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Abstract

Electrophysiology is entering the era of ‘Big Data’. Multiple probes, each 
with hundreds to thousands of individual electrodes, are now capable of 
simultaneously recording from many brain regions. The major challenge 
confronting these new technologies is transforming the raw data into 
physiologically meaningful signals, i.e. single unit spikes. Sorting the spike 
events of individual neurons from a spatiotemporally dense sampling of the 
extracellular electric field is a problem that has attracted much attention 
[22, 23], but is still far from solved. Current methods still rely on human 
input and thus become unfeasible as the size of the data sets grow 
exponentially.
Here we introduce the t-student stochastic neighbor embedding (t-sne) 
dimensionality reduction method [27] as a visualization tool in the spike 
sorting process. T-sne embeds the n-dimensional extracellular spikes (n = 
number of features by which each spike is decomposed) into a low (usually 
two) dimensional space. We show that such embeddings, even starting from 
different feature spaces, form obvious clusters of spikes that can be easily 
visualized and manually delineated with a high degree of precision. We 
propose that these clusters represent single units and test this assertion by 
applying our algorithm on labeled data sets both from hybrid [23] and 
paired juxtacellular/extracellular recordings [15]. We have released a 
graphical user interface (gui) written in python as a tool for the manual 
clustering of the t-sne embedded spikes and as a tool for an informed 
overview and fast manual curration of results from other clustering algo-
rithms. Furthermore, the generated visualizations offer evidence in favor of 
the use of probes with higher density and smaller electrodes. They also 
graphically demonstrate the diverse nature of the sorting problem when 
spikes are recorded with different methods and arise from regions with 
different background spiking statistics.

1 Introduction

It is neuroscience dogma that the brain’s computational mechanics are imple-
mented by the complex dynamics of its spiking neural networks. As a con-
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sequence, detailed knowledge of the spiking activity for ”as-many-neurons-as-
possible” during behavior is seen as essential to understand how the brain re-
ceives and transforms information. Electrophysiological methods that record
spiking activity extracellularly have been one of the most significant tools for
exploring the correlations between behavior and neural activity and there has
been a constant drive to record from more neurons, for longer times, from a host
of neural regions, in diverse physiological conditions, and from many different
species. This trend was recently accelerated by new microfabricated record-
ing probes that extend the standard single electrode and tetrode devices [19]
with integrated electronics to produce devices with thousands of recording sites
[24, 1].
The new generation of recording tools brings with it the challenge of extracting
meaningful physiological signals from the resulting (big) data sets. In the case
of extracellular probe recordings, that usually means transforming the voltages
measured at the electrode sites into spiking activity of the nearby neurons. The
importance of accurate spike sorting stems from a number of ideas on how cell
spiking contributes to brain functions. For example, competent sorting is re-
quired to test for sparse coding in memory function [6] or to assess the diverse
responses of neighboring cells, important in theories of concept [21] and place
cells [20].
The original attempts to spike sort greatly benefited from the development of
the tetrode and its ability to simultaneously monitor the spiking signal of nearby
neurons from multiple locations (i.e. 4) [10, 8, 29]. It has since become clear
that dense electrode configurations, in which that same neuron is detected by
multiple electrodes, generally improve sorting [13, 4], and hence the push for an
increase in the electrode density of modern probe designs. Today new method-
ologies have evolved to work with the next generation of multi-electrode probes
and to try and address the problem of the exploding size and complexity of the
data sets [23, 22]. However, the basic idea of the spike sorting pipeline remains
the same (Fig 1A). The (filtered) data go through a process of spike detection
that has traditionally relied on thresholding the raw signal. The multi-unit ac-
tivity generated is then passed through a dimensionality reduction method that
transforms the space-time spike matrices into a smaller set of features. The
most commonly used dimensionality reduction techniques are principal com-
ponent analysis (PCA) [11] and wavelet decomposition [12, 18, 25] for offline
and geometric/spike shape methods[9, 13] for online sorting. More recent ap-
proaches even combine the two offline methods to generate an optimum set of
features for further analysis [21]. Finally, a clustering method is employed to
automatically group together the spikes from an isolated single-unit in the high
dimensional space of the decomposed features. Techniques commonly used for
this clustering are k-means [30], mixtures of gaussians based on an expectation
minimization algorithm [30] and template matching [33, 28]. An overview of
different techniques for detection, feature extraction and classification is given
in Bestel et al [3]. Methods that are currently under development follow a differ-
ent route where the event detection, the feature extraction, and the clustering
steps are realized in a single template matching step [16, 32]. These methods
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offer better parallelization capabilities and are proving very capable in handling
millions of spikes arising from recordings of hundreds to thousands of channels.
In all cases, the automated clustering algorithms operate on a number of dimen-
sions that scales linearly with the number of channels of the recording probe.
For the more recent multi-channel probes, this feature space usually contains
hundreds of dimensions. Such multidimensional spaces make either manual
clustering, or the manual supervision and quality assurance of the automated
algorithms’ results, prohibitive. The t-sne dimensionality reduction technique
was designed to reduce such multidimensional data sets to 2 or 3 dimensions in
a way that visualizing them can offer meaningful insights into their original high
dimensional structure [27]. Embedding techniques, like t-sne, transform the po-
sition of points in a high-dimensional space to positions in a lower (usually 2)
dimensional space. This reduction transformation obviously requires that some
information is lost. Each embedding technique decides which aspects of the
original structure to keep and which to ignore. T-sne focuses on ensuring that
the local structure (i.e. the ordering of distances between nearby points) re-
mains intact while it ignores the global structure (i.e. the large distances in the
t-sne space are not representative of the large distances in the original space).
A good mental representation of how t-sne achieves this is to think of all points
as objects connected to each other with spring-like forces. In the original space
these forces are in equilibrium. When the points are transferred (randomly at
first) into the 2D space the forces between them start both pulling and pushing
so that a new equilibrium might be reached (Fig 1B). Points that are close in the
original space are attracted to each other until they get roughly equally close in
the 2D space, while points that are far away in the original space are repulsed
by each other if they happen to find themselves close in the 2D space. This
ability of the t-sne algorithm to repulse points that are nearby in the 2D space
but not in the original space, offers a solution to the crowding problem of other
embedding methods and underlies the informative 2D plots that it generates.

In this work we apply t-sne to the spike sorting process and generate 2D plots
that show obvious clusters of spikes. We use two types of data to validate our
technique. The first is a ground-truth dataset that comes from paired recordings
[15] with an extracellular and a juxtacellular probe, thus providing labels from
the juxtacellularly recorded unit within the extracellular probe’s spiking activ-
ity. The second type is a hybrod dataset generated from the synthesis of real
extracellular recorded data with manually superimposed spikes belonging to a
number of single units [23]. In the following we demonstrate that many of the
t-sne generated low-dimensional clusters represent the activity of single units,
while others group together spikes arising from a large number of putative units
and likely noise. We develop a GUI that allows the fast visual identification
of the single unit clusters and report on how accurately the manually selected
clusters represent the labeled single unit’s in our test datasets. We then use the
visual representations of spike clusters that t-sne generates to offer an overview
of how the sorting/clustering problem’s difficulty increases with decreasing elec-
trode density. Finally, utilizing the input agnostic nature of t-sne, we use it to
embed the results of a new template-matching algorithm (kilosort) applied to
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Figure 1: Graphical representation of A) the current pipeline for spike sorting
and B) the way t-sne can be added as a visualization tool in this pipeline

the same ground-truth dataset. We subsequently use the GUI to overview and
manually correct kilosort’s results and show that t-sne’s 2D embedding visual-
ization makes digesting and curating the high dimensional output of automated
spike clustering algorithms a simple procedure and also provides a satisfying
”overview” of the otherwise overwhelmingly large, high-dimensional data sets.
We will conclude with a discussion of possible extensions and future use cases of
the t-sne algorithm for sorting and visualization of large-scale spike recordings.

2 Methods

2.1 Data sets

We used two types of data to test the efficacy of our methods. The first was a set
of recordings from the anesthetized rat’s (motor) cortex [15]. In these datasets
the extracellular probe’s recording was paired with a juxtacellular recording
with a pipette. There were two different types of extracellular probes used
in different sessions, a 32 channel staggered array (A1x32-Poly3-5mm-25s-177-
CM32, NeuroNexus, USA) and a dense 128 channel matrix developed by the
collaborative NeuroSeeker project (http://www.neuroseeker.eu). The 128 chan-
nel probe design is shown in Fig 4 and the 32 channel design in Fig S1. From the
paired recording sessions available (www.kampff-lab.org/validating-electrodes)
we selected one from the 32 channel probe (Paired Data 32: PD32) and one
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from the 128 channel probe (Paired Data 128: PD128). Those were the data
sets in which the juxtacellularly recorded neuron was close enough to the extra-
cellular probe to have its spikes easily detected on the extracellular recording
without any spike triggered averaging. The PD128 set, when spikes were de-
tected with 6.5 standard deviations threshold, consisted of 128820 spikes out of
which 4420 where spikes belonging to the juxtacellularly recorded neuron (out
of a total 4998 juxtacellularly recorded spikes). These are the spikes we used in
the analysis shown in Fugures 2 and 4. At 4.5 std it consisted of 255026 spikes of
which 4775 were the juxtacellularly recorded ones. When the same data set was
put through the kilosort algorithm (where no detection through thresholding is
actually used) it gave back 466313 putative ’spikes’ out of which we defined as
non-spike noise the 139073 (see section 3.4), leaving 327240 spikes (72214 more
than the 4.5 std threshold detection). The PD32 set consisted of 73814 spikes
of which 331 belonged to the juxtacellularly recorded neuron.
We used two hybrid data sets provided to us by the lab of Kenneth Harris.
Their construction was based on recordings of an 129 channel probe and the su-
perposition of previously sorted spikes derived from separate recordings (hybrid
spikes). The details of how these hybrid time series were constructed can be
reviewed in [23]. The first data set (HD1) had 86271 spikes with 7 hybrid spike
sets coming from different (labeled) neurons ranging in size from 432 to 26043
spikes. The second data set (HD2) had 126102 spikes again with 7 groups of
labeled hybrid spikes with group sizes between 442 and 24987.

2.2 T-sne code

For all our experiments we have used an extended version of the github available
C++ t-sne code by van Maatens
(https://github.com/lvdmaaten/bhtsne/). The bhtsne implementation in this
repository allows for faster computations and makes larger data sets feasible
through the use of the barnes-hut (bh) algorithm [26]. The bh algorithm groups
together distant samples into a single average sample, minimizing the number of
euclidean distance computations the algorithm must perform. This step makes
the calculation of the actual error minimization of the 2D landscape faster and
tractable for large sample numbers (on the order of millions). Yet the calcula-
tion of the initial probabilities in the multidimensional space still requires the
algorithm to calculate the euclidean distances of all sample pairs adding a sig-
nificant amount to the algorithm’s run time. To speed up this part we have
implemented the computation of the euclidean distances between all sample
pairs directly on the GPU. To do this we used the GPU euclidean distance im-
plementation presented by Chang et al [5]. This allows us to run data sets of
more than 105 of spikes on a gaming desktop (i7 CPU, Titan X GPU, 64GB
RAM) in just a couple of hours (see table ST1 about times for different num-
ber of samples and perplexity settings). However, storing the distances for all
sample pairs on RAM soon imposes a bottleneck on the amount of samples that
can be used. For N samples one requires 4*N*N (for 32 bit floats) bits of RAM,
which translates to 40GB for 105 spikes and to 1TB for 0.5*106 samples. To
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overcome this bottleneck we have added the possibility to calculate the pairwise
distances in groups and keep in memory only the ones that the barnes-hut algo-
rithm will use (populating the tree structure used in the algorithm with GPU
pre-calculated distances). This process requires a sorting step of the distances
that increase the time required, but allows much larger sample numbers to be
used.
For data sets that are prohibitively large, and to show that online sorting of
samples is possible, we have extended the algorithm to be able to position sam-
ples on a t-sne pre-computed 2D landscape. This is done by measuring the
euclidean distance of each new sample to the samples already passed through
the t-sne algorithm. Then the extra samples’ positions on the 2D landscape
are calculated as the average of the positions of the closest 5 original samples
for each new sample. For spike sorting, given that the number of spikes passed
through the t-sne algorithm offers a complete representation of the spiking units
in the recording, we show that the algorithm correctly places the extra samples
(see Supplementary Figure 2).
We have also extended the python wrapper that came with the original code to
accommodate the use of the extra parameters our C++ t-sne function requires
and to allow the user to choose between the use of the C++ executable or the
CPU only scipy implementation of t-sne. The latter allows users without access
to the CUDA library, or with hardware not capable of supporting our code, to
still run a full t-sne spike sorting session only on CPU and fully in python (no
C++ executable is called with this option), albeit for small number of spikes
and with large run times.

2.3 Spike sorting pipeline

We have applied the t-sne algorithm in two separate points of the spike sorting
pipeline using two different spike representation feature sets as inputs to the
algorithm. In the first instance (results in Figures 2, 3 and 4) the algorithm
operated on the masked PCA components of the spikes detected as described
in [23]. In order to facilitate the input to t-sne of these components, we wrote
python code that accepts the (masked or not) PCA components of the detected
spikes, transforms these into a data set ready for the t-sne algorithm and calls
the executable on it. We have also tried using raw data or non-masked PCA
components as input to the t-sne algorithm, but found the masked-PCAs to con-
sistently outperform these other inputs (results not shown). The second input
feature set to the algorithm (results in Figure 5) was the distance to templates
generated by the kilosort algorithm. In this case, the t-sne algorithm operated
on feature vectors that measured how close or far each spike was to the set of
spike templates that kilosort generated from the data.
We have also developed a minimal, and easily extensible, graphical user interface
(GUI) that allows users to visualize the results of the t-sne algorithm and use
this visualization to manually sort the detected spikes. The GUI offers a number
of views and tools for manual spike sorting. These include: A 2D scatter plot of
the t-sne results with several ways to select groups of spikes directly on the plot.
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A view to preview the selected group’s average time traces for all channels. The
presented data are not explicitly filtered, but the baseline is subtracted using
the first 10 samples. An autocorrelogram view of the selected spikes with 1 ms
resolution bins. A heat map view of the average difference between the mini-
mum and the maximum values in the spikes’ time window superimposed on the
probe’s layout diagram. A way to label a selected group and store it as a cluster
in a pandas structure (saved to disk as a pickle). The GUI also allows selecting
and previewing of all plots for any previously saved cluster, deleting a selected
cluster and previewing all saved clusters on the t-sne scatter plot. A number of
input boxes and buttons also allow the merging and splitting of clusters as well
as the reassignment of spikes to different clusters.
The development of the GUI is based on the bokeh python library. This makes
further development of good quality views as desired by individual users rela-
tively easy and fast. At the same time the bokeh library will struggle with large
number of points presented simultaneously on the t-sne view. For the gam-
ing desktop described above the easy to work with limit was reached at about
500,000 spikes.
The python code design was informed by the need to keep the code simple and
extendable. To achieve this we chose to implement only functions, without any
obfuscating object orientation or passing data around data structures in more
complicated ways other than function arguments and return statements. In-
dividual functions are constructed to be self-standing and usable outside the
context of the spike sorting workflow the code was designed for. For example
the basic t-sne functions can operate on any other data of a samples x features
dimensionality, or the functions that produce the average spike timecourses or
the average heatmaps of the probes can easily be used to generate plots outside
the confines of the gui.

2.4 T-sne parameters and accuracy measurements

For spike detection we used a high and low detection threshold of 6.5 and 2 std
respectively. We tried out a large range of t-sne parameters (perplexity, learning
rate, theta and number of iterations) in order to define the set that gave us good
results, but that didn’t take too long to run. For all of the results presented here,
the parameters used were perplexity 100, learning rate 200 and theta 0.2. The
theta parameter defines the angle of the cone inside which all points are treated
as a single average point by the bh algorithm. Smaller values mean that the
algorithm averages fewer points together, i.e. only those that are far away from
the central point. A value of 0.2 is considered an approximation closer to an
exact solution. For the PD128 and the HD1 sets we ran the algorithm for 2000
iterations while for the PD32 and the HD2 for 5000. Perplexities lower than
100 were shown to compromise the results (in as far as separation of clusters
defined by visual inspection) while higher numbers (we tried up to 1000) would
make no obvious difference other than adding to the run time of the algorithm.
We have found that perplexity is a sample number dependent measure, but that
for tens to hundreds of thousands of samples (as in all our data sets) the chosen

8

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2016. ; https://doi.org/10.1101/087395doi: bioRxiv preprint 

https://doi.org/10.1101/087395
http://creativecommons.org/licenses/by/4.0/


number of 100 offered the best quality vs run time balance. The fact that over
a certain value perplexity did not seem to change the quality of the embedding,
adds to the idea in the t-sne literature that this is a stable parameter that can
vary a lot without substantially influencing the results.
Having labeled data allowed us to measure the quality of the t-sne clustering
visualization as a tool for separating single units. Since the t-sne algorithm
itself does not cluster (i.e. label) the data, but only offers a 2D embedding,
we needed a way to label the spikes according to their position in that embed-
ding. We chose to use the density-based spatial clustering of applications with
noise [7] (DBSCAN) algorithm since it provides a non-parametric way to label
the embedded spikes by clustering together samples that form denser groupings
compared to their immediate environment. We found DBSCAN’s approach to
clustering matching most closely the human intuition of neural units correspond-
ing to separate groups of spikes in the 2D visualization of the t-sne data.
Having established a method for labeling the t-sne results we then compared
the generated labels with the ground truth information from the juxtacellu-
lar recordings or the hybrid spike groups. We report here the results of three
commonly used measures for such comparisons. The first is Precission (or Con-
fidence or True Positive Accuracy) being the ratio of the true positive samples
(i.e. spikes labeled by DBSCAN as part of a unit that also had either a jux-
tacellular spike correspondence or the correct hybrid label) over all positively
labeled samples (all spikes defined by DBSCAN to belong to the specific single
unit). The second is Recall (or Sensitivity or True Positive Rate) being the
ratio of the true positive samples over all true samples (all spikes with a jux-
tacellular spike correspondence or a specific hybrid spike label). The third is
the F-factor which is defined as the harmonic mean of Precission and Recall
(i.e. 2*Precission*Recall/(Precission+Recall)). We also calculated the Receiver
Operating Characteristics (ROC) values for each label (either hybrid spike set
or juxtacellular corresponding set) as a point on the plot of the True Positive
Rate versus the False Positive Rate (see Supplementary Figure 2). The False
Positive Rate is defined as the ratio of the false positive samples (spikes defined
by the DBSCAN as part of the label but not having a corresponding juxtacel-
lular spike or a hybrid set label) over all the negative samples (all spikes not
having the specific juxtacellular or hybrid label).

3 Results

3.1 Paired Data

We ran the t-sne algorithm (for a 2D embedding) on the full 128820 spikes of
the PD128 set; each spike was represented as a masked vector of 384 dimensions
(128 channels * 3 largest PCA components per channel). The masking of the
PCA components (i.e. modulated between 0 and their full value) is described
in Rossant et al. [23]. The resultant embedding is shown in Figure 2A. The em-
bedding generates a number of distinct groups of spikes and a number of more
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diffuse clouds with varying internal densities. A spike grouping at the bottom
of the figure contains the majority of the extracellular spikes that correspond to
juxtacellularly recorded spikes (i.e ground truth spikes from the isolated single
cell). The figure shows that a small percentage of the spikes coming from the
labeled cell are spread throughout the entire 2D space, while the labeled cluster
also contains some spikes that are not generated by the labeled cell. For this
set of ground truth spikes the Precission, Recall and F-factor are 0.86, 0.83 and
0.84 respectively, which translates to 14% of the ground truth spikes not being
classified as part of the main cluster and to 17% of the main cluster spikes being
misclassified as part of the ground-truth.
The color coding of the samples with a corresponding juxtacellular spike shows
that the embedded cluster’s internal structure has a strong relationship with
physical characteristics of the actual spikes, in this case their peak amplitude.
The t-sne algorithm is designed to retain the local structure of the multi-
dimensional space during its transformation into the 2D embedding space. That
means that any correspondence between the physical properties of the samples
and their distances in the high dimensional space of their PCA components will
be retained in the subsequent embedding, at least for the samples that are close
together (i.e. the ones within a single cluster). The 2D embedding space is
easy to visualize and thus allows quickly noticing such relationships. By sim-
ply changing the color coding scheme to represent different properties one can
easily browse the relationships (or lack thereof) between any number of specific
characteristics. For example, color coding the spikes according to the time they
appear in the recording reveals that there is no correspondence between the size
of spikes and the time they were recorded (results not shown).
The clearest picture of how t-sne operates on the data can be gained from videos
of the t-sne process in which each frame is the result of progressive iterations of
the embedding algorithm. We captured this process for the PD128 data set in
Supplementary Video 1.
Figure 2B shows the t-sne embedding of the 73814 spikes of the PD32 set. Here
the embedding generates a more homogeneous cloud with significantly fewer
easy to delineate groupings of spikes. The Precission, Recall and F-factor for
the juxtacellularly labeled spikes in this case are 0.91, 0.65 and 0.76 respectively
for the t-sne/DBSCAN generated cluster with the most color coded spikes. In
this case the cluster is a fairly homogeneous one (with only 9% of the spikes
not belonging to the unit it represents) but it fails to capture a large percent-
age (%35) of spikes from the same unit which end up in other groups. Also,
the cluster’s internal structure shows no correspondence with the spikes’ peak
amplitude as measured by the juxtacellular electrode. We will propose (see
Probe electrode densities and clustering quality) that the drop in clustering
performance between the P128 and P32 embeddings is mainly due to the lower
sampling density of the extracellular space provided by the 32 channel probe.
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Figure 2: Results of t-sne analysis on PD128 (A) and PD32 (B). The color
coding represents the size of the juxtaccellular spikes that correspond to the
extracellular ones on the t-sne plots.

3.2 Hybrid Data

We also used t-sen to embed the two hybrid data sets described in Methods /
Data Sets. The results for HD1 can be seen in Figure 3A and for HD2 in 3B.
In this case, the output of the t-sne algorithm provides a clean visualization
of the known single unit clusters. Most clusters are fully separated from the
other clusters and contain a very small number of spikes that do not belong
to their corresponding unit. The spikes shown in black in both sets are not
hybrid spikes, but rather those that existed in the original recording, i.e. not
ground-truth. For HD1 all clusters have Precision, Recall and F-factor of 0.99.
For the HD2 set, clusters 1, 4, 5 and 7 have Precisions, Recalls and F-factors
ranging between 0.95 and 0.99. Cluster 6 has 0.91, 0.9 and 0.91 respectively.
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In the case of cluster 5, DBSCAN did not classify as part of the unit the spikes
that expand away from the main group to the right of the cluster. Yet their
proportion was small enough to keep the Recall at 0.95. The same applied to
cluster 1, which was missing the group of spikes showing at the top of the large
not Ground Truth spike grouping (black group at the left of the plot labeled as
Not GT). That group of spikes was also small enough in percentage that the
cluster still achieved a Recall of 0.96. T-sne failed to fully separate clusters 2
and 3 (see insert of Figure 3B).

Figure 3: Results of the t-sne analysis on the hybrid data, HD1 (A) and HD2
(B). The colors represent spikes that belong to pre-classified units added to the
data sets while the black points represent spikes pre-existing in the datasets and
thus do not belong to known units. The insert in B) shows a zoom-in of the
embedding of units 2 and 3 that t-sne does not manage to segregate.

In this case the clusters’ Recalls were 0.99 but their Precissions were 0.44
and 0.55 with F-factors of 0.61 and 0.71 respectively. The internal structure of
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their common spike group in the 2D embedding space shows that the similarity
of their spikes changes in a uniform way and that there are some spikes from
the two groups that are quite similar, thus causing the embedding to overlap
the two units.

3.3 Probe electrode density and clustering quality

As the number of electrodes per probe increases, it is important to understand
how the density of electrodes relates to an algorithm’s ability to reliably extract
and isolate single-units. A major argument for the miniaturization of silicon
probes was the idea that more densely spaced electrodes will increase spike
sorting quality by providing more features with which to classify spikes. Here we
review this argument using t-sne by performing embeddings of the P128 dataset,
originally captured with a density of 2050 electrodes/mm2, at artificially reduced
densities. This was achieved by removing more and more channels while keeping
the total coverage intact and then performing a new t-sne embedding with each
sub-dataset. The results visually demonstrate how artificially decreasing the
probe’s density affects the sorting of the detected spikes.
We started from the PD128 set and used the manual sorting GUI we developed
(see Methods) to define as many groups of spikes belonging to the same unit.
The criteria used to delineate a number of spikes as a single unit were the
following: The spikes had to be close in the t-sne space, ideally belonging to
one, obvious, unique grouping (e.g. large orange cluster at the right of the
plot or yellow cluster at the bottom), but if not so, the grouping had to at
least be contiguous (e.g. the dark red and green clusters at the far right and
middle of the plot or the yellow and red clusters at the left and top of the plot).
The average time course of the spike on all electrodes had to show a standard
extracellularly measured action potential. The autocorrelogram of the spike
times within a group had to be zero within 1 ms od time zero (i.e. no two spikes
of the group could have been fired in a time interval sorter than 2 ms of one
another). Finally, the heatmap of the group had to show a contiguous region of
activation on the probe that was compact (just a few neighboring electrodes).
Following the above criteria we labeled 90 units in the PD128. Given the extent
and density of electrodes as well as the position of the probe within cortex,
this is consistent with the number of neurons one might expect to detect in
local vicinity, i.e. ¡ 50 microns [15]. Figure 4A overlays the manually classified
clusters directly on the t-sne plot. There are three separate groupings of spikes
that we have not labeled as a single unit (the grouping at the top of the plot
and two on the right side of the plot between the orange, yellow, blue and green
units). T-sne in this case had clustered together three groupings of multi unit
spikes. These groupings showed also no internal grouping that could be assigned
to a single unit.

Figure 4B to 4F show the t-sne results arising from the same dataset with
some electrodes removed. From B to F the number of electrodes used were 64,
32, 22, 16, and 8 respectively (denoted as blue in the figure). The color coding
in these subplots is the same as in Figure 4a and denotes the unit each spike
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Figure 4: T-sne embeddings of the same PD128 data set for a series of electrode
densities (the electrode configuration is shown at the top of each subplot with
blue being the used channels). The color code represents the manually sorting
of the spikes done on the full (128 channels) t-sne embedded data set. The way
the different color groups start to break up and merge with each other over
the consecutive electrode configurations visually depicts the increased difficulty
of the spike sorting problem for probes with reduced densities. For the last
two densities (subplots E and F) the electrodes are far enough from each other
to ensure that each spike is seen by only one electrode. The quality of these
embeddings makes immediately obvious the usefulness of the multiple, spatially
separated, channels with information about each spike.

belongs to as defined by the above procedure. Even at 64 channels there is
an obvious deterioration of the t-sne clustering quality that progresses all the
way to the 8 channel data set. This deterioration can be seen as a reduction
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of the number of easy to delineate spike groups, an increase of the number of
spikes that form part of the larger amorphous clouds, and by the mixing of
the labeled spikes amongst the unit clusters and between the clusters and the
undifferentiated cloud structures.

3.4 Intuitive manual curation of automated clustering

Template matching algorithms are proving to be fast alternatives to the more
classical detect, embed, and classify spike sorting pipeline, especially for probes
with a large number of densely spaced electrodes. These algorithms iteratively
generate templates of the spikes present and then use these templates to detect
and classify the individual spikes. The result is a list of spike templates and the
euclidean distances of each spike to each of these templates. Each spike is as-
signed to the template that matches it the best (i.e. it has the smallest distance
to). We report here how t-sne embeds these template distance features and how
we utilized our GUI to sanity check the automatically generated results and get
a broader overview of the clustering problem for a specific data set.
We ran the kilosort algorithm [16] on the PD128 data set with a maximum
number of templates set to 256 (double the number of channels on our probe).
It generated 252 templates and detected 466313 spikes. We then used the dis-
tances of each spike to all the templates as the t-sne input feature space (a 252
dimensional one), setting to 0 all the distances except the nearest 16 templates.
The result of this t-sne embedding can be seen in Figure 5. The embedding
shows three different types of spike groupings. The first are a number of very
tight groupings (denoted from here on as ”points”) where the spread of the en-
tire group in both the x and y axis is at least 3 orders of magnitude smaller than
the total spread of the embedding. The second is a linear grouping where there
is an obvious extended axis to the grouping (not necessary along the x and y
axis of the full embedding), one with a very small and one with a much larger
spread (denoted from here on as ”lines”). The third type of grouping has large
spreads on both the x and y axis, no less than 2 orders of magnitudes smaller
than the total t-sne spread (denoted here on as ”blobs”).
Using the manual clustering GUI we could easily evaluate in which kilosort as-
signed templates the spikes in the different embedding groupings belonged and
vise versa (i.e. which groupings held spikes from any single template). From
this comparison five general categories emerged. The first category involved
groupings that was fully represented by a single template and whose heatmap
and autocorrelogram both indicated a single unit. There were 73 of these single
units (SUs) out of which the majority (49) were point groupings, 18 were line
groupings and a small minority (7) were blobs. This category included 109890
spikes. The second category were groupings that again was fully defined by a
single template but this time the autocorrelogram (and sometimes the heatmap)
indicated multiple units (MUs). There were 39 of these MUs, the majority of
which (26) were blob groupings with only a small minority being either lines
(7) or points (6). There were a total of 134288 spikes in this category of MUs.
The third category was represented by the three largest, semi-connected, blob
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groupings in the center of the embedding and the 4th largest blob on their right.
Their ’spikes’ belonged to 5 templates (4 for the central blob and one for the
blob on the side) and each template had its ’spikes’ grouped together but with
a large minority spread throughout other parts of the groupings. These 5 tem-
plates were the most numerous and they all showed average spike trains that
were very small in amplitude (¡ 100uV), did not resemble spike shapes, and were
identical on all channels. We denoted this category as noise. It included a total
of 139073 ’spikes’.

Figure 5: T-sne embedding of the results of the kilosort algorithm (distances
to templates) for the PD128 data set. Colors indicate the different categories
that the spikes fall into after using our custom GUI to manually evaluate and
correct as necessary kilosort’s spike assignments to templates. The SU labeled
groupings represent a single unit each. The MU labeled groupings represent a
single template each but multiple units. The Noise labeled groupings represent
noise that has been picked up by kilosort as spike templates. The SUs after
merges and splits have a more complex representation where each single unit
can be either one or more groupings and have originally belonged to one or more
templates. The Unlabeled groupings represent spikes that could not be assigned
to either a single unit, or a multi unit or a noise group. The insert at the top
of the figure depicts a zoom-in (x30 magnification) to a point grouping (SU)
showing that these groupings are actually comprised of large number of spikes
all embedded very close to one another. That compactness indicates a very large
similarity in the template distance feature space and a large dissimilarity to any
other spike, so it is not surprising that they are the groupings that kilosort has
assigned to templates that represent single, easy to define units.

In the fourth category we lambed together all the cases that after splitting or
merging of templates or moving spikes from one template to another ended up
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with acceptable SUs (based on their average spike shape, their probe heatmap,
and their autocorrelogram). We arrived at 24 SUs that included a total of 38482
spikes. In these cases the combined information of where the spike lay in the
embedding and in which template it belonged to made it fairly straightforward
to either appropriately merge or split templates or move spikes along templates.
In some cases a single SU would be represented by two separate t-sne groupings.
An example of this are the two groupings embedded within blue ellipses in Figure
5. They represent a single unit after the merging of two kilosort templates (with
spikes mixed over the two groupings). This unit happens to correspond to the
juxtacellularly marked spikes. The unit has 4845 spikes in it. Out of those, the
4821 spikes’ timestamps correspond to the 4998 juxtacellular timestamps within
a jitter of 1 ms. That translates to a False Possitive error of 0.5% and a False
Negative error of 3.7%. In other cases, a single grouping would contain spikes
assigned to two templates and a merging indicated a single SU (like the orange
line at the bottom center of the embedding) while in others a single template
would be represented by multiple groupings each defining an SU, resulting in
the template’s splitting (like the two orange line groupings at the top center of
the embedding). Finally the 5th category involved all the spikes that we were
unable to assign to any of the previous divisions (SUs, MUs or noise). These
were spikes that showed no obvious correlation between the embedding position
and their template assignment. For example, the large red blob to the top and
right of the large noise blob had 14184 spikes that kilosort had assigned to 95
separate templates (most of which were templates with fewer than 10 spikes
each). There was no internal structure to the blob, i.e. the spikes of each
template appeared randomly spread throughout. The embedding of all these
spikes and templates in a single grouping made it straight forward to visuallize
the situation and assign all the spikes to the unlabeld division.

4 Discussion

Spike sorting has evolved over the last 20 years from a set of techniques to dis-
criminate 5 to 10 distinct units in a space of a few tens of features to strategies
for labeling many tens to hundreds of units in large feature spaces. However,
the number of distinct units is expected to soon reach well into the thousands.
The emerging demands these growing datasets have inspired the development
of more capable automatic sorting algorithms. However, the manual overview
of the spike sorting process remains an essential step of the pipeline, albeit one
that is becoming increasingly labor intensive and error prone. The problem of
producing human readable visualizations of structures that exist in large dimen-
sional spaces is of course not unique to spike sorting but is common in all data
intensive fields. One commonly employed strategy for working with such data
is the use of non-linear dimensionality reduction methods that try to retain in
their projections as much of the initial structure of the data as possible. The
current state of the art in these methods is t-sne, which manages to project onto
two or three dimensions the multi-dimensional data in a way that preserves its
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local structure and makes the visualization of this structure both possible and
intuitive. A large literature has evolved applying this technique to a diverse
number of big data problems ranging from AI [14] to genetics [31, 17], and be-
havior [2]. We show here that, in the case of spike sorting, using t-sne on the
results of either a masked PCA or of template matching, provides a visualization
that offers a clear picture of how the individual spikes form groups in the high
dimensional feature space. These groups directly relate to the individual units
that generate the spikes, which can now be visualized and curated in an intuitive
manner or compared to the results of an automatic clustering method. Further-
more, t-sne allows a visual inspection of the structural groups that different data
sets of spikes contain, something that can be achieved neither by looking at 2D
plots of pairs of features within a multi-dimensional space or by any current
clustering algorithm. Here we demonstrate that t-sne visualization immediately
reveals differences between biological and hybrid datasets (Figure 3), how spike
sorting challenges accrue when each spike is represented by features generated
by fewer and fewer electrodes (Figure 4), and that manual curation of the out-
put from an automated template matching procedure becomes effortless in a
low dimensional space (Figure 5).
The generality of the t-sne method also makes it applicable to datasets that arise
from diverse sources. The successful application of t-sne to behavioral data [2]
suggests the possibility of applying it to datasets comprised of a combination of
spike and other electrophysiological signals (LFP, etc.) as well as the behavioral
features occuring during the recorded neural activity. It is thus possible that
groupings in the t-sne visualization of such a dataset could provide informative
clues as to the connection between different forms of brain activity and to be-
havior itself.
Finally, we are now working on using t-sne embeddings into three-dimensional
space to generate spatial (X,Y,Z) representations that can be explored in virtual
reality, thus providing a new form of access to complex datasets. (Supplemen-
tary Video 2)

5 Additional information

5.1 Software access

A first version of the software used here can be downloaded through the fol-
lowing means. In a conda environment do: ”conda install -c georgedimitriadis
t sne bhcuda”. That will install both the python code and the cuda executable
and will work in either Windows or Linux OSes. You can grab the python code
from the pypi repository:
https://pypi.python.org/pypi/t sne bhcuda/0.2.1.
You can get the C / CUDA code for the cuda executable from the github repos-
itory:
https://github.com/georgedimitriadis/t sne bhcuda.
We are currently in the process of re-writing the code so that the cuda part is
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embedded in the python code. For this and future developments check the pypi
and github repositories or contact the authors.
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