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Abstract 

Development of new, effective and affordable drugs against HIV is urgently needed. In this study, we 

developed a world's first web server called Anti-HIV-Predictor (http://bsb.kiz.ac.cn:70/hivpre) for 

predicting anti-HIV activity of given compounds. This server is rapid and accurate (accuracy >93% and 

AUC > 0.958). We applied the server to screen 1835 approved drugs for anti-HIV therapy. Totally 67 

drugs were predicted to have anti-HIV activity, 25 of which are anti-HIV drugs. Then we 

experimentally evaluated 35 predicted new anti-HIV compounds by assays of syncytia formation, p24 

quantification, cytotoxicity. Finally, we repurposed 7 approved drugs (cetrorelix, dalbavancin, 

daunorubicin, doxorubicin, epirubicin, idarubicin and valrubicin) as new anti-HIV agents. The original 

indication of these drugs is involved in a variety of diseases such as female infertility and cancer. 

Anti-HIV-Predictor and the 7 repurposed anti-HIV agents provided here demonstrate the efficacy of 

this strategy for discovery of new anti-HIV agents. 
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Introduction 

Even 30 years after its discovery, human immunodeficiency virus (HIV) remains a great threat to 

humans1,2. Acquired immune deficiency syndrome(AIDS), the disease elicited by HIV infection, is 

considered to be pandemic and represents the greatest global public health crisis3. There are an 

estimated 39 million deaths caused by AIDS since its first recognition4. According to the report of the 

World Health Organization(WHO), there were approximately 37 million people living with HIV at the 

end of 2014 with 2 million people becoming newly infected with HIV in 2014 globally. And 1.2 

million people died from HIV-related causes globally in 2014 

(http://www.who.int/mediacentre/factsheets/fs360/en/). 

Many scientists around the world are committed to finding scientifically proven strategies for HIV 

prevention and treatment. Recent decades, significant progress has been achieved in the development 

of vaccines and drugs against HIV infection. Several clinical trials of anti-HIV vaccines, including 

RV144, are ongoing5,6. The RV144 trial demonstrated 31% vaccine efficacy at preventing human 

immunodeficiency virus (HIV)-1 (referred to as HIV for the rest of this study) infection7. The most 

notable achievement is the transformation of HIV/AIDS from an inevitable death sentence to a chronic 

illness by the introduction of combination antiretroviral therapy8,9. More than thirty anti-HIV drugs 

have been approved by the US Food and Drug Administration (FDA)10. These drugs act mainly on 

reverse transcriptase, protease, integrase, CCR5 and so on11. Behind the progress, many studies were 

carried out to discover anti-HIV drug candidates by screening a large number of natural or synthetic 

compounds. A representative study was the AIDS anti-viral screen program of the National Cancer 

Institute (NCI), which screened more than 30,000 compounds (https://dtp.cancer.gov/)12,13. After this 

program, many anti-HIV compounds were reported and deposited in ChEMBL database 

(ChEMBLdb)14. These data are helpful for data mining and developing new tool toward HIV treatment. 

Despite considerable progress, treatment of AIDS still faces multiple challenges15,16. To date, no 

truly effective drug able to eliminate HIV has been developed17. Furthermore, HIV is highly variable 

and can quickly acquire resistance against any drug with which it is confronted11,18. Therefore, there is 

a constant demand to develop new, effective and affordable anti-HIV drugs. In the past decades, tens of 

millions of chemical compounds have been deposited in public databases19. Screening these huge 

databases for new anti-HIV drugs through experimental methods is a tedious, expensive and 

time-consuming process. The time and money-saving way is that all compounds in the database are 
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firstly filtered by the computational analysis of the anti-HIV potential, then evaluated by experiment. 

Therefore, a rapid and accurate computational method is urgently required for predicting anti-HIV 

activity of chemical compounds. 

In this study, we aim to establish a web server to predict anti-HIV activity of given compound and 

apply the web server to discover new anti-HIV agents through drug repositioning of FDA approved 

drugs (Figure 1). Drug repositioning is the process of finding new uses outside the scope of the 

original medical indication for existing drugs20,21. An advantage of drug repositioning lies in the fact 

that the safety, dosage, and toxicity of existing drugs have already been vetted22. Therefore, repurposed 

candidate drugs can often enter clinical trials much more rapidly than newly developed drugs23. 

Recently, many anti-infectious agents have been discovered to combat pathogens using drug 

repositioning24-28. 

Therefore, in this study, we firstly developed three rapid and accurate computational methods to 

predict anti-HIV activity of a given compound. Then a web server called Anti-HIV-Predictor 

(http://bsb.kiz.ac.cn:70/hivpre) is established by integrating the three methods. This web server is free 

and open to all users. All FDA approved drugs were screened using the web server. Finally, the 

predicted new anti-HIV compounds were selected for in vitro testing of anti-HIV activity. Using this 

strategy, we identified cetrorelix, dalbavancin and five anthracycline drugs as new potent anti-HIV 

agents. 

Results 

Development of Anti-HIV-Predictor 

Workflow for establishing Anti-HIV-Predictor is outlined in Figure 1. Anti-HIV-Predictor firstly 

integrated all the data of anti-HIV activity from ChEMBL and NCI database to construct benchmark 

dataset. Then, using the benchmark dataset, three prediction models were generated by training, 

parameter selection and validation. The first model is relative frequency-weighted fingerprint 

(RFW_FP) based model. RFW_FP is a novel molecular description method which considers the 

frequency of bit in active and inactive datasets and integrates it to each compound fingerprint. 

RFW_FP was first used in our previous study and powerful to distinguish the active and inactive 

compounds for anti-cancer29,30. The other two models are Support Vector Machine (SVM) and Random 

Forest (RF) models. Last, three models (RFW_FP model, SVM model and RF model) were 

incorporated to predict anti-HIV activity of chemical compounds. The details for development of 
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Anti-HIV-Predictor are given in the Materials and methods section. 

Performance of Anti-HIV-Predictor 

The overall performance of the RFW_FP, SVM and RF models was quantified by receiver operating 

characteristic curve (ROC). For each model, the ROC was plotted and the area under the curve (AUC) 

was calculated (Figure 2a). The ROC curve shows the relation between true positive rate and false 

positive rate for each threshold of the real-value outputs. The AUC value of the RFW_FP, SVM and 

RF models are 0.958, 0.974 and 0.977, respectively. All three models achieve AUC value greater than 

0.958, which reveals the excellent effectiveness of the models. From the three curves, we can also 

observe that the three models can effectively identify active anti-HIV compounds with high 

true-positive rates against low false positive rates. 

The classification performance of the models was also assessed in terms of accuracy, precision, 

recall and F1 score (Figure 2b). As 10 runs of 5-fold cross-validation (CV) method were used, these 

scores were averaged. Over the ten runs, their standard deviations were also reported. As shown in 

Figure 2b, the RFW_FP model obtains the statistical average of 93.3%, 86.9%, 90.1%, and 88.5% for 

accuracy, precision, recall, and F1 score, respectively. The accuracy, precision, recall, and F1 score of 

SVM model are 96%, 95%, 90.8%, and 92.9%, respectively. RF model performs best with the accuracy 

of 96% and precision of 99.4%. 

Input and output of Anti-HIV-Predictor 

Anti-HIV-Predictor is user-friendly and free and open to all users. The only requirement of 

Anti-HIV-Predictor is the SMILES of the query compound. One or multiple query compounds can be 

submitted in one request (Figure 2c). The total number of input compounds is limited to 100 for each 

submission. Anti-HIV-Predictor needs about 60 seconds to load the background data and trained 

models required for prediction. Therefore, 1-10 compounds requires about 90 seconds, but 100 

compounds only requires about 150 seconds. A query with 1–10 compounds requires about 90 seconds, 

whereas a query with 100 compounds only requires about 150 seconds. After calculated, the output of 

Anti-HIV-Predictor was shown in Figure 2d. Firstly, the output gives the most similar compound of 

the query compound. The structures, database links and anti-HIV activities (logEC50) of the matched 

similar compound were also displayed. Secondly, the output contains some important predicting 

information, for example, Tanimoto Coefficient score (TC), the Relative Frequency-Weighted 

Tanimoto Coefficient (RFW_TC), P-value of RFW_TC model, probability estimation by SVM model 
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and RF model. Finally, the output shows the predicting conclusion whether the query compound has 

anti-HIV activity. One tick represents the query compound is predicted as anti-HIV compound by one 

of the three models. One cross means that all the three models show no anti-HIV activity for the query 

compound. 

Rapid and accurate computational screen of FDA approved drugs using Anti-HIV-Predictor 

To discover new anti-HIV agents through drug repositioning of FDA approved drugs, 1835 approved 

drugs with SMILES string were downloaded from DrugBank (http://www.drugbank.ca). Using 

Anti-HIV-Predictor, all the drugs were screened rapidly by the three models. The results of 

computational screen are shown in Figure 3. Most drugs have no anti-HIV activity based on the 

prediction. These drugs were shown as blue dots with RFW_TC P-value ≥0.05, SVM probability and 

RF probability ≤0.5 (Figure 3a). The green dots represent the drugs with anti-HIV activity supported 

by one or two models (RFW_TC P-value ＜0.05 or SVM probability ＞0.5 or RF probability ＞0.5). 

The red dots represent the drugs with anti-HIV activity supported by all three models (RFW_TC 

P-value ＜0.05 and SVM probability ＞0.5 and RF probability ＞0.5). As shown in Figure 3b, 

totally 67 drugs were predicted to have anti-HIV activity by all three models. The RFW_FP, SVM and 

RF models predicted 240, 178, 110 drugs with anti-HIV activity, respectively. Therefore, the 67 drugs 

represent the intersection of the results of the three different models (Figure 3b). Among the 67 drugs, 

there are 25 approved anti-HIV drugs and 7 drugs with anti-HIV activity. For other 35 drugs, there is 

no experimental test for anti-HIV activity (Table S1). 

Experimental confirmation of 15 approved drugs with anti-HIV activity 

As the 35 drugs have not been experimental test for anti-HIV activity, it is interesting and worth 

evaluating their anti-HIV activity by experiment. 28 of these drugs were purchased from CASMART 

(http://www.casmart.com.cn). Other 7 drugs are not purchased and tested because they are not 

available or very expensive. Therefore, a total of 28 drugs were evaluated for their anti-HIV activity in 

vitro with azidothymidine (AZT) as a positive control. The cytotoxicity of these compounds on T cell 

line C8166 was assessed by MTT colorimetric assay, and 50% cytotoxicity concentration (CC50) was 

calculated. The inhibitory effect of compounds on HIV replication was measured by the syncytia 

formation assay and 50% effective concentration (EC50) was calculated as described previously. The 
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assay results of the 28 compounds are presented in Table 1. For comparison, AZT, the first anti-HIV 

drug approved by FDA, was utilized as the reference compound. As shown in Table 1, 15 compounds 

show anti-HIV activity with the EC50 values ranging from 0.004 to 93.794 μM. More than half of the 

tested compounds (15/28) exhibit activity against HIV. It indicates that Anti-HIV-Predictor is a 

powerful tool for discovering anti-HIV compounds. 

Identification of 7 approved drugs as new anti-HIV agents 

Among the 15 compounds above, some compounds show serious cytotoxicity and then result in a very 

low therapeutic index (TI). The drugs with TI value more than 10 were further evaluated their anti-HIV 

activity by quantification of HIV p24 expression using ELISA method31. The best 7 drugs based on the 

results of cytotoxicity, syncytia formation and p24 quantification assays were displayed in Table 2 and 

Figure 4. Among the best 7 drugs, cetrorelix and dalbavancin are polypeptides, while other five drugs 

daunorubicin, doxorubicin, epirubicin, idarubicin and valrubicin belong to the class of anthracyclines. 

Cetrorelix, a synthetic decapeptide, is used for the inhibition of premature luteinizing hormone (LH) 

surges in women undergoing controlled ovarian stimulation32. Dalbavancin, a second-generation 

lipoglycopeptide antibiotic, is approved for the treatment of acute bacterial skin and skin structure 

infections caused by the gram-positive pathogens33. Cetrorelix and dalbavancin exhibit anti-HIV 

activity with EC50 of 1.788±0.115 and 1.296±0.186 μM, respectively. No cytotoxicity was detected for 

cetrorelix and dalbavancin. The cytotoxicity CC50 of cetrorelix and dalbavancin are both more than 200 

μM. The percent viability at the concentration EC50 is almost 100% for cetrorelix and dalbavancin 

(Figure 4). Therefore, cetrorelix and dalbavancin show a very high therapeutic index (TI>105 and 

TI >135, respectively). The five anthracycline drugs are approved for the treatment of acute myeloid 

leukemia, bladder and breast cancer and so on 34. These anthracycline drugs show strong anti-HIV 

activity with EC50 varying from 0.003~0.076 μM. The anti-HIV activity of Idarubicin is close to or 

better than that of AZT (0.003 μM for Idarubicin vs 0.005 μM for AZT). However, these anthracycline 

drugs exhibit a certain degree of cytotoxicity (Figure 4). The percent viability at the concentration 

EC50 is ranging from 80% to 95% for the five drugs. It indicates that, the anti-HIV activity mainly 

results from the selective inhibition of HIV replication and less due to toxicity. Their therapeutic index 

is ranging from 5.9 to 64.8 and far below that of AZT. 

Discussion 

The failure of 30 years of HIV vaccine development 5,35, as well as the prevalence of drug-resistant 
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HIV36-38 , emphasizes the need for new, effective and affordable anti-HIV drugs. To decrease the cost 

and time required for the development of new drugs to treat HIV infection, a world's first web server 

Anti-HIV-Predictor was developed for predicting anti-HIV activity of compounds. The accuracy of the 

web server is more than 93% and AUC is greater than 0.958, which indicates that Anti-HIV-Predictor 

is powerful enough to discover new anti-HIV agents. Using Anti-HIV-Predictor, 1835 approved drugs 

were computational screened rapidly. A total of 67 drugs were predicted as anti-HIV compounds. 

Almost half of the 67 drugs are approved for anti-HIV therapy or with anti-HIV activity. Among the 67 

drugs, the drugs with no experimental data for anti-HIV activity were experimentally evaluated in this 

study. Based on the results of cytotoxicity, syncytia formation and p24 quantification assays, 7 

approved drugs (cetrorelix, dalbavancin, daunorubicin, doxorubicin, epirubicin, idarubicin and 

valrubicin) were identified as new potential anti-HIV agents. 

Screening 1835 approved drugs for new anti-HIV drugs through experimental methods is a 

tedious, expensive and time-consuming process. In this study, the 7 new compounds were rapidly 

repurposed for anti-HIV therapy from the huge approved drugs library. This process of drug 

repositioning, which is time and money saved, has benefited from the web server Anti-HIV-Predictor. 

In silico screen of the approved drugs library using Anti-HIV-Predictor only needs less than one hour. 

After screening, the predicted anti-HIV compounds can be experimentally evaluated immediately. The 

rapidity and accuracy of Anti-HIV-Predictor make it powerful for discovery of new anti-HIV agents. In 

future, we will use Anti-HIV-Predictor to screen other compound database such as TCM 

Database@Taiwan39 and Human Metabolome Database40,41 for discovery of new natural product 

against HIV. 

Cetrorelix, a synthetic decapeptide, is used in assisted reproduction to inhibit premature LH surges. 

The drug works by blocking the action of gonadotropin-releasing hormone (GnRH) upon the pituitary, 

thus rapidly suppressing the production and action of LH and follicle-stimulating hormone (FSH)32. It 

is administered as 0.25 mg or 3 mg for one subcutaneous injection. The administered dosage is equal to 

0.034 - 0.402 μM (0.25 - 3 mg/5L blood) in human blood which is close to the concentration EC50 

(1.788 μM) for anti-HIV activity. Therefore, administration of cetrorelix as the same for original 

indication of assisted reproduction may have clinical benefit to HIV-infected patients. Dalbavancin is a 

novel second-generation lipoglycopeptide antibiotic. It possesses in vitro activity against a variety of 

gram-positive pathogens. Dalbavancin exerts its bactericidal effect by disrupting cell wall 
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biosynthesis33. It is administered as 500 mg for one subcutaneous injection. The administered dosage is 

equal to 55.03 μM (500 mg/5L blood) in human blood which is far higher than the concentration EC50 

(1.296 μM) for anti-HIV activity. Therefore, administration of dalbavancin as the same for treatment of 

bacterial infection is very promising to have clinical benefit to HIV-infected patients. 

The five anthracycline drugs daunorubicin, doxorubicin, epirubicin, idarubicin and valrubicin 

identified in this study have potent anti-HIV activity at the nanomolar level. Although they are more 

toxic than cetrorelix and dalbavancin, their therapeutic index is all more than 10. The therapeutic index 

of valrubicin is 18.3-64.8, which is the highest among the five drugs. The EC50 of idarubicin is 0.003 

μM (TI=18.3-40.0), which is best among the five drugs. Idarubicin inhibits HIV-1 replication at the 

lowest concentration among the five drugs and close to or better than the positive control drug AZT. 

The five anthracycline drugs are approved for the treatment of lymphomas, leukemias, Hodgkin’s 

disease, bladder cancer and so on34. The HIV-infected patients were more likely to suffer from anal 

cancer and Hodgkin's lymphoma42,43. HIV-infected patients with cancer are less likely to receive 

treatment for some cancers than uninfected people, which may affect survival rate 43,44. HIV-infected 

cancer patients are more likely to die from cancer than uninfected cancer patients. Therefore, the five 

drugs may be applied to treatment of the HIV-infected patients with cancer. These patients may benefit 

from the five drugs. 

Anti-HIV-Predictor predicts anti-HIV activity of compounds based on the benchmark dataset 

containing active and inactive compounds. The compound with potent anti-HIV activity but less 

cytotoxicity is expected in the development of anti-HIV drug. Since the cytotoxicity is not taken into 

account in the current study, some of predicted compounds exhibit high cytotoxicity as shown in Table 

1. Therefore, Anti-HIV-Predictor is open to improvement. In future, we will consider the cytotoxicity 

as important factor in the prediction of anti-HIV activity by integrating the NCI-60 growth inhibition 

data from NCI Development Therapeutics Program (DTP) (https://dtp.cancer.gov/)45. The predicted 

anti-HIV compounds in the first step will be filtered by cytotoxicity feature. Anti-HIV-Predictor with 

cytotoxicity filter may results in a compound with high anti-HIV activity but less cytotoxicity. 

Treatment of AIDS still faces multiple challenges such as drug resistance and HIV eradication. 

Development of new, effective and affordable drugs against HIV is urgently needed. Here we firstly 

developed a world's first web server Anti-HIV-Predictor for predicting anti-HIV activity of compounds 

and then applied the server to drug repositioning for anti-HIV therapy. Finally, we repurposed 7 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 5, 2017. ; https://doi.org/10.1101/087445doi: bioRxiv preprint 

https://doi.org/10.1101/087445


11 

compounds as new anti-HIV agents. The web server and the 7 repurposed anti-HIV agents provided 

here have an immediate effect on the development of new anti-HIV therapeutics, and should 

significantly advance current anti-HIV research. 

Materials and methods 

Construction of benchmark dataset 

Anti-HIV activity data were downloaded from ChEMBLdb and NCI. In ChEMBLdb, the compound 

whose target is "human immunodeficiency virus type 1" and with the activity better than 10 μmol/L 

was considered as active compounds. In NCI, the compound with more than 2 replication experiments 

and with EC50 less than 10 μmol/L was considered as active compounds. And the other compounds 

with EC50 more than 100μmol/L were consider as inactive compounds. Finally, all compounds in the 

two databases were integrated by removed the conflict and replicated compounds. This procedure 

yielded 9584 active and 23998 inactive compounds, respectively. The active and inactive datasets were 

used as benchmark datasets to generate models to predict anti-HIV activity of chemical compounds. 

The detailed method of constructing benchmark dataset can be found in Part 1 of Supplemental 

material. 

RFW_FP model 

Firstly, Relative Frequency-Weighted Fingerprint (RFW_FP) was used to calculate the compound 

fingerprints. RFW_FP was calculated as follows: 

RFW_FP(i) � Bit�i� � � Factive���

Finactive���
�
α

      (1) 

where i represents ith Daylight fingerprint. In Daylight theory, each compound contains more than one 

and less than 1024 fingerprints. RFW_FP(i) is ith relative frequency-weighted fingerprint. Bit(i) is 

calculated by Pybel46, a python wrapper of Openbabel47. if the compound has ith fingerprint, Bit(i) = 1, 

else Bit(i) = 0. Factive(i) and Finactive(i) are the frequency of ith fingerprint in the active and inactive 

compounds, respectively. α is the amplifying factor. In this study,α was optimized as 0.5 (Figure S2). 

Then, the Relative Frequency-Weighted Tanimoto Coefficient (RFW_TC) between two 

compounds was calculated as follows: 

RFW_TC(m, n)=
Smn

Sm�Sn�Smn

      (2) 

where RFW_TC(m,n) is RFW_TC between two compounds m and n. Sm and Sn are the sum of 

RFW_FPs in compound m and n, respectively. Smn is the sum of the common RFW_FPs between two 
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compounds. 

Finally, for each query chemical compounds, the maximum RFW_TC between the query and the 

active dataset (9584 compounds) was calculated. Then the P-value, based on the maximum RFW_TC, 

was calculated. As the maximum RFW_TC is less than 1.0 and the maximum RFW_TCs of the 

inactive compounds have a normal distribution (Figure S3), we can calculate the P-value as follows: 

���� � 	�1.0; �, �� � 	��; �, ��      (3) 

where p(χ) is the P-value at the maximum RFW_TC of x; F(χ;μ,σ) is the cumulative function of normal 

distribution. Using the maximum likelihood method ("fitdist" function in R "fitdistrplus" package48), 

we estimated the location parameter μ of 0.461, the scale parameter σ of 0.121. 

SVM model 

SVM is a powerful supervised learning algorithm suitable for non-linear classification problems49. It is 

based on the idea of transforming data not linearly separable in feature space to a higher- or 

infinite-dimensional space where they can be separated linearly by a suitable soft-margin hyperplane50. 

For our binary classification task, we firstly chosen kernel function and then perform a grid search of 

the penalty parameter C. The Scikit-learn Python wrappers for libsvm27 were used to choose kernel 

function and explore the hyper-parameter space51,52. The best-performing model was selected by 

plotting receiver operating characteristic (ROC) curve and calculating the area under the curve (AUC). 

The model with kernel function rbf and the penalty parameter C of 500 performed best (Figure 

S4). The detailed method for the selection of kernel function and the penalty parameter C can be found 

in Part 5 of Supplemental material. 

RF model 

The algorithm of random forest is based on the ensemble of a large number of decision trees, where 

each tree gives a classification and the forest chooses the final classification having the most votes over 

all the trees in the forest53. Random forest, implemented in Scikit-learn51, was chosen as classifier with 

the following settings: (1) Number of trees was set to 900 (n_estimators =900). This parameter was 

selected by calculating AUC (Figure S5). (2) The minimum number of samples to split an internal 

node was set to 2 (min_samples_split = 2, default setting). (3) The minimum number of samples in 

newly created leaves was set to 1 (min_samples_leaf = 1, default setting). (4) The number of features to 

consider when looking for the best split was set to the square root of the number of 

descriptors(max_features = auto, default setting). (5) The maximum depth of the tree was expanded 
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until all leaves are pure or until leaves contain less than min_samples_split samples (max_depth = none, 

default setting). (6) Bootstrap samples were used (bootstrap = true, default setting). For further 

documentation on the random forest implementation in Scikit-learn, the interested reader is referred to 

the web site (http://scikit-learn.org). 

Performance evaluation 

To test performance of Anti-HIV-Predictor, 10 runs of 5-fold cross-validation (CV) method (Part 2 of 

Supplemental material) were used to the three models (RFW_FP model, SVM model and RF model). 

For each model, the ROC was plotted and the area under the curve (AUC) was calculated. The results 

of the CV tests were used to calculate the four quality indices: accuracy, precision, recall and F1 score 

which is defined as the harmonic mean of precision and recall. We used the default statistical definition 

for these quality indices: 

Accuracy � TP � TN
TP � FP � TN � FN 

Precision � TP
TP � FP 

Recall � TP
TP � FN 

F1 score � 2 � Precision � Recall
Precision � Recall 

where true positive (TP) and true negative (TN) correspond to correctly predicted anti-HIV compound 

and non anti-HIV, respectively, false positive (FP) denote non anti-HIV compound predicted as 

anti-HIV compound, and false negative (FN) denote anti-HIV compound predicted as non anti-HIV 

compound. 

Compounds, cells and HIV-1 strain 

The 28 approved drugs were purchased from CASMART (http://www.casmart.com.cn). C8166 and H9 

cell was kindly provided by the AIDS Reagent Project, the UK Medical Research Council (MRC). 

Cells were maintained in RPMI 1640 medium (Life technology) containing 10% heat-inactivating fetal 

bovine serum (FBS, Life technology), 100units/mL penicillin (Sigma) and streptomycin (amresco). 

Laboratory adapted strain HIV-1NL4-3 was kindly donated by NIH and propagated in H9 cells. Virus 

stocks were stored in small aliquots at -70 �. 

Cytotoxicity assays 

The cellular toxicity of tested compounds on C8166 was assessed by MTT colorimetric assay54. Briefly, 
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4×104 per well C8166 cells were co-incubated with or without a series diluted test compounds. After 3 

days of incubation at 37 �, 5% CO2, the cell viability was determined by using MTT. Afterward, the 

50% cytotoxicity concentration (CC50) was calculated. AZT was used as a positive control. 

Inhibition of syncytia formation 

The inhibitory effect of samples on acuteHIV-1NL4-3 infection was measured by the syncytia formation 

assay as described previously55. In the presence or absence of various concentrations of compounds, 

4×105/ml C8166 cells were infected with HIV-1NL4-3 at a multiplicity of infection (MOI) of 0.03, and 

cultured in 96-well plates at 37 � in 5% CO2 for 3 days. AZT was used as a positive control. After 

post-infection for 3 days, cytopathic effect (CPE) was measured by counting the number of syncytia in 

each well of 96-well plates under an inverted microscope (10×) (Nicon ECLIPSE TS100). The 

inhibitory percentage of syncytia formation was calculated by the percentage of syncytia number in 

treated sample compared to that in infected control. 50% effective concentration (EC50) was calculated. 

Therapeutic index (TI) was calculated by the ratio of CC50/EC50. 

Inhibition of HIV-1 p24 antigen level in acute infection 

For the compounds with TI value greater than 10, the in vitro inhibitory effect of these compounds on 

HIV-1 replication was further evaluated by quantification of p24 expression. Briefly, 4×105/ml C8166 

cells were infected with HIV-1NL4-3 for 2 hours to allow for viral absorption. It was then washed three 

times with PBS to remove unadsorbed virus. The cells were plated at 4×104 cells/well with or without 

various concentrations of compounds and incubated in a CO2 incubator at 37 ℃ with for 72 hours. 

Supernatants were collected and virus was lysed with 0.5% triton X100. HIV-1 p24 was determined 

with an in-house ELISA assay described previously31. The inhibitory percentage of p24 antigen 

production was calculated by the OD490/630 value of compound-treated culture compared to that in 

infected control culture and EC50 were calculated. 
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TABLES 

Table 1. The cytotoxicity (CC50), anti-HIV-1 activity on HIV-1NL4-3 strain (CPE EC50), and 

therapeutic index (TI) of the tested 28 compounds 

Drug name Drug ID 
CC50 (μM) 

Mean±SD 

EC50 (μM) 

Mean±SD 
TI 

Bivalirudin DB00006 >200 >200 Inactivity 

Carbetocin DB01282 >200 >200 Inactivity 

Cetrorelix DB00050 >200 15.285±1.024 >12.3 a 

Cytarabine DB00987 101.819±14.844 54.603±14.602 2.9-1.3 

Dalbavancin DB06219 >200 8.694±0.000 >23.0 

Daunorubicin DB00694 0.279±0.085 0.029±0.010 5.0-19.2 

Desmopressin DB00035 >200 >200 Inactivity 

Doxorubicin DB00997 0.191±0.017 0.013±0.001 13.4-17.3 

Epirubicin DB00445 0.125±0.042 0.007±0.003 9.2-41.8 

Gatifloxacin DB01044 116.743±24.863 126.263±16.005 0.6-1.3 

Gonadorelin DB00644 >200 72.417±3.403 >2.6 

Idarubicin DB01177 0.077±0.004 0.004±0.001 18.3-26.7 

Levofloxacin DB01137 >200 17.533±1.456 >10.5 

Linaclotide DB08890 >200 >200 Inactivity 

Moxifloxacin DB00218 102.902±13.248 104.286±13.324 0.8-1.3 

Nafarelin DB00666 >200 >200 Inactivity 

Ofloxacin DB01165 >200 114.097±12.820 >1.6 

Pentagastrin DB00183 >200 93.794±42.202 >1.5 

Polymyxin B Sulfate DB00781 109.157±0.879 15.007±4.186 5.6-10.2 

Sofosbuvir DB08934 >200 >200 Inactivity 

Somatostatin DB09099 >200 >200 Inactivity 

sparfloxacin DB01208 85.112±11.066 31.594±2.029 2.2-3.3 

Terlipressin DB02638 >200 >200 Inactivity 

Tolvaptan DB06212 97.532±16.441 15.816±1.101 4.8-7.7 

Triptorelin DB06825 >200 >200 Inactivity 

Valrubicin DB00385 2.405±0.446 0.082±0.002 23.3-35.6 

Vancomycin DB00512 >200 >200 Inactivity 

Verteporfin DB00460 7.502±3.177 10.235±4.213 0.3-1.8 

AZT DB00006 1031.353±286.058 0.004±0.000 >181324 

a. The drugs with TI value more than 10 were highlighted with bold fonts. 
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Table 2. The anti-HIV-1 activity on HIV-1NL4-3 strain (P24 EC50 ), and therapeutic index (TI) 

of the 7 compounds 

Drug name Original indication 
EC50(μM) 

Mean±SD 
TI 

Cetrorelix 
For assisted reproduction and the inhibition of 

premature LH surges 
1.788±0.115 >105.1 

Dalbavancin 
For the treatment of acute bacterial infections 

caused by the Gram-positive pathogens 
1.296±0.186 >135.1 

Daunorubicin For treatment of leukemia and other neoplasms 0.016±0.002 17.6-36.4 

Doxorubicin 
For inhibition of disseminated neoplasma like 

acute leukemia, Hodgkin’s disease and so on 
0.012±0.001 14.5-18.8 

Epirubicin 
For adjuvant therapy in patients with breast 

cancer 
0.011±0.004 5.9-23.9 

Idarubicin 
For treatment of acute myeloid leukemia in 

adults 
0.003±0.001 18.3-40.0 

Valrubicin For treatment of cancer of the bladder 0.076±0.032 18.3-64.8 

AZT For treatment of HIV infections 0.005±0.004 >93161 
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Figure legends 

Figure 1. The flowchart of Anti-HIV-Predictor and drug repositioning. After construction of 

benchmark dataset, three models (RFW_FP model, SVM model and RF model) were generated 

to predict anti-HIV activity of chemical compounds by training, parameter selection and 5-fold 

cross validation. The web server Anti-HIV-Predictor was established by incorporating the three 

prediction models. The web server was used to screen all FDA approved drugs. Finally, the 

predicted new anti-HIV compounds were evaluated for anti-HIV activity in vitro. 

Figure 2.The performance, input and output of Anti-HIV-Predictor. (a) The ROC and AUC for the 

RFW_FP model (red), SVM model (green) and RF model (blue), respectively. (b) The statistical 

average results for 10 runs of 5-fold cross validation. The panel indicate the mean and standard 

deviation values of accuracy, precision, recall and F1 score derived from the RFW_FP model (red), 

SVM model (green) and RF model (blue), respectively. Vertical lines indicate the standard deviations 

(SDs). (c) Input interface of Anti-HIV-Predictor. The web server only needs the SMILES of the query 

compound as input. (d) The output of Anti-HIV-Predictor. The output contains the matched similar 

compound, the predicting information and the predicting conclusion whether the query compound has 

anti-HIV activity (see text for details). For example, Anti-HIV-Predictor assigns three ticks for the drug 

nevirapine and a cross for aspirin. 

Figure 3. The results of computational screen of FDA approved drugs using Anti-HIV-Predictor. 

(a) Three-axis plot of all approved drugs based on the predict scores of the three models (RFW_FP 

model, SVM model and RF model). Each dot represents a drug. The blue dot means the drug with no 

anti-HIV activity. The green dot means the drug with anti-HIV activity supported by one or two models. 

The red dot indicates the drug with anti-HIV activity predicted by all three models. (b) Venn diagram 

of the screening results. The RFW_FP model, SVM model and RF model predicted 240, 178 and 110 

anti-HIV drugs, respectively. The overlap is 67 drugs which are categorized into three groups: 

approved anti-HIV drugs (25), drugs with anti-HIV activity(7) and drugs with no experimental data 

(35). 

Figure 4. The chemical structures and in vitro dose-response curves of the 7 compounds. Each 

panel contains the structure and curve for one compound. In dose-response curve, the percent inhibition 

of the compounds on HIV-1 replication in the p24 assay is shown in red circles. And the percent 

viability in cytotoxicity assays of the compounds on C8166 is shown in filled black squares. With the 
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increase of concentration of the compounds, the percent inhibition is increased but the percent viability 

of C8166 is decreased. The percent viability at the concentration equal to EC50 is indicated as blue 

dashed line. Data are mean ± s.d. (n=6) 
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