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ABSTRACT 16 

 Genomewide selection is hailed for its ability to facilitate greater genetic gains per unit 17 

time. Over breeding cycles, the requisite linkage disequilibrium (LD) between quantitative trait 18 

loci (QTL) and markers is expected to change as a result of recombination, selection, and drift, 19 

leading to a decay in prediction accuracy. Previous research has identified the need to update the 20 

training population using data that may capture new LD generated over breeding cycles, however 21 

optimal methods of updating have not been explored. In a barley (Hordeum vulgare L.) breeding 22 

simulation experiment, we examined prediction accuracy and response to selection when 23 

updating the training population each cycle with the best predicted lines, the worst predicted 24 

lines, both the best and worst predicted lines, random lines, criterion-selected lines, or no lines. 25 

In the short-term, we found that updating with the best predicted lines or the best and worst 26 

predicted lines resulted in high prediction accuracy and genetic gain, but in the long-term, all 27 

methods (besides not updating) performed similarly. We also examined the impact of including 28 

all data in the training population or only the most recent data. Though patterns among update 29 

methods were similar, using a smaller, but more recent training population provided a slight 30 

advantage in prediction accuracy and genetic gain. In an actual breeding program, a breeder 31 

might desire to gather phenotypic data on lines predicted to be the best, perhaps to evaluate 32 

possible cultivars. Therefore, our results suggest that an optimal method of updating the training 33 

population is also very practical.  34 
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INTRODUCTION 35 

The improvement of populations in plant breeding through recurrent selection may 36 

benefit tremendously from genomewide selection. Of particular worth are the high accuracies 37 

and shortened breeding cycles of genomewide selection, which allow for greater genetic gains 38 

per unit time (Bernardo and Yu 2007; Heffner et al. 2009; Lorenz et al. 2011). While 39 

genomewide selection has already been employed in established breeding programs for major 40 

cultivated species (e.g. Asoro et al. 2013; Beyene et al. 2015; Sallam et al. 2015), this tool also 41 

has broad appeal across other species. For instance, breeding programs for tree or perennial crops 42 

with long generation times could find utility in making selections before the plants are mature 43 

enough to phenotype. Additionally, orphan, undomesticated, or unimproved crops may benefit 44 

from rapid breeding progress. Indeed, researchers have already investigated the use of 45 

genomewide selection in species such as apple (Malus x domestica; Kumar et al. 2012), 46 

Eucalyptus (Resende et al. 2012), oil palm (Elaeis guineensis Jacq.; Cros et al. 2015), and 47 

intermediate wheatgrass (Thinopyrum intermedium (Host) Barkworth & D.R. Dewey; Zhang et 48 

al. 2016). The population improvement necessary in newly established breeding programs, 49 

regardless of species, may be expedited through genomewide selection. 50 

Of course, the aforementioned advantages of genomewide selection depend on 51 

maintaining sufficient genetic gain. This requires accurate predictions of the genotypic value of 52 

selection candidates based on markers located throughout the genome (Meuwissen et al. 2001). 53 

Accurate predictions depend on reliable phenotypic measurements and sufficient marker data on 54 

a training population. Genomewide marker coverage that captures genomic relationships 55 

between individuals and ensures linkage disequilibrium (LD) between markers and quantitative 56 

trait loci (QTL) will lead to higher prediction accuracy, especially when predictions are applied 57 
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to selection candidates more distantly related to the training population (Habier et al. 2007; 58 

Lorenz et al. 2011). The predicted genotypic values under these conditions will more closely 59 

reflect the true genotypic values, and selection can then act to increase the frequency of favorable 60 

QTL alleles in a population and shift the mean of a population in a desirable direction.  61 

Characteristics of long-term recurrent selection create impediments to maintaining 62 

effective genomewide selection. Over generations, recombination between markers and QTL 63 

will cause LD to decay, while selection and drift will potentially act to generate new LD or 64 

tighten the LD between closely-linked loci (Hill and Robertson 1968; Lorenz et al. 2011). Shifts 65 

in the pattern of QTL-marker LD, if not captured, will result in decreased prediction accuracy. 66 

This suggests that training populations must be updated during recurrent selection to maintain 67 

prediction accuracy, a notion that is indeed supported by studies using simulations and empirical 68 

data. Studies exploring simulations of recurrent selection in a clonally-propagated crop 69 

(Eucalyptus) and an inbreeding small grain (barley [Hordeum vulgare L.]) both revealed that the 70 

accuracy of genomewide selection was improved by updating the training population with data 71 

from previous breeding cycles (Jannink 2010; Denis and Bouvet 2013). Similarly, using 72 

empirical data from an advanced-cycle rye (Secale cereal L.) breeding program, Auinger et al. 73 

(2016) found that aggregating training population data over multiple cycles enhanced prediction 74 

accuracy. These investigations all demonstrated the benefit of including previous-cycle data into 75 

a training population, however they did not test different methods of selecting that data. 76 

Though updating the training population may be required, there are practical 77 

considerations in how a breeder selects individuals to fulfill this need. Consider a breeding 78 

program employing genomewide recurrent selection in barley. Each year, the breeder must 79 

allocate phenotyping resources between testing potential cultivars and population improvement. 80 
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Though genomewide selection offers to reduce the overall phenotyping costs of the latter (e.g. 81 

through early-generation selection), promising breeding lines will undoubtedly be included in 82 

field trials. Under genomewide selection, it seems a breeder must also contend with the 83 

composition of their training population, placing emphasis on methods to build or maintain this 84 

population that both maximize prediction accuracy and minimize costs. 85 

 Given the resource limitations of practical breeding and the importance of the training 86 

population, it is fitting that much research has been devoted to the composition and design of 87 

such populations. Using data from a North American barley breeding program, Lorenz et al. 88 

(2012) reported reduced prediction accuracy when the training population and selection 89 

candidates belonged to separate subpopulations. Multiple studies have found that a training 90 

population that is more closely related to the selection candidates leads to more accurate 91 

predictions (Asoro et al. 2011; Lorenz and Smith 2015). Other researchers have suggested more 92 

explicit criteria to determine the optimal training population for a set of selection candidates. 93 

Rincent et al. (2012) described training population design based on minimizing the mean 94 

prediction error variance (PEV) or maximizing the expected reliability of predictions (i.e. 95 

generalized coefficient of determination [CD]). When applied to empirical datasets, several 96 

investigations supported using the expected reliability criterion to optimally construct training 97 

populations (Rincent et al. 2012; Akdemir et al. 2015; Isidro et al. 2015; Rutkoski et al. 2015; 98 

Bustos-korts et al. 2016). These studies generally explored the construction of training 99 

populations from a single set of calibration individuals, therefore, the usefulness of this criterion 100 

over multiple breeding cycles to maintain prediction accuracy is unknown. 101 

 The objective of this study was to investigate various methods of updating a training 102 

population and their impact on genomewide recurrent selection. Using simulations, we 103 
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envisioned a breeding program implementing genomewide recurrent selection for an inbreeding, 104 

small grain species (i.e. barley). Six different training population update methods were 105 

compared, along with two scenarios of training population composition. We tracked important 106 

variables in breeding, including prediction accuracy, response to selection, and genetic variance. 107 

Additionally, we attempted to explain some of our observations using other parameters, 108 

including persistence of LD phase and genomic relationship.   109 
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METHODS AND MATERIALS 110 

A barley breeding program employing genomewide selection can realistically complete a 111 

breeding cycle in a single year (Figure 1). Following this breeding timeline, our experiment 112 

simulates a breeding population undergoing 15 cycles of recurrent genomewide selection. 113 

To incorporate the observed LD structure in barley breeding populations into our 114 

simulations, we used empirical marker data from two North American barley breeding programs: 115 

the University of Minnesota (UMN) and North Dakota State University (NDSU). Marker 116 

genotypes from 768 six-row spring inbred lines at 3,072 bi-allelic SNP loci were obtained from 117 

the Triticeae Toolbox (T3) database (Close et al. 2009; Blake et al. 2016). The genetic map 118 

position of markers was based on the consensus linkage map created by Muñoz-Amatriaín et al. 119 

(2011). Markers with more than 10% missing data and lines with more than 10% missing data 120 

were excluded. Markers were also filtered for redundancy, defined as those located at identical 121 

genetic map positions and with identical allele calls. A 0.01 cM interval was forced between 122 

markers with non-identical allele calls and shared map positions (i.e. due to low genetic map 123 

resolution). We set all heterzyogous genotype calls to missing and imputed missing genotypes 124 

using the mode genotype across all samples. This left a set of 764 breeding lines and 1,590 125 

homozygous markers spanning 1,137 cM. 126 

Genetic Model to Simulate QTL 127 

Each iteration of the simulation was initiated by randomly selecting L = 100 SNP loci to 128 

become causal QTL, regardless of genetic position or minor allele frequency. Genotypic values 129 

for QTL were drawn from a geometric series, as suggested by Lande and Thompson (1990). At 130 

the kth QTL, the value of the favorable homozygote was ak, the value of the heterozygote was 0, 131 

and the value of the unfavorable homozygote was –ak, where a = (1 – L) / (1 + L). The value of 132 
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the first allele of a QTL was randomly assigned to be favorable or unfavorable. Dominance and 133 

epistasis were assumed absent and higher values of the trait were considered favorable. The 134 

genotypic value of a given individual was calculated as the sum of the effects of QTL alleles 135 

carried by that individual. 136 

Phenotypic values were simulated by adding nongenetic effects to the genotypic values 137 

according to the model ��� � �� � �� � ��� , where yij was the phenotypic value of the ith 138 

individual in the jth environment, gi was the genotypic value of the ith individual, ej was the 139 

effect of the jth environment, and εij was the residual effect of the ith individual in the jth 140 

environment. Environmental effects were assumed to be samples of a normally-distributed 141 

random variable with mean 0 and standard deviation ����, where ��� was eight times the variance 142 

among genotypic values (i.e. ���) (Bernardo 2014). Residual effects were assumed to be samples 143 

of a normally-distributed random variable with mean 0 and standard deviation ����, where ��� 144 

was scaled to achieve a target entry-mean heritability of 	� � 0.5 in the base population. 145 

Phenotyping was assumed to take place in three environments with one replication, therefore 146 

within-environment variance and genotype-by-environment variance were confounded into ���. 147 

The variance of environmental effects and the variance of residual effects remained unchanged 148 

over cycles of selection, allowing the heritability to vary. The mean phenotypic value of each 149 

individual over the three environments was used in genomewide prediction. 150 

Base Population and Cycle 1 of Genomewide Selection 151 

The base population (i.e. cycle 0 training population) consisted of genotypic and 152 

simulated phenotypic data on the 764 breeding lines. Based on these simulated phenotypes, the 153 

top fifty UMN lines and the top fifty NDSU lines were intermated between breeding programs to 154 

generate the cycle 1 population. Specifically, fifty crosses were simulated, using each parent 155 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 14, 2017. ; https://doi.org/10.1101/087163doi: bioRxiv preprint 

https://doi.org/10.1101/087163
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

once, and twenty F3-derived lines were generated per cross. Gametes were generated following 156 

Mendelian laws of segregation, with recombination events simulated according to the genetic 157 

map positions of all loci (Muñoz-Amatriaín et al. 2011) and assuming no cross-over interference 158 

or mutation. Population development resulted in a pool of 1,000 F3 selection candidates. 159 

The marker data for the training population and selection candidates consisted of 160 

genotypes at all loci except the 100 QTL. This essentially simulated “genotyping” with complete 161 

accuracy. Monomorphic markers and those with a minor allele frequency less than 0.03 were 162 

removed prior to genomewide prediction. Marker effects were predicted using ridge-regression 163 

best linear unbiased prediction (RR-BLUP) according to the model  164 

 
 � �µ � ���� � �, (1) 165 

where y was an N × 1 vector of the phenotypic means of N training population lines, 1 was a N × 166 

1 vector of ones, μ was the grand mean, ZTP was a N × m incidence matrix of training population 167 

genotypes for m markers, u was a m × 1 vector of marker effects, and e was a N × 1 vector of 168 

residuals. Elements of ZTP were 1 if homozygous for the first allele, -1 if homozygous for the 169 

second allele, and 0 if heterozygous. Genotypic values of the F3 selection candidates were 170 

predicted using the equation �� � �	
��, where ĝ was a 1,000 × 1 vector of predicted genotypic 171 

values, ZSC was a 1,000 × m incidence matrix of selection candidate genotypes, and û was a m × 172 

1 vector of predicted marker effects. Elements of ZSC were the same as those in ZTP. 173 

Cycles 2 Through 15 of Genomewide Selection 174 

Subsequent cycles of the simulation consisted of three steps: 1) crossing and population 175 

development, 2) prediction and selection, and 3) training population updating. These are outlined 176 

in the diagram presented in Figure 2. Parents selected in the previous cycle were randomly 177 

intermated to form a pool of selection candidates. Again, fifty crosses were simulated and 1,000 178 
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F3-derived selection candidates were generated. Prior to predictions, we removed monomorphic 179 

markers and those with a minor allele frequency less than 0.03 in both the pool of selection 180 

candidates and in the training population. Since markers could become monomorphic due to 181 

selection or drift, the number of markers used for prediction decreased over breeding cycles. We 182 

predicted marker effects by Equation 1, using phenotypic and genotypic data on the training 183 

population. These marker effects were then used to predict genotypic values of the 1,000 184 

selection candidates, and those with the top 100 predicted genotypic values were designated as 185 

parents for the next cycle. A subset of all selection candidates were then designated as new 186 

additions to the training population according to one of the updating methods described below. 187 

We simulated phenotypes for these additions and merged the phenotypic and genotypic data to 188 

the pool of training population data. 189 

Methods of updating the training population 190 

Seven different methods of updating the training population were explored in the 191 

simulations. For each method, 150 selection candidates from each cycle were selected and added 192 

to the training population. These methods are termed “Top,” “Bottom,” “Random,” “PEVmean,” 193 

“CDmean,” “Tails,” and “No Change” and are described below. For “Top,” “Bottom,” and 194 

“Tails,” selection candidates were ranked based on predicted genotypic value. The 150 selection 195 

candidates with the highest (“Top”) or lowest (“Bottom”) values were added to the training 196 

population. For the “Tails” method, the 75 selection candidates with the highest values and the 197 

75 selection candidates with the lowest values were added to the training population. For 198 

“Random,” a random sample of selection candidates were added to the training population, and 199 

for “No Change,” the training population was not updated over breeding cycles. 200 
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 Two methods involved optimization algorithms previously described by other 201 

researchers, specifically “PEVmean” and “CDmean” (Rincent et al. 2012). Using only the 202 

genotypic data on all individuals, these algorithms aim to create a training population by 203 

optimally sampling individuals to be phenotyped in order to predict the value of individuals that 204 

would be unphenotyped. Our intention is similar, except that the individuals we sampled to be 205 

phenotyped are one cycle removed from the individuals that would be unphenotyped. For 206 

PEVmean, selection candidates were chosen to minimize the mean prediction error variance 207 

(PEV) of the genotypic values. As described in Rincent et al. (2012), the general PEV can be 208 

computed using a matrix of contrasts, C, between the “unphenotyped” individuals and the mean 209 

of the whole population (“phenotyped” and “unphenotyped” individuals). In solving Henderson's 210 

(1984) equations, the PEV of any contrast can be computed as 211 

 ������ � ���� �� 
� �����
�

��
�

�������
� �  ! ���, (2) 212 

where Z is an incidence matrix, M is an orthogonal projector (Rincent et al. 2012), and A is the 213 

genomic relationship matrix (described below). For the variance of the residuals (���), we used 214 

the restricted maximum likelihood estimate of ��� from the RR-BLUP linear model in Equation 215 

1. The additive genetic variance (���) was calculated by multiplying the number of markers, Nm, 216 

by the restricted maximum likelihood estimate of the variance of marker effects (Bernardo 217 

2014). The PEVmean was then calculated as ���"��# � "��#$����%������&'. 218 

Similarly, for “CDmean,” candidates were chosen to maximize the reliability of the 219 

predictions, measured as the mean generalized coefficient of determination (CD). This can also 220 

be expressed as the expected reliability of the contrasts (Laloe 1993; Rincent et al. 2012), 221 

computed as 222 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 14, 2017. ; https://doi.org/10.1101/087163doi: bioRxiv preprint 

https://doi.org/10.1101/087163
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

 ()��� � ���� *� �����
�

��
�


�������
�

��
�

�����
��

�
� �� +. (3) 223 

 224 

The values of ��� and ��� were the same as described for Equation 2. The CDmean was then 225 

calculated as ()"��# � "��#$����%()���&'.  226 

 We implemented an exchange algorithm similar to that described by Rincent et al. 227 

(2012), with one modification in the designation of individuals to predict and individuals to 228 

sample for phenotyping. The situation outlined by Rincent et al. (2012) assumes that the 229 

genotypic data for the individuals to sample and for the individuals to predict is available 230 

concurrently. In our simulation, this is not the case, since phenotyping of the selections in one 231 

cycle (cycle n) will occur before genotypic data on selection candidates of the next cycle (cycle n 232 

+ 1) becomes available (Figure 1). We therefore chose the 100 parents of the cycle n + 1 233 

selection candidates to be a proxy for the unphenotyped individuals, while the entire 1,000 234 

selection candidates (including the parents) constituted the population of individuals to be 235 

sampled by the algorithm. To maintain a reasonable computation time, the exchange algorithms 236 

were iterated 500 times. Preliminary data showed that a reasonable optimum for either criterion 237 

was reached after 500 iterations (data not shown). The PEVmean or CDmean algorithms were 238 

used to select individuals from the selection candidates to be included in the training population 239 

for the next cycle. 240 

 We also considered two scenarios of using the updated training population data. The first 241 

scenario represented a situation where a breeder may want to use all available information, and 242 

in this case, the training population grew by 150 lines in each cycle. This was termed the 243 

“Cumulative” scenario, and over cycles the size of the training population ranged from 764 to 244 
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2,864 individuals. In the next scenario, we attempted to control for the effect of training 245 

population size by using a “sliding window” of 764 lines along breeding cycles. Specifically, in 246 

each cycle the 150 new training population additions from the latest breeding cycle took the 247 

place of the 150 training population additions from the earliest breeding cycle. Since the 764 248 

base population lines all constituted cycle 0, these lines were discarded randomly until no base 249 

population lines remained in the training population. Afterwards, lines from earlier cycles were 250 

discarded as lines from later cycles were added. This was termed the “Window” scenario.  251 

 Variables tracked over breeding cycles 252 

To better interpret the observations in the simulations, we tracked a number of additional 253 

variables, including persistence of LD phase, mean realized additive genomic relationship, 254 

prediction accuracy, genetic variance, mean genotypic value, inbreeding coefficient, and the 255 

frequency of QTL and marker alleles. 256 

 The genetic variance in each cycle was calculated as the variance among the genotypic 257 

values of the selection candidates. Prediction accuracy was measured by computing the 258 

correlation between the predicted genotypic values of the selection candidates and their true 259 

genotypic values. 260 

We measured the LD between QTL and markers as such: for each and every polymorphic 261 

QTL in a given population (i.e. the training population or the selection candidates), we computed 262 

the correlation between that QTL and each and every polymorphic marker in the genome. We 263 

calculated persistence of LD phase by first measuring QTL-marker LD in the training population 264 

and in the selection candidates. QTL or markers that were not polymorphic in either of these 265 

populations were excluded. We then computed the correlation between the measures of QTL-266 

marker LD in the training population and in the selection candidates. This metric, also known as 267 
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the “correlation of r,” evaluates whether patterns of QTL-marker LD are similar between two 268 

populations. High correlations of r indicate that QTL-marker LD phases are consistent, and 269 

presumably the predicted marker effects in one population would accurately represent the marker 270 

effects in the second population (de Roos et al. 2008; Toosi et al. 2010). 271 

Additive relationships between lines in the simulation were measured with respect to the 272 

base population. Before initiating the simulations, a matrix P was calculated as 2�-� . 0.5�, 273 

where pi is the frequency of the second allele at locus i in the base population. Additionally, a 274 

normalization constant c was calculated as 2∑ -��1 . -��. Both calculations are described in 275 

VanRaden (2008). To compute additive relationships at any one cycle in the simulation, the 276 

genotype matrices (including QTL) of the training population and selection candidates were 277 

combined into a matrix M. The matrix P was subtracted from M to obtain matrix W. We then 278 

calculated the relationship matrix as 1 � �� 
� . This ensured that the relationship matrix was 279 

scaled to reflect the allele frequencies in the base population (VanRaden 2008). We calculated 280 

the mean additive relationship as the mean value of the training population-selection candidate 281 

combinations. Inbreeding coefficients for each individual were also calculated from this matrix 282 

as the diagonal elements minus one. 283 

All simulations were performed in R (version 3.3.1, R Core Team 2016) using the 284 

packages hypred (version 0.5, Technow 2014) and rrBLUP (version 4.4, Endelman, 2011). Each 285 

simulation experiment was repeated 250 times. The methods of updating the training population 286 

(i.e. “Top,” “Bottom,” “Random,” “CDmean,” “PEVmean,” “Tails,” and “No Change”) each 287 

constituted an independent experiment. With the two updating scenarios (i.e. “Window” and 288 

“Cumulative”), there were 14 different simulations. 289 

Data Availability 290 
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Simulation scripts, starting marker genotypes, and summarized data are provided in the R 291 

package GSSimTPUpdate, available from the GitHub repository https://github.com/UMN-292 

BarleyOatSilphium/GSSimTPUpdate. Included is a vignette on how to obtain the marker data 293 

from the T3 database.   294 
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RESULTS 295 

Long-term prediction accuracy 296 

Prediction accuracy (Figure 3, Supplementary Table 1) consistently decreased over 297 

cycles of selection for all methods of updating the training population and in both updating 298 

scenarios. Within and between scenarios, we observed differences among the update methods in 299 

the decay rate of prediction accuracy. A prominent observation was the precipitous decline in 300 

accuracy when not updating the training population (i.e. “No Change”). Early in breeding cycles, 301 

prediction accuracy for this method was similar to the remaining methods, but by cycle five had 302 

decayed beyond the remaining methods. As expected, identical trends were observed for “No 303 

Change” in both updating scenarios.   304 

Among methods of actively updating the training population (i.e. excluding “No 305 

Change”), differences in prediction accuracy were observed in early cycles, but became 306 

increasingly similar in later cycles. The “Top” and “Tails” methods resulted in a non-significant, 307 

but noticeable accuracy advantage early on that persisted for several cycles (Figure 3, 308 

Supplementary Table 1). On the other hand, the “Bottom” method displayed a noticeable 309 

disadvantage that persisted for a similar length of time. The “Random,” “PEVmean,” and 310 

“CDmean” methods were highly comparable and yielded accuracies intermediate of the “Top” 311 

and “Bottom” methods. By cycle ten, the differences between active methods of updating were 312 

negligible. These patterns were observed in both the “Cumulative” and “Window” scenarios. 313 

One noticeable difference between the trends in the “Cumulative” and “Window” 314 

scenarios was in the rate of prediction accuracy decay. Among the active methods of updating, 315 

the rate of prediction accuracy decay was slightly greater in the “Cumulative” scenario (Figure 316 

3A) compared to the “Window” scenario (Figure 3B). By the fifteenth breeding cycle, the 317 
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difference in these decay rates amounted to a difference in prediction accuracy of roughly 0.02 – 318 

0.04. 319 

Genetic variance and response to selection 320 

Genetic variance among the selection candidates (Figure 4A and 4B) similarly decreased 321 

across cycles for all training population update methods. For this variable, however, the rank 322 

among methods remained more consistent. That is, compared to the remaining update methods, 323 

the genetic variance in the “Top” and “Tails” methods was consistently less and the genetic 324 

variance in the “Bottom” method was consistently greater. The “Tails” method resulted in 325 

slightly higher genetic variance compared to the “Top” method, however this difference was 326 

never significant (95% confidence interval). Genetic variance across the “CDmean,” 327 

“PEVmean,”, and “Random” methods was very similar within and between scenarios. Not 328 

updating the training population resulted in genetic variance similar to “CDmean,” “PEVmean,” 329 

and “Random” in early breeding cycles. After seven cycles, however, the loss of genetic variance 330 

was abated compared to remaining methods. By the end of the breeding timeline, the genetic 331 

variance for “No Change” was noticeably and significantly (95% confidence interval) higher 332 

than the remaining methods. 333 

Overall, the mean genotypic value of the selection candidates (Figure 4C and 4D) 334 

displayed a similar, but opposite pattern compared to the genetic variance. Updating the training 335 

population by the “Top” or “Tails” methods yielded an advantage in genotypic value, a trend that 336 

became more apparent in later breeding cycles. Conversely, the genotypic values under the 337 

“Bottom” method ranked lowest among the active updating methods. This disadvantage was 338 

often slight and non-significant, especially in the “Cumulative” scenario (Figure 4C). As in the 339 

observations of genetic variance, the “CDmean,” “PEVmean,” and “Random” methods 340 
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responded similarly. Most noticeable was the rapid plateau in genotypic value under the “No 341 

Change” method, particularly around the eighth breeding cycle. By the end of the breeding 342 

timeline, the “No Change” method appeared to have reached a limit, and although the trajectory 343 

of the remaining methods suggested further increases, their trends implied a limit as well (Figure 344 

4C and 4D). Curiously, the “Top” method was generally superior to the “Tails” method in the 345 

“Cumulative” scenario, however the opposite was true in the “Window” scenario. In both 346 

scenarios, the “Tails” method exhibited a trend suggesting that this method would eventually 347 

yield selection candidates with an average genotypic value superior to that of the “Top” method 348 

The trends among the remaining training population update methods were similar in both 349 

updating scenarios. 350 

Drivers of prediction accuracy 351 

Average relationship between training population individuals and selection candidate 352 

individuals, as measured by marker information, varied among the update methods (Figure 5A 353 

and 5B). As expected, the average relationship did not change in either updating scenario when 354 

the training population remained unaltered. Across both scenarios, the relationship generally 355 

remained highest under the “Top” method, lowest under the “Bottom” method, and intermediate 356 

under the “CDmean,” “PEVmean,” “Random,” and “Tails” methods. In the “Cumulative” 357 

scenario (Figure 5A), actively updating the training population resulted in a linear increase in 358 

average relationship for all methods. Additionally, the different update methods, particularly 359 

“Top” and “Bottom,” displayed slight divergence, especially in later breeding cycles. The 360 

“Window” scenario (Figure 5B) presented a more sigmoidal trend, eventually resulting in slight 361 

convergence in average relationship among active update methods. Interestingly, after cycle 12, 362 
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the average relationship between the training population and the selection candidates in the 363 

“Tails” method remained greater than that in the “Top” method. 364 

Generally, we observed a curvilinear increasing trend in the level of inbreeding (Figure 365 

5C and 5D). The “No Change” method performed similarly in the different updating scenarios, 366 

but differed markedly from the active updating methods. This method resulted in a more rapid 367 

increase in inbreeding, beginning after the fourth breeding cycle. By the end of the breeding 368 

timeline, the trend had not yet plateaued and suggested that inbreeding would continue to 369 

increase. Considering the active updating methods, there were slight differences in inbreeding 370 

trends between the two updating scenarios. In the “Cumulative” scenario (Figure 5C), these 371 

methods performed similarly, showing no significant differences. Inbreeding was slightly greater 372 

for these methods in this scenario than in the “Window” scenario (Figure 5D). In this case, 373 

differences between the updating methods were more apparent. The “Top” method displayed 374 

noticeably lower levels of inbreeding, particularly after the eighth breeding cycle. Remaining 375 

methods performed similarly between each other. 376 

We noticed consistent trends among methods of updating the training population in the 377 

rate of fixation of QTL (Figure 5E and 5F). In both updating scenarios, the “Top” method 378 

maintain a higher number of fixed QTL across breeding cycles, followed by the “CDmean,” 379 

“PEVmean,” “Tails,” and “Random” methods, which performed similarly, followed by the 380 

“Bottom” and “No Change” methods, which also performed similarly. Additionally, we observed 381 

that roughly 10% of the QTL became fixed in cycle 1 of the breeding timeline, while by cycle 15 382 

around 70% of the QTL were fixed. There were two slight, noteworthy differences in these 383 

trends between the updating scenarios. First, active updating methods generally displayed a 384 

higher proportion of fixed QTL in the “Window” scenario (Figure 5E) than in the “Cumulative” 385 
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scenario (Figure 5F). Second, the degree of separation between the “Top” method and the 386 

“CDmean,” “PEVmean,” and “Random” methods appeared greater in the “Cumulative” 387 

scenario. 388 

There were marked differences in the persistence of LD phase between the methods of 389 

updating the training population within and between the updating scenarios (Figure 5G and 5H). 390 

Under the “Cumulative” scenario (Figure 5G), persistence of phase for all update methods 391 

declined quickly in initial cycles, but reached equilibrium around the tenth cycle. The “Top” and 392 

“Tails” methods maintained the highest degree of persistence across breeding cycles, but the 393 

“Tails” method trended closer to the other active update methods by cycle twelve. Furthermore, 394 

the initial decay was much lower under the “Top” and “Tails” methods, and the equilibrium 395 

point was higher than other methods. Persistence of phase under the “Bottom” method was 396 

initially much less than the other active update methods, and although it soon became similar to 397 

these methods, it still remained less. The remaining active update methods were quite similar in 398 

this scenario.  399 

In comparison, actively updating the training population under the “Window” scenario 400 

(Figure 5D) yielded increasing persistence of phase over the course of the breeding timeline. 401 

Each of these methods saw a small drop in persistence of phase initially, but after the fifth cycle 402 

values began to increase. Interestingly, none of these methods appeared to reach an equilibrium 403 

point. The disparity between update methods, especially “Top” and “Bottom,” was highly 404 

apparent under this scenario. Conversely, “CDmean,” “PEVmean,” and “Random” resulted in 405 

very similar levels of persistence of phase. Finally, the persistence of phase under the “Tails” 406 

method was initially intermediate of the “Top” method and the “CDmean,” “PEVmean,” and 407 

“Random” methods, however it eventually became more similar to the latter. 408 
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Expectedly, the “No Change” method resulted in identical trends in both updating 409 

scenarios. In the same way as prediction accuracy, we observed a precipitous, exponential decay 410 

in persistence of phase. The trend appeared to reach an equilibrium point at around the same 411 

breeding cycle as the active updating methods in the “Cumulative” scenario. However, this 412 

equilibrium point was much lower than the others. 413 

  414 
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DISCUSSION 415 

Updating the training population can be simple and effective 416 

We observed similar patterns in prediction accuracy (Figure 3), mean genotypic value 417 

(Figure 4C and 4D), and genetic variance (Figure 4A and 4B) among active methods of updating 418 

the training population (i.e. excluding “No Change”). The high similarity between these methods 419 

suggests that simply including more recent data in the training population provides a marked 420 

advantage in improving the breeding population in the long-term. This is encouraging in a 421 

practical sense, as any phenotypic information generated on breeding lines, regardless of how 422 

they may have been selected, would probably be helpful in preventing severe long-term loss in 423 

prediction accuracy.  424 

Although we only tested six active methods of updating the training population, we might 425 

expect that any method should outperform doing nothing. Over breeding cycles, including recent 426 

genotypic and phenotypic information in the training population helps to capture new LD 427 

generated by selection and drift (Hill and Robertson 1968). Older training population lines will 428 

of course not provide any information on this new LD, however we may presume most or all 429 

selection candidates will share a proportion of this new LD as long as the parents of these lines 430 

are not unrelated. Therefore, even the selection candidates most distantly related to those chosen 431 

as parents will provide informative training data for the next cycle. In the long-term, we might 432 

expect a decrease in the relative importance of how selection candidates are chosen to add to the 433 

training population. Over continued cycles of selection in a closed population, parents will 434 

become increasingly related (Daetwyler et al. 2007), thus the pool of selection candidates will 435 

share a greater proportion of the new, informative LD. 436 
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Though it appears updating the training population is favorable regardless of method, it is 437 

worth pointing out differences in the methods we tested. The “Top” method achieved high 438 

prediction accuracy and high mean genotypic value across breeding cycles. These results are not 439 

entirely surprising, since the candidates selected to update the training population were mostly 440 

those selected as parents for the next cycle (100 of 150). These additions to the training 441 

population will be highly related to the selection candidates in the next cycle, and will therefore 442 

provide the training population with the most useful information shared through genomic 443 

relationships and QTL-marker LD (Lorenz and Smith 2015). Indeed, this is readily apparent in 444 

measures of relatedness between the training population and the selection candidates (Figure 5A 445 

and 5B) and in measures of persistence of LD phase (Figure 5C and 5D).  446 

With this in mind, it is not surprising that the “Bottom” method delivers the lowest 447 

prediction accuracy (Figure 3A and 3B) and lowest mean genotypic value (Figure 4C and 4D), as 448 

zero lines added to the training population overlap with the selected parents. This lack of overlap 449 

would suggest that QTL-marker LD information in the training additions and that observed in the 450 

selection candidates will be in high disagreement. Indeed, we observe that this method produces 451 

training populations with the lowest average relationship to the selection candidates (Figure 5A 452 

and 5B) and the lowest persistence of LD phase (Figures 5G and 5H).  453 

The “Tails” method, as a combination of the “Top” and “Bottom” method, offers some 454 

curious results. Though the prediction accuracy achieved from this method is, for the most part, 455 

not significantly different than that of the “Top” method, it is often higher, leading to low genetic 456 

variance (Figure 4A and 4B) and high average genotypic value (Figure 4C and 4D). This is in 457 

spite of the observation that under the “Tails” method, the average relationship between the 458 

training population and selection candidates (Figure 5A and 5B) and persistence of LD phase 459 
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(Figure 5G and 5H) are roughly equal or lower than in the “Top” method. A possible explanation 460 

for this observation could be that this method produces training populations that satisfy different 461 

conditions for accurate genomewide predictions. First, 75 of the 150 training population 462 

additions overlap with the 100 selected parents. Just as in the “Top” method, these additions will 463 

be highly related to the selection candidates of the next cycle and contribute useful QTL-marker 464 

LD information. The other 75 additions will presumably be more unrelated to these selection 465 

candidates, leading to the intermediate average relationship (Figure 5A and 5B) and often lower 466 

persistence of LD phase (Figure 5G and 5H). However, these training population additions may 467 

provide information for more reliable predictions. In a study where the training population was a 468 

subset of a larger population, Yu et al. (2016) found that individuals in the validation population 469 

(i.e. selection candidates) with the highest and lowest predicted genotypic values had the greatest 470 

upper bound for the reliability of those predictions (Karaman et al. 2016). It may be the case in 471 

our simulations that the training population additions in the “Tails” method had more reliably-472 

predicted genotypic values. This reliability may have led to better identification of individuals 473 

that, when added to the training population, could provide information that more clearly 474 

differentiated the effects of QTL alleles, leading to more accurate predictions of marker effects. 475 

Thus, the “Tails” method may have taken advantage of both high relatedness and greater 476 

genotypic diversity in the training population. 477 

The criterion-based updating methods (“CDmean” and “PEVmean”) performed very 478 

similarly to the “Random” method in prediction accuracy (Figures 3A and 3B). This observation 479 

is generally in agreement with previous research (Akdemir et al. 2015; Isidro et al. 2015; Bustos-480 

korts et al. 2016) and may be related to the size of the training population used in our 481 

simulations. In several examples in these studies, the prediction accuracy of a randomly selected 482 
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training population was similar to that of a training population selected by the CDmean or 483 

PEVmean criteria, particularly at larger sizes of the training population. While these 484 

investigations examined training populations ranging from 25 to 300 individuals, our simulations 485 

looked at much larger training populations, ranging from 764 to 2,864 individuals. It may be, 486 

then, that as the size of the training population becomes sufficiently large, the performance of the 487 

CDmean and PEVmean criteria becomes more similar to a random sampling. This, of course, 488 

does not suggest that these criteria have no use in selecting training populations. If these criteria 489 

are in fact superior in smaller training populations, they may be advantageous when performing 490 

genomewide selection on a trait that is expensive or low-throughput to phenotype. 491 

It is worth addressing the continued loss in prediction accuracy in all updating methods 492 

and in both updating scenarios. This occurs even as two known components of prediction 493 

accuracy, persistence of LD phase and genomic relationship (de Roos et al. 2008; Toosi et al. 494 

2010; Lorenz et al. 2011; Lorenz and Smith 2015; Sallam et al. 2015) stabilize or increase. The 495 

primary reason for these observations is undoubtedly the reduction in heritability as genetic 496 

variance declines over cycles (Figures 4A and 4B). Since residual variance remains constant, the 497 

phenotypic data measured on lines becomes increasingly uncorrelated with the true genotypic 498 

value (Bernardo and Yu 2007; Bernardo 2010). Thus, the data included in the training population 499 

will not capture the effects of QTL alleles, decreasing the accuracy of predicted marker effects. 500 

A second potential contributor is the fixation of marker loci over cycles. Since monomorphic 501 

markers are removed prior to model training, fewer markers will be used in later cycles. Indeed, 502 

by cycle 7, on average 55% of the original markers are used, and by cycle 15 this drops to 30% 503 

(data not shown). Though previous studies have stated the benefit of greater marker density 504 

(Combs and Bernardo 2013), many others have noted diminishing returns (Lorenzana and 505 
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Bernardo 2009; Heffner et al. 2011; Lorenz et al. 2012). Reasonably high marker densities were 506 

maintained in our simulations, so this is likely not a strong driver of the decay in prediction 507 

accuracy.  508 

The performance of the “Top” method suggests a simple procedure to optimize 509 

genomewide selection in an applied breeding program. Our results indicate that a breeder may 510 

prevent severe loss of prediction accuracy in recurrent selection by updating the training 511 

population to include information on lines that would be selected anyway. Ultimately, this 512 

method should be more cost effective than the others. A breeder would likely desire to evaluate 513 

selected parents in field trials, perhaps for variety development or to gather phenotypic data to 514 

accompany predicted genotypic values. The “Top” method provides an advantage here, as the 515 

number of additional lines to phenotype for updating the training population is minimal. The 516 

breeder can use this information for dual purposes, using phenotypic data to build a more 517 

accurate training dataset while making informed decisions on potential variety selections. 518 

Although the “Tails” method led to slightly greater prediction accuracy than the “Top” 519 

method, there are at least three reasons why it may not be the most practical method. First, the 520 

difference in prediction accuracy between these methods was generally not significant 521 

(Supplementary Table 1). Second, the overlap between training population additions and 522 

candidates that would be prioritized for phenotyping by the breeder (i.e. parents and superior 523 

lines) is lower, and therefore, third, because of this lack of overlap, the breeder would expend 524 

costly resources on phenotyping lines that may not provide any utility outside of model training 525 

for genomewide selection. 526 

Encouragingly, empirical data in a barley breeding program supports the “Top” method 527 

in enhancing prediction accuracy. Over a few cycles of recurrent genomewide selection for yield 528 
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and deoxynivalenol content (a mycotoxin produced by the fungal pathogen Fusarium 529 

graminearum Schwabe.), Tiede (2017, in prep.) found that updating the training population 530 

improved prediction accuracy. Specifically, including data only on lines selected for favorable 531 

predicted genotypic values in previous cycles enhanced the prediction accuracy in subsequent 532 

cycles. This method was superior to a random selection of lines and was often superior to a 533 

selection based on criteria optimization. 534 

Not updating the training population is unfavorable 535 

 It is quite apparent from our simulations that in the long-term, not updating the training 536 

population is highly unfavorable. Prediction accuracy decreases rapidly in this case (Figure 3A 537 

and 3B), and as a consequence, response to selection also collapses, leading to the observed 538 

plateau in genotypic value (Figure 4C and 4D). Here selection is acting on non-genetic noise, 539 

preventing the mean genetic value in the population from changing.  540 

The genetic composition of the breeding populations underscores the negative 541 

consequences of leaving the training population unaltered. Although genetic variance appears to 542 

be preserved in the long-term (Figure 4A and 4B), considering the decrease in accuracy and the 543 

plateau in genotypic value, this may be due to a larger number of QTL that remain segregating. 544 

We do indeed observe this (Figure 5E and 5F), but given the similarity in the number of fixed 545 

QTL under the “No Change” method and that under the remaining methods, we may also 546 

surmise that a greater proportion of QTL are becoming fixed for unfavorable alleles. We also 547 

observe alarming levels of inbreeding among the selection candidates when not updating the 548 

training population (Figure 5C and 5D). This result is not surprising, since previous theory and 549 

simulations into genomewide selection show that more accurate predictions better capture the 550 

Mendelian sampling term (i.e. within-family variance), preventing high rates of inbreeding 551 
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(Daetwyler et al. 2007; Jannink 2010). Although higher inbreeding does not reduce genetic 552 

variance, it invariably will reduce the number of usable, polymorphic markers. Collectively, this 553 

suggests that continued genomewide selection without updating the training population will 554 

impose a lower selection limit on population improvement. 555 

 The results of our simulations indicate that severe consequences of not updating the 556 

training population were delayed until later cycles. Although prediction accuracy declines very 557 

rapidly (Figure 3), mean genotypic value and genetic variance track closely with the other 558 

updating methods (Figure 4). It is not until the fifth cycle or later that the impact of an unaltered 559 

training population is readily apparent. This can be encouraging in practical breeding scenarios. 560 

For instance, in a new breeding program, the stock of germplasm with phenotypic data may be 561 

low, and it may be several cycles before enough individual are tested to add to the training 562 

population. One may also consider a crop where the time between making a cross and gathering 563 

phenotypic data on the progeny is long. Several cycles of selection could be performed before 564 

data is available to update the training population. Our results suggest that the same training 565 

population could be used for a small number of cycles without serious detriment. 566 

A smaller and more recent training population may provide long-term advantages 567 

 We observed non-significant, but noticeable differences in prediction accuracy, mean 568 

genotypic value, and genetic variance between the “Cumulative” and “Window” updating 569 

scenarios. In the short-term, prediction accuracy was slightly greater under the “Cumulative” 570 

scenario for most of the active updating methods, particular the “Top” method (Figure 3A). 571 

However, in the long-term, prediction accuracy was higher when the training population 572 

consisted of only more recent data (i.e. the “Window” scenario). Although the trends in 573 

genotypic value suggest that the “Cumulative” scenario is slightly advantageous in the short-574 
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term, the trend under the “Window” scenario suggested that additional gains may be greater 575 

(Figure 4D). Indeed, given the slightly higher prediction accuracy observed at the end of the 576 

breeding timeline for this scenario, we would expect response to selection to be greater in the 577 

long-term (Bernardo 2010). 578 

In addition to the explanations provided earlier in the discussion, other factors may be 579 

responsible for these observations. Most notable are the differences between updating scenarios 580 

in genomic relationship (Figure 5A and 5B) and persistence of LD phase (Figure 5G and 5H). 581 

Retaining older training data results in lower average relationship between the training 582 

population and the selection candidates (Figure 5A). This is not unexpected, since selection 583 

candidates in earlier cycles will be increasingly unrelated to those in later cycles. Maintaining a 584 

training population with more recent data results in higher average relationship and a higher rate 585 

of increasing relationship (Figure 5B). This result corroborates previous research demonstrating 586 

higher prediction accuracy when retaining individuals in the training population that are more 587 

closely related to the selection candidates (Lorenz and Smith 2015).  588 

Perhaps most drastic are the differences in persistence of LD phase between updating 589 

scenarios. A training population with older data (i.e. “Cumulative”) results in decayed 590 

persistence of LD phase (Figure 5G). Over cycles, recombination breaks down LD and training 591 

population additions capture new LD. Older training data does not reflect this new LD, 592 

decreasing the persistence of phase. The observed stabilization in Figure 5C could be due to new 593 

training data capturing as much LD as what is broken down by recombination. Evidence for this 594 

may be seen under the “Window” scenario (Figure 5H), where persistence of LD phase increases 595 

when actively updating the training population. A training population of only recent data 596 

captures the new LD generated by recombination in the previous cycle, but without the 597 
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uninformative LD present in older training data. In addition, it may be possible that recent 598 

training additions capture more of the informative new LD than what is lost through 599 

recombination, leading to the observed increase in persistence of phase. 600 

Simulation considerations 601 

It is important to address the limitations of our simulations, including assumptions that 602 

could be violated in a real-life breeding program. First, random mating may be unrealistic, and 603 

we might expect a breeder to impose a more sophisticated procedure for parent selection. For 604 

instance, mating pairs may be prioritized for complementation of favorable values of multiple 605 

traits. Additionally, an individual may be used as a parent over multiple breeding cycles, 606 

especially if observed phenotypic values agreed with the predicted genotypic values. More 607 

sophisticated methods of parental selection, such as those based on virtual bi-parental 608 

populations (Bernardo 2014; Lian et al. 2015; Mohammadi et al. 2015), may be used. These 609 

non-random mating schemes could affect genetic variance or contribute to different patterns of 610 

LD, both of which would impact the accuracy of genomewide prediction. However, 611 

incorporating such nuances into our simulation would likely rest on additional assumptions and 612 

would be intractable to model. Random mating provides a simple approach, and given the 613 

recurrent selection scheme, it is a reasonable assumption. Our simulation also made the 614 

assumption that the breeding population was closed. This is obviously inaccurate in a practical 615 

program, as the exchange and incorporation of new germplasm is common. Realistically, we 616 

might expect prediction accuracy to decrease when adding germplasm from different breeding 617 

programs or subpopulations to the pool of selection candidates (Lorenz et al. 2012). In recurrent 618 

selection, however, the objective is to improve a population rapidly, so a closed population may 619 

be desirable (Bernardo 2010).  620 
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Other assumptions may not reflect biological reality. First, our simulation forced QTL to 621 

be bi-allelic, but, as noted by Jannink (2010) and suggested in Buckler et al. (2009), many QTL 622 

may have multi-allelic genetic architecture. Second, we assumed the processes of mutation and 623 

crossover interference were absent, which is, of course, unrealistic.  624 

Conclusions 625 

 In our simulation experiment of recurrent genomewide selection, we confirmed the need 626 

to update the training population over breeding cycles. Clearly, the LD between QTL and 627 

markers in the base population is decaying, likely as a result of recombination. When new data is 628 

not added to the training population, the change in LD is not captured, and prediction accuracy 629 

collapses. Among the tested methods of updating the training population, adding the lines 630 

predicted to have the greatest genotypic value (i.e. the “Top” method) is the most attractive. The 631 

desirability of this method stems not only from the resulting prediction accuracy and response to 632 

selection, but also from its simplicity and practicality. A breeder will undoubtedly desire to 633 

confirm the predictions of genotypic value with empirical phenotypic data, especially for the 634 

most promising lines or those selected to become parents. Updating the training population 635 

becomes simple, then, as this new data can be combined with previous training data. This 636 

method also facilitates updating the training model every cycle, likely the best option to capture 637 

the changes in LD as a result of recombination, selection, and drift. Nevertheless, our experiment 638 

leaves room for additional research, including fine-tuning the updating scenarios to choose the 639 

most informative training population from a pool of data. Additionally, optimizing other streams 640 

in the breeding program deserves research, including methods of selecting markers and parents. 641 

Long-term genomewide selection may benefit greatly from such investigations. 642 
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FIGURE CAPTIONS 765 

Figure 1. Realistically, a cycle of genomewide recurrent selection in barley may only be one year 766 

in length. Crosses are made in the autumn (year n) and progeny undergo single-seed descent 767 

through the following winter and summer. 1) At the F3 generation during the next autumn (year 768 

n + 1), lines are genotyped and predicted genotypic value (PGVs) are determined using training 769 

data from the previous cycle. These predictions determine the lines to use as parents in the next 770 

cycle of crosses (blue arrow). 2) Predictions are also used to select lines to phenotype in the 771 

following summer (year n + 2). 3) This phenotypic information is then incorporated into the 772 

training data for the next cycle of predictions and crosses during the subsequent autumn. 773 

 774 

Figure 2. A single breeding cycle in our simulations may be broken down into two main streams. 775 

Blue indicates steps involving the training population, and red indicates steps involving crossing 776 

and population development. Green indicates the intermediate step of selection. 1) Fifty crosses 777 

are made using 100 randomly intermated parents from the previous cycle. Population 778 

development follows and 1,000 selection candidates are genotyped at the F3 stage. Concurrently, 779 

marker effects are estimated using genotypic and phenotypic data from the training population 780 

(TP). 2) The predicted genotypic values of the selection candidates (PGVs) are used in decision-781 

making. 3) The 100 selection candidates with the highest predicted genotypic values are selected 782 

as parents for the next cycle. Additionally, 150 selection candidates are selected based on the six 783 

different update methods. These candidates are “phenotyped”, and phenotypic and genotypic 784 

data are added to the pool of training data. 785 

 786 
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Figure 3. Prediction accuracy over breeding cycles of the simulation. Accuracy was measured as 787 

the correlation between the predicted and true genotypic values of the selection candidates. Line 788 

colors and point shapes delineate the different methods of updating the training population. Plots 789 

are separated into the “Cumulative” (A) and “Window” (B) updating scenarios. Average values 790 

are shown with 95% confidence intervals. To help reduce plot clutter, points for each update 791 

method are given a small, consistent jitter along the x-axis. Because the plotting jitter may 792 

accentuate small differences between updating methods, this data is also provided in 793 

Supplementary Table 1.   794 

  795 

Figure 4. Genetic variance (A and B) and genotypic values (C and D) among the selection 796 

candidates over breeding cycles of the simulation. Line colors and point shapes delineate the 797 

different methods of updating the training population. Plots are separated into the “Cumulative” 798 

(A and C) and “Window” (B and D) updating scenarios. Average values are shown with 95% 799 

confidence intervals. To help reduce plot clutter, points for each update method are given a 800 

small, consistent jitter along the x-axis. 801 

 802 

Figure 5. Other variables tracked over the course of the simulations. The average genomic 803 

relationship (A and B) was calculated between the training population and the selection 804 

candidates using marker genotypes. Relationships were scaled to reflect the allele frequencies in 805 

the base population. The level of inbreeding (C and D) was measured on the selection candidates 806 

and was derived from the relationship matrix described above. The number of QTL fixed for an 807 

allele (E and F) was measured in the selection candidates. Persistence of LD phase (G and H) 808 

was measured as the correlation of r between the training population and the selection 809 
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candidates. Line colors and point shapes delineate the different methods of updating the training 810 

population. Plots are separated into the “Cumulative” (A, C, E, and G) and “Window” (B, D, F, 811 

and H) updating scenarios. Average values are shown with 95% confidence intervals. To help 812 

reduce plot clutter, points for each update method are given a small, consistent jitter along the x-813 

axis. 814 
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