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Abstract.— Chromosome number is a key feature of the higher-order organization
of the genome, and changes in chromosome number play a fundamental role in
evolution. Dysploid gains and losses in chromosome number, as well as
polyploidization events, may drive reproductive isolation and lineage diversification.
The recent development of probabilistic models of chromosome number evolution in

the groundbreaking work by Mayrose et al. (2010, ChromEvol) have enabled the
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inference of ancestral chromosome numbers over molecular phylogenies and
generated new interest in studying the role of chromosome changes in evolution.
However, the ChromEvol approach assumes all changes occur anagenetically (along
branches), and does not model events that are specifically cladogenetic.
Cladogenetic changes may be expected if chromosome changes result in
reproductive isolation. Here we present a new class of models of chromosome
number evolution (called ChromoSSE) that incorporate both anagenetic and
cladogenetic change. The ChromoSSE models allow us to determine the mode of
chromosome number evolution; is chromosome evolution occurring primarily within
lineages, primarily at lineage splitting, or in clade-specific combinations of both?
Furthermore, we can estimate the location and timing of possible chromosome
speciation events over the phylogeny. We implemented ChromoSSE in a Bayesian
statistical framework, specifically in the software RevBayes, to accommodate
uncertainty in parameter estimates while leveraging the full power of likelihood
based methods. We tested ChromoSSE’s accuracy with simulations and
re-examined chromosomal evolution in Aristolochia, Carex section Spirostachyae,
Helianthus, Mimulus sensu lato (s.l.), and Primula section Aleuritia, finding
evidence for clade-specific combinations of anagenetic and cladogenetic dysploid
and polyploid modes of chromosome evolution.

(Keywords: ChromoSSE; chromosome evolution; phylogenetic models; anagenetic;
cladogenetic; dysploidy; polyploidy; whole genome duplication; chromosome

speciation; reversible-jump Markov chain Monte Carlo; Bayes factors )
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A central organizing component of the higher-order architecture of the
genome is chromosome number, and changes in chromosome number have long
been understood to play a fundamental role in evolution. In the seminal work
Genetics and the Origin of Species (1937), Dobzhansky identified “the raw
materials for evolution”, the sources of natural variation, as two evolutionary
processes: mutations and chromosome changes. “Chromosomal changes are one of
the mainsprings of evolution,” Dobzhansky asserted, and changes in chromosome
number such as the gain or loss of a single chromosome (dysploidy), or the
doubling of the entire genome (polyploidy), can have phenotypic consequences,
affect the rates of recombination, and increase reproductive isolation among
lineages and thus drive diversification (Stebbins 1971). Recently, evolutionary
biologists have studied the macroevolutionary consequences of chromosome changes
within a molecular phylogenetic framework, mostly due to the groundbreaking
work of Mayrose et al. (2010, ChromEvol) which introduced likelihood-based
models of chromosome number evolution. The ChromEvol models have permitted
phylogenetic studies of ancient whole genome duplication events, rapid
“catastrophic” chromosome speciation, major reevaluations of the evolution of
angiosperms, and new insights into the fate of polyploid lineages (e.g. Pires and
Hertweck 2008; Mayrose et al. 2011; Tank et al. 2015).

One aspect of chromosome evolution that has not been thoroughly studied
in a probabilistic framework is cladogenetic change in chromosome number.
Cladogenetic changes occur solely at speciation events, as opposed to anagenetic

changes that occur within lineages and are not associated with speciation events.
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2 Studying cladogenetic chromosome changes in a phylogenetic framework has been
2 difficult since the approach used by ChromEvol models only anagenetic changes
s and ignores the changes that occur specifically at speciation events and may be

o7 expected if chromosome changes result in reproductive isolation. Reproductive

s incompatibilities caused by chromosome changes may play an important role in the
2 speciation process, and led White (1978) to propose that chromosome changes

s perform “the primary role in the majority of speciation events.” Indeed,

s chromosome fusions and fissions may have played a role in the formation of

2 reproductive isolation and speciation in the great apes (Ayala and Coluzzi 2005),
;3 and the importance of polyploidization in plant speciation has long been

. appreciated (Coyne et al. 2004; Rieseberg and Willis 2007). Recent work by Zhan
5 et al. (2016) revealed phylogenetic evidence that polyploidization is frequently

s cladogenetic in land plants. However, their approach did not examine the role

s dysploid changes may play in speciation, and it required a two step analysis in

s which one first used ChromEvol to infer ploidy levels, and then a second modeling
3 step to infer the proportion of ploidy shifts that were cladogenetic. Since

s ChromEvol only models anagenetic polyploidization events these two modeling

a1 steps are inconsistent with one another.

2 Here we present models of chromosome number evolution that

3 simultaneously account for both cladogenetic and anagenetic polyploid as well as
s dysploid changes in chromosome number over a phylogeny. These models

s reconstruct an explicit history of cladogenetic and anagenetic changes in a clade,

s enabling estimation of ancestral chromosome numbers. Our approach also identifies
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«r different modes of chromosome number evolution among clades; we can detect

s primarily anagenetic, primarily cladogenetic, or clade-specific combinations of both
s modes of chromosome changes. Furthermore, these models allow us to infer the

so timing and location of possible polyploid and dysploid speciation events over the

s1 phylogeny. Since these models only account for changes in chromosome number,

52 they ignore speciation that may accompany other types of chromosome

53 rearrangements such as inversions. Our models cannot determine that changes in
s« chromosome number “caused” the speciation event, but they do reveal that

55 speciation and chromosome change are temporally correlated. Thus, these models
ss can give us evidence that the chromosome number change coincided with

sz cladogenesis and so may have played a significant role in the speciation process.

58 A major challenge for all phylogenetic models of cladogenetic character

s change is accounting for unobserved speciation events due to lineages going extinct
o and not leaving any extant descendants (Bokma 2002), or due to incomplete

s1 sampling of lineages in the present. Teasing apart the phylogenetic signal for

2 cladogenetic and anagenetic processes given unobserved speciation events is a

s major difficulty. The Cladogenetic State change Speciation and Extinction

s« (ClaSSE) model (Goldberg and Igi¢ 2012) accounts for unobserved speciation

s events by jointly modeling both character evolution and the phylogenetic

s birth-death process. Our class of chromosome evolution models uses the ClaSSE

&7 approach, and could be considered a special case of ClaSSE. We implemented our
¢ models (called ChromoSSE) in a Bayesian framework and use Markov chain Monte

so Carlo algorithms to estimate posterior probabilities of the model’s parameters.
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70 However, compared to most character evolution models, SSE models require

7 additional complexity since they must model extinction and speciation processes.
72 Using simulations, we examined the impact of this additional complexity on our

73 chromosome evolution models” performance. Note that ChromoSSE uses the SSE
72 approach to integrate over all unobserved speciation events and in this work we do
75 not investigate how chromosome number affects diversification rates. Nonetheless,
76 our implementation enables chromosome number dependent speciation and

77 extinction rates to be estimated and this will be explored in future work.

78 Out of the class of ChromoSSE models described here, it is possible that no
79 single model will adequately describe the chromosome evolution of a given clade.

so  The most parameter-rich ChromoSSE model has at least 12 independent rate

s parameters, however the models that best describe a given dataset (a phylogeny and
22 a set of observed chromosome counts) may be special cases of the full model. For
sz example, there may be a clade for which the best fitting models have no anagenetic
s« rate of polyploidization (the rate = 0.0) and for which all polyploidization events
s are cladogenetic. To explore the entire space of all possible models of chromosome
s number evolution we constructed a reversible jump Markov chain Monte Carlo

&z (Green 1995) that samples across models of different dimensionality, drawing

s samples from chromosome evolution models in proportion to their posterior

o probability and enabling Bayes factors for each model to be calculated. This

o approach incorporates model uncertainty by permitting model-averaged inferences
a1 that do not condition on a single model; we draw estimates of ancestral

o2 chromosome numbers and rates of chromosome evolution from all possible models
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weighted by their posterior probability. For general reviews of this approach to
model averaging see Madigan and Raftery (1994), Hoeting et al. (1999), Kass and
Raftery (1995), and for its use in phylogenetics see Posada and Buckley (2004).
Averaging over all models has been shown to provide a better average predictive
ability than conditioning on a single model (Madigan and Raftery 1994).
Conditioning on a single model ignores model uncertainty, which can lead to an
underestimation in the uncertainty of inferences made from that model (Hoeting
et al. 1999). In our case, this can lead to overconfidence in estimates of ancestral
chromosome numbers and chromosome evolution parameter value estimates.

Our motivation in developing these phylogenetic models of chromosome
evolution is to determine the mode of chromosome number evolution; is
chromosome evolution occurring primarily within lineages, primarily at lineage
splitting, or in clade-specific combinations of both? By identifying how much of the
pattern of chromosome number evolution is explained by anagenetic versus
cladogenetic change, and by identifying the timing and location of possible
chromosome speciation events over the phylogeny, the ChromoSSE models can help
uncover how much of a role chromosome changes play in speciation. In this paper
we first describe the ChromoSSE models of chromosome evolution and our
Bayesian method of model selection, then we assess the models’ efficacy by testing
them with simulated datasets, particularly focusing on the impact of unobserved
speciation events on inferences, and finally we apply the models to five empirical
datasets that have been previously examined using other models of chromosome

number evolution.


https://doi.org/10.1101/086629
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/086629; this version posted March 31, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

METHODS
17 Models of Chromosome Evolution
118 In this section we introduce our class of probabilistic models of chromosome

e number evolution. We are interested in modeling the changes in chromosome

120 number both within lineages (anagenetic evolution) and at speciation events

121 (cladogenetic evolution). The anagenetic component of the model is a

122 continuous-time Markov process similar to Mayrose et al. (2010) as described

123 below. The cladogenetic changes are accounted for by a birth-death process similar
e to Maddison et al. (2007) and Goldberg and Igi¢ (2012), except each type of

125 cladogenetic chromosome event is given its own rate. Thus, the birth-death process
16 has multiple speciation rates (one for each type of cladogenetic change) and a single
127 constant extinction rate. Our models of chromosome number evolution can

128 therefore be understood as a specific case of the Cladogenetic State change

129 Speciation and Extinction (ClaSSE) model (Goldberg and Igi¢ 2012), which

130 integrates over all possible unobserved speciation events (due to lineages that were
131 unsampled or have gone extinct) directly in the likelihood calculation of the

132 observed chromosome counts and tree shape. To test the importance of accounting
133 for unobserved speciation events we also briefly describe a version of the model that
3¢ handles different cladogenetic event types as transition probabilities at each

135 observed speciation event and ignores unobserved speciation events, similar to the
13 dispersal-extinction-cladogenesis (DEC) models of geographic range evolution (Ree

37 and Smith 2008).
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138 Our implementation assumes chromosome numbers can take the value of

139 any positive integer, however to limit the transition matrices to a reasonable size
uo  for likelihood calculations we follow Mayrose et al. (2010) in setting the maximum
11 chromosome number C,, to n 4+ 10, where n is the highest chromosome number in
12 the observed data. Note that we allow this parameter to be set in our

143 implementation. Hence, it is easily possible to test the impact of setting a specific
s value for the maximum chromosome count.

145 Our models contain a set of 6 free parameters for anagenetic chromosome
us number evolution, a set of 5 free parameters for cladogenetic chromosome number
7 evolution, an extinction rate parameter, and a vector of (), root frequencies of

143 chromosome numbers, for a total of 12 + C,,, free parameters. All of the 11

1o chromosome rate parameters can be removed (fixed to 0.0) except the cladogenetic
150 no-change rate parameter. Thus, the class of chromosome number evolution models

51 described here has a total of 219 = 1024 nested models of chromosome evolution.

152 Chromosome evolution within lineages.—

153 Chromosome number evolution within lineages (anagenetic change) is

15« modeled as a continuous-time Markov process similar to Mayrose et al. (2010). The
155 continuous-time Markov process is described by an instantaneous rate matrix ()

155 where the value of each element represents the instantaneous rate of change within
157 a lineage from a genome of ¢ chromosomes to a genome of j chromosomes. For all

158 elements of () in which either ¢ = 0 or j = 0 we define );; = 0. For the off-diagonal


https://doi.org/10.1101/086629
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/086629; this version posted March 31, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

- ‘- no change:
1T '‘mm
j=i b—i Aijk = Qe
|ll
lum
1
O 1 ! =
‘mm T 'mm T gain:
1T '‘mm 1T 1 S
J=1i+l k=i |j:z' k =i+l ik = Ye/
1 1
- lum
1 g 1 g
El T Ell . loss:
11 '‘mm 11 '‘mm
j=i-1 k=i j=i B—io1 ik =0c/2
1 T
. lum
1 g 1 g
oo oo
oo ' 1 ;oog
,E. ‘. . ‘. polyploidization:
1T '‘mm 11 '‘mm
j=2i k=i j=i k=2 Aijle = Pe/2
1 T
. lum
L) |,l'
oo ' 1 ;OO .
'mm T 'mm T demi S
. - L . polyploidization:
j=15i k=i j=i k=150 A =ne/2
T 1T
. lum
[ 1 g

Figure 1: Modeled cladogenetic chromosome evolution events. At each spe-
ciation event 9 different cladogenetic events are possible. The rate of each type
of speciation event is A;j, where 7 is the chromosome number before cladogenesis
and j and k are the states of each daughter lineage immediately after cladogenesis.
The dashed lines represent possible chromosomal changes within lineages that are
modeled by the anagenetic rate matrix Q).
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10 elements i # j with positive values of ¢ and 7, @ is determined by:

(

ﬁyae’Y'm(i_l) j — Z _|_ 17

a0 =4 — 1,

Qij = 4 pa j =2 (1)
Na j = 1.5,
0 otherwise,

10 where 7v,, 04, po, and 7, are the rates of chromosome gains, losses,

161 polyploidizations, and demi-polyploidizations. ~,, and J,, are rate modifiers of

12 chromosome gain and loss, respectively, that allow the rates of chromosome gain

163 and loss to depend on the current number of chromosomes. This enables modeling
164 scenarios in which the probability of fusion or fission events is positively or

165 negatively correlated with the number of chromosomes. If the rate modifier ~,, = 0,
66 then 7,e°0~Y = 4, If the rate modifier 7,, > 0, then 7,e" =) > ~, and if v, < 0
167 then v,e7m(~1 <~ These two rate modifiers replace the parameters \; and §; in
e Mayrose et al. (2010), which in their parameterization may result in negative

160 transition rates. Here we chose to exponentiate v,, and §,, to ensure positive

1o transition rates, and avoid ad hoc restrictions on negative transition rates that may
i1 induce unintended priors. Note that this assumes the rates of chromosome change
12 can vary exponentially as a function of the current chromosome number, whereas
113 Mayrose et al. (2010) assumes a linear function.

174 For odd values of i, we set );; = n/2 for the two integer values of j resulting
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175 when j = 1.5¢ was rounded up and down. We define the diagonal elements ¢ = j of

176 Q as:

C’rn

Qi =—> Qi (2)

i#]
17 The probability of anagenetically transitioning from chromosome number i to j
17s  along a branch of length ¢ is then calculated by exponentiation of the instantaneous

179 rate matrix:

Pyt) = (3

8o Chromosome evolution at cladogenesis events.—

181 At each lineage divergence event over the phylogeny, nine different

12 cladogenetic changes in chromosome number are possible (Figure 1). Each type of
183 cladogenetic event occurs with the rate ¢, e, dc, pe, 1e, representing the

18a  cladogenesis rates of no change, chromosome gain, chromosome loss,

15 polyploidization, and demi-polyploidization, respectively. The speciation rates A for
155 the birth-death process generating the tree are given in the form of a 3-dimensional

1;7 - matrix between the ancestral state ¢ and the states of the two daughter lineages j


https://doi.org/10.1101/086629
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/086629; this version posted March 31, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

188 and k. For all positive values of 7, 7, and k, we define:

Y/2 j=1i+1and k=1,
Y/2 j=tiand k=1i+1,
d./2 j=i—1and k=1,
0./2 j=iand k=1i—1,
pe/2 j=2iand k =1,
pe/2 j=1and k= 2i,

ne/2 j =15 and k =1,

ne/2 j=1and k = 1.5,

0 otherwise,

189 S0 that the total speciation rate of the birth-death process \; is given by:

/\t:¢c+70+6c+pc+n0~ (5)

o Similar to the anagenetic instantaneous rate matrix described above, for odd values
o1 of 4, we set A, = n./4 for the integer values of j and k resulting when 1.5 is

12 rounded up and down. The extinction rate u is constant over the tree and for all
103 chromosome numbers.

104 Note that this model allows only a single chromosome number change event
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105 on a maximum of one of the daughter lineages at each cladogenesis event. Changes
ws in both daughter lineages at cladogenesis are not allowed; at least one of the

17 daughter lineages must inherit the chromosome number of the ancestor. The model
108 also assumes that cladogenesis events are always strictly bifurcating and that there

199 are no hard polytomies.

20 Likelihood Calculation Accounting for Unobserved Speciation.—

201 The likelihood of cladogenetic and anagenetic chromosome number evolution
202 over a phylogeny is calculated using a set of ordinary differential equations similar
203 to the Binary State Speciation and Extinction (BiSSE) model (Maddison et al.

20 2007). The BiSSE model was extended to incorporate cladogenetic changes by

205 Goldberg and Igi¢ (2012). Following Goldberg and Igi¢ (2012), we define Dy;(t) as
206 the probability that a lineage with chromosome number ¢ at time ¢ evolves into the
207 observed clade N. We let E;(t) be the probability that a lineage with chromosome
208 number ¢ at time t goes extinct before the present, or is not sampled at the present.
200  However, unlike the full ClaSSE model the extinction rate u does not depend on

210 the chromosome number 7 of the lineage. The differential equations for these two
2 probabilities is given by:

212

213 dDNZ = ( Zm: Zm: )‘lﬂc + Z Qz] + M) DNz( )

jlkl

214 + Z Qi Dn;(t) Zni zm: Aijk (DNk VE;(t) + Dn; (t)Ek(t)) (6)

215
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216
217

218 d (ii)\z]k‘{’ZQz] ‘l':u) )

7=1 k=1

Cm Cm Cm
219 +u+ Zl Qi E;(t) + Zl kz il (1) Ex(t), (7)
- =1 k=1

220

21 where \;;;, for each possible cladogenetic event is given by equation 4, and the rates
22 of anagenetic changes ();; are given by equation 1. See Figure 2 for an explanation
23 of equations 6 and 7.

224 The differential equations above have no known analytical solution.

»s Therefore, we numerically integrate the equations for every arbitrarily small time
26 interval moving along each branch from the tip of the tree towards the root. When
27 a node [ is reached, the probability of it being in state ¢ is calculated by combining

»s the probabilities of its descendant nodes m and n as such:

Do) = 335 A D (D) )

7j=1 k=1

20 where again \;;;, for each possible cladogenetic event is given by equation 4. Letting
20 D denote a set of observed chromosome counts, ¥ an observed phylogeny, and 6, a
231 particular set of chromosome evolution model parameters, then the likelihood for

222 the model parameters 6, is given by:

D \11’9 ZWZDO'L (9)
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23 where 7; is the root frequency of chromosome number i and Dy;(t) is the likelihood
2 of the root node being in state ¢ conditional on having given rise to the observed

25 tree U and the observed chromosome counts D.
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Figure 2: Chromosome evolution through time. An illustration of chromosome
evolution events that could occur during each time interval At along the branches of
a phylogeny. Equations 6 and 7 (subfigures a and b, respectively) sum over each pos-
sible chromosome evolution event and are numerically integrated backwards through
time over the phylogeny to calculate the likelihood. a) Dy;(t) is the probability that
the lineage at time ¢ evolves into the observed clade N. To calculate the change in
this probability over At we sum over three possibilities: no event occurred, an anage-
netic change in chromosome number occurred, or a speciation event with a possible
cladogenetic chromosome change occurred followed by an extinction event on one of
the two daughter lineages. b) FE;(t) is the probability that the lineage goes extinct
or is not sampled at the present. To calculate the change in this probability over At
we sum over four possibilities: no event occurred followed eventually by extinction,
extinction occurred, an anagenetic change occurred followed by extinction, or a spe-
ciation event with a possible cladogenetic change occurred followed by extinction of
both daughter lineages.
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236 Initial Conditions.—

237 The initial conditions for each observed lineage at time ¢ = 0 for the

28 extinction probabilities described by equation 7 are E;(0) = 1 — p; for all i where p;
230 is the sampling probability of including that lineage. For lineages with an observed
20 chromosome number of 4, the initial condition is Dy;(0) = ps. The initial condition

21 for all other chromosome numbers j is Dy;(0) = 0.

22 Likelihood Calculation Ignoring Unobserved Speciation.—

243 To test the effect of unobserved speciation events on inferences of

s chromosome number evolution we also implemented a version of the model

25 described above that only accounts for observed speciation events. At each lineage
us  divergence event over the phylogeny, the probabilities of cladogenetic chromosome
27 number evolution P({j, k}|i) are given by the simplex {¢,, vy, p, Pp, 1y}, Where

28 Op, Vp, Op, Pp, and 7, represent the probabilities of no change, chromosome gain,

20 chromosome loss, polyploidization, and demi-polyploidization, respectively. This
0 approach does not require estimating speciation or extinction rates.

251 Here, we calculate the likelihood of chromosome number evolution over a
22 phylogeny using Felsenstein’s pruning algorithm (Felsenstein 1981) modified to

23 include cladogenetic probabilities similar to models of biogeographic range

2 evolution (Landis et al. 2013; Landis in press). Let D again denote a set of

255 observed chromosome counts and W represent an observed phylogeny where node [
256 has descendant nodes m and n. The likelihood of chromosome number evolution at

27 node [ conditional on node [ being in state ¢ and 6, being a particular set of
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s chromosome evolution model parameter values is given by:

259

w DD, T)i,0,) =

o SRR {Z (b Po(D, 9.6, Hzpm Pu(D, Ik, 6,)].

] 1 k=1 je—l ke=1
Vo VvV
cladogenetic anagenetic

(10)

262

23 where the length of the branches between [ and m is t,, and between [ and n is t,.

x4 The state at the end of these branches near nodes m and n is j. and k.,

x5 respectively. The state at the beginning of these branches, where they meet at node
%6 [, is 7 and k respectively. The cladogenetic term sums over the probabilities

27 P({j, k}|7) of all possible cladogenetic changes from state i to the states j and k at
%8 the beginning of each daughter lineage. The anagenetic term of the equation is the
%9 product of the probability of changes along the branches from state j to state j,.

z0 and state k to state k. (given by equation 3) and the likelihood of the tree above

on node [ recursively computed from the tips.

272 The likelihood for the model parameters ¢, is given by:
C’"L
P(D,9|0,) = > mPo(D, Vi, 0,), (11)
i=1

as where Py(D, V|, d,) is the conditional likelihood of the root node being in state i

o and m; is the root frequency of chromosome number .

os - Fstimating Parameter Values and Ancestral States.—
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276 For any given tree with a set of observed chromosome counts, there exists a
a7 posterior distribution of model parameter values and a set of probabilities for the
2 ancestral chromosome numbers at each internal node of the tree. Let P(s;,6,|D, V)
2 denote the joint posterior probability of §, and a vector of specific ancestral

20 chromosome numbers s; given a set of observed chromosome counts D and an

21 observed tree W. The posterior is given by Bayes’ rule:

P(s;,0,,|D,0) = P(D,Vls;, 04) P (si]0) P (6,)

. . (12)
['S. P(D,W|s,0)P(s|0)P(0)do

0 s=1

22 Here, P(s;]0,) is the prior probability of the ancestral states s conditioned on the
263 model parameters 6,, and P(6,) is the joint prior probability of the model

234 parameters.

285 In the denominator of equation 12 we integrate over all possible values of
26 and sum over all possible ancestral chromosome numbers s. Since 6 is a vector of
27 12 + C), parameters and s is a vector of n — 1 ancestral states where n is the

s number of observed tips in the phylogeny, the denominator of equation 12 requires
250 a high dimensional integral and an extremely large summation that is impossible to
20 calculate analytically. Instead we use Markov chain Monte Carlo methods

21 (Metropolis et al. 1953; Hastings 1970) to estimate the posterior probability

202 distribution in a computationally efficient manner.

203 Ancestral states are inferred using a two-pass tree traversal procedure as

20¢ described in Pupko et al. (2000), and previously implemented in a Bayesian

205 framework by Huelsenbeck and Bollback (2001) and Pagel et al. (2004). First,
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2

©

s partial likelihoods are calculated during the backwards-time post-order tree

207 traversal in equations 6 and 7. Joint ancestral states are then sampled during a

©

28 pre-order tree traversal in which the root state is first drawn from the marginal
200 likelihoods at the root, and then states are drawn for each descendant node

;0 conditioned on the state at the parent node until the tips are reached. Again, we
s must numerically integrate over a system of differential equations during this

32 TOOt-to-tip tree traversal. This integration, however, is performed in forward-time,

=}

33 thus the set of ordinary differential equations must be slightly altered since our
sa models of chromosome number evolution are not time reversible. Accordingly, we

305 calculate:
306

. dDNz _ (ii)wk+z¢2ﬂ+,u>l?m()

7j=1 k=1
Cm Cm Cnm
+3 QD)+ > Y Nk (DNj(t)Ek(t) + DNk(t)Ej(t)> (13)
309 Jj=1 j=1 k=1

310

311

dE (

H M3

m Cm
S +z@ﬁ+u) B
1 k=1

7=1
Cm Cm Cm
314 =1 =1 k=1

a5 during the forward-time root-to-tip pass to draw ancestral states from their joint

-

a6 distribution conditioned on the model parameters and observed chromosome

-

a1z counts. For more details and validation of our method to estimate ancestral states,

s
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ais please see Supplementary Material Appendix 1.

si9 Priors.—

320 Model parameter priors are listed in Table 1. Our implementation allows all
;21 priors to be easily modified so that their impact on results can be effectively

m assessed. Priors for anagenetic rate parameters are given an exponential

23 distribution with a mean of 2/W; where V¥, is the length of the tree ¥. This

224 corresponds to a mean rate of two events over the observed tree. The priors for the
»s  rate modifiers 7, and J,, are assigned a uniform distribution with the range

e —3/Cy to 3/C,,. This sets minimum and maximum bounds on the amount the

s rate modifiers can affect the rates of gain and loss at the maximum chromosome

2s  number to y,e 2 = 7,0.050 and ~v,e* = 7,20.1, and J,e 2 = §,0.050 and

20 043 = §,20.1, respectively.

330 The speciation rates are drawn from an exponential prior with a mean equal
s to an estimate of the net diversification rate d. Under a constant rate birth-death
32 process not conditioning on survival of the process, the expected number of lineages

;3 at time ¢ is given by:

E(N;) = Npe', (15)

s where Nj is the number of lineages at time 0 and d is the net diversification rate

35 A — p (Nee et al. 1994; Héhna 2015). Therefore, we estimate d as:
d = (In N, — In Ny)/t, (16)

336 where IV; is the number of lineages in the observed tree that survived to the
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;37 present, t is the age of the root, and Ny = 2.

338 The extinction rate p is given by:

/L:’I"X)\t:T'X(¢C+PYC+5c+pc+77€)a (17)

;0 where ); is the total speciation rate and r is the relative extinction rate. The
s relative extinction rate r is assigned a uniform (0,1) prior distribution, thus forcing
;1 the extinction rate to be smaller than the total speciation rate. The root

a2 frequencies of chromosome numbers 7 are drawn from a flat Dirichlet distribution.

Table 1: Model parameter names and prior distributions. See the main text
for complete description of model parameters and prior distributions. ¥; represents
the length of tree ¥ and (), is the maximum chromosome number allowed.

Parameter X  f(X)

Anagenetic Chromosome gain rate Yo  Exponential(A = ¥;/2)
Chromosome loss rate 0,  Exponential(A = ¥,/2)
Polyploidization rate pa  Exponential(A = ¥;/2)
Demi-polyploidization rate 7.  Exponential(A = ¥;/2)

Linear component of chromosome gain rate v, Uniform(—3/C,,,3/Cy)
Linear component of chromosome loss rate 4, Uniform(—3/C,,,3/Cy)

Cladogenetic  No change ¢. Exponential(A =1/ CZ)
Chromosome gain Y.  Exponential(A =1/ d)
Chromosome loss 6.  Exponential(A = 1/d)
Polyploidization pe  Exponential(A = 1/d)
Demi-polyploidization N.  Exponential(A =1/ CZ)

Other Root frequencies 7w  Dirichlet(1,...,1)
Relative-extinction r Uniform(0, 1)

343 Model Uncertainty and Selection

s Model Averaging.—
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5 To account for model uncertainty we calculate the posterior density of
us  chromosome evolution model parameters # without conditioning on any single
a7 model of chromosome evolution. For each of the 1024 chromosome models My,

us where k= 1,2,...,1024, the posterior distribution of 0 is
K
P(6|D) = P(0]D, My,) P(M|D). (18)
k=1

uo  Here we average over the posterior distributions conditioned on each model
0 weighted by the model’s posterior probability. We assume an equal prior

351 probability for each model P(M;) = 2710,

2 Reversible Jump Markov Chain Monte Carlo.—

353 To sample from the space of all possible chromosome evolution models, we
3¢ employ reversible jump MCMC (Green 1995). This algorithm draws samples from
35 parameter spaces of differing dimensions, and in stationarity samples each model in
36 proportion to its posterior probability. This permits inference of each model’s fit to
7 the data while simultaneously accounting for model uncertainty.

358 Our reversible jump MCMC moves between models of different dimensions
30 using augment and reduce moves (Huelsenbeck et al. 2000; Pagel and Meade 2006;
s0 May et al. 2016). The reduce move proposes that a parameter should be removed
1 from the current model by setting its value to 0.0, effectively disallowing that class
32 of evolutionary event. Augment moves reverse reduce moves by allowing the

33 parameter to once again have a non-zero value. Both augment and reduce moves

s Operate on all chromosome rate parameters except for ¢, the rate of no
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35 cladogenetic change. Thus the least complex model the MCMC can sample from is
6 one in which ¢. > 0.0 and all other chromosome rate parameters are set to 0.0,
7 corresponding to a model of no chromosomal changes over the phylogeny. The prior

38 probability of reducing or augmenting model My, is P,(My) = P,(My) = 0.5.

w0 Bayes Factors.—
370 In some cases we wish to compare the fit of models to summarize the mode
s of evolution within a clade. Bayes factors (Kass and Raftery 1995) compare the

sz evidence between two competing models M; and M;

(19)

w3 In words, the Bayes factor B;; is given by the ratio of the posterior odds to the

sz prior odds of the two models. Unlike other methods of model selection such as

w5 Akaike Information Criterion (AIC; Akaike 1974) and the Bayesian Information

w6 Criterion (BIC; Schwarz 1978), Bayes factors take into account the full posterior
sz densities of the model parameters and do not rely on point estimates. Furthermore
sis AIC and BIC ignore the priors assigned to parameters, whereas Bayes factors

;0 penalizes parameters based on the informativeness of the prior. If the prior is

;0 informative but overlaps little with the likelihood it is penalized more than a

s diffuse uninformative prior that allows the parameter to take on whatever value is

32 informed by the data (Xie et al. 2011).

33 Implementation


https://doi.org/10.1101/086629
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/086629; this version posted March 31, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

384 The model and MCMC analyses described here are implemented in C++ in
35 the software RevBayes (Hohna et al. 2016). In Supplementary Material Appendix 1
;s we validated our SSE likelihood calculations and ancestral state estimates against
s those of the R package diversitree (FitzJohn 2012). Rev scripts that specify the

38 chromosome number evolution model (ChromoSSE) described here as a

1 probabilistic graphical model (Hohna et al. 2014) and run the empirical analyses in
10 RevBayes are available at http://github.com/wf8/ChromoSSE. The RevGadgets
s R package (available at https://github.com/revbayes/RevGadgets) contains

;2 functions to summarize results and generate plots of inferred ancestral chromosome
33 numbers over a phylogeny.

304 The MCMC proposals used are outlined in Supplementary Material

s Appendix 2. Aside from the reversible jump MCMC proposals described above, all
s other proposals are standard except for the ElementSwapSimplex move operated on
so7  the Dirichlet distributed root frequencies parameter. This move randomly selects
38 two elements 1 and ry from the root frequencies vector and swaps their values.

30 The reverse move, swapping the original values of r; and ro back, will have the

w0 same probability as the initial move since r; and 5 were drawn from a uniform

s1 distribution. Thus, the Hasting ratio is 1 and the ElementSwapSimplex move is a

w2 symmetric Metropolis move.

403 Stmulations

404 We conducted a series of simulations to: 1) test the effect of unobserved

w5 speciation events due to extinction on chromosome number estimates when using a
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model that does not account for unobserved speciation, 2) compare the accuracy of
models of chromosome evolution that account for unobserved speciation versus
those that do not, 3) test the effect of jointly estimating speciation and extinction
rates with chromosome number evolution, 4) test for identifiability of cladogenetic
parameters, and 5) test the effect of incomplete sampling of extant lineages on
ancestral chromosome number estimates. We will refer to each of the 5 simulations
above as experiment 1, experiment 2, experiment 3, experiment 4, and experiment
5. Detailed descriptions of each experiment and the methods used to simulate trees
and chromosome counts are in Supplementary Material Appendix 3.

For all 5 experiments, MCMC analyses were run for 5000 iterations, where
each iteration consisted of 28 different moves in a random move schedule with 79
moves per iteration (see Supplementary material Appendix 2). Samples were drawn
with each iteration, and the first 1000 samples were discarded as burn in. Effective
sample sizes (ESS) for all parameters in all simulation replicates were over 200, and
the mean ESS values of the posterior for the replicates was 1470.3. See
Supplementary Material Appendix 4 for more on convergence of simulation
replicates. To perform all 5 experiments 2100 independent MCMC analyses were
run requiring a total of 89170.6 CPU hours on the Savio computational cluster at

the University of California, Berkeley.

Summarizing Simulation Results.—
To summarize the results of our simulations, we measured the accuracy of
ancestral state estimates as the percent of simulation replicates in which the true

root chromosome number 8 was found to be the maximum a posteriori (MAP)
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w0 estimate. To evaluate the uncertainty of the simulations, we calculated the mean
130 posterior probability of root chromosome number for the simulation replicates that
i1 correctly found 8 to be the MAP estimate. We also calculated the proportion of
s32  simulation replicates for which the true model of chromosome number evolution

a3 used to simulate the data (as given by the table in Supplementary Material

s¢  Appendix 3) was estimated to be the MAP model, and calculated the mean

135 posterior probabilities of the true model. To compare the accuracy of model

i3 averaged parameter value estimates we calculated coverage probabilities. Coverage
a7 probabilities are the percentage of simulation replicates for which the true

s parameter value falls within the 95% highest posterior density (HPD). High

130 accuracy is shown when coverage probabilities approach 1.0.

440 Empirical Data

aa1 Phylogenetic data and chromosomes counts from five plant genera were

a2 analyzed (see Table 2). Like in Mayrose et al. (2010) we assumed each species had
w3 a single cytotype, however polymorphism could be accounted for by a vector of

aas  probabilities for each chromosome count. Sequence data for Aristolochia was

15 downloaded from TreeBASE (Vos et al. 2010) study ID 1586. Sequences for

ws  Helianthus, Mimulus sensu lato, and Primula were downloaded directly from

a7 GenBank (Benson et al. 2005), reconstructing the sequence matrices from Timme
us et al. (2007), Beardsley et al. (2004), and Guggisberg et al. (2009). For each of

uo  these four datasets phylogenetic analyses were performed with all gene regions

ss0 concatenated and unpartitioned, assuming the general time-reversible (GTR)
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»s1 nucleotide substitution model (Tavaré 1986; Rodriguez et al. 1990) with among-site
2 rate variation modeled using a discretized gamma distribution (Yang 1994) with
ss3  four rate categories. Since divergence time estimation in years is not the objective
s of this study, and only relative branching times are needed for our models of

»s5  chromosome number evolution, a birth-death tree prior was used with a fixed root
6 age of 10.0 time units. The MCMC analyses were performed in RevBayes, and were
ss7 sampled every 100 iterations and run for a total of 400000 iterations, with samples
ss  from the first 100000 iterations discarded as burnin. Convergence was assessed by
o ensuring that the effective sample size for all parameters was over 200. The

w0 Maximum a posteriori tree was calculated and used for further chromosome

w1 evolution analyses. For Carex section Spirostachyae the time calibrated tree from
w2 Escudero et al. (2010) was used.

463 Ancestral chromosome numbers and chromosome evolution model

ss  parameters were then estimated for each of the five clades. Since testing the effect
w5 of incomplete taxon sampling on chromosome evolution inference of the empirical
w6 datasets was not a goal of this work, we focus here on results using a taxon

w7 sampling fraction pg of 1.0 (though see the Discussion section for more on this).

s MCMC analyses were run in RevBayes for 11000 iterations, where each iteration
w0 consisted of 28 different Metropolis-Hastings moves in a random move schedule

s with 79 moves per iteration (see Supplementary Material Appendix 2). Samples
s were drawn each iteration, and the first 1000 samples were discarded as burn in.
a2 Effective sample sizes for all parameters were over 200. For all datasets except

a3 Primula we used priors as outlined in Table 1. To demonstrate the flexibility of our
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Table 2: Empirical data sets analysed.

Clade Study Gene region Alignment Number of Haploid chro-
length (bp) OTUs mosome nurm-
bers range
Aristolochia Ohi-Toma matK 1268 34 3-16
et al. (2006)
Carex section  Escudero ITS, trnK see Escudero 24 30 - 42
Spirostachyae et al. (2010) intron et al. (2010)
Helianthus Timme et al.  ETS 3085 102 17 - 51
(2007)
Mimulus Beardsley trnL intron, 2210 115 8- 46
sensu lato et al. (2004) ETS, ITS
Primula Guggisberg rpll6 intron, 5705 56 9-36
section et al. (2009) rpsl6 intron,
Aleuritia trnL intron,

trnL-trnF
spacer,
trnT-trnL
spacer,
trnD-trnT
region

Bayesian implementation and its capacity to incorporate prior information we used

an informative prior for the root chromosome number in the Primula section

Aleuritia analysis. Our dataset for Primula section Aleuritia also included samples

from Primula sections Armerina and Sikkimensis. Since we were most interested in

estimating chromosome evolution within section Aleuritia, we used an informative

Dirichlet prior {1,...,1,100,1....1} (with 100 on the 11th element) to bias the root

state towards the reported base number of Primula x = 11 (Conti et al. 2000).

Note all priors can be easily modified in our implementation, thus the impact of

priors can be efficiently tested.
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RESULTS

484 Stmulations

s General Results.—

486 In all simulations, the true model of chromosome number evolution was

w7 infrequently estimated to be the MAP model (< 36% of replicates), and when it
s was the posterior probability of the MAP model was very low (< 0.12; Table 3).
s0 We found that the accuracy of root chromosome number estimation was similar
w0 whether the process that generated the simulated data was cladogenetic-only or
w1 anagenetic-only (Tables 3 and 4). However, when the data was simulated under a
w2 process that included both cladogenetic and anagenetic evolution we found a

203 decrease in accuracy in the root chromosome number estimates in all cases.

s Fxperiment 1 Results.—

495 The presence of unobserved speciation in the process that generated the

w6 simulated data decreased the accuracy of ancestral state estimates (Figure 3, Table
s 3). Similarly, uncertainty in root chromosome number estimates increased with

w8 unobserved speciation (lower mean posterior probabilities; Table 3). The accuracy
w0 of parameter value estimates as measured by coverage probabilities was similar

s0  (results not shown).

s Frxperiment 2 Results.—
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502 When comparing estimates from ChromoSSE that account for unobserved
s speciation to estimates from the non-SSE model that does not account for

se  unobserved speciation, we found that the accuracy in estimating model parameter
sos values was mostly similar, though for some cladogenetic parameters there was

sos higher accuracy with the model that did account for unobserved speciation

sor (ChromoSSE; Figure 4). For both models estimates of anagenetic parameters were
sos more accurate than estimates of cladogenetic parameters when the true generating
s0 odel included cladogenetic changes.

510 We found that ChromoSSE had more uncertainty in root chromosome

su number estimates (lower mean posterior probabilities) compared to the non-SSE
s model that did not account for unobserved speciation. Similarly, the root

s1i3 chromosome number was estimated with slightly lower accuracy (Table 4).

s Frperiment 3 Results.—

515 We found that jointly estimating speciation and extinction rates with

sis  chromosome number evolution using ChromoSSE slightly decreased the accuracy of
si7 - Toot chromosome number estimates, and further it increased the uncertainty of the
sis inferred root chromosome number (as reflected in lower mean posterior

s probabilities; Table 4). Fixing the speciation and extinction rates to their true

s20 value removed much of the increased uncertainty associated with using a model

sz that accounts for unobserved speciation (Table 4).

s2  Brperiment 4 Results.—

523 Under simulation scenarios that had cladogenetic changes but no anagenetic
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s changes, we found that ChromoSSE overestimated anagenetic parameters and

s underestimated cladogenetic parameters (Figure 5 A), which explains the lower

s26  coverage probabilities of cladogenetic parameters reported above for experiment 2
s» (Figure 4). When anagenetic parameters were fixed to 0.0 cladogenetic parameters
s were no longer underestimated (Figure 5 A), and the coverage probabilities of

s cladogenetic parameters increased slightly (Figure 5 B).

s0  Faperiment 5 Results.—

531 We found that incomplete sampling of extant lineages had a minor effect on
s the accuracy of ancestral chromosome number estimates (Figure 6). Accuracy only
s33 slightly decreased as the percentage of extant lineages sampled declined from 100%
53 t0 50%, and decreased more rapidly when the percentage went to 10%. As

s measured by the proportion of simulation replicates that inferred the MAP root

s chromosome number to be the true root chromosome number, the accuracy of

s7 - ancestral states estimated under ChromoSSE declined from 0.80 accuracy at 100%
s38  taxon sampling to 0.69 at 10% taxon sampling. Essentially no difference in

s accuracy was detected between the non-SSE model that does not take unobserved

ss0  speciation into account and ChromoSSE. Furthermore, little difference in accuracy
sa - was detected using ChromoSSE with the taxon sampling probability p, set to 1.0

s22 compared to ChromoSSE with ps set to the true value (0.1, 0.5, or 1.0; Figure 6).
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Figure 3: Experiment 1 results: the effect of unobserved speciation events
on the maximum a posteriori (M AP) estimates of root chromosome num-
ber. Model averaged MAP estimates of the root chromosome number for 100 repli-
cates of each simulation type on datasets that included unobserved speciation and
datasets that did not include unobserved speciation. Each circle represents a simu-
lation replicate, where the size of the circle is proportional to the number of lineages
that survived to the present (the number of extant tips in the tree). The true root
chromosome number used to simulate the data was 8 and is marked with a pink
dotted line.
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Table 3: Experiment 1 results: the effect of ignoring unobserved speciation
events on chromosome evolution estimates. Regardless of the true mode of
chromosome evolution, the presence of unobserved speciation events in the process
that generated the simulated data decreased accuracy in estimating the true root
state. The columns from left to right are: 1) an indication of whether or not the data
was simulated with a process that included unobserved speciation, 2) the true mode
of chromosome evolution used to simulate the data, (for description see main text
and Supplementary Material Appendix 3), 3) the percent of simulation replicates in
which the true chromosome number at the root used to simulate the data was found
to be the maximum a posteriori (MAP) estimate, 4) the mean posterior probability of
the MAP estimate of the true root chromosome number, 5) the percent of simulation
replicates in which the true model used to simulate the data was also found to be
the MAP model, and 6) the mean posterior probability of the MAP estimate of the
true model.

Unobserved Mode of True Root Mean True Model Mean
Speciation Evolution State Posterior of Estimated Posterior of
Events Used to Estimated True Root (%) True Model
Included Simulate (%) State

When Data

Simulating

Data?

No Cladogenetic 93 0.92 13 0.10

No Anagenetic 89 0.91 31 0.12

No Mixed 88 0.84 0 0.0

Yes Cladogenetic 78 0.87 15 0.09

Yes Anagenetic 83 0.91 36 0.12

Yes Mixed 62 0.80 2 0.10
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Figure 4: Experiment 2 results: the effect of using a model that accounts for
unobserved speciation on coverage probabilities of chromosome model pa-
rameters. Each point represents the proportion of simulation replicates for which
the 95% HPD interval contains the true value of the model parameter. Coverage
probabilities of 1.00 mean perfect coverage. The circles represent coverage proba-
bilities for estimates made using the non-SSE model that does not account for un-
observed speciation, and the triangles represent coverage probabilities for estimates
made using ChromoSSE that does account for unobserved speciation.
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Table 4: Experiments 2 and 3 results: the effects of using a model that
accounts for unobserved speciation and of jointly estimating diversifica-
tion rates on ancestral chromosome number estimates. This table compares
estimates of chromosome evolution using a non-SSE model that does not account
for unobserved speciation events with ChromoSSE that does account for unobserved
speciation events (Experiment 2), and compares estimates of chromosome evolution
when jointly estimated with speciation and extinction rates versus when the true
speciation and extinction rates are given (Experiment 3). Regardless of the true
mode of chromosome evolution, the use of a model that accounts for unobserved
speciation increases uncertainty in root state estimates. The columns from left to
right are: 1) an indication of which experiment the results pertain to, 2) an indi-
cation of whether or not the estimates were made with ChromoSSE (that accounts
for unobserved speciation), 3) whether diversification rates were jointly estimated
with chromosome evolution, 4) the percent of simulation replicates in which the true
chromosome number at the root used to simulate the data was found to be the MAP
estimate, 5) the mean posterior probability of the MAP estimate of the true root
chromosome number.

Experiment Estimates Speciation Mode of True Root Mean

# Made w/ and Evolution State Posterior of
Model That Extinction Used to Estimated True Root
Accounted for Rates Jointly — Simulate (%) State
Unobserved Estimated? Data
Speciation?

2 No No Cladogenetic 78 0.87

2 No No Anagenetic 83 0.91

2 No No Mixed 62 0.80

2 & 3 Yes Yes Cladogenetic 78 0.81

2& 3 Yes Yes Anagenetic 80 0.86

2& 3 Yes Yes Mixed 61 0.72

3 Yes No Cladogenetic 78 0.84

3 Yes No Anagenetic 83 0.90

3 Yes No Mixed 62 0.76
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Figure 5: Experiment 4 results: testing identifiability of cladogenetic pa-
rameters under ChromoSSE. a) Chromosome parameter value estimates from
100 simulation replicates under a simulation scenario with no anagenetic changes
(cladogenetic only). The stars represent true values. The box plots compare pa-
rameter estimates made when anagenetic parameters were fixed to 0 to estimates
made when all parameters were free. When all parameters were free the anagenetic
parameters were overestimated and cladogenetic parameters were underestimated.
When the anagenetic parameters were fixed to 0 the estimates for the cladogenetic
parameters were more accurate. b) Coverage probabilities of chromosome evolution
parameters under the cladogenetic only model of chromosome evolution. The accu-
racy of cladogenetic parameter estimates increased when anagenetic parameters were
fixed to 0.
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Figure 6: Experiment 5 results: the effect of incomplete sampling. The ac-
curacy of ancestral chromosome number estimates slightly declined as the percentage
of sampled extant lineages decreased from 100% to 50%, and decreased more quickly
once the percentage of extant lineages decreased to 10%. There was little difference
between the non-SSE model (light grey) that does not take into account unobserved
speciation and ChromoSSE (medium and dark grey) which does take into account
unobserved speciation. Furthermore, little difference in accuracy was detected using
ChromoSSE with the taxon sampling probability ps set to 1.0 (medium grey) and
with ps set to the true value (0.1, 0.5, or 1.0; dark grey). The accuracy of chro-
mosome number estimates was measured by the proportion of simulation replicates
for which the estimated MAP root chromosome number corresponded with the true
chromosome number used to simulate the data.

543 Empirical Data

544 Model averaged MAP estimates of ancestral chromosome numbers for each
sss  Of the five empirical datasets are show in Figures 7, 8, 9, 10, and 11. The mean
ss  model-averaged chromosome number evolution parameter value estimates for the

se7  empirical datasets are reported in Table 5. Posterior probabilities for the MAP
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sis odel of chromosome number evolution were low for all datasets, varying between
s 0.04 for Carex section Spirostachyae and 0.21 for Helianthus (Table 6). Bayes

ss0  factors supported unique, clade-specific combinations of anagenetic and

ss1 cladogenetic parameters for all five datasets (Table 6). None of the clades had

ss2 - support for purely anagenetic or purely cladogenetic models of chromosome

ss3 - evolution.

554 The ancestral state reconstructions for Aristolochia were highly similar to
5 those found by Mayrose et al. (2010). We found a moderately supported root

sss chromosome number of 8 (posterior probability 0.45), and a polyploidization event
ss7on the branch leading to the Isotrema clade which has a base chromosome number
ss3. of 16 with high posterior probability (0.88; Figure 7). On the branch leading to the
ss0 main Aristolochia clade we found a dysploid loss of a single chromosome. Overall,
s we estimated moderate rates of anagenetic dysploid and polyploid changes, and the
ss1  rates of cladogenetic change were 0 except for a moderate rate of cladogenetic

2 dysploid loss (Tables 5). There was only one cladogenetic change inferred in the

sss MAP ancestral state reconstruction, which was a recent possible dysploid

sea  Speciation event that split the sympatric west-central Mexican species Aristolochia
ses  tentaculata and A. taliscana.

566 In Helianthus, on the other hand, we found high rates of cladogenetic

ss7  polyploidization, and low rates of anagenetic change (Tables 5). 12 separate

ses possible polyploid speciation events were identified over the phylogeny (Figure 8),
se0 and cladogenetic polyploidization made up 16% of all observed and unobserved

s70 - speciation events. Bayes factors gave very strong support for models that included
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cladogenetic polyploidization as well as anagenetic demi-polyploidization (Table 6),
the latter explaining the frequent anagenetic transitions from 34 to 51 chromosomes
found in the MAP ancestral state reconstruction. The well supported root
chromosome number of 17 (posterior probability 0.91) corresponded with the
findings of Mayrose et al. (2010).

As opposed to the Helianthus results, the Carex section Spirostachyae
estimates had very low rates of polyploidization and instead had high rates of
cladogenetic dysploid change (Tables 5). An estimated 36.9% of all observed and
unobserved speciation events included a cladogenetic gain or loss of a single
chromosome. Overall, the rates of anagenetic changes were estimated to be much
lower than the rates of cladogenetic changes. Bayes factors did not support either
anagenetic or cladogenetic polyploidization (Table 6). The MAP root chromosome
number of 37, despite being very weakly supported (0.08), corresponds with the
findings of Escudero et al. (2014), where it was also poorly supported (Figure 9).

In Primula, we found a base chromosome number for section Aleuritia of 9
with high posterior probability (0.82; Figure 10), which agrees with estimates from
Glick and Mayrose (2014). We estimated moderate rates of anagenetic and
cladogenetic changes, including both cladogenetic polyploidization and
demi-polyploidization (Table 5). The MAP ancestral state estimates include an
inferred history of possible polyploid and demi-polyploid speciation events in the
clade containing the tetraploid Primula haller: and the hexaploid P. scotica.
Primula is the only dataset out of the five analysed here for which Bayes factors

supported the inclusion of cladogenetic demi-polyploidization (Table 6).
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Table 5: Mean model-averaged parameter value estimates for empirical
datasets. Rates for all parameters are given in units of chromosome changes per
branch length unit except for p which is given in extinction events per time units.

Clade Ya Sa Pa Na Ym Om de Ve ¢ Pe Ne 7

Aristolochia 0.02 0.05 001 00 -0.01 -0.01 043 0.0 0.04 00 00 0.19
Carex section 0.19 0.79 0.16 0.13 0.0 0.04 249 215 0.15 0.95 0.5 2.26
Spirostachyae

Helianthus 0.0 0.02 00 003 -00 -00 068 00 0.0 013 0.0 0.09
Mimulus s.l. 0.03 0.02 0.01 0.0 0.02 002 065 00 00 005 0.0 0.16

Primula 0.01 0.05 0.01 0.01 -00 -0.0 239 0.01 0.03 0.15 0.09 247
section
Aleuritia

504 The well supported root chromosome number of 8 (posterior probability

sos  0.90) found for Mimulus s.]. corresponds with the inferences reported in Beardsley
s6 et al. (2004). We estimated moderate rates of anagenetic dysploid gains and losses,
sov as well as a moderate rate of cladogenetic polyploidization (Table 5). Bayes factors
ses  also supported models that included anagenetic dysploid gain and loss, as well as
so0 cladogenetic polyploidization (Table 6). The MAP ancestral state reconstruction
so revealed that most of the possible polyploid speciation events took place in the

so1 Diplacus clade, particularly in the clade containing the tetraploids Mimulus

02 cupreus, M. glabratus, M. luteus, and M. yecorensis (Figure 11). Additionally, an
s03 ancient cladogenetic polyploidization event is inferred for the split between the two

s0a main Diplacus clades at about 5 million time units ago.
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Figure 7: Ancestral chromosome number estimates of Aristolochia. The
model averaged MAP estimate of ancestral chromosome numbers are shown at each
branch node. The states of each daughter lineage immediately after cladogenesis are
shown at the “shoulders” of each node. The size of each circle is proportional to the
chromosome number and the color represents the posterior probability. The MAP
root, chromosome number is 8 with a posterior probability of 0.45. The grey arrow
highlights the possible dysploid speciation event leading to the west-central Mexican
species Aristolochia tentaculata and A. taliscana. Clades corresponding to subgenera
are indicated at right.
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Figure 8: Ancestral chromosome number estimates of Helianthus. The
model averaged MAP estimate of ancestral chromosome numbers are shown at each
branch node. The states of each daughter lineage immediately after cladogenesis are
shown at the “shoulders” of each node. The size of each circle is proportional to the
chromosome number and the color represents the posterior probability. The MAP
root chromosome number is 17 with a posterior probability of 0.91. The grey arrows
show the locations of 12 inferred polyploid speciation events.


https://doi.org/10.1101/086629
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/086629; this version posted March 31, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Carex binervis1

» Carex laevigata2

Carex binervis2

Carex camposii

Carex laevigatal

Chromosome Number B
O 33

34

Carex paulo-vargasii

s Carex mairei

Carex hochstetteriana

35 B a

g

Carex lowei Elatae
| 136

Carex perraudieriana

{ )37 _3‘|:“ Carex fuscula
@ B 3

g 1 N carex punctata
@ wl———u Carex fissirostris

. B as = Carex petitiana
Posterior Probability 5 5 » { P

0.00 . R = Carex mannii

/.

0.25 wl——s Carex fischeri

0.50 5 « Carex helodes

0.75 7 Carex idaea

1.00 i Carex distans2

Carex troodi
Carex diluta Spirostachyae

s Carex distans1

Carex lainzii

58 l————— Carex extensa

1.0 0.5 0

Figure 9: Ancestral chromosome number estimates of Carex section
Spirostachyae. The model averaged MAP estimate of ancestral chromosome num-
bers are shown at each branch node. The states of each daughter lineage immediately
after cladogenesis are shown at the “shoulders” of each node. The size of each circle
is proportional to the chromosome number and the color represents the posterior
probability. The MAP root chromosome number is 37 with a posterior probability of
0.08. Grey arrows indicate the location of possible dysploid speciation events. 36.9%
of all speciation events include a cladogenetic gain or loss of a single chromosome.
Clades corresponding to subsections are indicated at right.
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Figure 10: Ancestral chromosome number estimates of Primula section
Aleuritia. The model averaged MAP estimate of ancestral chromosome numbers
are shown at each branch node. The states of each daughter lineage immediately
after cladogenesis are shown at the “shoulders” of each node. The size of each circle
is proportional to the chromosome number and the color represents the posterior
probability. The MAP root chromosome number of section Aleuritia is 9 with a pos-
terior probability of 0.82. The arrows show the inferred history of possible polyploid
and demi-polyploid speciation events in the clade containing the tetraploids Primula
egaliksensis and P. halleri and the hexaploid P. scotica. Clades corresponding to
sections are indicated at right.
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Figure 11: Ancestral chromosome number estimates of Mimulus sensu lato.
The model averaged MAP estimate of ancestral chromosome numbers are shown at
each branch node. The states of each daughter lineage immediately after cladogenesis
are shown at the “shoulders” of each node. The size of each circle is proportional
to the chromosome number and the color represents the posterior probability. The
MAP root chromosome number is 8 with a posterior probability of 0.90. The arrows
highlight the inferred history of repeated polyploid speciation events in the Diplacus
clade, which contains the tetraploids Mimulus cupreus, M. glabratus, M. luteus, and
M. yecorensis. Clades corresponding to segregate genera are indicated at right.
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DISCUSSION

606 The results from the empirical analyses show that the ChromoSSE models
sor detect strikingly different modes of chromosome evolution with clade-specific

ss combinations of anagenetic and cladogenetic processes. Anagenetic dysploid gains
s0 and losses were supported in nearly all clades; however, cladogenetic dysploid

s10 changes were supported only in Carex. The occurrence of anagenetic dysploid

s changes in all clades suggest that small chromosome number changes due to gains
sz and losses may frequently have a minimal effect on the formation of reproductive
e13 isolation, though our results suggest that Carex may be a notable exception.

s1a  Anagenetic polyploidization was only supported in Aristolochia, while cladogenetic
15 polyploidization was supported in Helianthus, Mimulus s.1., and Primula. These

si6 findings confirm the evidence presented by Zhan et al. (2016) that polyploidization
sz events could play a significant role during plant speciation.

618 Our models shed new light on the importance of whole genome duplications
s10  as a key driver in evolutionary diversification processes. Helianthus has long been
20 understood to have a complex history of polyploid speciation (Timme et al. 2007),
¢21  but our results here are the first to statistically show the prevalance of cladogenetic
622 polyploidization in Helianthus (occuring at 16% of all speciation events) and how
623 few of the chromosome changes are estimated to be anagenetic. Polyploid

s2¢ speciation has also been suspected to be common in Mimulus s.l. (Vickery 1995),
s and indeed we estimated that 7% of speciation events were cladogenetic

6 polyploidization events. We also estimated that the rates of cladogenetic

e27  dysploidization in Mimulus s.l. were 0, which is in contrast to the parsimony based
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o2 inferences presented in Beardsley et al. (2004), which estimated 11.5% of all

s20 speciation events included polyploidization and 13.3% included dysploidization.

s Their estimates, however, did not distinguish cladogenetic from anagenetic

s processes, and so they likely underestimated anagenetic changes. Our ancestral

632 state reconstructions of chromosome number evolution for Helianthus, Mimulus s.1.,
633 and Primula show that polyploidization events generally occurred in the relatively
s« recent past; few ancient polyploidization events were reconstructed (one exception
e  being the ancient cladogenetic polyploidization event in Mimulus clade Diplacus).
63 L'his pattern appears to be consistent with recent studies that show polyploid

s lineages may undergo decreased net diversification (Mayrose et al. 2011; Scarpino
s et al. 2014), leading some to suggest that polyploidization may be an evolutionary
s20 dead-end (Arrigo and Barker 2012). While in the analyses presented here we fixed
a0 Tates of speciation and extinction through time and across lineages, an obvious

sa1  extension of our models would be to allow these rates to vary across the tree and
sz statistically test for rate changes in polyploid lineages.

643 Our findings also suggest dysploid changes may play a significant role in the
saa  speciation process of some lineages. The genus Carez is distinguished by

s holocentric chromosomes that undergo common fusion and fission events but rarely
sss  polyploidization (Hipp 2007). This concurs with our findings from Carezx section
sa7  Spirostachyae, where we saw no support for models including either anagenetic or
ss cladogenetic polyploidization. Instead we found high rates of cladogenetic dysploid
s0 change, which is congruent with earlier results that show that Carex diversification

0 1is driven by processes of fission and fusion occurring with cladogenetic shifts in
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st chromosome number (Hipp 2007; Hipp et al. 2007). Hipp (2007) proposed a

62 speciation scenario for Carer in which the gradual accumulation of chromosome
63 fusions, fissions, and rearrangements in recently diverged populations increasingly
ssa  reduce the fertility of hybrids between populations, resulting in high species

ess richness. More recently, Escudero et al. (2016) found that chromosome number

es6  differences in Carex scoparia led to reduced germination rates, suggesting hybrid
sz dysfunction could spur chromosome speciation in Carez. Holocentricity has arisen
ess  at least 13 times independently in plants and animals (Melters et al. 2012), thus
0 future work could examine chromosome number evolution in other holocentric

s0 clades and test for similar patterns of cladogenetic fission and fusion events.

661 The models presented here could also be used to further study the role of
62 divergence in genomic architecture during sympatric speciation. Chromosome

63 structural differences have been proposed to perform a central role in sympatric
s¢ speciation, both in plants (Gottlieb 1973) and animals (Feder et al. 2005; Michel
s et al. 2010). In Aristolochia we found most changes in chromosome number were
ss estimated to be anagenetic, with the only cladogenetic change occuring among a
e7 pair of recently diverged sympatric species. By coupling our chromosome evolution
ss  models with models of geographic range evolution it would be possible to

o statistically test whether the frequency of cladogenetic chromosome changes

670 increase in sympatric speciation events compared to allopatric speciation events,
e thereby testing for interaction between these two different processes of reproductive
ez isolation and evolutionary divergence.

673 The simulation results from Experiment 1 demonstrate that extinction
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reduces the accuracy of inferences made by models of chromosome evolution that
do not take into account unobserved speciation events. Furthermore, the
simulations performed in Experiments 2 and 3 show that the substantial
uncertainty introduced in our analyses by jointly estimating diversification rates
and chromosome evolution resulted in lower posterior probabilities for ancestral
state reconstructions. We feel that this is a strength of our method; the lower
posterior probabilities incorporate true uncertainty due to extinction and so
represent more conservative estimates. Additionally, the simulation results from
Experiment 4 reveal that rates of anagenetic evolution were overestimated and
rates of cladogenetic change were underestimated when the generating process
consisted only of cladogenetic events. This suggests the possibility that our models
of chromosome number evolution are only partially identifiable, and that the results
of our empirical analyses may have a similar bias towards overestimating
anagenetic evolution and underestimating cladogenetic evolution. This bias may be
an issue for all ClaSSE type models, but the practical consequences here are
conservative estimates of cladogenetic chromosome evolution.

An important caveat for all phylogenetic methods is that estimates of model
parameters and ancestral states can be highly sensitive to taxon sampling (Heath
et al. 2008). All of the empirical datasets examined here included non-monophyletic
taxa that were treated as separate lineages. We made the unrealistic assumptions
that 1) each of the non-monophyletic lineages sharing a taxon name have the same
cytotype, and 2) the taxon sampling probability (p,) for the birth-death process was

1.0. The former assumption could drastically affect ancestral state estimates, but
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o7 its effect can only be confirmed by obtaining chromosome counts for each lineage
es regardless of taxon name. While the results from simulation Experiment 5 showed
eo that fixing ps to 1.0 did not decrease the accuracy of inferred ancestral states, we
70 still performed extra analyses of the empirical datasets with different values of p;
71 (results not shown). The results indicated that total speciation and extinction rates
72 are sensitive to p,, but the relative speciation rates (e.g. between ¢, and ~.)

703 remained similar. The ancestral state estimates of cladogenetic and anagenetic

s chromosome changes were robust to different values of p,. This could vary among
s datasets and care should be taken when considering which lineages to sample.

706 Bayesian model averaging is particularly appropriate for models of

77 chromosome number evolution since conditioning on a single model ignores the

78 considerable degree of model uncertainty found in both the simulations and the

700 empirical analyses. In the simulations the true model of chromosome evolution was
70 rarely inferred to be the MAP model (< 39% of replicates), and in the instances it
m  was correctly identified the posterior probability of the MAP model was < 0.13.

n2 The posterior probabilities of the MAP models for the empirical datasets were

73 similarly low, varying between 0.04 and 0.22. Conditioning on a single poorly

na  fitting model of chromosome evolution, even when it is the best model available,
75 results in an underestimate of the uncertainty of ancestral chromosome numbers.
76 Furthermore, Bayesian model averaging enabled us to detect different modes of

77 chromosome number evolution without the limitation of traditional model testing
ns  procedures in which multiple analyses are performed that each condition on a

no different single model. This is a particularly useful approach when the space of all
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=0 possible models is large.

721 Our RevBayes implementation facilitates model modularity and easy

722 experimentation. Experimenting with different priors or MCMC moves is achieved
723 by simply editing the Rev scripts that describe the model. Though in our analyses
724 here we ignored phylogenetic uncertainty by assuming a fixed known tree, we could
75 easily incorporate this uncertainty by modifying a couple lines of the Rev script to
726 integrate over a previously estimated posterior distribution of trees. We could also
727 use molecular sequence data simultaneously with the chromosome models to jointly
2s infer phylogeny and chromosome evolution, allowing the chromosome data to help
2o inform tree topology and divergence times. In this paper we chose not to perform
730 joint inference so that we could isolate the behavior of the chromosome evolution
71 models; however, this is a promising direction for future research.

732 There are a number of challenging directions for future work on phylogenetic
733 chromosome evolution models. Models that incorporate multiple aspects of

¢ chromosome morphology such as translocations, inversions, and other gene synteny
75 data as well as the presence of ring and/or B chromosomes have yet to be

16 developed. None of our models currently account for allopolyploidization; indeed
7 few phylogenetic comparative methods can handle reticulate evolutionary scenarios
78 that result from allopolyploidization and other forms of hybridization (Marcussen
720 et al. 2015). A more tractable problem is mapping chromosome number changes

no along the branches of the phylogeny, as opposed to simply making estimates at the
1 nodes as we have done here. Since the approach described here models both

u2 anagenetic and cladogenetic chromosome evolution processes while accounting for
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73 unobserved speciation events, the rejection sampling procedure used in standard
7e  stochastic character mapping (Nielsen 2002; Huelsenbeck et al. 2003) is not

s sufficient. While data augmentation approaches such as those described by Bokma
76 (2008) could be utilized, they require complex MCMC algorithms that may have
7 difficulty mixing. Another option is to extend the method described in this paper
ns  to draw joint ancestral states by numerically integrating root-to-tip over the tree
9 into a new procedure called joint conditional character mapping. This sort of

0 approach would infer the joint MAP history of chromosome changes both at the
1 nodes and along the branches of the tree, and provide an alternative to stochastic

72 character mapping that will work for all ClaSSE type models.

753 Conclusions

754 The analyses presented here show that the ChromoSSE models of

75 chromosome number evolution successfully infer different clade-specific modes of

76 chromosome evolution as well as the history of anagenetic and cladogenetic

77 chromosome number changes for a clade, including reconstructing the timing and
s location of possible chromosome speciation events over the phylogeny. These

70 models will help investigators study the mode and history of chromosome evolution
w0 within individual clades of interest as well as advance understanding of how

71 fundamental changes in the architecture of the genome such as whole genome

w2 duplications affect macroevolutionary patterns and processes across the tree of life.

FUNDING


https://doi.org/10.1101/086629
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/086629; this version posted March 31, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

764

765

766

767

768

769

770

771

772

773

774

775

776

7T

778

779

780

781

782

aCC-BY 4.0 International license.

WAF was supported by a National Science Foundation Graduate Research
Fellowship under Grant DGE 1106400. SH was supported by the Miller Institute
for basic research in science. Analyses were computed using XSEDE, which is
supported by National Science Foundation grant number ACI-1053575, and the
Savio computational cluster provided by the Berkeley Research Computing

program at the University of California, Berkeley.

ACKNOWLEDGEMENTS

Thank you to Bruce Baldwin, Emma Goldberg, and Michael Landis for
valuable discussions. We also wish to thank two anonymous reviewers for their

thoughtful feedback that improved this work.

References

Akaike, H. 1974. A new look at the statistical model identification. IEEE

Transactions on Automatic Control 19:716-723.

Arrigo, N. and M. S. Barker. 2012. Rarely successful polyploids and their legacy in

plant genomes. Current Opinion in Plant Biology 15:140-146.

Ayala, F. J. and M. Coluzzi. 2005. Chromosome speciation: humans, Drosophila,
and mosquitoes. Proceedings of the National Academy of Sciences USA

102:6535-6542.


https://doi.org/10.1101/086629
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/086629; this version posted March 31, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

aCC-BY 4.0 International license.

Beardsley, P. M., S. E. Schoenig, J. B. Whittall, and R. G. Olmstead. 2004.
Patterns of evolution in western North American Mimulus (Phrymaceae).

American Journal of Botany 91:474-489.

Benson, D. A., I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and D. L. Wheeler.
2005. Genbank. Nucleic Acids Research 33:D34-D38.

Bokma, F. 2002. Detection of punctuated equilibrium from molecular phylogenies.

Journal of Evolutionary Biology 15:1048-1056.

Bokma, F. 2008. Detection of “punctuated equilibrium” by Bayesian estimation of
speciation and extinction rates, ancestral character states, and rates of anagenetic

and cladogenetic evolution on a molecular phylogeny. Evolution 62:2718-2726.

Conti, E., E. Suring, D. Boyd, J. Jorgensen, J. Grant, and S. Kelso. 2000.
Phylogenetic relationships and character evolution in Primula L.: the usefulness

of ITS sequence data. Plant Biosystems 134:385-392.

Coyne, J. A., H. A. Orr, et al. 2004. Speciation. Sinauer Associates Sunderland,
MA.

Dobzhansky, T. G. 1937. Genetics and the Origin of Species. Columbia University

Press.

Escudero, M., M. Hahn, B. H. Brown, K. Lueders, and A. L. Hipp. 2016.
Chromosomal rearrangements in holocentric organisms lead to reproductive

isolation by hybrid dysfunction: The correlation between karyotype


https://doi.org/10.1101/086629
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/086629; this version posted March 31, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

8

N

2

aCC-BY 4.0 International license.

rearrangements and germination rates in sedges. American Journal of Botany

103:1529-1536.

Escudero, M., A. L. Hipp, and M. Luceno. 2010. Karyotype stability and predictors
of chromosome number variation in sedges: a study in Carex section

Spirostachyae (Cyperaceae). Molecular Phylogenetics and Evolution 57:353-363.

Escudero, M., S. Martin-Bravo, I. Mayrose, M. Ferndndez-Mazuecos,
O. Fiz-Palacios, A. L. Hipp, M. Pimentel, P. Jiménez-Mejias, V. Valcarcel,
P. Vargas, et al. 2014. Karyotypic changes through dysploidy persist longer over

evolutionary time than polyploid changes. PLOS ONE 9:e85266.

Feder, J. L., X. Xie, J. Rull, S. Velez, A. Forbes, B. Leung, H. Dambroski, K. E.
Filchak, and M. Aluja. 2005. Mayr, Dobzhansky, and Bush and the complexities
of sympatric speciation in Rhagoletis. Proceedings of the National Academy of

Sciences USA 102:6573-6580.

Felsenstein, J. 1981. Evolutionary trees from dna sequences: a maximum likelihood

approach. Journal of Molecular Evolution 17:368-376.

FitzJohn, R. G. 2012. Diversitree: comparative phylogenetic analyses of

diversification in R. Methods in Ecology and Evolution 3:1084-1092.

Glick, L. and I. Mayrose. 2014. Chromevol: assessing the pattern of chromosome
number evolution and the inference of polyploidy along a phylogeny. Molecular

Biology and Evolution 31:1914-1922.


https://doi.org/10.1101/086629
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/086629; this version posted March 31, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

aCC-BY 4.0 International license.

Goldberg, E. E. and B. Igi¢. 2012. Tempo and mode in plant breeding system
evolution. Evolution 66:3701-3709.

Gottlieb, L. D. 1973. Genetic differentiation, sympatric speciation, and the origin of

a diploid species of Stephanomeria. American Journal of Botany Pages 545-553.

Green, P. J. 1995. Reversible jump Markov chain Monte Carlo computation and

Bayesian model determination. Biometrika 82:711-732.

Guggisberg, A., G. Mansion, and E. Conti. 2009. Disentangling reticulate evolution

in an arctic-alpine polyploid complex. Systematic Biology 58:55-73.

Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains and

their applications. Biometrika 57:97-109.

Heath, T. A.,; S. M. Hedtke, and D. M. Hillis. 2008. Taxon sampling and the
accuracy of phylogenetic analyses. Journal of Systematics and Evolution

46:239-257.

Hipp, A. L. 2007. Nonuniform processes of chromosome evolution in sedges (Carex:

Cyperaceae). Evolution 61:2175-2194.

Hipp, A. L., P. E. Rothrock, A. A. Reznicek, and P. E. Berry. 2007. Chromosome
number changes associated with speciation in sedges: a phylogenetic study in
Carex section Ovales (Cyperaceae) using AFLP data. Aliso: A Journal of

Systematic and Evolutionary Botany 23:193-203.


https://doi.org/10.1101/086629
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/086629; this version posted March 31, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

sz Hoeting, J. A., D. Madigan, A. E. Raftery, and C. T. Volinsky. 1999. Bayesian

843 model averaging: a tutorial. Statistical Science 14:382-401.

sae  Hohna, S. 2015. The time-dependent reconstructed evolutionary process with a

845 key-role for mass-extinction events. Journal of Theoretical Biology 380:321-331.

ss  Hohna, S., T. A. Heath, B. Boussau, M. J. Landis, F. Ronquist, and J. P.
847 Huelsenbeck. 2014. Probabilistic graphical model representation in phylogenetics.

848 Systematic Biology 63:753-771.

a0 HoOhna, S., M. J. Landis, T. A. Heath, B. Boussau, N. Lartillot, B. R. Moore, J. P.
850 Huelsenbeck, and F. Ronquist. 2016. RevBayes: Bayesian phylogenetic inference
851 using graphical models and an interactive model-specification language.

852 Systematic Biology 65:726-736.

&3 Huelsenbeck, J. P. and J. P. Bollback. 2001. Empirical and hierarchical Bayesian

854 estimation of ancestral states. Systematic Biology 50:351-366.

ss  Huelsenbeck, J. P., B. Larget, and D. L. Swofford. 2000. A compound Poisson

856 process for relaxing the molecular clock 154:1879-1892.

sz Huelsenbeck, J. P.; R. Nielsen, and J. P. Bollback. 2003. Stochastic mapping of

858 morphological characters. Systematic Biology 52:131-158.

o Kass, R. E. and A. E. Raftery. 1995. Bayes factors. Journal of the American

860 Statistical Association 90:773-795.


https://doi.org/10.1101/086629
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/086629; this version posted March 31, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

aCC-BY 4.0 International license.

Landis, M. J. in press. Biogeographic dating of speciation times using

paleogeographically informed processes. Systematic Biology .

Landis, M. J., N. J. Matzke, B. R. Moore, and J. P. Huelsenbeck. 2013. Bayesian
analysis of biogeography when the number of areas is large. Systematic Biology

62:789-804.

Maddison, W. P.; P. E. Midford, and S. P. Otto. 2007. Estimating a binary

character’s effect on speciation and extinction. Systematic Biology 56:701-710.

Madigan, D. and A. E. Raftery. 1994. Model selection and accounting for model
uncertainty in graphical models using Occam’s window. Journal of the American

Statistical Association 89:1535-1546.

Marcussen, T., L. Heier, A. K. Brysting, B. Oxelman, and K. S. Jakobsen. 2015.
From gene trees to a dated allopolyploid network: insights from the angiosperm

genus Viola (Violaceae). Systematic Biology 64:84-101.

May, M. R., S. Hohna, and B. R. Moore. 2016. A Bayesian approach for detecting
the impact of mass-extinction events on molecular phylogenies when rates of

lineage diversification may vary. Methods in Ecology and Evolution 7:947-959.

Mayrose, 1., M. S. Barker, and S. P. Otto. 2010. Probabilistic models of
chromosome number evolution and the inference of polyploidy. Systematic

Biology 59:132-144.

Mayrose, 1., S. H. Zhan, C. J. Rothfels, K. Magnuson-Ford, M. S. Barker, L. H.


https://doi.org/10.1101/086629
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/086629; this version posted March 31, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

aCC-BY 4.0 International license.

Rieseberg, and S. P. Otto. 2011. Recently formed polyploid plants diversify at

lower rates. Science 333:1257-1257.

Melters, D. P., L. V. Paliulis, I. F. Korf, and S. W. Chan. 2012. Holocentric
chromosomes: convergent evolution, meiotic adaptations, and genomic analysis.

Chromosome Research 20:579-593.

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.
1953. Equation of state calculations by fast computing machines. The Journal of

Chemical Physics 21:1087-1092.

Michel, A. P., S. Sim, T. H. Powell, M. S. Taylor, P. Nosil, and J. L. Feder. 2010.
Widespread genomic divergence during sympatric speciation. Proceedings of the

National Academy of Sciences USA 107:9724-9729.

Nee, S.;, R. M. May, and P. H. Harvey. 1994. The reconstructed evolutionary
process. Philosophical Transactions of the Royal Society B: Biological Sciences

344:305-311.

Nielsen, R. 2002. Mapping mutations on phylogenies. Systematic Biology
51:729-739.

Ohi-Toma, T., T. Sugawara, H. Murata, S. Wanke, C. Neinhuis, and J. Murata.
2006. Molecular phylogeny of Aristolochia sensu lato (Aristolochiaceae) based on
sequences of rbcL, matK, and phyA genes, with special reference to

differentiation of chromosome numbers. Systematic Botany 31:481-492.


https://doi.org/10.1101/086629
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/086629; this version posted March 31, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

s Pagel, M. and A. Meade. 2006. Bayesian analysis of correlated evolution of discrete
902 characters by reversible-jump Markov chain Monte Carlo. The American

903 Naturalist 167:808-25.

sa Pagel, M., A. Meade, and D. Barker. 2004. Bayesian estimation of ancestral

905 character states on phylogenies. Systematic Biology 53:673-684.

ws Pires, J. C. and K. L. Hertweck. 2008. A renaissance of cytogenetics: Studies in
907 polyploidy and chromosomal evolution. Annals of the Missouri Botanical Garden

908 95:275-281.

wo Posada, D. and T. R. Buckley. 2004. Model selection and model averaging in
010 phylogenetics: advantages of Akaike information criterion and Bayesian

o11 approaches over likelihood ratio tests. Systematic Biology 53:793-808.

o2 Pupko, T., I. Pe, R. Shamir, and D. Graur. 2000. A fast algorithm for joint
013 reconstruction of ancestral amino acid sequences. Molecular Biology and

014 Evolution 17:890-896.

as Ree, R. H. and S. A. Smith. 2008. Maximum likelihood inference of geographic
016 range evolution by dispersal, local extinction, and cladogenesis. Systematic

017 Biology 57:4-14.

ais Rieseberg, L. H. and J. H. Willis. 2007. Plant speciation. Science 317:910-914.

o9 Rodriguez, F., J. Oliver, A. Marin, and J. R. Medina. 1990. The general stochastic

920 model of nucleotide substitution. Journal of theoretical biology 142:485-501.


https://doi.org/10.1101/086629
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/086629; this version posted March 31, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

o1 Scarpino, S. V., D. A. Levin, and L. A. Meyers. 2014. Polyploid formation shapes

02 flowering plant diversity. The American Naturalist 184:456—465.

o3 Schwarz, G. 1978. Estimating the dimension of a model. The Annals of Statistics
924 6:461-464.

o5 Stebbins, G. L. 1971. Chromosomal evolution in higher plants. Edward Arnold

926 Ltd., London.

o7 Tank, D. C., J. M. Eastman, M. W. Pennell, P. S. Soltis, D. E. Soltis, C. E.
028 Hinchliff, J. W. Brown, E. B. Sessa, and L. J. Harmon. 2015. Nested radiations
929 and the pulse of angiosperm diversification: increased diversification rates often

030 follow whole genome duplications. New Phytologist 207:454-467.

os1 Tavaré, S. 1986. Some probabilistic and statistical problems in the analysis of DNA
032 sequences. In: Some Mathematical Questions in Biology—DNA Sequence
o3 Analysis, Miura RM (Ed.), American Mathematical Society, Providence (RI)

034 17:57-86.

o35 Timme, R. E., B. B. Simpson, and C. R. Linder. 2007. High-resolution phylogeny
a6 for Helianthus (Asteraceae) using the 18S-26S ribosomal DNA external

osv  transcribed spacer. American Journal of Botany 94:1837-1852.

ss  Vickery, R. K. 1995. Speciation by aneuploidy and polyploidy in Mimulus

a9 (Scrophulariaceae). The Great Basin Naturalist 55:174-176.

awo  Vos, R. A., H. Lapp, W. H. Piel, and V. Tannen. 2010. Treebase2: rise of the

041 machines .


https://doi.org/10.1101/086629
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/086629; this version posted March 31, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

sz White, M. J. D. 1978. Modes of speciation. San Francisco: WH Freeman
a3z 455p.-Illus., maps, chrom. nos.. General (KR, 197800185).

wus Xie, W., P. O. Lewis, Y. Fan, L. Kuo, and M.-H. Chen. 2011. Improving marginal
s likelihood estimation for Bayesian phylogenetic model selection. Systematic

946 Biology 60:150-60.

w7 Yang, Z. 1994. Maximum likelihood phylogenetic estimation from DNA sequences
948 with variable rates over sites: approximate methods. Journal of Molecular

049 Evolution 39:306-314.

oo Zhan, S. H., M. Drori, E. E. Goldberg, S. P. Otto, and I. Mayrose. 2016.

051 Phylogenetic evidence for cladogenetic polyploidization in land plants. American

al

052 Journal of Botany 103:1252-1258.


https://doi.org/10.1101/086629
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/086629; this version posted March 31, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Version dated: March 3, 2017

Supplementary Material for:
Cladogenetic and Anagenetic Models of
Chromosome Number Evolution: a Bayesian
Model Averaging Approach

WILLIAM A. FREYMAN! AND SEBASTIAN HOHNA™?
L Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA;

2 Department of Statistics, University of California, Berkeley, CA, 94720, USA

Corresponding author: William A. Freyman, Department of Integrative Biology,
University of California, Berkeley, CA, 94720, USA; E-mail: freyman@berkeley.edu.

) APPENDIX 1: VALIDATING REVBAYES ANCESTRAL

2 STATE ESTIMATES
3 Ancestral State Estimates of SSE Models
4 The code repository http://github.com/wf8/anc_state_validation

s contains scripts to validate the Monte Carlo method of ancestral state estimation
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¢ for state-dependent speciation and extinction (SSE) models we implemented in

7 RevBayes (Hohna et al. 2016) against the analytical marginal ancestral state

s estimation implemented in the R package diversitree (FitzJohn 2012).

0 Although the closest model to ChromoSSE implemented in diversitree is

1 ClaSSE (Goldberg and Igi¢ 2012), ancestral state estimation for ClaSSE is not

u implemented in diversitree. Therefore here we compare the ancestral state

12 estimates for BiSSE (Maddison et al. 2007) as implemented in diversitree to the

13 estimates made by RevBayes. Note that as implemented in RevBayes the BiSSE,
12 ChromoSSE, ClaSSE, MuSSE (FitzJohn 2012), and HiSSE (Beaulieu and O’Meara
15 2016) models use the same C++ classes and algorithms for parameter and

16 ancestral state estimation, so validating ancestral state estimates for BiSSE should
17 provide confidence in estimates made by RevBayes for all these SSE models.

18 In RevBayes we sample ancestral states for SSE models from their joint

19 distribution conditional on the tip states and the model parameters during the

2 MCMC. However, in this work we summarize the MCMC samples by calculating

2 the marginal posterior probability of each node being in each state. So the

» RevBayes marginal ancestral state reconstructions which are estimated via MCMC
23 are directly comparable to the analytical marginal ancestral states computed by

2 diversitree. It would be possible to summarize the samples from the MCMC to

s reconstruct the maximum a posteriori joint ancestral state reconstruction, but we

26 have not done so in this work.

o7 Comparison of RevBayes Fstimates to Diversitree
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28 Here we show ancestral state estimates under BiSSE for an example where
20 the tree and tip data were simulated in diversitree with the following parameters:
0 A =0.2,A\1 =0.4, uo = 0.01, uy = 0.1, and qo1 = q190 = 0.1. The ancestral state

a reconstructions from RevBayes and diversitree are shown in Figures 2 and 3,

» respectively.

3 The log-likelihood as computed by diversitree was -109.46, whereas with

s RevBayes it was -109.71. Small differences in the log-likelihoods are expected due
55 to differences in the way diversitree and RevBayes calculate probabilities at the

s root, and also due to numerical approximations. However both reconstructions

s should return the same probabilities for ancestral states at the root, and indeed
;s diversitree calculated the root probability of being in state 0 as 0.555 and RevBayes
s calculated it as 0.554. The estimated posterior probabilities are very close for all
w0 mnodes. This is shown in a plot comparing the marginal posterior probabilities for
a1 all nodes being in state 1 as estimated by RevBayes against the diversitree

» estimates (Figure 1).
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Figure 1: Posterior probabilities of marginal ancestral state estimates. FEach
point represents the marginal posterior probability of a node being in state 1 as esti-
mated by RevBayes plotted against the estimates made by diversitree. The marginal
ancestral states were estimated under BiSSE from a tree and tip data simulated with
the following parameters: \g = 0.2, \y = 0.4, 5o = 0.01, 1 = 0.1, and go; = q190 = 0.1.
The full ancestral state reconstructions from RevBayes and diversitree are shown in
Figures 2 and 3, respectively.
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Figure 2: Ancestral state estimates from RevBayes. Marginal ancestral states
estimated under BiSSE from a tree and tip data simulated with the following pa-
rameters: A\g = 0.2, A\ = 0.4, ug = 0.01, u; = 0.1, and qo1 = q10 = 0.1.
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Figure 3: Ancestral state estimates from diversitree. Marginal ancestral states
estimated under BiSSE from a tree and tip data simulated with the following pa-
rameters: )\0 = 02, )\1 = 04, Mo = 001, M1 = 01, and qo1 = q10 = 0.1.
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“ APPENDIX 2: METROPOLIS-HASTINGS MOVES

a4 The Metropolis-Hastings moves used in all ChromoSSE analyses are outlined
s in Table 1. All MCMC proposals are standard except the ElementSwapSimplex

s move and the reversible jump MCMC proposals. These are described in detail in

s the main text. MCMC analyses were run in RevBayes for 11000 iterations, where
s each iteration consisted of 79 MCMC moves per iteration. The 79 moves were

s randomly drawn from the 28 different Metropolis-Hastings moves listed in Table 1
so using the weights listed. Samples of parameter values and joint ancestral states

s1 were drawn each iteration, and the first 1000 samples were discarded as burn in.
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Table 1: MCMC moves used for chromosome number evolution analyses.
See the main text for further explanations of the moves used. Samples were drawn
from the MCMC each iteration, where each iteration consisted of 28 different moves
in a random move schedule with 79 moves per iteration.

Parameter X Move Weight

Anagenetic ~ Chromosome gain rate Ya Scale(A = 1) 2
Chromosome gain rate Ya Reduce/Augment 2
Chromosome loss rate da Scale(A =1) 2
Chromosome loss rate 0q Reduce/Augment 2
Polyploidization rate Pa Scale(A =1) 2
Polyploidization rate Pa Reduce/Augment 2
Demi-polyploidization rate Ma Scale(A =1) 2
Demi-polyploidization rate Ma Reduce/Augment 2
Linear component of gain rate Y Slide(d = 0.1) 1
Linear component of gain rate Ym Slide(d = 0.001) 1
Linear component of gain rate Ym Reduce/Augment 2
Linear component of loss rate Om Slide(d = 0.1) 1
Linear component of loss rate Om Slide(d = 0.001) 1
Linear component of loss rate Om Reduce/Augment 2

Cladogenetic  No change O Scale(A = 5) 2
Chromosome gain Ye Scale(A = 5) 2
Chromosome gain Ye Reduce/Augment 2
Chromosome loss dc Scale(A = 5) 2
Chromosome loss Oc Reduce/Augment 2
Polyploidization Pe Scale(A = 5) 2
Polyploidization Pe Reduce/Augment 2
Demi-polyploidization Ne Scale(A = 5) 2
Demi-polyploidization e Reduce/Augment 2
All cladogenetic rates ey Ve, 0e, Joint Up-Down 2

Pes Ne Scale(A = 0.5)

Other Root frequencies T BetaSimplex(a = 0.5) 10
Root frequencies 0 ElementSwapSimplex 20
Relative-extinction r Scale(A = 5) 3
Relative-extinction and all clado rates 1, ¢¢, V., Joint Up-Down 2

Ocy Pey e Scale(A = 0.5)
Total 28 79
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52 APPENDIX 3: SIMULATION DETAILS

53 Description of Simulation Experiments

sa  Experiment 1.—

55 In experiment 1 we tested the effect of unobserved speciation events due to

5o extinction on chromosome number estimates when using a model that does not

s7 account for unobserved speciation. Is the additional model complexity required to

ss account for unobserved speciation necessary, or are the effects of unobserved

so speciation negligible and safe to ignore? Using the non-SSE model described above
s that does not account for unobserved speciation, ancestral chromosome numbers

s1 and chromosome evolution model parameters were estimated for each of the 600

e datasets.

&3 Ezperiment 2.—

64 Here we compared the accuracy of models of chromosome evolution that
s account for unobserved speciation versus those that do not. Since extinction can
s safely be assumed to be present to some extent in all clades, it is likely that all
e empirical datasets contain some unobserved speciation. Do we see an increase in
¢ accuracy when we account for unobserved speciation events, or conversely do we
60 See an increase in the variance of our estimates that perhaps describes true

70 uncertainty due to extinction? To test this, we estimated ancestral chromosome

7 numbers and chromosome evolution model parameters over the simulated datasets
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72 that included unobserved speciation using both ChromoSSE that accounts for

73 unobserved speciation as well as the non-SSE model that does not.

7 Ezperiment 3.—

75 In experiment 3 we tested the effect of jointly estimating speciation and

76 extinction rates with chromosome number evolution. Estimating speciation and

7 extinction rates accurately is notoriously challenging (Nee et al. 1994; Rabosky

7z 2010; Beaulieu and O’Meara 2015; May et al. 2016), so how much of the variance in
70 chromosome evolution estimates made with models that jointly estimate speciation
so and extinction are due to uncertainty in diversification rates? Here we compared

s1 our estimates of ancestral chromosome numbers and chromosome evolution model
22 parameters using ChromoSSE that accounts for unobserved speciation (and in

s3  which speciation and extinction rates are jointly estimated) with estimates made

sa  from ChromoSSE but where the true rates of speciation and extinction used to

ss simulate the data were fixed. The latter analyses were given the true rates of total
ss Speciation and extinction, but still had to estimate the proportion of speciation

&7 events for each type of cladogenetic event.

ss  Erperiment 4.—

89 Since we model the same chromosome number transitions as both

o cladogenetic and anagenetic processes, it is possible that the two processes could be
s confounded and our models may not be fully identifiable. Furthermore, preliminary
o results suggested our models overestimate anagenetic changes and underestimate

i3 cladogenetic changes when the true generating process includes cladogenetic
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Table 2: Simulation parameter values. Parameter values used to simulate
datasets. The top 3 rows show the 3 modes of chromosome number evolution simu-
lated for Experiments 1, 2, 3, and 4: anagenetic only, cladogenetic only, and mixed.
Row 4 shows the parameter values used to simulate data for Experiment 5. The
total speciation rate A\; = 0.25 and the extinction rate p = 0.15. The root state was

fixed to 8.
Simulation
mode Ya da Pa Na  Ym Om be Ve de Pe Ne
Anagenetic 0.0085 0.0085 0.0085 - - - At - - - -
Cladogenetic - - - - - - 0.85A; 0.05X\; 0.05A; 0.05\; -
Mixed 0.0085 0.0085 0.0085 - - - 0.85X; 0.05M\; 0.05X; 0.05\; -
Experiment 5 0.0025 0.0025 0.0025 - - - 0.93X; 0.02X\; 0.02X\; 0.02\; -

s evolution. Here we compared cladogenetic and anagenetic estimates made by
s ChromoSSE under simulation scenarios that only included cladogenetic changes.
s Do we see an increase in accuracy of cladogenetic parameter estimates when

o anagenetic changes are disallowed (fixed to 0)?

e Ezperiment 5. —

% Experiments 1-3 deal with the increase in uncertainty caused by unobserved
10 speciation events due to extinction. Here we focused on the effect of unobserved

11 speciation due to incomplete taxon sampling by comparing chromosome number

102 estimates at 3 levels of taxon sampling: 100%, 50%, and 10%. We compared

103 estimates made by both the ChromoSSE model and the non-SSE model, as well as
e compared estimates made by ChromoSSE using the true taxon sampling

s probability ps versus estimates made by ChromoSSE using p; fixed to 1.0.

106 Methods Used to Simulate Data
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107 For experiments 1, 2, 3, and 4 the same set of simulated trees and

s chromosome counts were used. Since ChromoSSE assumes the total rates of

100 speciation and extinction are fixed over the tree (see Equation 5 of the main text),
o trees were first simulated with constant diversification rates, and then cladogenetic
w1 and anagenetic chromosome evolution was simulated over the trees. 100 trees were
2 simulated under the birth-death process with A = 0.25 and g = 0.15 (see Figure 4)
us  using the R package diversitree (FitzJohn 2012). The trees were conditioned on an
s age of 25.0 time units and a minimum of 10 extant lineages. To test the effect of
us unobserved speciation events due to lineages going extinct on cladogenetic

s estimates, chromosome number evolution was simulated along the trees including
u7  their extinct lineages (unpruned) and the same 100 trees but with the extinct

us lineages pruned. All chromosome number simulations were performed using

s RevBayes (Hohna et al. 2016).

120 Three models were used to generate simulated chromosome counts: a model
121 where all chromosome evolution was anagenetic, a model where all chromosome

122 evolution was cladogenetic, and a model that mixed both anagenetic and

13 cladogenetic changes (Table 2). Parameter values were roughly informed by the

124 mean values estimated from the empirical datasets. The mean length of the

s simulated trees was 253.5 (Figure 4). Hence, the anagenetic rates were set to

s 2/235.5 2 0.0085 which corresponds to an expected value of 2 events over the tree
127 for each of the four transition types. The root chromosome number was fixed to be
s 8. Simulating data for all 3 models over both the pruned and unpruned tree

129 resulted in 600 simulated datasets. To reproduce the effect of using reconstructed
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phylogenies all inferences were performed using the trees with extinct lineages
pruned and with chromosome counts from extinct lineages removed.

Since Experiment 5 focused on the effect of incomplete taxon sampling on
chromosome number estimates, the trees used needed to be conditioned on a known
number of extant tips. The trees used for the previous simulations were conditioned
only on age and a minimum of 10 extant lineages and so were not appropriate. To
simulate 100 trees conditioned on 200 extant lineages we used the R package
TreeSim (Stadler 2011) with A = 0.25 and p = 0.15 (like above). Complete trees
with both extant and extinct lineages were simulated, and then chromosome
evolution was simulated over the complete tree. Since these trees had a
significantly longer mean length (2020.1 compared to 253.5) we used different rates
of chromosome evolution to simulate data compared to Experiments 1, 2, 3, and 4
(Table 2). Chromosome numbers were only simulated using a mixed anagenetic
and cladogenetic model. The anagenetic rates were set to 5/2020.1 ~ 0.0025 which
corresponds to an expected value of 5 events over the tree for each of the four
transition types. Like Experiments 1, 2, 3, and 4, the root chromosome number was
fixed to be 8. Once chromosome data was simulated over the complete trees, the
extinct taxa were pruned off leaving trees with 100% taxon sampling. 50% of the
tips were randomly pruned off to create trees with 50% taxon sampling, and 90% of

the tips were randomly pruned off to create trees with 10% taxon sampling.
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Figure 4: Tree simulations. 100 trees were simulated under the birth-death process
as described in the main text for Experiments 1, 2, 3, and 4. Chromosome number
evolution was simulated over the unpruned trees that included all extinct lineages,
as well as over the same trees but with extinct lineages pruned. This resulted in
two simulated datasets: one simulated under a process that did have unobserved
speciation events, and one simulated with no unobserved speciation events. Shown
above is a histogram of the number of lineages that survived to the present, the
tree lengths, Colless’ Index (a measure of tree imbalance; Colless 1982), and lineage
through time plots of the 100 pruned and unpruned trees.
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s APPENDIX 4: MCMC CONVERGENCE OF SIMULATION
REPLICATES

152 Effective sample sizes (ESS) for all parameters in all simulation replicates
153 were over 200, and the mean ESS values of the posterior for the replicates was

154 1470.3. Since the space of possible models is so large (1024 possible models, see

155 main text), we replicated all analyses that included unobserved speciation in

155 Fixperiment 1 three independent times to ensure that MCMC convergence was not
157 an issue in detecting the true model of chromosome number evolution used to

155 simulate the data. The results displayed in Table 3 show that the percentage of

150 simulation replicates in which the true model was inferred to be the MAP model,
1o and the mean posterior of the true model, converged and were stable across all

11 three independent runs.

Table 3: Simulation Experiment 1 replicated 3 times. Estimates of the true
model that generated the simulated data and estimates of the posterior probability
of the true model were stable and converged across multiple independent replicates
of the experiment.

Replicate Mode of Evolution Used True Model Estimated Mean Posterior of True

to Simulate Data (%) Model
1 Cladogenetic 15 0.09
1 Anagenetic 36 0.12
1 Mixed 2 0.10
2 Cladogenetic 15 0.09
2 Anagenetic 36 0.12
2 Mixed 2 0.09
3 Cladogenetic 15 0.09
3 Anagenetic 36 0.12
3 Mixed 2 0.10
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