03 0.02 0.01 0.0 0.02 0.02 0.65 0.0 0.0 0.05 0.0 0.16
Primula
section
Aleuritia

0.01 0.05 0.01 0.01 -0.0 -0.0 2.39 0.01 0.03 0.15 0.09 2.47

The well supported root chromosome number of 8 (posterior probability594

0.90) found for Mimulus s.l. corresponds with the inferences reported in Beardsley595

et al. (2004). We estimated moderate rates of anagenetic dysploid gains and losses,596

as well as a moderate rate of cladogenetic polyploidization (Table 5). Bayes factors597

also supported models that included anagenetic dysploid gain and loss, as well as598

cladogenetic polyploidization (Table 6). The MAP ancestral state reconstruction599

revealed that most of the possible polyploid speciation events took place in the600

Diplacus clade, particularly in the clade containing the tetraploids Mimulus601

cupreus, M. glabratus, M. luteus, and M. yecorensis (Figure 11). Additionally, an602

ancient cladogenetic polyploidization event is inferred for the split between the two603

main Diplacus clades at about 5 million time units ago.604
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Figure 7: Ancestral chromosome number estimates of Aristolochia. The
model averaged MAP estimate of ancestral chromosome numbers are shown at each
branch node. The states of each daughter lineage immediately after cladogenesis are
shown at the “shoulders” of each node. The size of each circle is proportional to the
chromosome number and the color represents the posterior probability. The MAP
root chromosome number is 8 with a posterior probability of 0.45. The grey arrow
highlights the possible dysploid speciation event leading to the west-central Mexican
species Aristolochia tentaculata and A. taliscana. Clades corresponding to subgenera
are indicated at right.
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Figure 8: Ancestral chromosome number estimates of Helianthus. The
model averaged MAP estimate of ancestral chromosome numbers are shown at each
branch node. The states of each daughter lineage immediately after cladogenesis are
shown at the “shoulders” of each node. The size of each circle is proportional to the
chromosome number and the color represents the posterior probability. The MAP
root chromosome number is 17 with a posterior probability of 0.91. The grey arrows
show the locations of 12 inferred polyploid speciation events.
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Figure 9: Ancestral chromosome number estimates of Carex section

Spirostachyae. The model averaged MAP estimate of ancestral chromosome num-
bers are shown at each branch node. The states of each daughter lineage immediately
after cladogenesis are shown at the “shoulders” of each node. The size of each circle
is proportional to the chromosome number and the color represents the posterior
probability. The MAP root chromosome number is 37 with a posterior probability of
0.08. Grey arrows indicate the location of possible dysploid speciation events. 36.9%
of all speciation events include a cladogenetic gain or loss of a single chromosome.
Clades corresponding to subsections are indicated at right.
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Figure 10: Ancestral chromosome number estimates of Primula section

Aleuritia. The model averaged MAP estimate of ancestral chromosome numbers
are shown at each branch node. The states of each daughter lineage immediately
after cladogenesis are shown at the “shoulders” of each node. The size of each circle
is proportional to the chromosome number and the color represents the posterior
probability. The MAP root chromosome number of section Aleuritia is 9 with a pos-
terior probability of 0.82. The arrows show the inferred history of possible polyploid
and demi-polyploid speciation events in the clade containing the tetraploids Primula
egaliksensis and P. halleri and the hexaploid P. scotica. Clades corresponding to
sections are indicated at right.
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Figure 11: Ancestral chromosome number estimates of Mimulus sensu lato.

The model averaged MAP estimate of ancestral chromosome numbers are shown at
each branch node. The states of each daughter lineage immediately after cladogenesis
are shown at the “shoulders” of each node. The size of each circle is proportional
to the chromosome number and the color represents the posterior probability. The
MAP root chromosome number is 8 with a posterior probability of 0.90. The arrows
highlight the inferred history of repeated polyploid speciation events in the Diplacus
clade, which contains the tetraploids Mimulus cupreus, M. glabratus, M. luteus, and
M. yecorensis. Clades corresponding to segregate genera are indicated at right.
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Discussion605

The results from the empirical analyses show that the ChromoSSE models606

detect strikingly di↵erent modes of chromosome evolution with clade-specific607

combinations of anagenetic and cladogenetic processes. Anagenetic dysploid gains608

and losses were supported in nearly all clades; however, cladogenetic dysploid609

changes were supported only in Carex. The occurrence of anagenetic dysploid610

changes in all clades suggest that small chromosome number changes due to gains611

and losses may frequently have a minimal e↵ect on the formation of reproductive612

isolation, though our results suggest that Carex may be a notable exception.613

Anagenetic polyploidization was only supported in Aristolochia, while cladogenetic614

polyploidization was supported in Helianthus, Mimulus s.l., and Primula. These615

findings confirm the evidence presented by Zhan et al. (2016) that polyploidization616

events could play a significant role during plant speciation.617

Our models shed new light on the importance of whole genome duplications618

as a key driver in evolutionary diversification processes. Helianthus has long been619

understood to have a complex history of polyploid speciation (Timme et al. 2007),620

but our results here are the first to statistically show the prevalance of cladogenetic621

polyploidization in Helianthus (occuring at 16% of all speciation events) and how622

few of the chromosome changes are estimated to be anagenetic. Polyploid623

speciation has also been suspected to be common in Mimulus s.l. (Vickery 1995),624

and indeed we estimated that 7% of speciation events were cladogenetic625

polyploidization events. We also estimated that the rates of cladogenetic626

dysploidization in Mimulus s.l. were 0, which is in contrast to the parsimony based627
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inferences presented in Beardsley et al. (2004), which estimated 11.5% of all628

speciation events included polyploidization and 13.3% included dysploidization.629

Their estimates, however, did not distinguish cladogenetic from anagenetic630

processes, and so they likely underestimated anagenetic changes. Our ancestral631

state reconstructions of chromosome number evolution for Helianthus, Mimulus s.l.,632

and Primula show that polyploidization events generally occurred in the relatively633

recent past; few ancient polyploidization events were reconstructed (one exception634

being the ancient cladogenetic polyploidization event in Mimulus clade Diplacus).635

This pattern appears to be consistent with recent studies that show polyploid636

lineages may undergo decreased net diversification (Mayrose et al. 2011; Scarpino637

et al. 2014), leading some to suggest that polyploidization may be an evolutionary638

dead-end (Arrigo and Barker 2012). While in the analyses presented here we fixed639

rates of speciation and extinction through time and across lineages, an obvious640

extension of our models would be to allow these rates to vary across the tree and641

statistically test for rate changes in polyploid lineages.642

Our findings also suggest dysploid changes may play a significant role in the643

speciation process of some lineages. The genus Carex is distinguished by644

holocentric chromosomes that undergo common fusion and fission events but rarely645

polyploidization (Hipp 2007). This concurs with our findings from Carex section646

Spirostachyae, where we saw no support for models including either anagenetic or647

cladogenetic polyploidization. Instead we found high rates of cladogenetic dysploid648

change, which is congruent with earlier results that show that Carex diversification649

is driven by processes of fission and fusion occurring with cladogenetic shifts in650
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chromosome number (Hipp 2007; Hipp et al. 2007). Hipp (2007) proposed a651

speciation scenario for Carex in which the gradual accumulation of chromosome652

fusions, fissions, and rearrangements in recently diverged populations increasingly653

reduce the fertility of hybrids between populations, resulting in high species654

richness. More recently, Escudero et al. (2016) found that chromosome number655

di↵erences in Carex scoparia led to reduced germination rates, suggesting hybrid656

dysfunction could spur chromosome speciation in Carex. Holocentricity has arisen657

at least 13 times independently in plants and animals (Melters et al. 2012), thus658

future work could examine chromosome number evolution in other holocentric659

clades and test for similar patterns of cladogenetic fission and fusion events.660

The models presented here could also be used to further study the role of661

divergence in genomic architecture during sympatric speciation. Chromosome662

structural di↵erences have been proposed to perform a central role in sympatric663

speciation, both in plants (Gottlieb 1973) and animals (Feder et al. 2005; Michel664

et al. 2010). In Aristolochia we found most changes in chromosome number were665

estimated to be anagenetic, with the only cladogenetic change occuring among a666

pair of recently diverged sympatric species. By coupling our chromosome evolution667

models with models of geographic range evolution it would be possible to668

statistically test whether the frequency of cladogenetic chromosome changes669

increase in sympatric speciation events compared to allopatric speciation events,670

thereby testing for interaction between these two di↵erent processes of reproductive671

isolation and evolutionary divergence.672

The simulation results from Experiment 1 demonstrate that extinction673
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reduces the accuracy of inferences made by models of chromosome evolution that674

do not take into account unobserved speciation events. Furthermore, the675

simulations performed in Experiments 2 and 3 show that the substantial676

uncertainty introduced in our analyses by jointly estimating diversification rates677

and chromosome evolution resulted in lower posterior probabilities for ancestral678

state reconstructions. We feel that this is a strength of our method; the lower679

posterior probabilities incorporate true uncertainty due to extinction and so680

represent more conservative estimates. Additionally, the simulation results from681

Experiment 4 reveal that rates of anagenetic evolution were overestimated and682

rates of cladogenetic change were underestimated when the generating process683

consisted only of cladogenetic events. This suggests the possibility that our models684

of chromosome number evolution are only partially identifiable, and that the results685

of our empirical analyses may have a similar bias towards overestimating686

anagenetic evolution and underestimating cladogenetic evolution. This bias may be687

an issue for all ClaSSE type models, but the practical consequences here are688

conservative estimates of cladogenetic chromosome evolution.689

An important caveat for all phylogenetic methods is that estimates of model690

parameters and ancestral states can be highly sensitive to taxon sampling (Heath691

et al. 2008). All of the empirical datasets examined here included non-monophyletic692

taxa that were treated as separate lineages. We made the unrealistic assumptions693

that 1) each of the non-monophyletic lineages sharing a taxon name have the same694

cytotype, and 2) the taxon sampling probability (⇢s) for the birth-death process was695

1.0. The former assumption could drastically a↵ect ancestral state estimates, but696
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its e↵ect can only be confirmed by obtaining chromosome counts for each lineage697

regardless of taxon name. While the results from simulation Experiment 5 showed698

that fixing ⇢s to 1.0 did not decrease the accuracy of inferred ancestral states, we699

still performed extra analyses of the empirical datasets with di↵erent values of ⇢s700

(results not shown). The results indicated that total speciation and extinction rates701

are sensitive to ⇢s, but the relative speciation rates (e.g. between �c and �c)702

remained similar. The ancestral state estimates of cladogenetic and anagenetic703

chromosome changes were robust to di↵erent values of ⇢s. This could vary among704

datasets and care should be taken when considering which lineages to sample.705

Bayesian model averaging is particularly appropriate for models of706

chromosome number evolution since conditioning on a single model ignores the707

considerable degree of model uncertainty found in both the simulations and the708

empirical analyses. In the simulations the true model of chromosome evolution was709

rarely inferred to be the MAP model (< 39% of replicates), and in the instances it710

was correctly identified the posterior probability of the MAP model was < 0.13.711

The posterior probabilities of the MAP models for the empirical datasets were712

similarly low, varying between 0.04 and 0.22. Conditioning on a single poorly713

fitting model of chromosome evolution, even when it is the best model available,714

results in an underestimate of the uncertainty of ancestral chromosome numbers.715

Furthermore, Bayesian model averaging enabled us to detect di↵erent modes of716

chromosome number evolution without the limitation of traditional model testing717

procedures in which multiple analyses are performed that each condition on a718

di↵erent single model. This is a particularly useful approach when the space of all719
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possible models is large.720

Our RevBayes implementation facilitates model modularity and easy721

experimentation. Experimenting with di↵erent priors or MCMC moves is achieved722

by simply editing the Rev scripts that describe the model. Though in our analyses723

here we ignored phylogenetic uncertainty by assuming a fixed known tree, we could724

easily incorporate this uncertainty by modifying a couple lines of the Rev script to725

integrate over a previously estimated posterior distribution of trees. We could also726

use molecular sequence data simultaneously with the chromosome models to jointly727

infer phylogeny and chromosome evolution, allowing the chromosome data to help728

inform tree topology and divergence times. In this paper we chose not to perform729

joint inference so that we could isolate the behavior of the chromosome evolution730

models; however, this is a promising direction for future research.731

There are a number of challenging directions for future work on phylogenetic732

chromosome evolution models. Models that incorporate multiple aspects of733

chromosome morphology such as translocations, inversions, and other gene synteny734

data as well as the presence of ring and/or B chromosomes have yet to be735

developed. None of our models currently account for allopolyploidization; indeed736

few phylogenetic comparative methods can handle reticulate evolutionary scenarios737

that result from allopolyploidization and other forms of hybridization (Marcussen738

et al. 2015). A more tractable problem is mapping chromosome number changes739

along the branches of the phylogeny, as opposed to simply making estimates at the740

nodes as we have done here. Since the approach described here models both741

anagenetic and cladogenetic chromosome evolution processes while accounting for742
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unobserved speciation events, the rejection sampling procedure used in standard743

stochastic character mapping (Nielsen 2002; Huelsenbeck et al. 2003) is not744

su�cient. While data augmentation approaches such as those described by Bokma745

(2008) could be utilized, they require complex MCMC algorithms that may have746

di�culty mixing. Another option is to extend the method described in this paper747

to draw joint ancestral states by numerically integrating root-to-tip over the tree748

into a new procedure called joint conditional character mapping. This sort of749

approach would infer the joint MAP history of chromosome changes both at the750

nodes and along the branches of the tree, and provide an alternative to stochastic751

character mapping that will work for all ClaSSE type models.752

Conclusions753

The analyses presented here show that the ChromoSSE models of754

chromosome number evolution successfully infer di↵erent clade-specific modes of755

chromosome evolution as well as the history of anagenetic and cladogenetic756

chromosome number changes for a clade, including reconstructing the timing and757

location of possible chromosome speciation events over the phylogeny. These758

models will help investigators study the mode and history of chromosome evolution759

within individual clades of interest as well as advance understanding of how760

fundamental changes in the architecture of the genome such as whole genome761

duplications a↵ect macroevolutionary patterns and processes across the tree of life.762
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Appendix 1: Validating RevBayes Ancestral1

State Estimates2

Ancestral State Estimates of SSE Models3

The code repository http://github.com/wf8/anc_state_validation4

contains scripts to validate the Monte Carlo method of ancestral state estimation5
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for state-dependent speciation and extinction (SSE) models we implemented in6

RevBayes (Höhna et al. 2016) against the analytical marginal ancestral state7

estimation implemented in the R package diversitree (FitzJohn 2012).8

Although the closest model to ChromoSSE implemented in diversitree is9

ClaSSE (Goldberg and Igić 2012), ancestral state estimation for ClaSSE is not10

implemented in diversitree. Therefore here we compare the ancestral state11

estimates for BiSSE (Maddison et al. 2007) as implemented in diversitree to the12

estimates made by RevBayes. Note that as implemented in RevBayes the BiSSE,13

ChromoSSE, ClaSSE, MuSSE (FitzJohn 2012), and HiSSE (Beaulieu and O’Meara14

2016) models use the same C++ classes and algorithms for parameter and15

ancestral state estimation, so validating ancestral state estimates for BiSSE should16

provide confidence in estimates made by RevBayes for all these SSE models.17

In RevBayes we sample ancestral states for SSE models from their joint18

distribution conditional on the tip states and the model parameters during the19

MCMC. However, in this work we summarize the MCMC samples by calculating20

the marginal posterior probability of each node being in each state. So the21

RevBayes marginal ancestral state reconstructions which are estimated via MCMC22

are directly comparable to the analytical marginal ancestral states computed by23

diversitree. It would be possible to summarize the samples from the MCMC to24

reconstruct the maximum a posteriori joint ancestral state reconstruction, but we25

have not done so in this work.26

Comparison of RevBayes Estimates to Diversitree27
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Here we show ancestral state estimates under BiSSE for an example where28

the tree and tip data were simulated in diversitree with the following parameters:29

�0 = 0.2,�1 = 0.4, µ0 = 0.01, µ1 = 0.1, and q01 = q10 = 0.1. The ancestral state30

reconstructions from RevBayes and diversitree are shown in Figures 2 and 3,31

respectively.32

The log-likelihood as computed by diversitree was -109.46, whereas with33

RevBayes it was -109.71. Small di↵erences in the log-likelihoods are expected due34

to di↵erences in the way diversitree and RevBayes calculate probabilities at the35

root, and also due to numerical approximations. However both reconstructions36

should return the same probabilities for ancestral states at the root, and indeed37

diversitree calculated the root probability of being in state 0 as 0.555 and RevBayes38

calculated it as 0.554. The estimated posterior probabilities are very close for all39

nodes. This is shown in a plot comparing the marginal posterior probabilities for40

all nodes being in state 1 as estimated by RevBayes against the diversitree41

estimates (Figure 1).42
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Figure 1: Posterior probabilities of marginal ancestral state estimates. Each
point represents the marginal posterior probability of a node being in state 1 as esti-
mated by RevBayes plotted against the estimates made by diversitree. The marginal
ancestral states were estimated under BiSSE from a tree and tip data simulated with
the following parameters: �0 = 0.2,�1 = 0.4, µ0 = 0.01, µ1 = 0.1, and q01 = q10 = 0.1.
The full ancestral state reconstructions from RevBayes and diversitree are shown in
Figures 2 and 3, respectively.
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Figure 2: Ancestral state estimates from RevBayes. Marginal ancestral states
estimated under BiSSE from a tree and tip data simulated with the following pa-
rameters: �0 = 0.2,�1 = 0.4, µ0 = 0.01, µ1 = 0.1, and q01 = q10 = 0.1.
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Figure 3: Ancestral state estimates from diversitree. Marginal ancestral states
estimated under BiSSE from a tree and tip data simulated with the following pa-
rameters: �0 = 0.2,�1 = 0.4, µ0 = 0.01, µ1 = 0.1, and q01 = q10 = 0.1.
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Appendix 2: Metropolis-Hastings Moves43

The Metropolis-Hastings moves used in all ChromoSSE analyses are outlined44

in Table 1. All MCMC proposals are standard except the ElementSwapSimplex45

move and the reversible jump MCMC proposals. These are described in detail in46

the main text. MCMC analyses were run in RevBayes for 11000 iterations, where47

each iteration consisted of 79 MCMC moves per iteration. The 79 moves were48

randomly drawn from the 28 di↵erent Metropolis-Hastings moves listed in Table 149

using the weights listed. Samples of parameter values and joint ancestral states50

were drawn each iteration, and the first 1000 samples were discarded as burn in.51
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Table 1: MCMC moves used for chromosome number evolution analyses.

See the main text for further explanations of the moves used. Samples were drawn
from the MCMC each iteration, where each iteration consisted of 28 di↵erent moves
in a random move schedule with 79 moves per iteration.

Parameter X Move Weight

Anagenetic Chromosome gain rate �a Scale(� = 1) 2
Chromosome gain rate �a Reduce/Augment 2
Chromosome loss rate �a Scale(� = 1) 2
Chromosome loss rate �a Reduce/Augment 2
Polyploidization rate ⇢a Scale(� = 1) 2
Polyploidization rate ⇢a Reduce/Augment 2
Demi-polyploidization rate ⌘a Scale(� = 1) 2
Demi-polyploidization rate ⌘a Reduce/Augment 2
Linear component of gain rate �m Slide(� = 0.1) 1
Linear component of gain rate �m Slide(� = 0.001) 1
Linear component of gain rate �m Reduce/Augment 2
Linear component of loss rate �m Slide(� = 0.1) 1
Linear component of loss rate �m Slide(� = 0.001) 1
Linear component of loss rate �m Reduce/Augment 2

Cladogenetic No change �c Scale(� = 5) 2
Chromosome gain �c Scale(� = 5) 2
Chromosome gain �c Reduce/Augment 2
Chromosome loss �c Scale(� = 5) 2
Chromosome loss �c Reduce/Augment 2
Polyploidization ⇢c Scale(� = 5) 2
Polyploidization ⇢c Reduce/Augment 2
Demi-polyploidization ⌘c Scale(� = 5) 2
Demi-polyploidization ⌘c Reduce/Augment 2
All cladogenetic rates �c, �c, �c,

⇢c, ⌘c

Joint Up-Down
Scale(� = 0.5)

2

Other Root frequencies ⇡ BetaSimplex(↵ = 0.5) 10
Root frequencies ⇡ ElementSwapSimplex 20
Relative-extinction r Scale(� = 5) 3
Relative-extinction and all clado rates r,�c, �c,

�c, ⇢c, ⌘c

Joint Up-Down
Scale(� = 0.5)

2

Total 28 79
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Appendix 3: Simulation Details52

Description of Simulation Experiments53

Experiment 1.—54

In experiment 1 we tested the e↵ect of unobserved speciation events due to55

extinction on chromosome number estimates when using a model that does not56

account for unobserved speciation. Is the additional model complexity required to57

account for unobserved speciation necessary, or are the e↵ects of unobserved58

speciation negligible and safe to ignore? Using the non-SSE model described above59

that does not account for unobserved speciation, ancestral chromosome numbers60

and chromosome evolution model parameters were estimated for each of the 60061

datasets.62

Experiment 2.—63

Here we compared the accuracy of models of chromosome evolution that64

account for unobserved speciation versus those that do not. Since extinction can65

safely be assumed to be present to some extent in all clades, it is likely that all66

empirical datasets contain some unobserved speciation. Do we see an increase in67

accuracy when we account for unobserved speciation events, or conversely do we68

see an increase in the variance of our estimates that perhaps describes true69

uncertainty due to extinction? To test this, we estimated ancestral chromosome70

numbers and chromosome evolution model parameters over the simulated datasets71
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that included unobserved speciation using both ChromoSSE that accounts for72

unobserved speciation as well as the non-SSE model that does not.73

Experiment 3.—74

In experiment 3 we tested the e↵ect of jointly estimating speciation and75

extinction rates with chromosome number evolution. Estimating speciation and76

extinction rates accurately is notoriously challenging (Nee et al. 1994; Rabosky77

2010; Beaulieu and O’Meara 2015; May et al. 2016), so how much of the variance in78

chromosome evolution estimates made with models that jointly estimate speciation79

and extinction are due to uncertainty in diversification rates? Here we compared80

our estimates of ancestral chromosome numbers and chromosome evolution model81

parameters using ChromoSSE that accounts for unobserved speciation (and in82

which speciation and extinction rates are jointly estimated) with estimates made83

from ChromoSSE but where the true rates of speciation and extinction used to84

simulate the data were fixed. The latter analyses were given the true rates of total85

speciation and extinction, but still had to estimate the proportion of speciation86

events for each type of cladogenetic event.87

Experiment 4.—88

Since we model the same chromosome number transitions as both89

cladogenetic and anagenetic processes, it is possible that the two processes could be90

confounded and our models may not be fully identifiable. Furthermore, preliminary91

results suggested our models overestimate anagenetic changes and underestimate92

cladogenetic changes when the true generating process includes cladogenetic93
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Table 2: Simulation parameter values. Parameter values used to simulate
datasets. The top 3 rows show the 3 modes of chromosome number evolution simu-
lated for Experiments 1, 2, 3, and 4: anagenetic only, cladogenetic only, and mixed.
Row 4 shows the parameter values used to simulate data for Experiment 5. The
total speciation rate �t = 0.25 and the extinction rate µ = 0.15. The root state was
fixed to 8.

Simulation
mode �a �a ⇢a ⌘a �m �m �c �c �c ⇢c ⌘c

Anagenetic 0.0085 0.0085 0.0085 - - - �t - - - -
Cladogenetic - - - - - - 0.85�t 0.05�t 0.05�t 0.05�t -
Mixed 0.0085 0.0085 0.0085 - - - 0.85�t 0.05�t 0.05�t 0.05�t -
Experiment 5 0.0025 0.0025 0.0025 - - - 0.93�t 0.02�t 0.02�t 0.02�t -

evolution. Here we compared cladogenetic and anagenetic estimates made by94

ChromoSSE under simulation scenarios that only included cladogenetic changes.95

Do we see an increase in accuracy of cladogenetic parameter estimates when96

anagenetic changes are disallowed (fixed to 0)?97

Experiment 5.—98

Experiments 1-3 deal with the increase in uncertainty caused by unobserved99

speciation events due to extinction. Here we focused on the e↵ect of unobserved100

speciation due to incomplete taxon sampling by comparing chromosome number101

estimates at 3 levels of taxon sampling: 100%, 50%, and 10%. We compared102

estimates made by both the ChromoSSE model and the non-SSE model, as well as103

compared estimates made by ChromoSSE using the true taxon sampling104

probability ⇢s versus estimates made by ChromoSSE using ⇢s fixed to 1.0.105

Methods Used to Simulate Data106
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For experiments 1, 2, 3, and 4 the same set of simulated trees and107

chromosome counts were used. Since ChromoSSE assumes the total rates of108

speciation and extinction are fixed over the tree (see Equation 5 of the main text),109

trees were first simulated with constant diversification rates, and then cladogenetic110

and anagenetic chromosome evolution was simulated over the trees. 100 trees were111

simulated under the birth-death process with � = 0.25 and µ = 0.15 (see Figure 4)112

using the R package diversitree (FitzJohn 2012). The trees were conditioned on an113

age of 25.0 time units and a minimum of 10 extant lineages. To test the e↵ect of114

unobserved speciation events due to lineages going extinct on cladogenetic115

estimates, chromosome number evolution was simulated along the trees including116

their extinct lineages (unpruned) and the same 100 trees but with the extinct117

lineages pruned. All chromosome number simulations were performed using118

RevBayes (Höhna et al. 2016).119

Three models were used to generate simulated chromosome counts: a model120

where all chromosome evolution was anagenetic, a model where all chromosome121

evolution was cladogenetic, and a model that mixed both anagenetic and122

cladogenetic changes (Table 2). Parameter values were roughly informed by the123

mean values estimated from the empirical datasets. The mean length of the124

simulated trees was 253.5 (Figure 4). Hence, the anagenetic rates were set to125

2/235.5 ⇡ 0.0085 which corresponds to an expected value of 2 events over the tree126

for each of the four transition types. The root chromosome number was fixed to be127

8. Simulating data for all 3 models over both the pruned and unpruned tree128

resulted in 600 simulated datasets. To reproduce the e↵ect of using reconstructed129
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phylogenies all inferences were performed using the trees with extinct lineages130

pruned and with chromosome counts from extinct lineages removed.131

Since Experiment 5 focused on the e↵ect of incomplete taxon sampling on132

chromosome number estimates, the trees used needed to be conditioned on a known133

number of extant tips. The trees used for the previous simulations were conditioned134

only on age and a minimum of 10 extant lineages and so were not appropriate. To135

simulate 100 trees conditioned on 200 extant lineages we used the R package136

TreeSim (Stadler 2011) with � = 0.25 and µ = 0.15 (like above). Complete trees137

with both extant and extinct lineages were simulated, and then chromosome138

evolution was simulated over the complete tree. Since these trees had a139

significantly longer mean length (2020.1 compared to 253.5) we used di↵erent rates140

of chromosome evolution to simulate data compared to Experiments 1, 2, 3, and 4141

(Table 2). Chromosome numbers were only simulated using a mixed anagenetic142

and cladogenetic model. The anagenetic rates were set to 5/2020.1 ⇡ 0.0025 which143

corresponds to an expected value of 5 events over the tree for each of the four144

transition types. Like Experiments 1, 2, 3, and 4, the root chromosome number was145

fixed to be 8. Once chromosome data was simulated over the complete trees, the146

extinct taxa were pruned o↵ leaving trees with 100% taxon sampling. 50% of the147

tips were randomly pruned o↵ to create trees with 50% taxon sampling, and 90% of148

the tips were randomly pruned o↵ to create trees with 10% taxon sampling.149
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Figure 4: Tree simulations. 100 trees were simulated under the birth-death process
as described in the main text for Experiments 1, 2, 3, and 4. Chromosome number
evolution was simulated over the unpruned trees that included all extinct lineages,
as well as over the same trees but with extinct lineages pruned. This resulted in
two simulated datasets: one simulated under a process that did have unobserved
speciation events, and one simulated with no unobserved speciation events. Shown
above is a histogram of the number of lineages that survived to the present, the
tree lengths, Colless’ Index (a measure of tree imbalance; Colless 1982), and lineage
through time plots of the 100 pruned and unpruned trees.
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Appendix 4: MCMC Convergence of Simulation150

Replicates151

E↵ective sample sizes (ESS) for all parameters in all simulation replicates152

were over 200, and the mean ESS values of the posterior for the replicates was153

1470.3. Since the space of possible models is so large (1024 possible models, see154

main text), we replicated all analyses that included unobserved speciation in155

Experiment 1 three independent times to ensure that MCMC convergence was not156

an issue in detecting the true model of chromosome number evolution used to157

simulate the data. The results displayed in Table 3 show that the percentage of158

simulation replicates in which the true model was inferred to be the MAP model,159

and the mean posterior of the true model, converged and were stable across all160

three independent runs.161

Table 3: Simulation Experiment 1 replicated 3 times. Estimates of the true
model that generated the simulated data and estimates of the posterior probability
of the true model were stable and converged across multiple independent replicates
of the experiment.

Replicate Mode of Evolution Used
to Simulate Data

True Model Estimated
(%)

Mean Posterior of True
Model

1 Cladogenetic 15 0.09
1 Anagenetic 36 0.12
1 Mixed 2 0.10

2 Cladogenetic 15 0.09
2 Anagenetic 36 0.12
2 Mixed 2 0.09

3 Cladogenetic 15 0.09
3 Anagenetic 36 0.12
3 Mixed 2 0.10
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