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 2

Abstract 15 

Metal cofactors are required for many enzymes in anaerobic microbial respiration. This study 16 

examined iron, cobalt, nickel, copper, and zinc in cellular and abiotic phases at the single-cell 17 

scale for a sulfate-reducing bacterium (Desulfococcus multivorans) and a methanogenic archaeon 18 

(Methanosarcina acetivorans) using synchrotron x-ray fluorescence microscopy. Relative 19 

abundances of cellular metals were also measured by inductively coupled plasma mass 20 

spectrometry. For both species, zinc and iron were consistently the most abundant cellular 21 

metals. M. acetivorans contained higher nickel and cobalt content than D. multivorans, likely 22 

due to elevated metal requirements for methylotrophic methanogenesis. Cocultures contained 23 

spheroid zinc sulfides and cobalt/copper-sulfides.  24 
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Introduction 25 

In anoxic natural and engineered environments, sulfate-reducing bacteria and methanogenic 26 

archaea perform the last two steps of organic carbon respiration, releasing sulfide and methane. 27 

Sulfate-reducing bacteria and methanogenic archaea can exhibit cooperative or competitive 28 

interactions depending on sulfate and electron donor availability (Brileya et al. 2014; Bryant et 29 

al. 1977; Ozuolmez et al. 2015; Stams and Plugge 2009). Methanol (CH3OH), the simplest 30 

alcohol, is an important substrate for industrial applications (Bertau et al. 2014) and microbial 31 

metabolisms. In the presence of methanol, sulfate reduction and methanogenesis occur 32 

simultaneously in cocultures (Dawson et al. 2015; Phelps et al. 1985), anoxic sediments (Finke et 33 

al. 2007; Oremland and Polcin 1982), and anaerobic digesters (Spanjers et al. 2002; Weijma and 34 

Stams 2001). Methanol has also been studied as a substrate for stimulating organochlorine 35 

degradation in sediment reactors containing sulfate-reducing bacteria and methanogenic archaea 36 

(Drzyzga et al. 2002). 37 

Metalloenzymes are essential for both sulfate reduction and methylotrophic 38 

methanogenesis (Barton et al. 2007; Ferry 2010; Glass and Orphan 2012; Thauer et al. 2010). 39 

Iron is needed for cytochromes and iron-sulfur proteins in both types of organisms (Fauque and 40 

Barton 2012; Pereira et al. 2011; Thauer et al. 2008). Cobalt and zinc are present in the first 41 

enzymes in sulfate reduction (ATP sulfurylase, Sat; Gavel et al. 1998; Gavel et al. 2008), and 42 

methylotrophic methanogenesis (methanol:coenzyme M methyltransferase; Hagemeier et al. 43 

2006). Nickel is found in the final enzyme in methanogenesis (methyl coenzyme M reductase; 44 

Ermler et al. 1997), and zinc is present in the  heterodisulfide reductase that recycles cofactors 45 

for the methyl coenzyme M reductase enzyme (Hamann et al. 2007). Nickel and cobalt are 46 

required by methanogenic archaea and sulfate-reducing bacteria that are capable of complete 47 
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organic carbon oxidization for carbon monoxide dehydrogenase/acetyl Co-A synthase in the 48 

Wood-Ljungdahl CO2 fixation pathway (Berg 2011; Ragsdale and Kumar 1996). Hydrogenases 49 

containing Ni and Fe are functional in many, but not all, sulfate-reducing bacteria (Osburn et al. 50 

2016; Pereira et al. 2011) and methylotrophic methanogens (Guss et al. 2009; Thauer et al. 51 

2010). Evidence for high metabolic metal demands is provided by limited growth of 52 

methanogenic archaea without Co and Ni supplementation in methanol-fed monocultures 53 

(Scherer and Sahm 1981) and anaerobic bioreactors (Florencio et al. 1994; Gonzalez-Gil et al. 54 

1999; Paulo et al. 2004; Zandvoort et al. 2003; Zandvoort et al. 2006).  55 

Sulfate-reducing bacteria produce sulfide, which can remove toxic metals from 56 

contaminated ecosystems due to precipitation of metal sulfides with low solubility (Paulo et al. 57 

2015). Metal sulfides may also limit the availability of essential trace metals for microbial 58 

metabolism (Glass and Orphan 2012; Glass et al. 2014). In sulfidic environments such as marine 59 

sediments and anaerobic digesters, dissolved Co and Ni are present in nanomolar concentrations 60 

(Glass et al. 2014; Jansen et al. 2005). These metals are predominantly present as solid metal 61 

sulfide precipitates (Drzyzga et al. 2002; Luther III and Rickard 2005; Moreau et al. 2013) 62 

and/or sorbed to anaerobic sludge (van Hullebusch et al. 2006; van Hullebusch et al. 2005; van 63 

Hullebusch et al. 2004). The bioavailability of metals in these solid phases to anaerobic microbes 64 

remains relatively unknown. Previous studies suggest that methanogenic archaea can leach Ni 65 

from silicate minerals (Hausrath et al. 2007) and metal sulfides (Gonzalez-Gil et al. 1999; Jansen 66 

et al. 2007). Sulfidic/methanogenic bioreactors (Jansen et al. 2005) and D. multivorans 67 

monocultures (Bridge et al. 1999) contain high-affinity Co-/Ni- and Cu-/Zn-binding ligands, 68 

respectively, which may aid in liberating metal micronutrients from solid phases when they 69 

become growth-limiting.  70 
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Due to the importance of trace metals for anaerobic microbial metabolisms in 71 

bioremediation and wastewater treatment, extensive efforts have focused on optimizing metal 72 

concentrations to promote microbial organic degradation in anaerobic digesters (for review, see 73 

Demirel and Scherer (2011)). Numerous studies have investigated the effect of heavy metals on 74 

anaerobic metabolisms at millimolar concentrations in heavy-metal contaminated industrial 75 

wastewaters, whereas few studies have investigated interactions between anaerobic microbes and 76 

transition metals at the low micro- to nanomolar metal concentrations present in most natural 77 

ecosystems and municipal wastewaters (see Paulo et al. 2015 for review). Studies of the metal 78 

content of anaerobic microbes have primarily measured monocultures using non-spatially 79 

resolved techniques such as ICP-MS (Barton et al. 2007; Cvetkovic et al. 2010; Scherer et al. 80 

1983). Little is known about the effect of coculturing on cellular elemental composition and 81 

mineralogy due to changes in geochemistry (e.g. via sulfide production) of the medium and/or 82 

microbial metabolisms (e.g. via competition for growth-limiting substrates). 83 

In this study, we measured cellular elemental contents and imaged extracellular metallic 84 

minerals for sulfate-reducing bacteria and methanogenic archaea grown in mono- and co-culture. 85 

For the model sulfate-reducing bacterium, we chose the metabolically versatile species 86 

Desulfococcus multivorans, which is capable of complete organic carbon oxidation. 87 

Methanosarcina acetivorans C2A, a well-studied strain capable of growing via aceticlastic and 88 

methylotrophic methanogenesis, but not on H2/CO2, was selected as the model methanogenic 89 

archaeon. These species were chosen because they are the most phylogenetically similar to pure 90 

culture isolates available to syntrophic consortia of anaerobic methanotrophic euryarchaeota 91 

(ANME-2) and sulfate-reducing bacteria (Desulfosarcina/Desulfococcus) partner that catalyze 92 

the anaerobic oxidation of methane in marine sediments (see Dawson et al. (2015) for more on 93 
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coculture design). Individual cells of mono- and cocultures of these two species were imaged for 94 

elemental content on the Bionanoprobe (Chen et al. 2013) at the Advanced Photon Source 95 

(Argonne National Laboratory) and measured for relative abundance of bulk cellular metals by 96 

ICP-MS.  97 

Materials and Methods 98 

Culture growth conditions 99 

The growth medium contained (in g L-1): NaCl, 23.4; MgSO4
.7H2O, 9.44; NaHCO3, 5.0; KCl, 100 

0.8; NH4Cl, 1.0; Na2HPO4, 0.6; CaCl2
.2H2O, 0.14; cysteine-HCl, 0.25; resazurin, 0.001, 3 x 10-6 101 

Na2SeO3 supplemented with DSM-141 vitamin (including 1 μg L-1 vitamin B12) and trace 102 

element solutions containing metal concentrations (provided below as measured by ICP-MS) and 103 

1.5 mg L-1 nitrilotriacetic acid (Atlas 2010). The medium (pH 7.6) was filter sterilized in an 104 

anoxic chamber (97% N2 and 3% H2 headspace) and reduced with 1 mM Na2S.  105 

Monocultures of Desulfococcus multivorans (DSM 2059) and Methanosarcina 106 

acetivorans strain C2A (DSM 2834) were inoculated into 20 mL culture tubes containing 10 mL 107 

of media with N2:CO2 (80:20) headspace, and sealed with butyl rubber stoppers and aluminum 108 

crimp seals. D. multivorans monocultures were amended with filter-sterilized lactate (20 mM). 109 

M. acetivorans monocultures were amended with filter-sterilized methanol (66 mM). Equal 110 

proportions of dense monocultures in early stationary stage (as assessed by OD600 measurements; 111 

Fig. S1) were inoculated into sterile media and amended with filter-sterilized lactate (20 mM) 112 

and methanol (66 mM) to form the coculture. Cultures were grown at 30°C without shaking. 113 

After 12 days of growth (Fig. S1), mono- and cocultures were pelleted and frozen for ICP-MS 114 

analysis, or prepared for SXRF imaging.  115 

Fluorescence in situ hybridization 116 
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In order to confirm that monocultures were free of contamination, and to determine the relative 117 

abundance of D. multivorans and M. acetivorans in coculture, fluorescence in situ hybridization 118 

(FISH) was performed on separate aliquots from the same time point of the cell culture used for 119 

SXRF analyses. One mL of cell culture was preserved in 3% paraformaldehyde for 1-3 hours, 120 

then washed and resuspended in 200 μL of 3x PBS:ethanol as described in Dawson et al. (2012). 121 

Four microliters of fixed cells were spotted onto a glass slide and hybridized with an 122 

oligonucleotide probe targeting Methanosarcina acetivorans MSMX860 (Raskin et al. 1994) and 123 

the deltaproteobacterial probe Delta495a (Loy et al. 2002) and cDelta495a (Macalady et al. 124 

2006). The FISH hybridization buffer contained 45% formamide, and the hybridization was 125 

carried out at 46°C for 2 hours followed by a 15 minute wash in 48°C washing buffer (Daims et 126 

al. 2005). The slides were rinsed briefly in distilled water, and mounted in a solution of DAPI (5 127 

μg/mL) in Citifluor AF-1 (Electron Microscopy Services). Imaging was performed with a 100x 128 

oil immersion objective (Olympus PlanApo). Cell counts were performed by hand. Multiple 129 

fields of view from replicate wells were compiled and counted on the basis of fluorescence in 130 

DAPI (all cells), Cy3 (bacteria), and FITC (archaea).  131 

ICP-MS 132 

Frozen cell pellets were dried (yielding ~4 mg dry weight per sample) in acid-washed Savillex 133 

Teflon vials in a laminar flow hood connected to ductwork for exhausting acid fumes. Cells were 134 

digested overnight at 150°C in 2 mL of trace metal grade nitric acid and 200 μL hydrogen 135 

peroxide, dried again, and dissolved in 5 mL 5% nitric acid. The medium was diluted 1:50 in 136 

nitric acid. The elemental content of microbial cells and media was analyzed by ICP-MS 137 

(Element-2, University of Maine Climate Change Institute). Sterile medium contained the 138 
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following concentrations (in μM): P, 800; Zn, 7; Fe, 4; Co, 2; Ni, 0.9; Cu, 0.3. Digestion acid 139 

blanks contained (in nM): P, 127; Zn, 12; Fe, 5; Co, 0.007; Ni, 0.9; Mo, 0.02; Cu, 0.1; V, 0.03.  140 

SXRF sample preparation 141 

Monocultures were prepared for SXRF analysis without chemical fixation by spotting onto 142 

silicon nitride (SiN) wafers (Silson Ltd., cat. 11107126) followed by rinsing with 10 mM HEPES 143 

buffer (pH 7.8). To enable FISH microscopy after SXRF analysis, cocultures were chemically 144 

preserved prior to analysis by incubation on ice for 1 hour in 50 mM HEPES and 0.6 M NaCl 145 

(pH 7.2) containing 3.8% paraformaldehyde and 0.1% glutaraldehyde that had been cleaned of 146 

potential trace-metal contaminants with cation exchange resin (Dowex 50-W X8) using 147 

established protocols (Price et al. 1988; Twining et al. 2003). Cells were then centrifuged, re-148 

suspended in 10 mM HEPES buffer (pH 7.8) and either embedded in resin and thin sectioned 149 

following the methods described in McGlynn et al. (2015) or spotted directly onto SiN wafers.  150 

SXRF analyses 151 

Whereas ICP-MS measurements cannot delineate the elemental contributions of co-occurring 152 

cell types, SXRF imaging enables elemental quantification of the specific cell of interest (Fahrni 153 

2007; Ingall et al. 2013; Kemner et al. 2004; Nuester et al. 2012; Twining et al. 2003; Twining et 154 

al. 2008). SXRF analyses were performed at the Bionanoprobe (beamline 21-ID-D, Advanced 155 

Photon Source, Argonne National Laboratory). Silicon nitride wafers were mounted 156 

perpendicular to the beam as described in Chen et al. (2013). SXRF mapping was performed 157 

with monochromatic 10 keV hard X-rays focused to a spot size of ~100 nm using Fresnel zone 158 

plates. Concentrations and distributions of all elements from P to Zn were analyzed in fine scans 159 

using a step size of 100 nm and a dwell time of 150 ms. An X-ray fluorescence thin film (AXO 160 

DRESDEN, RF8-200-S2453) was measured with the same beamline setup as a reference. MAPS 161 
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software was used for per-pixel spectrum fitting and elemental content quantification (Vogt 162 

2003). Sample elemental contents were computed by comparing fluorescence measurements 163 

with a calibration curve derived from measurements of a reference thin film.  164 

Regions of interest (ROIs) were selected with MAPS software by highlighting each 165 

microbial cell (identified based on elevated P content with care taken to avoid regions of 166 

elevated non-cellular metals) or particle (identified based on elevated metal content). Each ROI 167 

(n=14 and n=17 for D. multivorans (radius: 0.60 ± 0.01 μm) and M. acetivorans (radius: 0.48 ± 168 

0.01 μm), respectively, and n=13 for the coculture (radius: 0.96 ± 0.01 μm)) was background 169 

corrected to remove elements originating from each section of the SiN grid on which cells were 170 

spotted. To do so, the mean of triplicate measurements of area-normalized elemental content for 171 

blank areas bordering the analyzed cells was subtracted from cellular ROIs. The background-172 

corrected area-normalized molar elemental content was then multiplied by cellular ROI area to 173 

obtain molar elemental content per cell, which was then divided by the cell volume (4/3πr3, 174 

assuming spherical cells) to yield total metal content per cell volume, in units of mmol L-1. 175 

Visualization of elemental co-localization was performed with MAPS software. Statistical 176 

analysis was performed with JMP Pro (v. 12.1.0) using the Tukey-Kramer HSD test.  177 

 178 

Results 179 

Cellular elemental content of monocultures 180 

Cellular metal contents of M. acetivorans and D. multivorans monocultures followed the trend 181 

Zn � Fe > Cu > Co > Ni when measured by SXRF, and Zn � Fe > Co > Ni > Cu when measured 182 

by ICP-MS (Fig. 1). When normalized to cell volume, cellular S measured by SXRF was 50x 183 

higher in methanol-grown M. acetivorans (n=14) than lactate-grown D. multivorans (n=17). 184 
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Cellular P, Fe, Co, Ni and Cu were 4-7x higher in M. acetivorans than D. multivorans, and 185 

cellular Zn was not significantly different between the two microbes (Table 1).  186 

Relative abundance of species in coculture 187 

Coculturing of both species for 12 days in media containing methanol and lactate resulted in 188 

dominance of M. acetivorans (77%, or 1,753 cells hybridized with the MSMX860 FISH probe) 189 

over D. multivorans (23%, or 522 cells hybridized with the Delta495a FISH probe) for 2,275 190 

total cells counted in ten 100x (125 x 125 μm) fields of view. Cells were ~1 μm2 cocci. No other 191 

cells exhibited DAPI staining other than those that hybridized with MSMX860 and Delta495a 192 

oligonucleotide probes. Attempts at FISH microscopy after SXRF analysis were unsuccessful 193 

due to x-ray radiation damage of the cells. 194 

Cellular elemental content of cocultures 195 

ICP-MS measurements showed that the relative abundance of cellular metals remained relatively 196 

constant between mono- and cocultures, whereas SXRF data indicated that the coculture 197 

contained a relatively higher proportion of Co than the monocultures (Fig. 1). SXRF imaging 198 

showed no visual difference in elemental distribution between cells in the coculture (Fig. 2), 199 

although the relatively small size of the cells relative to the focused x-ray spot may have limited 200 

our ability to discern subtle differences. Cocultures, which were fixed with paraformaldehyde 201 

and glutaraldehyde for subsequent fluorescence microscopy, were larger (radius: 0.96 ± 0.01 202 

μm) than monocultures (D. multivorans radius: 0.60 ± 0.01 μm; M. acetivorans radius: 0.48 ± 203 

0.01 μm), which were not fixed prior to analysis. When normalized on a per cell basis, 204 

cocultures contained 5-20x higher P, Co and Ni than monocultures; however, when normalized 205 

to cellular volume, the larger cell volumes of the cocultures resulted in significantly less Fe, Cu 206 

and Zn per cellular volume than either of the monocultures (Table 1).  207 
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Non-cellular metals in cocultures 208 

In whole cell SXRF images, ~30 “hot spots” (discrete semi-circular areas with low-P and 209 

elevated metals, indicative of nano-sized minerals) of Zn (max: 0.7 μg cm-2), Co (max: 0.4 μg 210 

cm-2) and S (max: 2.7 μg cm-2) were present in the center of a cluster of ~30 cocultured cells 211 

identified as P-containing cocci (Fig. 2). In thin sections, semi-circular non-cellular small Zn hot 212 

spots (0.6 ± 0.1 μm2) containing ~1:1 molar ratios of Zn:S (17 ± 2 μg Zn cm-2: 7.6 ± 0.7 μg S 213 

cm-2) were interspersed amongst cell clusters (n=8; Fig. 3a-e) along with more numerous 214 

spheroid non-cellular Co hot spots of the same size (0.6 ± 0.1 μm2) containing 2.1 ± 0.1 μg Co 215 

cm-2, 3.4 ± 0.2 μg S cm-2, and 1.3 ± 0.1 μg Cu cm-2 (n=45; Fig. 3a-e). Discrete semi-circular hot 216 

spots of elevated Ni (max: 2.9 μg cm-2) with low S were observed in two imaging fields (n=8; 217 

Fig. 3b,c).  218 

 219 

Discussion 220 

In this study, SXRF imaging and quantification of trace metals in cellular and abiotic phases was 221 

performed at the single-cell scale. Our observation that Zn and Fe were the two most abundant 222 

cellular trace metals in monocultures is consistent with previous studies of diverse prokaryotes 223 

(Barton et al. 2007; Cvetkovic et al. 2010; Outten and O'Halloran 2001; Rouf 1964), including 224 

diverse mesophilic and hyperthermophilic methanogens grown on a range of substrates, for 225 

which, generally: Fe > Zn > Ni > Co > Cu (Cameron et al. 2012; Scherer et al. 1983). To our 226 

knowledge, there are no previous reports of the trace metal content of sulfate-reducing bacteria, 227 

but the abundance of Fe and Zn-containing proteins encoded by their genomes (Barton and 228 

Fauque 2009; Barton et al. 2007; Fauque and Barton 2012) is consistent with the cellular 229 

enrichment we observed in these trace metals.  230 
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Both normalizations for SXRF data (per cell and per cellular volume) showed that the 231 

methanogenic archaeon contained more P, S, Co, Ni and Cu than the sulfate-reducing bacterium. 232 

The higher cellular Co content of M. acetivorans vs. D. multivorans is likely due to due to 233 

numerous methyltransferases involved in methylotrophic methanogenesis (Zhang and Gladyshev 234 

2010; Zhang et al. 2009) that contain cobalt as a metal center in their corrinoid (vitamin B12) 235 

cofactor, in addition to the corrinoid-containing Fe-S methyltransferase protein in the Wood 236 

Ljungdahl pathway in both species (Ekstrom and Morel 2008; Fig. 4). Similarly, the higher Ni 237 

content of M. acetivorans vs. D. multivorans is likely due to the presence of Ni-containing 238 

cofactor F430 in methyl coenzyme M reductase, the final enzyme in the methanogenesis pathway. 239 

Cofactor F430 is found only in methane-metabolizing archaea, in which it comprises 50-80% of 240 

total cellular Ni (Diekert et al. 1981; Mayr et al. 2008). Additional Ni requirements in both M. 241 

acetivorans and D. multivorans are used for Ni-Fe hydrogenases and carbon monoxide 242 

dehydrogenase in the Wood-Ljungdahl pathway (Fig. 4).  243 

Metabolic Cu requirements for methanogenesis are not well known, although high 244 

accumulations have also been reported for other methanogens (Scherer et al. 1983). However, it 245 

should be noted that our early trials analyzing S-rich cells on Au grids revealed artifacts resulting 246 

from interactions of S and Cu underlying the grid’s surface Au coating (data not shown); use of 247 

SiN grids in this study appeared to eliminate such Cu artifacts, but potential reactions between 248 

trace Cu in SiN grids and abundant S in the archaeal cells cannot be completely discounted. 249 

Faster growth rates of methylotrophic methanogens than sulfate-reducing bacteria at 250 

moderate temperatures have been reported in previous studies (Dawson et al. 2015; Weijma and 251 

Stams 2001), and likely account for M. acetivorans outcompeting D. multivorans in our 252 

cocultures. We consider it unlikely that differences in cellular trace metal contents in 253 
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monocultures were a result of harvesting D. multivorans earlier in their stationary phase than M. 254 

acetivorans (Fig. S1) because cellular metal reserves generally decline or remain constant in 255 

stationary phase (Bellenger et al. 2011). Our SXRF measurements of cocultures are more 256 

difficult to interpret due to apparent swelling of aldehyde-fixed cocultured cells (~1 μm radius) 257 

to ~2x the size of monocultures (0.5-0.6 μm radius). When normalized per cell, fixed cocultures 258 

showed significantly higher P, Co and Ni than unfixed monocultures, but the apparent swelling 259 

of cocultured cells erased this trend when normalized to cellular volume.  260 

When grown at millimolar metal concentrations, sulfate-reducing bacteria efficiently 261 

remove metals from solution (Krumholz et al. 2003) and precipitate covellite (CuS; Gramp et al. 262 

2006; Karnachuk et al. 2008), sphalerite/wurtzite (ZnS/(Zn,Fe)S; Gramp et al. 2007; Xu et al. 263 

2016), and pentlandite (Co9S8) (Sitte et al. 2013). Based on its ~1:1 Zn:S ratio, the semi-circular 264 

nanoparticulate zinc sulfide phase(s) observed in thin sections imaged by SXRF in this study 265 

were likely sphalerite spheroids, also found in sulfate-reducing bacteria biofilms due to 266 

aggregation of ZnS nanocrystals (0.1-10 μm) and extracellular proteins (Moreau et al. 2004; 267 

Moreau et al. 2007). The abiotic phase with the approximate stoichiometry (CoCu)S2 may be 268 

mineralogically distinct from those in previous studies. 269 

 270 

Conclusions and Challenges 271 

This study used two independent methods for assessing trace metal inventories in anaerobic 272 

microbial cultures. We found that SXRF is a promising method for imaging and quantifying 273 

first-row transition metals in anaerobic microbial cultures at single-cell resolution. This method’s 274 

single-cell resolution enables more precise measurements of cellular metal content than ICP-MS 275 

analysis of bulk cells, which can include metals bound to extracellular aggregations such as 276 
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cation-binding exopolymeric substances produced by sulfate-reducing bacteria (Beech and 277 

Cheung 1995; Beech et al. 1999; Braissant et al. 2007). We did not observe evidence of metal 278 

contamination from aldehyde fixation in SXRF data, likely because we pre-cleaned fixatives 279 

with metal-chelating resin prior to use, as previously described by Twining et al. (2003). 280 

Challenges remain with accurate elemental quantification of microbial cocultures 281 

preserved in a manner that would also allow assignment of identity for similar cell types. It was 282 

not possible to distinguish methanogenic archaea from sulfate-reducing bacteria in coculture on 283 

the basis of cell morphology or elemental content, and attempts to image cells with fluorescent 284 

oligonucleotide probes after SXRF analysis were unsuccessful due to x-ray radiation damage. 285 

We recommend method development for simultaneous taxonomic identification and elemental 286 

imaging (e.g. gold-FISH (Schmidt et al. 2012)) for samples containing multiple microbial 287 

species as a high priority for future work.  288 
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Table 1. Mean and standard error (in parentheses) of elemental contents normalized per cellular 311 

volume and per cell as measured by SXRF. Monocultures were prepared without chemical 312 

fixation, and cocultures were prepared with paraformaldehyde and glutaraldehyde fixation, 313 

followed by spotting onto silicon nitride wafers as described in the text. A, B and C superscripts 314 

indicate statistically different elemental contents (p < 0.05 based on Tukey-Kramer HSD test). 315 

   316 

Culture Substrate 
(mM) 

 
P S Fe Co Ni Cu Zn 

  Element per cellular volume (mmol L-1) 
100% Methanosarcina 
acetivorans DSM 2834 
(n = 14) 

Methanol  
(66 mM) 

382A 
(47) 

4553A 
(458) 

38A  
(4) 

3.1A 
(0.3) 

0.44A 

(0.04) 
11A  
(1) 

38A  
(3) 

100% Desulfococcus 
multivorans DSM 2059 
(n = 17) 

Lactate  
(20 mM) 

55B 
(7) 

96B  
(11) 

22B  
(4) 

0.5B 
(0.1) 

0.11B 
(0.02) 

 3B 
(1) 

36A 
(10) 

77% Methanosarcina 
acetivorans DSM 2834,  
23% Desulfococcus 
multivorans DSM 2059 
(n = 13) 

Methanol  
(66 mM),  

lactate  
(20 mM) 

353A 
(32) 

234B  
(19) 

3.6C 

(0.3) 
2.0C 
(0.2) 

0.15B 
(0.01) 

0.13C 
(0.04) 

2.4B 
(0.2) 

  Element per cell (mol x 10-18 cell-1) 
100% Methanosarcina 
acetivorans DSM 2834 
(n = 14) 

Methanol  
(66 mM) 

178A 
(28) 

2167A 
(318) 

19A 
(4) 

1.5A

(0.2) 
0.20A 
(0.03) 

5A 
(1) 

17AB 
(2) 

100% Desulfococcus 
multivorans DSM 2059 
(n = 17) 

Lactate  
(20 mM) 

60A 
(11) 

107B  
(19) 

24A 
(6) 

0.5A 

(0.1) 
0.12A

(0.02) 
3A 
(1) 

39A 
(12) 

77% Methanosarcina 
acetivorans DSM 2834,  
23% Desulfococcus 
multivorans DSM 2059 
(n = 13) 

Methanol  
(66 mM),  

lactate  
(20 mM) 

1252B 
(69) 

855C 
(69) 

13A 
(1) 

7B 
(1) 

2B 
(1) 

0.5B 
(0.2) 

9B 
(1) 
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Figure Captions  317 

Figure 1. Proportions of each cellular metal (Fe, Co, Ni, Cu and Zn) for monocultures of 318 

Methanosarcina acetivorans (n=14), monocultures of Desulfococcus multivorans (n=18), and 319 

cocultures of 77% M. acetivorans and 23% D. multivorans (n=12) measured by ICP-MS (bulk 320 

measurement) and SXRF (single cell average).  321 

Figure 2. SXRF co-localization of P (red), Co (green), and Zn (blue; left panel), and S (red), Ni 322 

(green), and Cu (blue; right panel) for whole cells of 77% Methanosarcina acetivorans and 23% 323 

Desulfococcus multivorans in coculture. Values in parentheses are maxima in μg cm-2 for each 324 

element.  325 

Figure 3. SXRF co-localization of P (red), Co (green), and Zn (blue) in left panels, and S (red), 326 

Ni (green), and Cu (blue) in right panels for five imaged fields of 5 μm thin sections of 77% 327 

Methanosarcina acetivorans and 23% Desulfococcus multivorans cocultures. Values in 328 

parentheses are maxima in μg cm-2 for each element. 329 

Figure 4. Schematic of metalloenzyme-containing metabolic pathways in the complete carbon-330 

oxidizing sulfate-reducing bacterium Desulfococcus mutitvorans and the methylotrophic 331 

methanogenic archaeon Methanosarcina acetivorans as confirmed by genomic analyses. Nickel 332 

(Acs, Cdh, Mcr) and cobalt (CFeSP, Mts, Mtr, and Sat) containing enzymes are labeled in bold. 333 

Enzyme abbreviations: Acs/CFeSP: acetyl-CoA synthase/corrinoid-FeS protein; Cdh: carbon 334 

monoxide dehydrogenase; Mts: methanol:coenzyme M methyltransferase; Mcr: methyl 335 

coenzyme M reductase; Mtr: methyl-tetrahydromethanopterin:coenzyme M methyltransferase; 336 

Sat: ATP sulfurylase. 337 
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Figure S1. Growth curves based on OD600 for the three cultures described in this study: 338 

Methanosarcina acetivorans (white), Desulfococcus multivorans (light grey), and 77% 339 

Methanosarcina acetivorans and 23% Desulfococcus multivorans cocultures (dark grey).  340 

  341 
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