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ABSTRACT

Motivation: Growth rate is a major component of the evolu-
tionary fitness of microbial organisms and an excellent surro-
gate for cell health. In the high-throughput procedures QFA
and SGA, microbial cultures are inoculated in an array on
solid agar, and growth is measured to obtain quantitative fit-
ness estimates. Neighbouring cultures, which are often dif-
ferent genetic strains, consume nutrients at different rates,
creating gradients in nutrient density. We believe that diffu-
sion of nutrients between cultures is affecting growth in these
experiments. Current analysis does not account for this; in-
stead, it is assumed that cultures grow independently. I use a
network model of nutrient diffusion and nutrient-dependent
growth, to correct for competition, to try to improve the ac-
curacy and precision of fitness estimates. [ test the model
against QFA data from studies on telomere function in Sac-
charomyces cerevisiae. Ultimately, the model might be used
to improve the reliability of screens for genetic interaction
and drug sensitivity.

Results: I fit the competition model to a QFA plate from
Addinall et al. (2011). Using far fewer parameters (387 vs
1152), the new model fits timecourses with similar closeness
to the previous model. Fitness estimates are less precise for
the fastest growing strains, but more precise for the majority
of strains (36 out of 50). Fitness rankings agree in the posi-
tions of the fastest and slowest growing strains, but disagree in
the middle positions. In a cross-plate validation experiment,
the competition model overestimates timecourses to a similar
degree that the previous model underestimates. A different
method of fitting is required to find globally optimal solutions
which might improve reliability.

Availability and Implementation: CANS, a Python package
developed for the analysis in this paper, is freely available at
https://github.com/lwlss/CANS.

1 INTRODUCTION

The bacterium Eschericia coli and yeast Saccharomyces cere-
visiae are unicellular organisms studied as a model prokaryote
and eukaryote respectively. Much of their genomes have been
conserved in other species over billions of years of evolution
(O’Brien et al., 2005). S. cerevisiae was the first eukaryote to
have its entire genome sequenced (Goffeau et al., 1996), and
is commonly used as a basis for the study of other eukaryotes
including human cells.

Bacteria and yeasts grow in colonies. In favourable con-
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ditions, growth is exponential, and growth rate is a major
component of fitness; faster growing strains quickly come to
dominate populations. At a certain point, growth becomes
limited and a stationary phase is reached, so pressure also ex-
ists to use resources efficiently. In short, fitness is governed
by competing pressures on growth rate and yield (Dethlef-
sen and Schmidt, 2007). It is possible to observe growth to
estimate fitness (Baryshnikova et al., 2010a; Addinall et al.,
2011). Cell cultures are grown on either the surface of a nutri-
entrich solid agar, or suspended in a liquid mixture containing
nutrients, and cell density is measured over time. Fitness is
defined by measures such as growth rate. Identical strains
might grow differently between mediums causing fitness es-
timates to differ (Baryshnikova et al., 2010a). Here, I focus
on estimating the fitness of microbes grown on a solid agar
surface.

Fitness estimates can be used to infer genetic interaction
or drug response. Using high-throughput methods, this can
be conducted on a genome-wide scale (Costanzo et al., 2010;
Andrew et al., 2013). In a typical genetic interaction screen,
a strain is created with a mutation in a query gene (back-
ground). Second deletions are introduced to create different
double mutants. Genetic interactions are inferred by compar-
ing the growth of a double mutant to the growth of the two
corresponding single mutants. If the double mutant is fitter
than predicted given the observations of single mutant fitness,
then the deletion is said to suppress the defect of the query
mutation. If the double mutant is less fit than predicted given
the observations of single mutant fitness, then the deletion is
said to enhance the defect of the query mutation. Either sce-
nario suggests that the two genes interact. Due to redundancy,
single deletions are often non-lethal. This allowed Costanzo
et al. (2010) to explore genetic interactions for ~75% of the
S. cerevisiae genome.

Synthetic Genetic Array (SGA) and Quantitative Fitness
Analysis (QFA) are high-throughput fitness-screening meth-
ods, which use solid agar, and make quantitative estimates of
microbial fitness (Baryshnikova et al., 2010b; Banks et al.,
2012). In SGA, cultures are pinned onto plates. Typically,
in QFA, dilute liquid cultures are inoculated onto plates. In
both procedures, cultures are arranged in rectangular arrays.
Each culture is a single strain and each plate my may con-
tain 100s or 1000s of different strains. Whole genomes can
be explored using different combinations of query genes and
deletions. I study QFA, in which a model is fit to growth
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curves, and fitness estimates are defined in terms of model
parameters. Typical QFA procedures use 16x24 arrays (384
spots). In contrast, SGA procedures use a single endpoint
assay of culture area to quantify growth, and, typically, use
larger 32x48 arrays (1536 dots). In QFA, inoculum density
may be varied to capture more or less of the growth curve; the
most dilute cultures are inoculated with ~100 starting cells
(Addinall et al., 2011). Plates are incubated at a controlled
temperature and periodically removed for whole plate pho-
tographs to be taken. Incubation lasts several days, to capture
both the exponential and stationary growth phases. The soft-
ware Colonyzer (Lawless et al., 2010) converts optical density
measurements in photographs to cell density timecourses for
each culture. Past analysis fit the logistic growth model (1).
The differential form and solution of the logistic model (Ver-
hulst, 1845) are given in (1), where C' is cell density, r is a
growth constant, and K is a carrying capacity.

C=rC (1 — %) (1a)
KC(0)e™

U= Frene =1

(1b)

The logistic model is a simple mechanistic model describing
self-limiting growth and has a sigmoidal solution. Growth
begins exponentially, with rate rC, and curtails as the pop-
ulation size increases and cells begin to compete for some
limited resource. Cell density reaches a final carrying capac-
ity, K{, at the stationary phase. In QFA, nutrients must diffuse
through agar to reach cells growing on the surface. K mightbe
reached when nutrients run out, or growth becomes diffusion
limited and is approximately stationary. Fitting the logistic
model to a 384 culture plate, requires culture level parameters
for r and K, and either plate or culture level parameters for
C'(0), making a total of 769 or 1152 parameters.

The growth constant r could be used as a fitness measure.
Addinall et al. (2011), however, define a more complicated
fitness measure as the product of Maximum Doubling Rate
(MDR) and Maximum Doubling Potential (MDP), which they
calculate from logistic model parameters. MDR is the dou-
bling rate at the beginning of the exponential growth phase.
MDP is the average number of cell divisions between inocu-
lation and stationary phase.

r

MDR = ra—en 2
09\ "K—2c(0)
log (CL>
B (0)
MDP = Tlon@) (2b)

To improve the quality of fits, QFA now uses the generalised
logistic model which requires an extra shape parameter for
each culture (Banks et al., 2012). Standard and generalised
logistic model r are not equivalent, so comparison relies on
MDR and MDP as fitness measures. Either model can be fit
using the QFA R package (Lawless et al., 2016).

Since QFA aims to differentiate strains by fitness, many
different strains are grown on one plate, and fast and slow

growing strains often grow side-by-side. This is exempli-
fied in Figure 1, which shows a section of a QFA plate from
Addinall et al. (2011). Cultures were inoculated with approx-
imately equal cell density, but grew to different sizes, at dif-
ferent rates. Intimecourses from this plate, all cultures appear
to reach the stationary phase at a similar timepoint, despite
starting with the same amount of nutrients and growing at
different rates. This suggests a global growth-limiting effect,
which might be caused by an interaction between cultures.
I test whether the interaction is a competition effect, caused
by diffusion of nutrients along gradients formed between fast
and slow growing neighbours. Competition has implications
for growth estimates; growth will appear faster or slower for
each neighbour, than it would if cultures grew independently.
The experiment in Figure 2 provides further evidence of an
interaction between neighbours. Identical strains were re-
peated in the same positions on two plates, but on one plate
every second column was left empty. Cultures in Figure 2a,
with fewer neighbours, grew larger than the same cultures in
Figure 2b.

Figure 1: 4x5 section of a QFA plate (P15). Cropped from a 16x24
format solid agar plate inoculated with dilute S. cerevisiae cultures.
Image captured after ~2.5 days incubation at 27°C.

Current QFA analysis, using the logistic model, assumes
that cultures grow independently. A sigmoidal curve fits QFA
data poorly in many cases. I aim to correct for competition
using a network model of nutrient diffusion and nutrient-
dependent growth, to improve the fit of individual growth
curves, and increase the accuracy and precision of fitness es-
timates.

There have been attempts to reduce and correct for com-
petition effects experimentally and statistically. This does
not require explicit knowledge or modelling of the source of
interaction. For example, QFA data for edge cultures is usu-
ally discarded because of noise, but Addinall et al. (2011)
grow repeats of a neutral deletion in edge locations, rather
than leave them empty, because of concerns about compe-
tition. Plates could also be repeated with randomised cul-
ture positions. However, this is unlikely to remove all bias;
for instance, the fastest growing strains would always have
slower growing neighbours. In an SGA study, Baryshnikova
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et al. (2010a) use various statistical techniques to improve
the correlation between repeats of the same strain in differ-
ent positions. I expect that an explicit model of competition,
fit to whole growth curves, will provide a better correction
and improve fitness estimates, without requiring extra repeats.
Furthermore, a model might identify and explain the source
of competition. Simulations of a successful model could be
used, not only to analyse existing data, but to compare experi-
mental designs, and predict ways to reduce competition exper-
imentally. Poisoning of cultures by a signal molecule, such
as ethanol, which S. cerevisiae produces in the metabolism
of sugars by fermentation, is another possible source of in-
teraction. QFA does not measure nutrients or signal, so, if
more than one type of interaction is significant, it will be very
difficult to fit a model. In such circumstances, experimental
and statistical methods might be the best approach.
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Figure 2: Plates from a QFA experiment designed to examine com-
petition. A) “Stripes”; B) “Filled”. Identical strains are repeated
in the same positions on each plate, except in every second column
in A, where locations are left empty. The extra columns in B are a
transposition of the columns to the left, but with a different query
mutation. The leftmost column in B contains repeats of a control
with a neutral deletion. Cultures were inoculated with a higher cell
density than in Figure 1.

Reo and Korolev (2014) use a 2D diffusion equation
model to simulate nutrient dependent growth of a single bac-
terial culture on a pertri dish. They create a sink for nutrients
from culture growth, and equate the flux of nutrients through
culture area with the rate of increase in culture size. They
keep culture density constant and allow culture area to vary.

This model could be adapted for QFA, if instead, culture area
is approximated as constant and culture density is allowed to
vary. It would, however, be too computationally intensive to
fit such a model to a full QFA plate in three-dimensions, espe-
cially if the model is to be used to analyse many plates from
high-throughput experiments. Therefore, a simpler model of
nutrient diffusion is required.

Figure 3: Schematic of the competition model. Cultures, rep-
resented by circles indexed i, grow in a rectangular array on the
surface of a nutrient containing solid agar. The agar is divided into
equal areas surrounding each culture. Each culture has an amount
of cells, C;, and is associated with an amount of nutrients, N;. Ar-
rows represent diffusion of nutrients between cultures. Darker blue
circles, 9;, are the closest neighbours of the red culture, i.

We propose a network model of nutrient diffusion and
nutrient-dependent growth (Figure 3), hereinafter the compe-
tition model, which uses reaction equations and a mass action
kinetic approximation. Nutrient-dependent division of cells
is represented by the reaction equation,

Ci+N; 520, 3)

where C'is a cell, N is the amount of some limiting nutrient
required for one cell division, and b is a rate constant for the
reaction. The identity of N is unknown, but possible candi-
dates are sugar and nitrogen. Each culture, indexed i, has a
separate reaction (3) with growth constant b;. Mass action
kinetics gives the rate equation (4a) for the amount of cells,
C;, in a culture, and the first term in the rate equation (4b) for
the amount of nutrients, [V;, associated with a culture.

C =bNC (4a)
N = —bNC (4b)
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Ci = bNiCi, (52)
]\.71' = 7b7N7CI - kZ(N’L - Nj)' (Sb)

Jjed;

To arrive at the full competition model, the diffusion of nutri-
ents along gradients between a culture and its closest neigh-
bours, d;, is modelled by reactions of the form,

N; % N, Vj € d, (6)
where k is a nutrient diffusion constant which is independent
on culture location. Using mass action kinetics, the sum of
diffusion reactions between a culture and its neighbours gives
the second term in (4b).

Unlike the logistic model (1), the competition model has
no analytical solution; instead, it must be solved numerically.
When £ = 0, the competition model is a special case of
Monod kinetics (Monod, 1942) with an assumption of un-
saturated nutrients and yield constant, the mass ratio of cells
produced to nutrients consumed, equal to one. Considering
conservation of mass, Kargi (2009) shows that in this case,
the Monod model is equivalent to the logistic model and can
be re-expressed as such, with substrate consumption implicit.
We use the form with explicit substrate, hereinafter the mass-
action logistic model, so that we can also model nutrient dif-
fusion. Importantly, the equivalence of the competition and
logistic models allows us to convert between parameters to
compare fitness estimates (see Section 2.5).

In QFA, C; are observed and IV; are hidden. Inoculum
densities, C;(0), are often below detectable levels. When fit-
ting the competition model, I assume that inoculum density
is the same for all cultures, nutrients are evenly distributed
throughout the agar at time zero, and % is constant across the
plate. Ican therefore infer C'(0), N (0), and k at the plate level.
Including growth constants, b;, for each of 384 cultures on a
typical plate, makes 387 parameters in total. The competition
model has roughly half as many parameters as the standard
logistic model, and a third as many as the generalised logistic
model.

The competition model makes many other approxima-
tions. It is a deterministic model which uses a continuum
approximation for numbers of reactant species. In QFA, pop-
ulations begin with ~100 cells, but quickly grow to reach
thousands of cells, so this approximation appears valid. Mass
action kinetics applies to reactions in a well stirred mixture,
and is, perhaps, less valid for cultures growing on solid agar. A
mass action approximation has, nevertheless, been successful
in other situations where this assumption is questionable: in
the Lotka-Volterra model of predator-prey dynamics (Berry-
man, 1992) and in signalling and reaction models inside cells
(Aldridge et al., 2006; Chen et al., 2010). The order of a
reaction also affects the rate equation, but the identity, and
quantity of the nutrient molecule is unknown. Reactions also
assume that all nutrients are converted to cells and include
no model of metabolism. I justify the use of the competi-
tion model because in the independent limit it has the same

solution as the logistic model, long used to model micro-
bial growth. Furthermore, collectively fitting the competition
model involves a large number of parameters and data points,
and will require many simulations to be run. Computational
feasibility necessitates the use of many approximations.

2 METHODS

2.1 CANS

I developed a Python package (CANS) for model compo-
sition, model simulation, parameter inference, and visuali-
sation of results. I use CANS to fit the competition model
to QFA data. CANS accepts cell density timecourses for
locations in rectangular arrays of arbitrary size. SBML
models are produced to document results of parameter in-
ference, and for independent validation using other simula-
tion tools. It is simple to create new models with reactions
which are common to each location, including diffusion re-
actions between nearest neighbours. CANS is available at:
https://github.com/lwlss/CANS.

2.2 The P15 dataset

I compared the logistic and competition model by fitting both
to a single plate from a previous QFA study on S. Cerevisiae
(Addinall et al., 2011). I call this plate P15. A 3x3 section
is shown in Figure 1. P15 contains 384 cultures, all with
background mutation cdcl3-1. cdcl3 is involved in telomere
stability and cdcl3-1 is a temperature-dependent mutation.
Each culture also has a deletion from a standard deletion li-
brary containing 49 different deletions thought to affect telom-
ere function. There are 6 repeats of each of these deletions.
There are also 14 repeats of a strain with a neutral deletion,
his3A. Edge cultures are inoculated with extra repeats of the
neutral deletion, but results are discarded due to noise from
reflections off plate walls. Inoculum density is ~100 cells,
which is below the level of detection. P15 was incubated
at 27°C, at which point cdci3-1 starts to experience loss of
function. Each culture has a cell density timecourse with 10
timepoints covering 4 days. Several features make P15 a good
test case. Strains vary greatly in fitness, so competition should
be present. Repeats of each strain increase statistical power.
Furthermore, for several strains, independent spot tests have
been published and may be used for validation (Maringele
and Lydall, 2002; Zubko et al., 2004; Holstein et al., 2014;
Foster et al., 2006).

2.3 The Stripes and Filled datasets

I used a two-plate QFA experiment (E. Holstein, personal
communication, April 2016) to validate the competition
model. Images of the plates, termed the “Stripes” and “Filled”
plates, are shown in Figure 2. As for P15, the experiment uses
strains of S. Cerevisiae with a background mutation, and a
deletion in a gene relevant to telomere function. In contrast to
P15, there are more deletions per plate and no repeats for most
strains. Identical strains are repeated in the same positions on
each plate, except in every second column in the Stripes plate,
where locations are left empty. The common cultures have
background mutation cdcl3-1, as used in P15, and identical
strains are inoculated from the same liquid culture to reduce
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genetic variation. The extra columns in the Filled plate are a
transposition of the columns to the left, but with a different
query mutation rad75A. The leftmost column in the Filled
plate contains repeats of the neutral deletion, his3A. Inocu-
lum density is ~10,000 cells, which is much higher than that
used in P15, and detectable at time zero. The plates were
incubated together at 27°C, where the defect of cdcl3-1 is
larger than that of rad75A. Each culture has a cell density
timecourse with ~50 timepoints covering four days. This is
about five times as many timepoints as collected for P15.

The different neighbour configurations cause identical
strains to grow differently between the two plates. To val-
idate the competition model, I calibrate parameters on the
Filled plate and validate by simulating timecourses for the
Stripes plate. This is possible because the Filled plate con-
tains all of the strains present on the Stripes plate.

2.4 Solving and fitting
2.41 Solving

CANS solves ODE models numerically using one of two
packages: integrate from SciPy, and libRoadRunner. The
method integrate.odeint solves ODEs written in Python, at
user supplied timepoints. I used NumPy to vectorise com-
petition model ODEs to optimise solving by this method. li-
bRoadRunner is implemented in C++ and solves ODEs for
models written in SBML. I access libRoadRunner through its
Python API, and use the libSBML Python API to automati-
cally generate SBML versions of the competition model for
any size plate. For a 16x24 culture plate with cell density
observations at 10 evenly spaced timepoints, libRoadRun-
ner is approximately 10 times faster than SciPy’s integrate,
solving in hundredths rather than tenths of a second. Un-
like SciPys’s integrate.odeint, libRoadRunner solves only at
evenly spaced timepoints. To fit P15, where each timecourse
has 10 unevenly spaced timepoints, I simulated sequentially
between adjacent timepoints. For the Stripes and Filled plates,
which have ~50 unevenly spaced timepoints, I sampled 15
evenly spaced timepoints from a spline. [use SciPy’s interpo-
late.splrep to make 5th order B-splines with smoothing con-
dition s = 1.0, and SciPy’s interpolate.splev to evaluate. The
sampled timepoints range from time zero to the time of last
observation. Solving then requires just one call to libRoad-
Runner’s RoadRunner.simulate. Using libRoadRunner on a
modern CPU, fitting a 16x24 format plate with 10 unevenly
spaced timepoints takes ~3 hours; fitting a full plate with 15
evenly spaced timepoints takes ~1 hour.

2.4.2 Fitting the competition model

I processed raw QFA data using Colonyzer (Lawless et al.,
2010) to produce cell density timecourses. To these, I fit
the competition model, using a gradient method, and normal
model of measurement error, to make maximum likelihood
estimates of parameters. The particular gradient method was
a constrained minimisation: the L-BFGS-B algorithm from
SciPy’s integrate package. I determined stopping criteria so
that parameters of simulated full-plate data sets, with a small
amount of simulated noise, were recovered with high preci-
sion. To help the minimizer, I scaled C'(0) values by a factor

of 10° to make them closer to other parameter values. For
each plate, I ran many fits with different initial parameters to
try to find a global minimum (see Section 2.6). I set parameter
bounds according to Table 1, and checked that best fits had
no parameters at a boundary.

Table 1: Parameter bounds for fitting the competition model to
P15 and the Stripes and Filled plates. The same bounds on N(0)
were used for both internal and edge cultures. Bounds on C'(0) and
N (0) were set using initial conditions: “guess” refers to the initial
guess of each parameter (see Section 2.6).

Parameter | Lower Bound Upper Bound
C(0) guess x 1072 guess x 103
N(0) guess / 2 guess X 2

k 0.0 10.0
b 0.0 None

Cultures at the edge of a plate gain an advantage from ac-
cessing a greater area of nutrients. I corrected for this using
separate parameters, N7(0) and Ng(0), for the initial amount
of nutrients in internal and edge cultures. In rate equations
involving edge cultures, I scaled edge culture nutrient amount
by the ratio N;(0) /Ng(0). The physical interpretation of this
correction is that edge cultures have an extra supply of nutri-
ents that can diffuse instantly into the reaction volume. This
treatment increased the closeness of fit to cultures one row or
column inside the edge, and to internal cultures overall (see
Table 4 in Section 3.1.2). Cell density measurements from
edge cultures contain extra noise due to reflections from plate
walls (Lawless et al., 2010). For the competition model, un-
like the logistic model, these cannot simply be discarded prior
to fitting. Instead, I collectively fit to all cultures and selected
best fits based on only the closeness of fit to internal cultures.

2.4.3 Fitting the logistic model

Fitting the mass action logistic model requires a culture level
N(0), creating 383 extra parameters. The QFA R package
(Lawless et al., 2016) can fit the standard logistic model, and
has heuristic checks to correct a confounding of r and K
parameters that occurs when slow-growing cultures are dom-
inated by noise. I did not have time to implement these checks
for the mass action logistic model, so I instead fit using the
QFA R package. This is not equivalent to the competition
model fit because the QFA R package uses a culture level
C(0), i.e., there is no collective fitting. This makes 1152 to-
tal parameters, rather than the 769 that we would have using
the mass action logistic model. It is, nevertheless, useful to
compare fitting of the competition model with the standard
logistic model from the QFA R package, because the latter has
been used in previous QFA papers, including Addinall et al.
(2011) from which we take P15. In contrast to the competi-
tion model, noisy data from edge cultures can be discarded
prior to fitting the logistic model. To remove bias in objective
function comparison, I converted estimated logistic model pa-
rameters to competition model parameters (see Section 2.5)
and reevaluated using CANS.
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2.4.4 Data visualisation

I used the Python package matplotlib to create plotting func-
tions in CANS to visualise fits and simulations of QFA time-
courses and to compare the ranking of fitness estimates.

2.5 Parameter conversion

In the independent limit (k = 0), it is possible to equate C' of
the competition and logistic model. Parameters can then be
converted as follows:

r = b(C(0) + N(0)), (7a)
K = C(0) + N(0). (7b)

A Logistic Equivalent Fit

X X Observed Cells
— Logistic Cells

0251 Logistic Nutrients

Amount (AU)
°© o
o S

=}

—

o
T

0.05 -
0.00 i i .
0.0 0.5 1.0 1.5 2.0 25 3.0 35 4.0
Time (days)
B 030 Corrected Competition Fit

X X Observed Cells

— Competition Model Cells

== Corrected Cells
Competition Model Nutrients
Corrected Nutrients

0.25}+

=}

N

o
T

Amour;t (AU)

=}

=

o
T

0.00
0.0

Figure 4: Using the competition model to return logistic model
parameters. A) Fit of the logistic model displaying estimated pa-
rameters. B) Fit of the competition model (solid; k = 6.7), and
simulation of independent growth (dashed; k = 0) displaying cor-
rected logistic model parameters. Both fits are to culture (R10, C3)
of P15 which grew faster and reached a higher final cell density than
its neighbours (not shown).

The competition model assumes that all nutrients are con-
verted to cells, implying that all cultures starting with the same
amount of nutrients reach the same final amount of cells. As
final cell amounts generally differ, it is, therefore, necessary

to allow N (0) to vary for each culture when fitting the mass
action logistic model. This is not realistic; the competition
model already assumes k£ > 0. It is, nevertheless, possible to
disregard our interpretation of the competition model, fit the
mass action logistic model, and convert parameters to those
of the standard logistic model. This is illustrated in Figure 4a
showing a single culture from a 16x24 format plate. This cul-
ture grew faster than its neighbours (not shown) and reached
a higher final cell amount. Notice that estimated N (0) is ap-
proximately equal to final cells. The conversion equations
can also be used to return corrected r and K, for growth in
independent conditions, after first fitting the full competition
model. This is illustrated in Figure 4b, in a fit to the same
culture, where dashed lines represent the corrected fit. Notice
that corrected values of r and K differ from those in Figure 4a.

It is easy to compare competition model b with logistic
model parameters, because C'(0) and N (0) are fit collectively
for each plate. This leads to b o r «x M DR (see Equa-
tions 2 and 6). Note also that all cultures have the same K
and M DP. bis therefore equivalent to several common QFA
fitness measures: r, M DR, and M DR « M DP (Addinall
etal.,2011). This makes b a very convenient fitness measure;
we need not convert to logistic model parameters to compare
the fitness rankings of cultures on the same plate. To compare
fitness rankings between different plates we can of course use
b. This is not, however, equivalent to comparing  or M DR
as different plates may have different C(0) and N (0).

2.6 Determining initial parameters

Fitting the competition model to a full plate with 387 param-
eters is a formidable optimisation problem with potentially
many local minima. Achieving a good fit therefore requires a
good initial guess. To fit small simulated zones, I simply used
many random parameter guesses. For a full plate, more so-
phisticated guessing methods are required because the chance
of any random guess being close to optimal values diminishes.
I developed the Imaginary Neighbour Model (Figure 5) for
guessing competition model b and this allowed good fits to be
made.

Figure 5: Schematic of the imaginary neighbour model. A real cul-
ture (red) with cell observations, Cops, is modelled growing along-
side imagined fast and slow growing neighbours (blue) with growth
constants by and bs (for fast and slow). Rather than a single pa-
rameter, the model uses separate nutrient diffusion constants, kj
and ks, for the fast and slow growing neighbours. kg, ks, and the
growth constant, b;, of the real culture are estimated by fitting the
model to Cops with all other parameters fixed. b; are then taken
as initial guesses for the competition model. Different numbers of
each neighbour can be chosen to replicate different configurations
of neighbours that might be present on a real plate.
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2.6.1 Guessing initial amounts

To fit the imaginary neighbour model, it is first necessary to
guess initial amounts. Recall from the competition model
reaction equations (3 and 5) that nutrients can only diffuse
or be converted to cells. Thus, assuming that reactions are
nearly complete at the end of cell observations, and that
C(0) <« C(0), total initial nutrients, N, can be estimated
as,

Nrot =niNi(0) + ngNg(0) = Cr, (®)

where CF is total final cells, n; and ng are the numbers of
internal and edge cultures, and N;(0) and Ng(0) are initial
nutrient amounts for internal and edge cultures. Using this
equation, and an estimate for the ratio of the area associated
with edge cultures to the area associated with internal cul-
tures, A, = Agp/A;r = Ng(0)/N1(0), I guessed N7(0) and
Ng(0) as follows:

N1(0) = Nrot/(nr + ngA;)

Ng(0) = Nrot/(n1/Ar +nE). ®

When A, = 1, N;(0) = Ng(0) and we loose a parameter. I
estimated A, = 1.5 for plates in this paper.

When using dilute cultures, C'(0) cannot be detected. I
used a range of values in logspace and made a fit for each,
rather than estimate a single initial guesses. The range was
chosen to encompass uncertainty in C'(0) for the given exper-
1ment.

2.6.2 Guessing b

From initial guesses of N(0) and C(0), I used the imaginary
neighbour model (Figure 5) to quickly fit individual cultures
and obtain initial guesses of b;. This model is based on the
reaction and rate equations of the competition model (3-5),
but tries to replicate the diffusion of nutrients into and out of
a culture using imaginary fast and slow growing neighbours.
These have growth constants by and bs, and separate nutri-
ent diffusion constants &k, and k,. To fit, I fixed C(0) and
N(0) as the initial guesses, by at a high value, and b5 = 0.
I allowed b;, k¢, and k; to vary from zero to infinity. I used
initial values of zero for k¢ and k,. For each set of parame-
ter guesses, I ran fits with initial values of b; over the range
(35, 40, ..., 100), with by fixed at 1.5 times this value. I de-
termined the number of imaginary neighbours, such that the
culture with the highest observed final cell density had enough
slow growing neighbours to provide all of the nutrients nec-
essary to reach this value. I solved the imaginary neighbour
model using SciPy’s integrate.odeint and fit using a gradient
method as in Section 2.4.2. Fits of the imaginary neighbour
model take several minutes compared to several hours for the
the competition model.

2.6.3 Guessing k

The last parameter left to guess is nutrient diffusion constant
k. I observed that simulations of the competition model using
b; drawn from normal distributions have linear relationships
between variance in final cells, o2, and k. Setting other
parameters as the guesses above, I simulated the competition
model over a range of k and fit a straight line to oc? vs k

using simple linear regression. I then took measured o2 and
used the line to predict k.

3 RESULTS

3.1 Model comparison using P15
3.1.1 Quality of fit

I compared the competition and logistic models by fitting
both to P15 (data described in Section 2.2). For the com-
petition model, I used five values of C(0) over the range
N(0)x107° < C(0) < N(0)x10~3 to make initial param-
eter guesses as described in Section 2.6. This generated 70
initial parameter sets which I used in 70 separate fits. Cell
density estimates fit data closely (Figure 6). A high nutrient
diffusion constant, k, is estimated, such that nutrients dif-
fuse readily and nutrient timecourses are similar across local
areas of the plate. Estimated parameters for the two clos-
est fits are show in Table 2. The fits agree better for N7(0)
and Ng(0) than for C(0) and k. It appears that the gradient
method is not finding a global minimum. However, b; esti-
mates are correlated with Spearman’s rank correlation coeffi-
cient, ps = 0.989, and have average mean absolute deviation,
MAD = 1.56. The mean value of b for the best fit is 44.4, so
agreement between b; are good. This is important because b
is to be used as a fitness estimate to compare with the logistic
model.

Table 2: Estimated parameters for the two best competition model

fits to P15. Spearman’s rank correlation coefficient (ps) between
b estimates is 0.989. Mean absolute deviation (MAD) between b
estimates is 1.56. Mean b for the best fit is 44.4. Obj. is the to-
tal objective function value for internal cultures (smaller values are
better).

Fit C(0) N;(0) Ng(0) k  Obj.
Ist  9.1x10~° 0064 0090 67 0.194
ond  13.9x10~° 0062 0.097 83 0.19

The boxed 3x3 zone in Figure 6 is replotted in Figure 7
with fits of the competition model (solid blue and yellow),
initial guess (dashed blue and yellow), and logistic model
(solid red). The zone contains more fast growing cultures
than is typical for the plate, so competition effects might be
greater than average. The fit of the initial guess is typical for
the plate: timecourses for some cultures, such as the bottom-
left, are poor. Nevertheless, the guess fulfils its purpose by
allowing a good fit of the competition model to be made. Ob-
jective function values for the logistic and competition model
are similar for most cultures in the zone. For the centre and
centre-right fast growing cultures, however, the competition
model has lower objective function values and fits are much
closer. The total objective function value for the zone is lower
for the competition model: 44.06 vs 68.38 (values scaled by
10%). This is not typical for the plate: objective function val-
ues are on average slightly better for the logistic model (see
Table 3). Recall that only internal objective function values
are used to assess the fit. Overall, the competition model
performed well considering that it used far fewer parameters
(387 vs 1152).
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Cultures Competition Logistic
Int I 0.194 0.155
Table 3: Objective function values for competition and logistic Anlle ma 0.465 0.345

model fits to P15. “Internal” is the total objective function value
for cultures not at an edge and is used to select the best fit. “All”
is the total objective function value for all cultures on the plate.
Smaller values are better.
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Figure 6: Fit of the competition model to P15. Data are for a 16x24 format plate (P15) with background mutation cdcl3-1 incubated at 27° C. The plate contains 6 repeats of 50 genetic strains
arranged randomly across internal cultures. The outer two rows and columns have been removed from the image to better fit the page. Model output for state variable, cell population size (blue
curve), is fit to observed data (black crosses). Model predictions for unobserved variable (nutrient amount) are also plotted (yellow). The boxed zone is plotted at a larger size in Figure 7.
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Figure 7: A 3x3 zone of P15 showing fits of the competition and
logistic models. The zone has top-left coordinates (5, 18) and is
boxed in red in Figure 6. This is a zoom on a whole plate fit, not just
a fit to the zone. Fits are for the competition model (blue and yellow
solid); logistic model (solid red), and initial guess (blue and yellow
dashed). Objective function values (Obj.), scaled by 10*, are dis-
played for each culture (smaller values are better). Total objective
function for the competition model is 44.06, for the logistic model
68.38.

3.1.2 Evaluating the treatment of boundaries
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Figure 8: Fits of one and two initial nutrient parameter competi-
tion models to P15. The top left corner of a 16x24 QFA plate (P15)
fit with two versions of the competition model: the first (solid) with
a single initial nutrient amount for all cultures, the second (dashed)
with a separate initial nutrient amount for edge cultures.

To evaluate how I treat boundaries, I again fit the compe-
tition model to P15, this time without a separate parameter
for the initial amount of nutrients in edge cultures. Recall that
edge cultures must be included when fitting the competition
model, despite being discarded from results due to noise. The
quality of fit appears similar for both the one and two N(0)

models (Figure 8); the average objective function values for
the entire plate are similar but slightly better for the two N (0)
model (Table 4). Surprisingly, objective function values for
edge cultures are worse for this model. Nevertheless, the fit
is improved for cultures next to an edge, and, importantly, for
internal cultures overall. The two N (0) model takes a deficit
from edge cultures to improve the overall fit.

Table 4: Average objective function values for one and two N (0)
parameter competition models fit to P15. Lower values are better.
Averages are for cultures belonging to the areas indicated in the
column “Cultures”. “Next to edge” refers to cultures one in from
the edge. “Internal” refers to all cultures but the edge. Values have
been scaled by 10*.

Cultures One N(0) Two N(0)
Edge 35.9 36.5
Next to edge 9.54 7.98
Internal 6.67 6.30
All 124 12.2

3.1.3 Correlation of fithess estimates
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Figure 9: Correlation between logistic and competition model r
for P15. Correlations are between estimates for each culture (black)
and between median estimates (six repeats) for each deletion (red).
Spearman’s rank correlation coefficient, ps, is displayed for each
distribution. The line y = x is also plotted.

To compare fitness estimates between models, [ converted
competition model b to logistic model r using (6). I plotted
correlation between r estimates for each culture (black) and
between median r estimates for each deletion (red) (Figure 9).
For individual cultures, the competition model distribution is
unimodal, the logistic model distribution bimodal with mini-
mum at r = 4. There are two distinct correlated groups: the
first with lower 7 and gradient close to one, the second with
higher r and a steeper gradient. Cultures from the middle of
the competition model distribution, but not the tails, are split
between groups. Competition model r was lower than logis-
tic model r for almost all cultures. There are several outlying
cultures (black) caused by failures of heuristic checks from
the QFA R package. For the eight outliers on the left axis,
checks set 7 = 0. The two outliers with very high logistic
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r are the deletions rad50A and estIA. They have escaped
heuristic checks and exhibit a confounding effect between r
and K.

In the distribution of medians (red), most deletions fall
inside the denser group of cultures with lower logistic r. Sev-
eral deletions, with high competition model r, fall inside the
second group (top-right). A significant number of deletions,
however, lie in the region between the two groups, meaning
that repeats of these cultures are split between groups. This
may also be true for other deletions. Correlation, measured by
Spearman’s rank correlation coefficient, pg, is lower between
medians (0.497) than between cultures (0.731).

3.1.4 Comparison of fithess rankings
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Figure 10: Comparison of competition and logistic fitness rank-
ings for P15. Deletions, each with six repeats, are ranked according
to median fitness, with the fittest strain at the top. Spearman’s Rho
is 0.497 between competition b and logistic r, and 0.635 between
competition b and logistic M D R. his3A is a neutral deletion with
14 repeats.

I compared between models the ranking of strains by me-
dian fitness (Figure 10). Rankings of competition model b,
r, and M DR are equivalent (see Section 2.5), so I compared
b directly with logistic model » and M DR. The latter agree
in the order of all but two deletions: rad50A and estIA.
These deletions each have an explained outlier with unreal-
istically high r and low K (Section 3.1.3). This appears to

have been corrected for when M D R was calculated (2a), and
M DR rank agrees much better with the competition model.
Spearman’s Rho is therefore higher between competition b
and logistic M DR (0.635) than between competition b and
logistic  (0.497). Between models, there is good agreement
in extreme positions, but middle positions are almost inverted.
The positions of the neutral deletion, his3A (bold), disagree
by 13 places.
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3.1.5 Precision of fithess estimates
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Figure 11: Coefficient of variation (COV) in P15 fitness estimates. Shown for each deletion are COVs in estimates of competition model
b (blue) and logistic model r (red). COV in competition model b and r are equivalent so comparison is direct. Deletions are ordered left to
right from highest to lowest b estimate. Each deletion has 6 repeats, except for the neutral deletion his3A which has 14. The competition
model is more precise for 36 out of 50 strains, but less precise for the 11 fastest growing.

Using coefficient of variation (COV), I compared the pre-
cision of competition and logistic model fitness estimates in
repeats of each deletion (Figure 11). COV of competition b,
r, and M DR is equivalent. I chose to compare to logistic
r, rather than M DR, because r and b are fixed properties
of a strain, whereas M DR is dependent on initial conditions
(see Equation 2a). This makes the former more useful for
cross-plate comparison. Regardless, COVs for logistic r and
M DR (not shown) are very similar. The competition model
is more precise for 36 out of 50 deletions, but less precise
for the 11 fastest growing (according to b ranking) strains.
The precision of both estimates tends to decrease for slower
growing strains.

3.2 Cross-plate validation

I conducted cross-plate calibration and validation of the com-
petition model using the Stripes and Filled plates experiment,
which is described in detail in Section 2.3. As for P15,
I ran multiple fits to each plate (see Section 2.4.2). This
time I used a wider range of C'(0) guesses: 10 values over
N(0)x10~" < C(0) < N(0)x107! in logspace. I made
this decision because of the higher inoculum densities in this
experiment, and as a result of discussion with Herrmann and

Lawless, who had suggested, based on recent work, that het-
erogeneity exists within individual cultures such that only
a small number of cell lines contribute significantly to final
populations. Strains in the Stripes plate are inoculated in the
same locations on the Filled plate, and empty locations on the
Stripes plate are inoculated with extra strains on the Filled
plate. When fitting, I ignored data for empty cultures which
is just noise. I took the estimated parameters for the Filled
plate and simulated the Stripes plate by setting b to zero for
empty locations. The simulated timecourses can be compared
with the Stripes cell observations to validate the competition
model (Figure 12); if the model corrects perfectly for differ-
ences between the plates, then simulated timecourses (blue
dashes) should fit closely to Stripes data (blue crosses). I
found that the competition model overcorrects: simulated cell
densities are higher than observations across the plate. In con-
trast, the logistic model makes no adjustment between plates
and systematically underestimates observed cell densities by
a similar margin. There are some issues with the experiment.
For instance, the top right culture in Figure 12 does not grow
and might have been inoculated with dead cells. Neverthe-
less, these mistakes are unlikely to explain the systematic
overestimation that is observed.
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Figure 12: Cross-plate calibration and validation of the competition model. [ fit the competition model to the 16x24 format Stripes and
Filled plates (Section 2.3). The plot shows measured cells (crosses) and estimated cells (solid curves) from both plates for a 3x3 section
with top left coordinates (R9, C10). I took the parameter estimates for the Filled plate (calibration), and set growth constants to zero for
cultures in the empty columns of the Stripes plate (column two here). I then simulated using these parameters to produce the validation
curves (dashed blue). If the competition model corrects for differences in growth between these experimental designs perfectly, the dashed
blue curves should resemble the Stripes data (blue crosses) in columns one and three. The logistic model predicts no difference between

plates.

I looked more closely at estimated parameters to investi-
gate why the validation curves disagree with data (Table 5).
All parameters disagreed significantly between plates. Both
plates used the same inoculum density and formula of agar so
I did not expect plate level parameters to differ so much. In
particular, k is much higher for the Filled plate. Estimates of
C'(0) differed the least. The average b estimate among com-
mon cultures was significantly higher for the Stripes plate.
In summary, the Stripes solution has faster growing cultures,
fewer starting nutrients, and slower diffusion. Despite these
differences, both solutions fit their data with similar closeness.

Table 5: Estimated parameter values for the best fit to the Stripes
and Filled plates. The mean b is taken only for common cultures.
Spearman’s rank correlation coefficient for b estimates between
these cultures is 0.787.

Plate C(0) N;(0) Ng(0) k b (mean)
Stripes 8.3x1073 0.085  0.096 1.9 395
Filled 6.2x1072 0.116 0.183 4.8 279

When examining fits to the same plate, agreement be-
tween parameter estimates is poor compared to P15; the five
best fits to the Filled plate are only consistent for initial nutri-
ent densities (Table 6). Despite this, all solutions overestimate
growth when used to simulate the Stripes plate. Disagreement

is greater still for the Stripes plate (not shown).

Table 6: Estimated parameter values for the best five competition
model fits to the Filled plate. Estimates are ordered by whole-plate
objective function value (Obj.). Lower values are better. Mean Ab-
solute Deviation (MAD) in b estimates is calculated against the best
fit for which py = 27.9. Spearman’s Rho in b estimates is greater
than 0.96 for all combinations of these fits.

Obj. C(0) N;(0) Ng(0) k& MADbD
076 62x10~3  0.116 0.183 4.8 -

0.85 5.6x1073 0.119 0.175 3.1 077
0.88 5.0x10~2  0.119 0.175 29 1.65
093 154x10~% 0.114 0.171 4.7 11.1
0.97 32x10=% 0.118 0.179 3.8 7.80

3.3 Towards a genetic algorithm

In the interest of developing a quick method for estimating
parameters while avoiding local minima, I investigated how
well culture level parameters can be recovered when plate
level parameters are fixed. The idea is to evolve candidate
sets of plate level parameters and evaluate by fitting data us-
ing a gradient method. If culture level parameters can be
recovered reliably, we might not have to worry about con-
founding between plate and culture level parameters when
evolving candidates. I took parameter estimates from the five
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best fits for P15, and simulated full plate timecoureses at the
observed times. I added a small amount of random noise to
imitate real data. I then fixed plate level parameters to the true
values and fit the competition model just for b. I set bounds
of 0 < b < 200 and used 11 evenly spaced guesses of b in the
range %ﬂb <b< %Mb where 1, is the mean true b. These
guesses were used in the imaginary neighbour model to gen-
erate 11 sets of initial parameters for the competition model
for each simulation (Section 2.6.2). I solved all models using
SciPy’s integrate.odeint, as I had not yet developed code to
solve using libRoadRunner. Otherwise, I fit as for P15 (Sec-
tion 2.4.2). b were recovered well even in the worst instance
(Figure 13). In all instances, estimates were less accurate for
slow growing cultures which are more affected by noise. For
some simulations, different initial parameter sets all achieved
a similar quality of fit. For others, however, certain guesses
were much better, suggesting that multiple fits need to be run
for each candidate.
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Figure 13: Recovery of true b values from a gradient fit with fixed
plate level parameters. I simulated timecourses from the best five
competition model fits to pl5, added a small amount of noise, and
used a gradient method to recover b given the true plate level pa-
rameters. This plot shows the worst recovery for the five sets of
values.

4 DISCUSSION

On average, the competition model fit internal cultures of P15
worse than the logistic model: objective function value was
0.194 vs 0.155 (Table 3). However, for the two fastest growing
cultures in a 3x3 zone studied in more detail, the competition
model fit was better by far (Figure 7). I am yet to confirm that
this trend carries across the plate, but it is likely that the logis-
tic model performed better in regions where there were more
slow growing cultures and less difference in growth between
neighbours. The logistic model is more flexible when fitting
slow growing cultures which are more affected by noise; it
fits cultures independently with three culture level parame-
ters, whereas the competition model fits cultures with three
plate level parameters and only one culture level parameter.
Logistic parameter estimates for slow growing cultures were
less precise (Figure 11), and might be less accurate, despite

the closer fit. Noise from slow growing cultures will also
have affected competition model fits for fast growing cultures
through plate level parameters and neighbour interactions.

Estimates from edge cultures are discarded due to noise
from reflections off plate walls. Unlike the logistic model, the
competition model must fit these cultures. For the fit of P15,
edge cultures contributed 70% of error in objective function
value despite making up only 20% of cultures (Tables 3 and 4).
This will have affected all parameter estimates because cul-
tures were fit collectively. However, it will have most greatly
affected cultures neighbouring an edge. A two N (0) param-
eter model improved the fit of these cultures (Table 4) and
might also have improved the reliability of estimated param-
eters. Considering the above effects and the fewer number
of parameters used (387 vs 1152) the closeness of fit of the
competition model is fairly good. Below I discuss differences
in estimated parameters to discern whether one model made
more reliable estimates.

For P15, the distribution of logistic model r estimates is
bimodal, whereas that of the competition model is unimodal
(Figure 9). It is possible that the true distribution is bimodal
because Addinall ez al. (2011) selected deletions suspected to
have large positive and negative interactions with the query
mutation. Nevertheless, repeats of the same strain are split
between the gap in the logistic distribution; it appears that
some deletions are acting as both enhancers and suppressors,
but not as neutrals. It is possible that the split is an artefact
of heuristic checks conducted by QFA R, or caused by a rel-
ative acceleration and deceleration of fast and slow growing
cultures due to competition. If the latter case is true, the com-
petition model might have corrected for it. It is important to
investigate the cause of the bimodal distribution because it
will affect the significance given to genetic interactions (see
e.g. Addinall ez al. (2011)).

Competition model fitness rankings of deletions on P15
are similar to the published logistic model rankings from
Addinall et al. (2011) for the fastest and slowest growing
strains (Figure 10). Both models also agree with rankings
from independent spot tests for these strains (Maringele and
Lydall, 2002; Zubko et al., 2004; Holstein et al., 2014; Foster
et al., 2006). Middle rankings, however, disagree between
models, and Spearman’s Rho between M DR estimates is
just 0.635. T investigated a disagreement between models by
looking at plate images. hap4A is much healthier than zrt3A
which agrees with the competition model and not the logis-
tic model (Figure 10). This is promising for the competition
model. However, I discuss below how inaccuracy in logis-
tic estimates for the slower growing strain, zrt3A, may have
been due to noise in the data rather than any fault of the model.
Unfortunately, I lack independent data for middle strains to
conclusively determine which model is more accurate. Col-
lecting this data should be a priority for future studies.

The competition model was more precise for the majority
of strains (36 out of 50), but less precise for the 11 fastest
growing (see Figure 11). The fastest growing strains are not
split across the gap in the logistic model distribution. Fea-
tures of each model contribute to the differences in precision.

14


https://doi.org/10.1101/086835
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/086835; this version posted February 16, 2017. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Modelling Competition for Nutrients between Microbial Populations Growing on Solid Agar Surfaces

The logistic model fits cultures individually so it can be more
precise for fast growing cultures which are less affected by
noise. Conversely, the competition model fits cultures col-
lectively, worsening the precision for fast growing cultures
but improving the precise for slow growing cultures. If we
believe that biological variation is low, it is reasonable to ex-
pect the better model to make more precise estimates for each
strain. However, the higher precision for slow growing strains
in the competition model could be entirely due to collective
fitting rather than accuracy of the model. Similarly, the higher
precision for fast growing strains in the logistic model could
be due to a failure to account for competition. Although im-
proved with the competition model, the precision of estimates
for the slowest growing strains is still much lower than for the
fastest, so the power to infer genetic reactions might not be
dramatically improved.

Fitting the logistic model to slower growing cultures re-
quired heuristic checks to correct for confounding between r
and K. The QFA R implementation appears to have some is-
sues. The strains est/ A and rad50A are very fast growing out-
liers in Figure 9. I visually inspected raw QFA images to con-
firm that these were weak growing strains. High r and low K
were erroneously fit to both. This is corrected for when con-
verting to M D R; rankings agree with the competition model
and independent spot tests for rad50A (Zubko et al., 2004).
M DR is similar to the fitness measure (M DR x M DP)
used in the original analysis by Addinall et al. (2011) so these
anomalies are unlikely to have affected their results. It is not
clear how confounding is affecting other slow growing cul-
tures. In some images it appears that encroachment of fast
growing cultures into neighbours is affecting cell density es-
timates made by Colonyzer. If repeated, the plate from Addi-
nall et al. (2011) should be run with a lower concentration of
nutrients in the agar so that the stationary phase is reached
before cultures start to merge.

In a validation experiment (Section 3.2), plates used a
higher inoculum density reducing the effect of noise on slow
growing cultures. The logistic model will not have required
heuristic checks and the precision of competition estimates
for fast growing strains should have improved. The experi-
ment should therefore be a fairer comparison of the two mod-
els. Unfortunately, I struggled to find global minima with the
competition model (Table 6) so the method of fitting needs to
be improved before such a comparison can be made. Despite
this, validation revealed issues with both models (Figure 12);
the logistic model does not account for differences between
plates at all and the competition model overcorrects. This
was true for disparate solutions of the competition model so
improving the method of fitting is unlikely redress the issue;
it is likely that the competition model needs to be improved.
With current fits, the logistic model undercorrects to a similar
degree that the competition model overcorrects.

4.1 Future work

The distributions of logistic and competition r are very dif-
ferent (Figure 9) and can be used to compare models. First,
P15 should be repeated using a higher inoculum density to
eliminate the possibility that heuristic checks cause the split

in the logistic distribution. If this is not the case, then strains
could be grown in independent conditions - either isolated
on solid agar (diffusion still an issue) or in liquid cultures -
where the models are equivalent. We will be able to asses the
quality of both models. The model whose QFA distribution
is most similar to the independent distribution should be used
to analyse QFA data.

I was unable to find global minima of the competition
model using a gradient method (Sections 3.1 and 3.2). I found,
however, that it is possible to reliably return b; when plate
level parameters are fixed at true values (Figure 13). It might
therefore be possible to use a hierarchical genetic algorithm
that evolves sets of plate level parameters, and evaluates us-
ing a gradient method to determine culture level parameters.
Alternatively, a pure hierarchical genetic algorithm may work
(i.e. where b; are also evolved). A Bayesian hierarchical ap-
proach, similar to that of Heydari ef al. (2016), could also
return global minima, but would probably be much slower.

The systematic overcorrection seen in the validation ex-
periment (Section 3.2) suggests that more fundamental im-
provements to the competition model are required. It would
be informative to validate the independent limit to deter-
mine whether a mass action approximation is appropriate and
whether it is correct to disregard the effect of metabolism on
nutrient density. I suggest to validate first in liquid cultures,
where the assumption of a well stirred mixture is more valid,
and then attempt to validate for single cultures grown on agar,
which more closely resembles QFA. The latter scenario has a
lower dimensionality, and growth might be diffusion limited
inside cultures, so a fractal kinetics model might be required
(Kopelman, 1988; Savageau, 1995). Nutrients (sugars, ni-
trogen, etc.) in QFA agars are of a standard composition,
designed to reduce the excess of any single nutrient (Addinall
et al., 2011). It would be helpful to know and control the
identity of the limiting nutrient using a different formula of
agar. With nitrogen, rather than sugar, as the limiting nutrient,
we are less likely to have to model metabolism.

Estimates of the nutrient diffusion constant & for P15
were fairly high (Table 2), such that nutrients diffused readily
between neighbours and were nearly depleted when growth
stopped (Figure 7). In reality, growth might become lim-
ited by the diffusion of nutrients through agar long before all
nutrients are depleted, in which case nutrients are not well
approximated as being evenly distributed across the spatial
scales that we model. The Stripes fit might support this; cul-
tures have access to more nutrients from empty neighbours
and lower k and N (0) are estimated (Table 5). Using a finer
grid could reduce the overcorrection seen in Figure 12. Reo
and Korolev (2014) use the diffusion equation with Neumann
and Dirichlet boundary conditions to simulate nutrient de-
pendent growth of a single bacterial culture on a pertri dish in
two-dimensions. They create a sink for nutrients from culture
growth and equate the flux of nutrients through culture area
with the rate of increase in culture size. They model culture
area as varying and keep culture density constant. This model
could be adapted for QFA by keeping culture area constant
and allowing culture density to vary. A mass action kinetic
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model of reaction (3) could be used for culture growth and
the nutrient sink. It might take too long to fit such a detailed
model to a whole plate, but simulation could be used to de-
termine an appropriate grid size for a mass action diffusion
model.

If competition for nutrients is not responsible for the in-
teraction between neighbours, for instance if growth stops
before nutrients from neighbours can diffuse, then we could
instead model signalling by ethanol poisoning (Fujita et al.,
2006). Signal diffusion may be modelled as for nutrient dif-
fusion (4,5) so code can be quickly adapted. If there is any
combination of effects, e.g., competition, metabolism, sig-
nalling, overcrowding, or arrest contributing significantly to
differences in the growth of cultures and the interaction be-
tween neighbours, then they will be difficult to separate when
fitting a model. We may have to develop ways to calibrate
effects in isolation and use this information when fitting to
high-throughput data. Currently, QFA only observes cells.

4.2 Improvements and recommendations

Recent work by Herrmann and Lawless suggests that directly
measurement of C'(0) is unreliable due to heterogeneity be-
tween cells in the same inoculum; many cells do not grow and
only the fastest growing cells contribute significantly to the
final population. Modelling using a plate level C'(0) seems
inappropriate, but having to fit extra culture level parameters
is undesirable. Instead, noting that only small amounts of
nutrients are consumed when cultures are small, early time-
points could be discarded, and C'(0) could be measured after
populations have undergone several divisions. Currently,
QFA takes inocula from the stationary phase where there
might be more heterogeneity (Bergkessel et al., 2016). It
might be possible to reduce heterogeneity by taking inocula
from the exponential growth phase. Alternatively, a higher
inoculum density could be used to average out stochastic
effects.

Noisy edge cultures, which must be included in fits of the com-
petition model, contribute significantly to objective function
values (see Table 4). Whereas these cultures reduce com-
petition for the logistic model, noise would be better dealt
with for the competition model if they were left empty. A
different treatment of boundaries could also be used by mod-
elling empty cultures outside edges rather than the approach
in Section (2.4.2). It is quicker to fit to small zones of a plate,
but these have a large proportion of edge cultures, and it is
difficult to model the boundary. Growing smaller arrays in
isolation would help to speed up the development process.

I thought of several improvements to the guessing method
which I did not have time to implement. The current imple-
mentation of imaginary neighbour guessing (Section 2.6.2)
uses a range of by values, but estimated b; are chosen from
sets of fits using the same value, i.e., b; currently come from
the same by. In reality cultures have different arrangements
of neighbours, so mixing of fits from different b; should be
allowed. Alternatively, b; could be initialised by converting
from logistic model estimates (Section 2.5). k is the last

parameter to be guessed. Rather than using the linear rela-
tionship between variance in final cell measurement and k,
which may not hold for large values, k could be guessed by
fixing all other parameters as their guesses and fitting the
competition model to data.

A dramatic change was made between the Stripes and Filled
plates to ensure that competition was present. I could have
first validated the model against a smaller change, by inocu-
lating slower growing cultures in gaps rather than removing
cultures completely. If the model behaves well in such an ex-
periment, it may work for the majority of QFA experiments,
which typically have smaller differences between cultures
than the original validation experiment. We could also have
calibrated and validated from the Stripes plate to the Filled
plate, i.e., in the other direction, if the extra columns on the
Filled plate were repeats of common cultures. A different
validation experiment could try to induce changes in logistic
model ranking by inoculating fast or slow growing cultures
next to target strains. Hopefully competition estimates would
show no change.

When inoculum density was low the logistic model strug-
gled to deal with noise in slow growing cultures (Figure 11).
It is desirable model nutrient dependent growth, so that infor-
mation is shared between cultures using a plate level N(0),
and to eliminate the dependence on heuristic checks.
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