
Response variability and population coupling of cortical synaptic inputs are 

strongly influenced by network properties 

Nathaniel C. Wright, Mahmood Hoseini, Tansel Baran Yasar, Ralf Wessel 

The highly variable spiking of a cortical neuron is “coupled” to that of other 

neurons in the network.  This has implications for sensory coding, and appears to 

represent a fundamental property of cortical sensory processing.  To date, most 

studies of population coupling have focused on recorded spiking activity, an 

approach that suffers from several confounding issues.  Moreover, the 

contributions of various network properties to population coupling are largely 

unexplored.  To this end, we recorded the membrane potential (V) and the nearby 

LFP in the visual cortex of the turtle ex vivo wholebrain preparation during 

ongoing and visually-evoked activity.  We used an algorithm to infer the 

excitatory conductance (g) from V, and calculated the g-LFP coupling.  We found 

that g-LFP coupling was highly variable across neurons, and increased following 

visual stimulation before relaxing to intermediate values.  To investigate the role 

of the network, we implemented a driven small-world network of leaky integrate-

and-fire neurons. This model reproduces the large across-trial response 

variability and g-LFP coupling dynamic, and suggests crucial roles for anatomical 

and emergent network properties.  

Cortical neuron sensory responses are remarkably variable across trials(Britten 

et al. 1993; Carandini 2004; Scholvinck et al. 2015).  Because this variability tends to be 

correlated between pairs of nearby neurons (see Kohen, Cohn 2011 and Doiron, et al. 

2016 for reviews), it likely influences population coding of sensory information(Abbott 

and Dayan 1999; Averbeck, Latham, and Pouget 2006; Shadlen and Newsome 1998).  

With advances in recording techniques, it has become increasingly obvious that single-

neuron variability reflects fluctuations that are shared across large regions of cortex(Lin 

et al. 2015; Okun et al. 2015; Scholvinck et al. 2015).  That is, sensory input interacts 

with intrinsic cortical activity, with global cortical fluctuations influencing single-neuron 

responses.  Appropriately, a recent study has introduced the term “population coupling” 

to describe this relationship(Okun et al. 2015).  This and other studies have shown that 
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the coupling of spiking activity is remarkably diverse across neurons (likely reflecting 

connectivity(Okun et al. 2015; Pernice et al. 2011)), yet can also change with sensory 

stimulation(Haider, Schulz, and Carandini 2016; Tan et al. 2014) and network 

state(Haider, Schulz, and Carandini 2016; Okun et al. 2015; Scholvinck et al. 2015).  

Moreover, the effects of this globally-derived input (i.e., additive vs. multiplicative 

response gain) may reflect specific mechanisms by which feedback exerts its influence 

on the response(Larkum 2013; Reynolds and Heeger 2009).  This rich dependence of 

single-neuron responses on anatomical and emergent network properties appears to 

represent a fundamental principle of cortical function, and is only beginning to be 

explored.  Here, we investigate three questions vital to a better understanding of cortical 

variability and its effects on sensory coding.  (1) What is the nature of response 

variability in cortical microcircuits?  (2) How strongly are single-neuron synaptic input 

fluctuations coupled with those of the local population? (3) To what degree are the 

dynamics of response variability and population coupling determined by the cortical 

network, and what are the relevant network parameters?   

While spike-based studies have yielded many important insights, this approach 

has two inherent shortcomings.  First, it excludes the vast majority neurons, which are 

sparse-spiking(Henze et al. 2015; O’Connor et al. 2010; Shoham, O’Connor, and Segev 

2006; Thompson and Best 1989) and therefore yield unreliable statistics for the analysis 

of correlated variability(Cohen and Kohn 2011) (Figure 1a, b).  Second, it involves 

sampling populations of neurons that are visible to the experimentalist, but which may 

not represent relevant or complete cortical microcircuits.  Patch clamp recordings of 

synaptic inputs represent one solution to these two problems(Shoham, O’Connor, and 
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Segev 2006).  First, when the recorded neuron is viewed as a component member of 

the network, the subthreshold inputs provide a measure of activity that is agnostic to 

output spike rate.  A second perspective, motivated by anatomical connectivity, 

recognizes the neuron as a “device” that samples an enormous and extremely relevant 

pool of presynaptic neurons.  Thus, subthreshold recordings allow the experimenter to 

“tap into” the cortical circuitry itself, and infer response properties (e.g., variability) of 

these large populations(Ikegaya et al. 2004; MacLean et al. 2005; Mokeichev et al. 

2007) (Figure 1a, b).  Despite the potential of this technique, it is rarely implemented in 

vivo; it is difficult to obtain stable patch clamp recordings of cortical sensory responses, 

and spatially-extended cortical pyramidal neurons confound the interpretation of voltage 

clamp data(Armstrong and Gilly 1992; Koch 2004; Spruston et al. 1993).  Here, we 

overcome these challenges to address the first two questions above.  First, we recorded 

subthreshold membrane potential visual responses from cortical pyramidal neurons in 

the turtle eye-attached wholebrain ex vivo preparation (Figure 1c).  We then applied a 

recently-developed algorithm(Yaşar, Wright, and Wessel 2016) to infer the excitatory 

synaptic conductance (g) from V (Figure 1c), and analyzed the response variability in g.  

Finally, we calculated the correlated variability for g and the nearby local field potential 

(LFP).  We found that visual stimulation evoked significant increases in g and LFP 

variability.  The variability was typically large relative to the average response, and was 

a mix of multiplicative and additive noise.  Across the population of cells, g-LFP 

correlated variability (CC) was highly variable, and transiently increased with visual 

stimulation.  
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We addressed the third question by implementing a small-world network of leaky 

integrate-and-fire neurons, subject to Poisson process external inputs and synaptic 

depression with recovery.  This model reproduces three experimentally-observed 

aspects of evoked activity: large across-trial response variability, diverse g-LFP coupling 

across populations of nearby neurons, and the evoked coupling dynamic.  These 

response properties are largely determined by the distribution of synaptic weights and 

the network state, which is highly sensitive to such network parameters as spatial 

clustering, synaptic time constants, and adaptation.  

Together, our results provide a clearer picture of the subthreshold coordination 

dynamics corresponding to suprathreshold response variability and population coupling 

in cortex.  Moreover, they implicate specific anatomical and emergent network 

properties that shape cortical variability and coordination during sensory processing. 

Results 

Visual stimulation evokes significant increases in cortical activity 

To quantify the response variability of synaptic inputs and its coupling with that of 

the local population, we recorded the membrane potential (V) from 39 pyramidal 

neurons in visual cortex of the turtle ex vivo eye-attached whole-brain preparation 

during visual stimulation of the retina (Figure 1c).  For 21 of these neurons, we also 

recorded the nearby LFP, which has been shown to be a reliable estimator of local 

synaptic activity(Haider et al. 2016).  We then used a recently-developed 

algorithm(Yaşar, Wright, and Wessel 2016) to estimate the excitatory synaptic 

conductance (g) from V (Figure 1d, and see Methods).   
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Ongoing activity in turtle visual cortex was relatively quiescent, typically with 

infrequent postsynaptic potentials at the level of the membrane potential, and little to no 

baseline LFP activity (Figure 1d, 2a).  On a minority of trials, this quiescent activity was 

interrupted by spontaneous “bursts” of activity lasting up to hundreds of milliseconds 

that were qualitatively similar to visual responses (Figure 2a, d).  Visual stimulation 

evoked barrages of postsynaptic potentials, and large fluctuations in the nearby LFP 

(Figure 1d, 2a), with orders-of-magnitude increases in average power for both g and 

LFP (population-averaged relative power <rP> = 3632.7 ± 3538.0, mean ± s.e.m., 

Figure 2b, c, <rPLFP> = 1902.9 ± 1350.7, data not shown, transient).  Response 

amplitudes (Figure 2a) and power (Figure 2b, c) decreased from transient to steady-

state, despite persistent visual stimulation (<rP> = 1251.9 ± 962.5, steady-state; P = 

6.06 x 10-8  for transient – steady-state comparison, Wilcoxon signed-rank test; <rPLFP> 

= 557.9 ± 449.1, steady-state; P = 1.2 x 10-3  for transient – steady-state comparison, 

Wilcoxon signed-rank test).   

Visual responses are highly variable across trials 

 For a given cell and nearby LFP, the across-trial average responses to a given 

stimulus displayed clear temporal structure (Figure 2a).  Still, responses were highly 

variable across stimulus presentations; single-trial fluctuations were large relative to the 

mean response, with the across-trial variability increasing along with the across-trial 

average activity (Figure 2a, d).  To determine the relationship between the variability 

and the average response, we calculated the scaled variability, or coefficient of variation 

(CV), as a function of time, for the population of all cells (see Methods).  While variability 

of evoked activity was larger than that of ongoing activity (Figure 2d), the population-
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averaged CV (<CV>) decreased after stimulus onset, and slowly recovered (Figure 2e).  

Using the windows of activity defined above, we found that this initial decrease was 

significant (<CV> = 1.83 ± 0.13 ongoing, 0.22 ± 0.04 transient, P = 1.74 x 10-16 for 

ongoing – transient comparison, Wilcoxon signed-rank test), and that <CV> increased 

significantly from transient to steady-state (<CV> =, 0.36 ± 0.06 steady-state, P = 1.74 x 

10-16 for transient – steady-state comparison, Wilcoxon signed-rank test), but remained 

significantly smaller than during ongoing activity (P = 1.74 x 10-16 for ongoing – steady-

state comparison, Wilcoxon signed-rank test). 

Additive and multiplicative noise contribute to response variability 

 We next investigated the nature of this single-trial variability.  Even when a 

single-trial response deviates significantly from the mean response, it may follow a very 

similar (or in the extreme case, an identical) time course.  This would indicate a high 

degree of “multiplicative noise”: a uniform modulation of the presynaptic population’s 

sensory response.  Alternatively, in the case of purely “additive noise”, the single-trial 

time series fluctuates randomly about the average, consistent with noise amplitudes that 

vary across members of the presynaptic population. 

 To address this question, we first binned each single-trial inferred conductance 

(summing over 100 ms bins, resulting in 𝑔̃), and then calculated the across-trial average 

binned conductance (〈𝑔̃〉𝑡𝑟𝑖𝑎𝑙𝑠, Figure 3a, and see Methods).  By visual inspection, it 

was evident that individual responses contained both additive and multiplicative noise 

(Figure 3a).  For example, a typical response that was somewhat “enveloped” by the 

average time course (indicating multiplicative noise) also tended to possess small, 
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random fluctuations about the mean, or in some instances larger deviations away from 

the mean (Figure 3a, trial 3, steady-state epoch), examples of additive noise.  To 

quantify the contributions of each component, we regressed 𝑔̃ onto 〈𝑔̃〉𝑡𝑟𝑖𝑎𝑙𝑠 for each 

trial, and took the across-trial median R2 value for each cell and epoch.  For a given cell, 

the across-trial average was a relatively poor predictor of the single-trial response (see 

example cell in Fig 3b); across the population, the average response explained only 

28.1 ± 13.9% of the variance in individual trials for the transient epoch (across-cell 

average explained variance <R2> = 0.28 ± 0.14, Figure 3c).  The explained variance 

was even lower during the steady-state (<R2> = 0.17 ± 0.15, Figure 3c), decreasing 

significantly from that of the transient epoch (P = 1.5 x 10-3 for transient – steady-state 

comparison, Wilcoxon signed-rank test).  Evidently, single-trial responses contained 

substantial amounts of both multiplicative and additive noise, with additive noise 

dominating.  In addition, the reliability of a single-trial response (as measured by its 

relationship to the across-trial average) diminished over the duration of the response. 

Correlated variability amplitude transiently increases following visual stimulation 

 Single-neuron response variability of this magnitude has the potential to 

profoundly influence sensory coding, provided it is significantly coupled across a 

population of neurons(Abbott and Dayan 1999; Averbeck, Latham, and Pouget 2006; 

Shadlen and Newsome 1998).  We quantified this “population coupling” for 21 cells by 

calculating the single-trial residual responses for the estimated conductance (gr, the 

single-trial time series with the across-trial average time series subtracted) and the 

nearby LFP (Figure 4a) and calculating the Pearson correlation coefficient for residual 

pairs for each trial and epoch (see Methods).   
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For a given stimulus condition, the trial-averaged correlation coefficient (CC) was 

broadly distributed across the population (Figure 4b).  During ongoing activity, CC was 

significantly nonzero for seven of 21 pairs (P < 0.05, comparison to shuffled data using 

Wilcoxon signed-rank test, see Methods).  With visual stimulation, the population of 

pairs became more anti-correlated (Figure 4b); CC amplitudes increased significantly 

for 10 pairs (P < 0.05, across-epoch bootstrap comparison) and the population average 

decreased significantly (such that the amplitude increased; <CC> = 0.009 ± 0.04 

ongoing, P = 0.50 for comparison to shuffled data; <CC> =  -0.07 ± 0.04 transient, P = 

1.1 x 10-4 for comparison to shuffled data; P = 1.9 x 10-4 for ongoing – transient 

comparison, Wilcoxon signed-rank test, Figure 4b, 4c, top).  During this transient 

epoch, CC was significantly nonzero for 14 pairs (P < 0.05, comparison to shuffled 

data). This elevated level of coordination soon relaxed: from transient to steady-state, 

CC amplitudes significantly decreased for 5 pairs (P < 0.05, across-epoch bootstrap 

comparison), such that CC was significantly nonzero for 7 pairs (P < 0.05, comparison 

to shuffled data), and the population average increased significantly toward zero (<CC> 

= -0.02 ± 0.05 steady-state, P = 0.005 for transient – steady-state comparison, 

Wilcoxon signed-rank test) to values that were not significant across the population (P = 

0.11 for comparison to shuffled data, Figure 4b, 4c, bottom). 

These results suggest that the across-trial variability in evoked synaptic inputs to 

an individual neuron is, on average, coupled to that of other neurons in a nearby 

population in the early response phase.  Moreover, the strength of this coupling is highly 

variable across cells.  Coupling is not static, however; while response reliability 

decreases from the early to the late phase of the visual response (Figure 3), the 
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coupling strength does as well (Figure 4b, c), suggesting that large single-trial 

fluctuations in the late response are more effectively “averaged out” across a large 

population. 

The dynamics of g-LFP CC are consistent with known excitation-inhibition dynamics 

 When combined with what is known of the recorded signals and excitatory-

inhibitory dynamics, these g-LFP CC results provide a means for testing the validity of 

the inferred excitatory synaptic conductance.  First, V and LFP are both a mix of 

excitation and inhibition (while our inferred conductance excludes inhibition), so for a 

given cell, V-LFP CC should be larger than g-LFP CC in a given window of activity.  

Second, because excitatory currents make a large contribution to V and LFP, and 

because inhibitory currents generally tend to track excitatory currents(Atallah and 

Scanziani 2009; Isaacson and Scanziani 2011; Wehr and Zador 2003), g-LFP CC and 

V-LFP CC should be related. 

Our results largely satisfied these predictions.  First, for each epoch of activity, 

across the population of cells, CC amplitudes were larger for V-LFP than for g-LFP 

(Figure 4d).  This was also true when V and LFP were filtered in the gamma band (thus 

removing the shared, slow fluctuation to isolate the fast activity resulting from high-

frequency synaptic inputs(Hasenstaub et al. 2005; Nowak, Sanchez-Vives, and 

McCormick 1997; Poulet and Petersen 2008), data not shown).  Second, g-LFP and V-

LFP CC amplitudes were significantly related for the ongoing and transient epochs for 

both 100 Hz low-pass (Figure 4d) and gamma band (data not shown) activity.  There 

was also a positive relationship in the steady-state, but the trend was not significant (P = 
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0.059, Figure 4d, right).  As such, these results provide further evidence for the 

reliability of the estimation algorithm. 

Network properties shape response variability and g-LFP correlated variability 

 We next sought to infer the relative contributions to the observed response 

properties from the stimulus and the thalamocortical network.  Specifically, we asked 

which aspects of the experimentally-observed phenomena could be reproduced by a 

model network subject to random external inputs (mimicking the stimulus), and what 

network parameters were relevant to these results.   

We implemented a model network similar to that described previously (N. C. 

Wright, M. Hoseini, R. Wessel, unpublished observations, Figure 5a).  The network 

consisted of 800 excitatory and 200 inhibitory leaky integrate-and-fire neurons.  

Excitatory – to – excitatory connections had small-world connectivity (3%), and all other 

connections were random (3% excitatory – to – inhibitory, 20% inhibitory – to – 

excitatory and inhibitory – to – inhibitory).  Nonzero synaptic weights were drawn from a 

beta distribution with mean value 1.0, which approximated the “constellation-like” 

connectivity in cortex(Cossell et al. 2015).  All neurons received Poisson process 

external inputs, and the stimulus was modeled as an increase in external input rate.  

The external drive was unique across neurons and trials during the ongoing epoch.  

After stimulus onset, the external drive was a mix of two components: one that was 

unique across neurons, but identical across trials (with proportionality constant 0.75) 

and one that was unique across both neurons and trials (with proportionality constant 

0.25).  Because visual stimulation reliably evoked strong LFP oscillations (Figure 2a, 
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and see Shew, et al. 2015), we selected a set of synaptic rise and decay times that 

were consistent with network spike rate oscillations in response to strong external drive 

(Figure 5b).  Each synapse depressed and slowly recovered in response to a 

presynaptic spike.  We modeled the LFP as the sum of all synaptic currents(Atallah and 

Scanziani 2009; Destexhe 1998) to a subpopulation of 100 neighboring excitatory 

neurons.  We selected 40 neurons from the geometric center of this population for 

analysis of excitatory conductances (Figure 5b, and see Methods). 

As in experiment, g and LFP varied considerably across trials (Figure 6a), 

despite the stimulus being primarily the same across trials (see Methods).  As with our 

experimental data, we quantified the dynamics of this variability by calculating the 

scaled variability (CV) over time.  The CV dynamics were determined by both the 

statistics of the external drive and by network properties.  When external drive during 

the ongoing epoch was sufficiently strong to cause sparse network spiking, CV for the 

total excitatory synaptic conductance to network neurons hovered near 1.0 (<CV> = 

0.95 ± 0.25, Figure 6b).  This value greatly exceeded that of the external inputs alone 

(<CV> = 0.15 ± 0.09, Figure 6b), which was due to the highly variable distribution of 

nonzero synaptic weights (Figure 6c, top).  With stimulus onset, CV for external inputs 

decreased by design (to <CV> = 0.004 ± 0.01), and CV for total excitatory conductance 

initially did as well (<CV> = 0.40 ± 0.16 for transient epoch, P = 4.27 x 10-18 for ongoing 

– transient comparison, Wilcoxon signed-rank test).  This decrease in CV was due in 

part to the concerted increase in external drive, and in part to the stimulus possessing a 

component that was identical across trials (Figure 6c, middle).  Over the course of 

hundreds of milliseconds, CV for total excitatory conductance recovered to nearly that of 
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the ongoing epoch (<CV> = 0.81 ± 0.17 for steady-state epoch, P = 1.80 x 10-16 for 

transient – steady-state comparison, P = 1.1 x 10-4 for ongoing – steady-state 

comparison, Wilcoxon signed-rank test), which was an exaggeration of the experimental 

scaled variability dynamic observed here (Figure 2e) and elsewhere(Churchland et al. 

2010).  Synaptic depression mediated this recovery (Figure 6c, bottom).  Thus, CV 

values and dynamics depended on the distribution of synaptic weights, the across-trial 

reliability of external inputs, and synaptic adaptation. 

The model qualitatively reproduced the contribution of additive and multiplicative 

noise to the total response variability.  As in experiment, single-trial variability was a mix 

of both noise types (Figure 6d, compare to Figure 3a), and the relative contribution 

from additive noise increased from transient to steady-state (<R2> = 0.50 ± 0.13 

ongoing, <R2> = 0.37± 0.13 steady-state, P = 7.6 x 10-6 for transient – steady-state 

comparison, Wilcoxon signed-rank test, Figure 6e, compare to Figure 3c).  This 

decrease in response reliability was not related to synaptic depression (data not 

shown), suggesting single trial “errors” compounded over the duration of the response.  

Notably, the percent of single-trial variance explained by the average response in either 

epoch was smaller than the 75% predicted by the stimulus.  This surplus variability is 

therefore due to the only other source of randomness in the model: the state of the 

intracortical synapses at stimulus onset (due to the variable external drive and 

intracortical synaptic depression during the ongoing epoch, see Methods). 

As in experiment, we calculated correlated variability (CC) for g-LFP pairs 

(Figure 6f).  The synaptic weight distribution strongly influenced g-LFP CC distributions.  

For each epoch, CC was broadly distributed across the population (Figure 6g).  While 
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some variability is to be expected from such a sparsely-connected network, CC 

distributions were far less variable in a network with binary synapses (but the same 

average synaptic weight, Figure 6h, left). 

The dynamics of g-LFP CC depended on a variety of network parameters. We 

recently used a similar network to demonstrate the effects of coordinated spiking on 

gamma band membrane potential correlated variability (N. C. Wright, M. Hoseini, R. 

Wessel, unpublished observations).  Briefly, when the external drive triggers network 

spike rate oscillations, excitatory synaptic inputs to a given neuron become strongly 

correlated with both excitatory and inhibitory inputs to other neurons (with a small lag 

between excitation and inhibition).  This leads to strong membrane potential oscillations 

that are correlated across neurons, an effect that is not observed in an asynchronous 

driven network.  This coordination dynamic is also manifested as an increase in g-LFP 

correlated variability from the ongoing to transient epoch (<CC> = -0.12 ± 0.03 ongoing; 

<CC> = -0.27 ± 0.05 transient; P = 3.57 x 10-8 for ongoing – transient comparison, 

Wilcoxon signed-rank test Figure 6f).  Synaptic depression with slow recovery (see 

Methods) diminished network activity levels, and crucially, abolished large-scale 

coordinated spiking (Figure 5b).  This had the effect of drastically reducing g-LFP CC 

amplitudes from transient to steady-state (<CC> = -0.22 ± 0.03 steady-state; P = 1.1 x 

10-7 for transient – steady-state comparison, Wilcoxon signed-rank test, Figure 6g), 

despite persistent network activity (Figure 5b, 6f).  When either synaptic depression 

was removed (Figure 6h, middle) or the network was tuned to remain asynchronous 

(Figure 6h, right, see Methods), changes in <CC> were much smaller across epochs, 

and did not qualitatively match the experimental results.  As such, these results 
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implicate emergent network oscillations – and the corresponding relevant anatomical 

network properties (i.e., synaptic time constants and synaptic depression) – in the 

determination of g-LFP CC dynamics. 

Taken together, the model investigation points to the cortical network as the 

primary determiner of the experimentally-observed response variability and population 

coupling dynamics of synaptic inputs.  Specifically, the model identifies synaptic 

clustering, time constants, and depression as extremely relevant anatomical properties. 

Discussion 

 To obtain a spike-rate-independent measure of single-neuron variability, and to 

measure its coupling with local population activity, we simultaneously recorded the 

membrane potential from pyramidal neurons and the nearby LFP in the turtle visual 

cortex during ongoing and visually-evoked activity (Figure 1).  We estimated the 

excitatory synaptic conductance (g) from the membrane potential, and quantified the 

across-trial variability in g and correlated variability with the LFP.  To identify relevant 

cortical network mechanisms, we implemented a small-world network of leaky integrate-

and-fire neurons subject to external drive (Figure 5). 

 Studies spanning several decades have described the remarkable degree of 

variability in the sensory-evoked spiking responses of cortical neurons(Britten et al. 

1993; Carandini 2004; Scholvinck et al. 2015).  Certain aspects of this variability 

suggest it is shaped by the cortex itself.  First, cortical variability surpasses that of the 

inputs from LGN(Scholvinck et al. 2015).  Second, evoked variability, when scaled by 

the overall activity level, tends to be smaller than that of spontaneous activity across a 
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variety of cortical areas and behavioral states, suggesting it is a property of large, 

recurrent networks(Churchland et al. 2010).  Third, single-neuron spiking variability can 

be modeled as a mix of multiplicative and additive noise due to global cortical 

activity(Goris, Movshon, and Simoncelli 2014; Lin et al. 2015).  Our experimental results 

agree with this “cortico-centric” view of response variability.  We observed that individual 

neurons subsampling the cortex receive excitatory synaptic inputs that are extremely 

variable across stimulus presentations (Figure 2a, d, Figure 3), with scaled variability 

(CV) decreasing soon after stimulus onset (Figure 2e).  The time course of the visual 

response revealed the presence of both additive and multiplicative noise in the 

spatiotemporal sequence of presynaptic firing (Figure 3).  Finally, across a variety of 

stimuli, scaled variability (Figure 2e) and the contribution from additive noise (Figure 3) 

increased from transient to steady-state.  That is, response reliability and the nature of 

the variability changed in a stimulus-independent manner.  Each of these results was 

qualitatively reproduced by a model network subject to an extremely simple external 

drive (Figure 5, 6). 

 Partitioning synaptic input variability into additive and multiplicative noise 

essentially assigns a measure of influence to two types of network fluctuations: a 

uniform scaling of the entire presynaptic pool (i.e., multiplicative noise), and scaling that 

is independent across subpopulations within the presynaptic pool (i.e., additive noise).  

Our experimental results suggest both types of modulation are present in visual 

responses, with the latter dominating at the time scale considered (Figure 3).  

Moreover, the variability in the early response contains almost twice as much 

multiplicative noise as that in the late response (Figure 3c).  While it is possible that this 
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dynamic is due to hidden, temporally variable, extracortical influences, our simple model 

network gave a similar result (Figure 6d, e), and points to an alternative explanation: a 

sensitivity to conditions at stimulus onset, with small deviations leading to increasingly 

random fluctuations about the mean over the duration of the response. Such chaotic 

dynamics are a hallmark of balanced networks(Shadlen and Newsome 1998; Vreeswijk 

and Sompolinsky 1996).  While at first glance this seems extremely disadvantageous to 

sensory coding, the balanced regime has other advantages, including fast responses to 

changes in external stimuli(Vreeswijk and Sompolinsky 1996), effective signal 

propagation(Vogels and Abbott 2005), and maximized information capacity(W. L. Shew 

et al. 2011). 

 Previous work has shown that population coupling based on spiking activity is 

broadly-distributed across cells, which may reflect the degree to which a given neuron 

samples the local population(Okun et al. 2015), and the structure of that 

connectivity(Pernice et al. 2011).  In agreement with this, we found that g-LFP 

correlated variability was broadly-distributed across cells for a given stimulus condition 

(Figure 4b).  Our model results further reinforce the hypothesis that connectivity 

underlies this variability: CC distributions were broadly-distributed for relatively realistic, 

“constellation-like” synaptic weight distributions (Figure 6g), but narrowly-distributed for 

binary synapses (Figure 6h, left).  These distributions also shaped the dynamics of 

scaled variability (Figure 6b, c, top).  Evidently, cortical connectivity patterns are 

manifested in the response variability and coordinated variability of synaptic activity, 

which likely reflect the response properties of population spiking observed elsewhere. 
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 Despite this apparent dependence on anatomical connectivity, previous work has 

shown that g-LFP coupling can increase with visual stimulation(Haider et al. 2006).  In 

agreement with this, we found that g-LFP correlated variability amplitudes significantly 

increased when we presented movies to the retina (Figure 4b, 4c, top).  This effect 

was short-lived, however; g-LFP CC amplitudes decreased significantly after the early 

response phase (Figure 4b, 4c, bottom), despite persistent synaptic and local 

population activity (Figure 2a-c, 4a).  Was this a case of external stimuli imposing a 

particular coordination dynamic on the cortical circuitry, or was the thalamocortical 

system itself capable of exhibiting multiple coordination “states”?  Our model results 

support the latter hypothesis: sufficiently strong external drive that is uncorrelated 

across neurons can trigger intrinsic network oscillations, which are characterized by 

elevated coupling of synaptic inputs, and the elevated coupling is abolished along with 

the oscillation (Figure 5, 6).  These results are consistent with the observation that 

spontaneous fluctuations in cortical state can influence g-LFP(Haider et al. 2016) and 

spike-spike(Okun et al. 2015; Scholvinck et al. 2015) population coupling.  In addition, 

this decrease in g-LFP coupling is consistent with the observed decrease in 

multiplicative noise (Figure 3); single-trial fluctuations become increasingly independent 

across neuronal subpopulations, which should be reflected in the nearby LFP(Deweese 

and Zador 2004).  Moreover, our results build on this previous work by identifying 

specific anatomical features of cortex (e.g., synaptic time constants and synaptic 

adaptation) capable of influencing population coupling dynamics via emergent network 

phenomena. 
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 According to one view of population coding, the decrease in g-LFP coupling in 

the late response may benefit cortical function: while steady-state activity is less reliable 

than that in the early response (Figure 2e, 3), these later fluctuations are more private, 

and therefore tend to average out across a neural ensemble(Zohary 1994).  Our model 

results suggest this does not simply reflect a decrease in overall activity level, but rather 

the abolition of large-scale spike rate oscillations by synaptic depression (Figure 5b, 6).  

This is consistent with the emerging view that adaptation (in cortex and elsewhere) 

serves as much more than a modulator of activity levels, but is in addition a “knob” for 

fine-tuning a variety of functionalities(Benucci, Saleem, and Carandini 2013; Gutnisky 

and Dragoi 2008; Ollerenshaw et al. 2014; Woodrow L Shew et al. 2015; Zheng, Wang, 

and Stanley 2015). 

 One major limitation of our experimental work is the lack of direct measurements 

of inhibitory synaptic conductances, which are a key component of single-neuron and 

network-wide response properties.  Inhibition represents a significant proportion of the 

total synaptic input to a given neuron(Haider, Häusser, and Carandini 2012), tends to be 

correlated across pairs of neurons(Hasenstaub et al. 2005), and the relative timing of 

excitatory and inhibitory currents may determine precise spike timing(Haider and 

McCormick 2009; Hasenstaub et al. 2005; Nowak, Sanchez-Vives, and McCormick 

1997) and feature selectivity(Wilent and Contreras 2005).  Furthermore, the inhibitory 

population is known to play a vital role in such emergent network phenomena as spike 

rate oscillations(Brunel and Wang 2003), and the excitation-inhibition balance may 

represent a fundamental aspect of the cortical code(Denève and Machens 2016).  Our 

experimental approach can be modified to investigate inhibition.  For example, 
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excitatory conductances can be pharmacologically blocked, and/or the resting 

membrane potential of a patched neuron can be shifted to the excitatory reversal 

potential.  In this case, the algorithm would provide a temporally-precise view of the 

inhibitory conductances responsible for the observed (relatively slow and convoluted) 

membrane potential deflections.  More importantly, this approach can be combined with 

multi-whole-cell recording to simultaneously infer excitatory conductances in one cell, 

and inhibitory in another, similar to studies of evoked activity in rat somatosensory 

cortex(Okun and Lampl 2008), and spontaneous activity in rat hippocampus(Atallah and 

Scanziani 2009) and mouse thalamocortical slice(Graupner and Reyes 2013).  This 

would be particularly useful in areas such as visual cortex, where responses can be 

complex and highly variable (thus limiting the utility of recording excitation and inhibition 

from one cell on alternating trials). 

 Here, we have treated each recorded neuron as a network sub-sampler, viewing 

the synaptic inputs as a record of presynaptic spiking activity.  Of course, each neuron 

is also a contributing member of the network. And although the relationship is 

complex(Carandini 2004), the nature of the synaptic inputs is likely extremely relevant to 

that of output spiking activity(Doiron et al. 2016; Litwin-Kumar et al. 2011; Lyamzin et al. 

2015).  We therefore hypothesize that the broad g-LFP coupling distribution observed 

here corresponds to the diverse spike-spike population coupling observed elsewhere.  A 

carefully-designed experiment can directly test this hypothesis.  For instance, the 

resting membrane potential of a recorded neuron can be systematically manipulated to 

support spiking in some trials (which can be compared to local or global spiking activity), 

and limit it in others (which would be used to calculate g-LFP coupling).  It is this ability 
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to study both suprathreshold and subthreshold activity that makes whole-cell recordings 

so valuable in our quest to understand coordinated network activity(Doiron et al. 2016). 

 Taken together, our results demonstrate the highly variable nature of visually-

evoked spatiotemporal spike patterns in cortical microcircuits.  Further, they suggest 

that several properties of this variability are largely determined intracortically, and 

identify specific, highly relevant cortical parameters.  Importantly, these cortical 

properties together lead to an adapted network state that is in many ways ideal for 

sensory processing.  As such, these results contribute to a clearer picture of the effects 

of anatomical and emergent network properties on single-neuron sensory responses 

and network-wide function.  

Methods 

Surgery 

All procedures were approved by Washington University’s Institutional Animal 

Care and Use Committees and conform to the guidelines of the National Institutes of 

Health on the Care and Use of Laboratory Animals.  Fourteen adult red-eared sliders 

(Trachemys scripta elegans, 150-1000 g) were used for this study. Turtles were 

anesthetized with Propofol (2mg Propofol/kg), then decapitated.  Dissection proceeded 

as described previously(Crockett et al. 2015; Saha et al. 2011; W. L. W. L. Shew et al. 

2015).  In brief, immediately after decapitation, the brain was excised from the skull, 

with right eye intact, and bathed in cold extracellular saline (in mM, 85 NaCl, 2 KCl, 2 

MgCl2*6H2O, 20 Dextrose, 3 CaCl2-2H2O, 45 NaHCO3).  The dura was removed from 

the left cortex and right optic nerve, and the right eye hemisected to expose the retina.  
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The rostral tip of the olfactory bulb was removed, exposing the ventricle that spans the 

olfactory bulb and cortex. A cut was made along the midline from the rostral end of the 

remaining olfactory bulb to the caudal end of the cortex.  The preparation was then 

transferred to a perfusing chamber (Warner RC-27LD recording chamber mounted to 

PM-7D platform), and placed directly on a glass coverslip surrounded by Sylgard.  A 

final cut was made to the cortex (orthogonal to the previous and stopping short of the 

border between medial and lateral cortex) allowing the cortex to be pinned flat, with 

ventricular surface exposed. Multiple perfusion lines delivered extracellular saline, 

adjusted to pH 7.4 at room temperature, to the brain and retina in the recording 

chamber. 

Intracellular Recordings 

We performed whole-cell current clamp recordings from 39 cells in 14 

preparations.  Patch pipettes (4-8 MΩ) were pulled from borosilicate glass and filled with 

a standard electrode solution (in mM; 124 KMeSO4, 2.3 CaCl2-2H2O, 1.2 MgCl2, 10 

HEPES, 5 EGTA) adjusted to pH 7.4 at room temperature.  Cells were targeted for 

patching using a dual interference contrast microscope (Olympus).  All cells were 

located within 300 microns of an extracellular recording electrode.  Intracellular activity 

was collected using an Axoclamp 900A amplifier, digitized by a data acquisition panel 

(National Instruments PCIe-6321), and recorded using a custom Labview program 

(National Instruments), sampling at 10 kHz.  The visual cortex was targeted as 

described previously(W. L. W. L. Shew et al. 2015)].   

Extracellular Recordings 
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We performed extracellular recordings at 12 recording sites in seven 

preparations.  We used tungsten microelectrodes (MicroProbes heat treated tapered 

tip), with approximately 0.5 MΩ impedance.  Electrodes were slowly advanced through 

tissue under visual guidance using a manipulator (Narishige), while monitoring for 

spiking activity using custom acquisition software (National Instruments).  Extracellular 

activity was collected using an A-M Systems Model 1800 amplifier, band-pass filtered 

between 1 Hz and 20,000 Hz, digitized (NI PCIe-6231), and recorded using custom 

software (National Instruments), sampling at 10 kHz. 

Visual Stimulation 

The visual stimulation protocol has been described previously (N. C. Wright, M. 

Hoseini, R. Wessel, unpublished observations).  Briefly, visual stimuli were presented 

using a projector (Aaxa Technologies, P4X Pico Projector), combined with a system of 

lenses (Edmund Optics) to project images generated by a custom software package 

directly onto the retina.  The stimulus was either a sustained gray screen, a naturalistic 

movie (“catcam”), a motion-enhanced movie (courtesy Jack Gallant), or a phase-

shuffled version of the same movie (courtesy Jack Gallant and Woodrow Shew).   In all 

cases, the stimulus was triggered using a custom Labview program (National 

Instruments).  

For each cell and extracellular recording site, we selected one of the four stimuli 

listed above to present across all trials.  The preparation was in complete darkness 

before and after each stimulus presentation.  Stimuli lasted either 10 s or 20 s, and were 
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shown at least 12 times, with at least 30 s between the end of one presentation and the 

beginning of the next. 

Processing of intracellular and extracellular voltage recordings 

Raw data traces were down-sampled to 1000 Hz.  We used an algorithm to 

detect spikes in the membrane potential, and the values in a 20 ms window centered on 

the maximum of each spike were replaced via interpolation.  Finally, we applied a 100 

Hz lowpass Butterworth filter.  For extracellular recordings, we used a sine-wave 

removal algorithm to minimize 60 Hz line noise. 

Data included in analysis 

For each extracellular recording site, we used visual inspection to determine the 

quality of the recordings.  In general, we excluded recording sites from consideration if 

voltage traces displayed excessive 60 Hz line noise, low-frequency noise (likely 

reflecting a damaged electrode), or on average small response amplitudes relative to 

baseline. 

 For intracellular recordings, we also excluded some trials and cells.  To include a 

given trial, we required the membrane potential to remain at or above the calculated 

inhibitory reversal potential from the beginning of the ongoing epoch to the end of the 

steady-state epoch.  The inhibitory reversal potential was calculated using the Chloride 

concentrations in the intracellular and extracellular solutions, but because of partial 

transfer of intracellular solution to the cell interior, it was possible for the recorded 

membrane potential to drop below this value.  This causes the conductance estimation 

algorithm to return a singularity.  Rather than reset the inhibitory reversal potential to the 
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minimum membrane potential value for such a trial, we took the more conservative 

approach of excluding the trial from consideration.  We also excluded trials with 

excessive low-frequency artifacts or membrane potential drift.  Finally, we considered 

only cells with twelve or more retained trials for analysis. 

In some cases, an extracellular electrode remained at a single recording site 

while we performed whole-cell recordings either simultaneously or sequentially from 

multiple nearby cells.  To calculate CC for a given g-LFP pair, we included only the trials 

in which both the intracellular and extracellular voltage were recorded and retained.  

Inferred excitatory conductance 

 The algorithm for obtaining an estimated excitatory synaptic conductance (g) 

from V for single trials has been described previously(Yaşar, Wright, and Wessel 2016).  

Briefly, our algorithm approximates a solution to the underdetermined equation 

0 = 𝐶
𝑑𝑉(𝑡)

𝑑𝑡
+ 𝑔𝑙(𝑉(𝑡) − 𝐸𝑙) + 𝑔𝑒(𝑡)(𝑉(𝑡) −  𝐸𝑒) +  𝑔𝑖(𝑡)(𝑉(𝑡) − 𝐸𝑖) 

where C is the known membrane capacitance, 𝑉(𝑡) is the measured membrane 

potential as a function of time, 𝐸𝑒 (𝐸𝑖) is the known excitatory (inhibitory) reversal 

potential, 𝐸𝑙 is the known leak reversal potential, 𝑔𝑙 is the known leak conductance, and 

𝑔𝑒(𝑡) (𝑔𝑖(𝑡)) is the unknown excitatory (inhibitory) synaptic conductance.  To estimate 

𝑔𝑒(𝑡), we first introduce a mathematical construct 𝜂(𝑡), which is defined according to 

0 = 𝐶
𝑑𝑉(𝑡)

𝑑𝑡
+ 𝑔𝑙(𝑉(𝑡) − 𝐸𝑙) +  𝜂(𝑡)(𝑉(𝑡) − 𝐸𝑖). 
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For each recording, we solve this equation for 𝜂(𝑡).  This attributes all membrane 

potential fluctuations to a single (unrealistic) inhibitory conductance.  As such, 𝜂(𝑡) 

contains negative values and rapid downward fluctuations that are due to the influence 

of excitatory currents on the membrane potential.  Because conductance cannot have 

negative values, we then set the negative values in 𝜂(𝑡) equal to zero, resulting in 𝜂̃(𝑡) 

(previously called “non-negative 𝜂(𝑡))”.  Next, we use linear interpolation to smooth out 

the rapid fluctuations in 𝜂̃(𝑡).  The output of this smoothing process is 𝜉(𝑡), a smoother 

and therefore more realistic estimation of the inhibitory synaptic conductance.  Finally, 

we substitute 𝜉(𝑡) into the equation 

0 = 𝐶
𝑑𝑉(𝑡)

𝑑𝑡
+ 𝑔𝑙(𝑉(𝑡) − 𝐸𝑙) + 𝑔(𝑡)(𝑉(𝑡) −  𝐸𝑒) +  𝜉(𝑡)(𝑉(𝑡) − 𝐸𝑖) 

to obtain an estimation of the excitatory synaptic conductance (g).  In general, this 

algorithm sacrifices knowledge about the inhibitory conductance to gain a better 

estimation of the excitatory conductance.  Further, it capitalizes on the fact that 

excitatory currents are faster than – and therefore tend to interrupt – inhibitory currents. 

 We have made several improvements to the algorithm since introducing it.  The 

original algorithm worked remarkably well on simulated membrane potentials.  A 

recorded membrane potential, however, will contain high-frequency noise, which is 

removed by filtering (with, e.g., a 100 Hz Butterworth low-pass filter).  This filtering 

process also leads to a smoother 𝜂̃(𝑡).  As mentioned above, detecting fast fluctuations 

in this signal is a critical step in the estimation process, and the algorithm’s performance 

was thus compromised by the filter (as evidenced by its application to filtered, noisy 

simulated membrane potentials).  We therefore revised the criteria for detecting and 
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replacing rapid fluctuations in 𝜂̃(𝑡) (see Yasar, et al. 2016 for previous criteria).  First, 

after calculating 𝜂̃(𝑡), we obtained the time series 𝑑(𝜂̃(𝑡))/𝑑𝑡.  We then determined 

each time t’ at which 𝑑(𝜂̃(𝑡))/𝑑𝑡 crossed a threshold of one negative standard deviation.  

This threshold optimized the algorithm’s performance when applied to noisy simulated 

data.  Finally, we linearly connected the local maxima of 𝜂̃(𝑡) immediately prior and 

posterior to t’. 

When applying the algorithm to a membrane potential recording, the 

experimenter must estimate the resting membrane potential for that trial.  An unrealistic 

choice will lead to spurious waveforms in the estimated conductance.  We estimated the 

resting membrane potential for each trial by calculating the median membrane potential 

value during the quiescent activity in that trial.  To isolate this quiescent activity, we first 

removed a window of activity starting at stimulus onset, and ending 6 s after stimulus 

offset.  This resulted in either a 14 s or 24 s trace of “spontaneous” activity that was on 

average quiescent relative to that in the removed window.  We then used an algorithm 

to detect spontaneous “bursts” of activity lasting at least 1 s in duration within the 

remaining trace, and removed these bursts.  Finally, we took the median value (which is 

more robust to outliers than the mean) of the resulting trace to be the resting membrane 

potential for the corresponding visual stimulation trial. 

Coefficient of variation 

 The coefficient of variation (CV) is a scaled measure of variability: the standard 

deviation divided by the mean.  For the set of all cells (N = 39), we calculated CV as a 

function of time (CV(t), Fig 2e) for the inferred excitatory conductance.  First, we applied 
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a 100 ms “box filter” to each g trace: for each time step, we replaced the value of the 

trace with the average value in a 100 ms window starting at that time step.  We then 

advanced the window ten milliseconds, and repeated the process for the full length of 

the trace.  Then, for each cell, we calculated the across-trial standard deviation and 

mean of the filtered traces as a function of time.  This was done for the entire 

population, resulting in 39 (mean, standard deviation) ordered pairs for each time step.  

For each time step, we fit the set of means to the set of standard deviations using linear 

regression.  The slope (standard error) of this fit was the coefficient of variation (s.e.m.) 

for the time step.  To determine the significance of a change in CV across epochs, we 

compared the set of all CV values for one epoch with that from the other (e.g., the 100 

values from the ongoing epoch and the 100 values from the transient) using the 

Wilcoxon signed-rank test. 

Correlated variability 

For each single-trial time series X, the residual (Xr or deviation from the average 

activity) was found by subtracting the across-trial average time series from the single-

trial time series: 

𝑋𝑟 = 𝑋 − 〈𝑋〉𝑡𝑟𝑖𝑎𝑙𝑠 

Residuals were then separated into three epochs: the ongoing epoch (defined to be the 

one second prior to the onset of visual stimulation), the transient epoch (200 to 1200 ms 

after stimulus onset), and the steady-state epoch (1400 to 2400 ms after stimulus onset; 

Figure 4a).  For each g-LFP pair, the Pearson correlation between residuals was then 
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calculated for each epoch and trial.  The results were averaged across all trials, 

resulting in the trial-averaged correlated variability (CC) for each pair and epoch: 

𝐶𝐶𝑒𝑝𝑜𝑐ℎ = 〈𝑐𝑜𝑣(𝑔𝑟
𝑒𝑝𝑜𝑐ℎ, 𝐿𝐹𝑃𝑟

𝑒𝑝𝑜𝑐ℎ) [𝑣𝑎𝑟(𝑔𝑟
𝑒𝑝𝑜𝑐ℎ)𝑣𝑎𝑟( 𝐿𝐹𝑃𝑟

𝑒𝑝𝑜𝑐ℎ)]1/2⁄ 〉𝑡𝑟𝑖𝑎𝑙𝑠 

 Significance tests for each pair and the population of pairs were applied as 

described below in “statistical analysis”. 

Power 

For each trial and signal, we extracted a 4.4 s window of activity (with epoch 

windows and gaps between epochs as described above, plus 500 ms windows on each 

end to avoid filtering artifacts in the ongoing and steady-state epochs), and calculated 

the residual time series as described above.  For each residual trace, we performed 

wavelet analysis in Matlab using software provided by C. Torrence and G. 

Compo(Torrence and Compo 1998) (available at URL: 

http://paos.colorado.edu/research/wavelets/).  This resulted in a power time series for 

each cell, for multiple frequencies.  For each frequency below 100 Hz, we averaged the 

time series across each epoch to obtain the average power at each frequency for each 

epoch.  We then averaged across trials to obtain Pepoch.  For each cell, we also obtained 

the relative power spectrum (rPepoch) for the transient and steady-state epochs, defined 

to be the trial-averaged evoked spectrum divided by the trial-averaged ongoing 

spectrum (Figure 3b): 

𝑟𝑃𝑒𝑝𝑜𝑐ℎ = 𝑃𝑒𝑝𝑜𝑐ℎ/𝑃𝑜𝑛𝑔𝑜𝑖𝑛𝑔 
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For each frequency, we calculated the bootstrap interval for the relative power as 

described below in “statistical analysis”.    

  

Network Models 

 To investigate the roles of network properties in our experimental results, we 

implemented a model network of 800 excitatory and 200 inhibitory leaky-integrate-and-

fire neurons (Figure 5a).  Excitatory-excitatory connections had small-world 

connectivity(Watts and Strogatz 1998) (with 3% connection probability), and all other 

connections were random (with 3% excitatory-inhibitory, and 20% inhibitory-excitatory 

and inhibitory-inhibitory connection probability).  To generate each nonzero entry in the 

connection weight matrix (𝑊𝑖𝑗
0) we drew a value from a beta distribution (over the 

interval [0.0, 1.0), with average value 0.1), and multiplied by 10. 

The dynamics of the membrane potential (V) of each neuron evolved according 

to 

𝜏𝑚

𝑑𝑉

𝑑𝑡
= −𝑔𝐿[𝑉(𝑡) − 𝐸𝐿] + 𝐼𝑠𝑦𝑛(𝑡) 

where the membrane time constant τM = 50 ms (excitatory neurons), 25 ms (inhibitory), 

and the leak conductance gL = 10 nS (excitatory), 5 (inhibitory).  The leak reversal 

potential EL for each neuron was a random value between -70 and -60 mV, drawn from 

a Gaussian distribution (to model the variability in resting membrane potentials 

observed across neurons in the experimental data).  The reversal potentials for the 

synaptic current Isyn(t) were EGABA = -68 mV, and EAMPA = 50 mV.  
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The synaptic current for each synapse type (between presynaptic neurons of 

type X and postsynaptic neurons of type Y) had three relevant time course parameters: 

delay (τLX, that is, the lag between presynaptic spike time and beginning of conductance 

waveform), rise time (τRYX), and decay time (τDYX).  Synaptic conductances were 

modeled as products of time-varying gating variables (SYX) and maximum conductances 

(gYX).  Following a presynaptic spike at time 0, the gating variable dynamics were 

described by 

𝑆𝑌𝑋(𝑡) =
𝜏𝑚

𝜏𝐷𝑌𝑋 − 𝜏𝑅𝑌𝑋
[𝑒𝑥𝑝 (−

𝑡 − 𝜏𝐿𝑋

𝜏𝐷𝑌𝑋
) − 𝑒𝑥𝑝 (−

𝑡 − 𝜏𝐿𝑋

𝜏𝑅𝑌𝑋
)] 

with time constants (in ms) τLE = 1.5, τREE = 0.2, τDEE = 1.0, τRIE = 0.2, τDIE = 1.0, τLI = 

1.5, τRII = 1.5, τDII = 6.0, τREI = 1.5, τDEI = 6.0.  Maximum conductance values (in nS) 

were gEE = 3.0, gIE = 6.0, gEI = 30.0, gII = 30.0.  In response to a presynaptic spike in 

neuron j at time 𝑡𝑗
𝑠𝑝𝑘

, the weight (Wij) of a synapse connecting neurons j and i 

depressed and recovered according to 

𝑑𝑊𝑖𝑗

𝑑𝑡
= −

𝑊𝑖𝑗(𝑡)

𝜏𝑑𝑒𝑝𝑟𝑒𝑠𝑠
𝛿(𝑡 − 𝑡𝑗

𝑠𝑝𝑘) +
𝑊𝑖𝑗

0 − 𝑊𝑖𝑗(𝑡)

𝜏𝑟𝑒𝑐𝑜𝑣𝑒𝑟
 

 

with depression time constant τdepress = 300 ms and recovery time constant τrecover = 

2500 ms.  Intracortical synapses were subject to depression for the entire simulation. 

 The spike threshold for each neuron was -40 mV.  A neuron reset to -59 mV after 

spiking, and was refractory for 10 ms (excitatory) and 5 ms (inhibitory). 
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All excitatory and inhibitory neurons received Poisson external inputs.  During 

“ongoing” activity, the external input rate to each neuron was 65 Hz, which was 

sufficiently high to cause intracortical spiking (Figure 5b).  The ongoing external input 

was unique across cells and trials.  The stimulus was modeled as a gradual increase to 

375 Hz; the input rate was increased by 77.5 Hz at stimulus onset, and by an additional 

77.5 Hz every 50 ms for 200 ms.  This gradual increase provided more realistic 

excitatory conductances than did a single step function stimulus, but did not qualitatively 

impact the results.  The post-stimulus external drive was composed of two components: 

one that was unique across cells and trials, and one that was unique across cells, but 

identical across trials, multiplied by proportionality constants 0.25 and 0.75, 

respectively.  Thus, for the post-stimulus external drive to each neuron, 25% of the 

variance was explained by an input that was unique to each trial, and 75% was 

explained by an input that was identical across trials.   The gating variables for external 

inputs had the same parameters as for excitatory-excitatory connections, and maximum 

conductances were gE  = 6.0 nS.  There was no thalamocortical synaptic depression 

during the ongoing epoch; the external drive during this window was simply used to 

generate stimulus-independent intracortical spiking, and thus treated as the “hidden” 

source triggering intrinsic events, as observed in experiment (Figure 2a, d). 

 Each trial was 4.4 s in duration, with stimulus onset at 1.7 s, and the time step 

was 0.05 ms.  The ongoing epoch was defined to be 1200 ms to 200 ms before stimulus 

onset, the transient epoch 0 ms to 1000 ms after stimulus onset, and the steady-state 

epoch 1200 ms to 2400 ms after stimulus onset.  The additional 500 ms at the 
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beginning and end of each trial ensured there were no wavelet filtering artifacts in the 

ongoing and steady-state epochs. 

We modeled the LFP as the sum of all synaptic currents(Atallah and Scanziani 

2009; Destexhe 1998) to 100 neighboring neurons (Figure 5b, d), multiplied by a factor 

of -1 (to mimic the change in polarity between voltages measured intracellularly and 

extracellularly).  The contribution of each neuron to the LFP was not distance-

dependent.  We then randomly selected 40 neurons from this subpopulation of 100 

neurons, and used the excitatory synaptic conductances (Figure 5c) to generate 40 g-

LFP pairs for g-LFP CC analysis (Figure 6f-h).  For CV and R2 analysis (Figure 6b-e), 

we used 40 neurons randomly selected from the full population of 800 excitatory 

neurons. 

Statistical analysis 

 All statistical tests were performed using Python 2.7.  

Before applying any significance test that assumed normality, we performed an 

omnibus test for normality on the associated dataset(s).  This test compares the skew 

and kurtosis of the population from which the dataset was drawn to that of a normal 

distribution, returning a p-value for a two-sided chi-squared test of the null hypothesis 

that the data is drawn from a normal distribution.  This test is valid for sample sizes of 

20 or larger, and was implemented using scipy.stats.mstats.normaltest (documentation 

and references available at http://docs.scipy.org/doc/scipy-

0.14.0/reference/generated/scipy.stats.mstats.normaltest.html).  We report these p-

values as the result of a “two-sided omnibus chi-shared test for normality”. 
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 When asking whether a parameter of interest changed significantly across 

epochs for a population (e.g., whether the population-averaged CC for 21 g-LFP pairs 

changed significantly from the ongoing to transient epoch, see Fig 4b), we applied the 

Wilcoxon signed-rank test, which returns a p-value for the two-sided test that the two 

related paired samples (representing, e.g., the 21 (CCongoing, CCtransient) paired values) 

are drawn from the same distribution.  This test assumes normality, and was 

implemented using scipy.stats.wilcoxon (documentation and references available at 

http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wilcoxon.html). 

 To test whether a trial-averaged parameter of interest for one cell or electrode 

(e.g., CC, averaged over 15 trials for one cell) changed significantly from one epoch to 

another, we used a bootstrap comparison test.  For each epoch of interest, we 

calculated the +/- 97.5% confidence intervals for the average value by bootstrapping 

(that is, resampling with replacement).  If the bootstrap intervals for the two epochs did 

not overlap, we reported that the two sets of values were significantly different (p < 

0.05). 

 When calculating correlations between a pair of signals in which at least one is 

slowly-varying, it is possible for broad autocorrelations to introduce spurious cross-

correlations.  This should be dealt with by either removing the broad autocorrelations 

(e.g., by “pre-whitening” the signals), or by accounting for their contribution to the cross-

correlation.  To avoid changing the temporal structure of the visual responses, we chose 

the latter approach.  First, for each epoch and g-LFP pair, we randomly shuffled the trial 

order for one of the channels.  We then calculated CCshuff and the bootstrap interval for 

this shuffled data.  The CC value for each pair and epoch was determined to be 
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significant (with p < 0.05) if the bootstrap intervals for CC and CCshuff data did not 

overlap.  We indicate a significant CC value with a filled dot in the CC trajectory (Figure 

4b, 6g, h).  Finally, for a given epoch, we compared the sets of CC and CCshuff values 

for the population of g-LFP pairs using the Wilcoxon signed-rank test (as described 

above for across-epoch comparisons of CC).  The population average for unshuffled 

data was determined to be significant for p < 0.05.  We repeated this second test using 

bootstraps intervals rather than the signed-rank test, with similar results (data not 

shown). 
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Figure 1.  Individual neurons subsample the cortex, and provide a spike-rate-

independent measure of cortical sensory responses.  (a) Cortical neurons are primarily 

sparse-spiking units (low opacity circles), and each neuron subsamples the cortex by 

receiving synaptic inputs from a large, biologically relevant subpopulation.  (b) While 

high-spike-rate neurons (high opacity rasters) alone provide reliable statistics for 

analysis of spiking responses, the subthreshold activity of a randomly-selected neuron 

(e.g., red voltage trace corresponding to red rasters) communicates information about 

the time course of presynaptic spiking activity.  (c) Left: We recorded the subthreshold 
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membrane potentials of cortical pyramidal neurons, as well as the nearby local field 

potential (LFP) while presenting movies to the retina in the turtle eye-attached 

wholebrain ex vivo preparation.  Right: We used an algorithm (see Methods) to infer the 

excitatory synaptic conductance (g) from V, which gave a more detailed view of synaptic 

activity (inset).  We investigated the nature of the variability in g, and its coupling with 

that of the simultaneously-recorded LFP. 
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Figure 2.  Visual stimulation evokes increases in synaptic activity, and responses are 

highly variable across trials.  (a) Inferred excitatory synaptic conductance (g, red) and 

measured LFP (black) for three trials (low opacity), and average across 32 trials (high 

opacity).  Colors indicate ongoing (yellow), transient (blue), and steady-state (green) 

epochs (see Results and Methods).  (b) Relative power spectra (mean ± bootstrap 

intervals, see Methods) for g (top) and LFP (bottom) for transient (blue) and steady-

state (green) epochs, for example pair in (a).  (c) Total relative power (1 – 100 Hz) for 

39 cells.  Each blue (green) dot represents the across-trial mean relative power for one 

cell during the transient (steady-state) epoch.  High opacity lines connecting dots 

indicate significant change across epochs (P < 0.05, bootstrap comparison test, see 

Methods).  Asterisks above line connecting epochs indicate P < 1 x 10-3 (Wilcoxon 

signed-rank test).  (d) Close-up view of ongoing (left) and evoked (right) synaptic 
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activity.  (e) Coefficient of variation (CV) as a function of time for 39 cells (mean ± 

s.e.m.).  Dashed line indicates CV = 1.0. 
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Figure 3.  Single-trial variability is a mix of additive and multiplicative noise.  (a) Inferred 

excitatory synaptic conductance, integrated over a 50 ms sliding window (with no 

overlap) for individual trials (high opacity), and across-trial average (low opacity, see 

Methods).  (b) Across-trial distribution of R2 values resulting from linear regression of 

single-trial response onto average response for ongoing (left), transient (center), and 

steady-state (right) epochs.  Red vertical lines indicate medians.  (c)  Across-trial 

median R2 values for 39 cells, for each epoch.  Dot colors, connecting line opacities, 

and asterisks as in 2(b), with ** indicating 0.001 ≤ 𝑃 < 0.01, Wilcoxon signed-rank test. 
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Figure 4.  Synaptic input correlated variability transiently increases with visual 

stimulation.  (a) Residual traces for g (red) and LFP (black) for multiple trials.  (b) 

Across-trial average Pearson correlation coefficient for g and LFP residual traces, for 21 

g-LFP pairs.  Each dot indicates the across-trial average CC value for a given g-LFP 

pair.  Filled dots indicate significant average values (P < 0.05, bootstrap comparison to 

shuffled data, see Methods).  Connecting lines and asterisks as in 3(c), with * indicating 

0.01 ≤ 𝑃 < 0.05, Wilcoxon signed-rank test.  (c) Top: Distribution of change in across-

trial average CC values (multipled by -1) from ongoing to transient, for 21 g-LFP pairs 

(with results for shuffled data shown in gray).  Bottom: same, but for transient to steady-

state.  (d) Absolute value of across-trial average CC for V and LFP vs. that for g and 

LFP for 21 cell-LFP pairs, for the ongoing (left), transient (center), and steady-state 

(right) epochs.  Dashed line is unity line, and red line indicates significant linear 
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regression fit.  V-LFP |CC| values were significantly larger than g-LFP |CC| values for all 

epochs (P = 8.86 x 10-5 ongoing, P = 2.2 x 10-3 transient, P = 8.9 x 10-5 steady-state, 

Wilcoxon signed-rank test).  Values were significantly related for the ongoing (r2 = 0.31, 

P = 0.01 linear regression) and transient (r2 = 0.40, P = 0.0029) epochs, but not the 

steady-state (r2 = 0.18, P = 0.06). 
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Figure 5.  Model overview.  (a) 

We implemented a model 

network of 800 excitatory and 

200 inhibitory leaky integrate-

and-fire neurons, all subject to 

Poisson process external 

inputs.  Excitatory-excitatory 

connections had small-world 

connectivity, and all other 

connections were random.  (b) 

Network parameters were tuned 

to give spike rate oscillations in 

the inhibitory (blue) and 

excitatory (black) populations in 

response to strong external 

drive.  The LFP was modeled 

as the sum of synaptic currents 

to a subset of 100 neighboring neurons (gray region, and single trial in black below).  

The excitatory synaptic conductance was selected for neurons near the geometric 

center of this subset (single trial in red below, corresponding to neuron indicated by red 

arrow). 
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Figure 6.  A model network qualitatively reproduces the experimental results.  (a) 

excitatory synaptic conductance for one model neuron (g, red) and nearby LFP (black) 

for three trials (low opacity), and average across 20 trials (high opacity).  Colors indicate 

ongoing (yellow), transient (blue), and steady-state (green) epochs.  Example cell is 

located at the geometric center of the pool defining the LFP (see Results and Methods).  

(b-c) A qualitative reproduction of experimental CV(t) depended on the synaptic weight 

distribution, the nature of the stimulus, and synaptic depression. (b) Coefficient of 

variation (CV) as a function of time (mean ± s.e.m.) for 40 cells randomly-selected from 

the network, for total excitatory synaptic conductance (black), and for external excitatory 

conductance (green). Dashed line indicates CV = 1.0.  (c) CV for alternate model 

versions.  Top: network with binary synaptic weights.  Middle: network subject to unique 

stimulus on each trial.  Bottom: network without synaptic adaptation.  Scale bar and 

dashed line same as in (b).  (d) Excitatory synaptic conductance for one model neuron, 

integrated over a 50 ms sliding window (with no overlap) for individual trials (high 

opacity), and across-trial average (low opacity, see Methods).  (e) Across-trial median 

R2 values for 40 cells randomly-selected from network, for each epoch.  Dot colors, 

connecting line opacities, and asterisks as in 3(c).  (f) Residual traces for g (red) for one 

model neuron and nearby LFP (black) for multiple trials.  (g-h) A qualitative reproduction 

of the experimental g-LFP dynamic depended on the synaptic weight distribution, 

synaptic depression, and network oscillations. (g) Across-trial average Pearson 

correlation coefficient for g and LFP residual traces, for 40 g-LFP pairs (where 40 cells 

are selected from geometric center of pool defining LFP).  Each dot indicates the 

across-trial average CC value for a given g-LFP pair.  Filled dots indicate significant 
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average values (P ≤ 0.05, bootstrap comparison to shuffled data, see Methods).  

Connecting lines and asterisks as in 5(f).  (h) Same as in (g), for alternate model 

versions.  Left: network with binary synapses (i.e., synaptic weights either 1 or 0).  

Middle: network without synaptic depression.  Right: Asynchronous network. 
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