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We present an accelerated algorithm to forward-
simulate origin–fixation models. Our algorithm requires
on average only about two fitness evaluations
per fixed mutation, whereas traditional algorithms
require, per one fixed mutation, a number of fitness
evaluations on the order of the effective population
size Ne. Our accelerated algorithm yields the exact
same steady state as the original algorithm but
produces a different order of fixed mutations. By
comparing several relevant evolutionary metrics, such
as the distribution of fixed selection coefficients
and the probability of reversion, we find that
the two algorithms behave equivalently in many
respects. However, the accelerated algorithm yields
less variance in fixed selection coefficients. Notably,
we are able to recover the expected amount of
variance by rescaling population size, and we
find a linear relationship between the rescaled
population size and the population size used by
the original algorithm. Considering the widespread
usage of origin–fixation simulations across many
areas of evolutionary biology, we introduce our
accelerated algorithm as a useful tool for increasing
the computational complexity of fitness functions
without sacrificing much in terms of accuracy of the
evolutionary simulation.

1. Introduction
A key goal in the field of molecular evolution
is to understand the processes by which proteins
acquire substitutions and diverge from one another.
The phenotypic effect a mutation has and whether it
ultimately becomes fixed or lost in a population both
depend in part on the biochemical and biophysical effects
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the mutation has on protein structure and function [1–5]. By studying the physio-chemical forces
which underlie the substitution process we can begin to untangle the mechanisms which have
given rise to organismal diversity, shedding light on linage-specific functional divergence [6–9].

While considerable progress has been made in characterizing the substitution process through
mathematical modeling and from studying extant sequences, further understanding can be
gleaned from observing evolution directly via simulation. However, simulating fitness landscapes
that explicitly and accurately model the effects of individual mutations on protein structure and
function can be computationally burdensome. Traditionally, this problem has been addressed by
using coarse-grained protein models, such as lattice or bead models, due to their computational
tractability [3,10]. Here, we take a different approach to solving the problem of computational
tractability. Rather than relying on highly simplified fitness landscapes, we propose a more
efficient algorithmic strategy for simulating evolution.

Our approach is based on the origin–fixation model, which applies in the limit of strong
selection and weak mutation [11]. In this model, populations are assumed to be monomorphic
and represented by a single genotype. Mutations are introduced sequentially (origin) and
either accepted or rejected (fixation). This model has been applied in a number of different
context [12–18] to simulate evolution over various fitness landscapes, and it is of course much
more computationally efficient than simulating all individuals in a population. However, even
origin–fixation simulations can be computationally expensive. These simulations require fitness
calculations for a large number of genotypes, and the majority of these genotypes will be rejected
and not influence the evolutionary path taken. For fitness landscapes where the evaluation of
a single genotype is computationally expensive, for example when fitness is based on detailed,
atomistic models of protein structure and dynamics, it is desirable to minimize the number of
these evaluations. The fewer fitness evaluations we have to perform per accepted mutation, the
more computational time we can expend on each individual fitness calculation, and hence the
more realistic a model we can simulate.

In the context of protein evolution, recent work has argued, based on first principles, that
most fixed mutations have to be neutral or nearly neutral [19,20]. In this scenario, we expect that
for one fixed mutation, we have to evaluate and discard a number of mutations on the order of
the effective population size Ne. Discarding that many mutations after evaluating their fitness
is a highly inefficient way of simulating evolution, and any reduction in the number of fitness
evaluations required per fixed mutation will speed up the simulation. Here, we demonstrate
that by using a modified acceptance criterion for fixed mutations, we can reduce the number
of required fitness evaluations to approximately two per one fixed mutation, a speed-up on the
order of Ne. Our algorithm, which uses a scaling idea originally introduced in the context of
Metropolis–Hastings sampling [21,22], is guaranteed to yield the same evolutionary steady state
as the original origin–fixation model. Further, we demonstrate through extensive simulations
with toy models and with an all-atom, energy-based protein model that the key difference of
the accelerated algorithm is reduced variance in fixed selection coefficients. The magnitude of
reduced variance is small, on the order of the difference between a Wright-Fisher model and a
Moran model, and it can be compensated by choosing a slightly smaller effect population size
Ne.

All simulation models make assumptions about how the underlying processes operate, and the
relative validity of these assumptions hinges on the specific context in which a model is used. Our
accelerated algorithm presents a useful way to rapidly simulate protein evolution in the context
of a detailed, atomistic model of protein structure. However, our algorithm does perturb the
evolutionary process and produces data that may not be appropriate for some types of analysis.
Ultimately, the balancing point between more detailed descriptions of individual fitness and the
accuracy of an evolutionary model depends on the questions being posed of the data. We present
our algorithm as an option along this continuum, favoring a rigorous treatment of individual
fitness over evolutionary precision.
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2. Results

Evolutionary simulations using Metropolis sampling
Our accelerated algorithm shares the same basic structure as a number of origin–fixation based
simulations [11–15]. The simulation is initialized with a monomorphic population represented
by a single genotype i. At each iteration a novel mutation is tested and is either accepted and
becomes the represented genotype or rejected and the current genotype remains. The difference
between our algorithm and the original is based on the probability of accepting a mutation. To
illustrate how the two acceptance criteria differ we first outline the theory behind the original
algorithm and then explain our modification to it.

Consider a population of Ne individuals evolving in discrete time-steps according to Wright-
Fisher sampling [23]. Assume the overall mutation rate µ is sufficiently low such that µNe� 1.
We denote the fitness of genotype i by fi and the mutation rate from i to j by µji. We assume a
symmetric mutation matrix, µij = µji. Under these assumptions, the evolutionary process can be
described as follows [24]. First, the fixation probability for a mutation from i to j can be written
as

π(i→ j) =
1− (fi/fj)

2

1− (fi/fj)2Ne
. (2.1)

Next, let Wji define a Markov process where the transition probabilities from state i to state j are
given by

Wji =

{
µjiNeπ(i→ j) for i 6= j

1−
∑
k 6=iWki for i= j

. (2.2)

This Markov process describes the origin–fixation model. The term µjiNe provides the rate at
which mutations from i to j are generated in a population of size Ne, and the term π(i→ j)

provides the probability that one of these mutations goes to fixation.
It can be shown [24] that the Markov process Wji has stationary frequencies

Pi =
f2Ne−2
i∑
k f

2Ne−2
k

. (2.3)

These frequencies satisfy the detailed balance equation

WjiPi =WijPj . (2.4)

To simulate an origin–fixation model, we start with a genotype i and generate a new mutation
according to the mutation matrix µij . We then accept or reject the mutation according to the
fixation probability, as given by Eq. (2.1) [11]. Thus, we can think of the fixation probability as
an acceptance criterion for a proposed mutation. If a fitness landscape has a large proportion of
neutral or nearly-neutral genotypes, on average on the order ofNe mutations need to be evaluated
before one is accepted.

Our modification to this algorithm is based on the fact that Wij satisfies the detailed balance
condition Eq. (2.4). Because of this condition, we can rescale Wij with any symmetric matrix and
retain the same steady-state frequencies. Let W ′ij denote a rescaling of Wij for all non-zero paths
in the matrix, such that

W ′ij =

{
τijWij for i 6= j

1−
∑
k 6=iW

′
ki for i= j

, (2.5)

where τij

τij =


1

π(i→j) if fj > fi
1

π(j→i) otherwise
. (2.6)

Here τij is defined such that we rescale transitions along the (i, j) edge with the inverse of the
probability of fixing the higher-fitness genotype when starting out at the lower-fitness genotype.
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By comparing W ′ij with Wij , we see that we can incorporate τij into a modified fixation
probability,

π′(i→ j) = τijπ(i→ j) =

1 for fj > fi(
fj
fi

)2Ne−2
otherwise

. (2.7)

If we interpret this modified fixation probability as an acceptance criterion in an origin–fixation
model, we see that, under this new acceptance criterion, we always accept mutations that increase
fitness. Mutations that decrease fitness are exponentially unlikely to be accepted.

Notably, Eq. (2.7) looks exactly like the Metropolis-Hastings acceptance criterion widely
employed in MCMC sampling [21,22], and indeed, our rescaling approach is equivalent to and
was directly motivated by the original work of Metropolis et al. [21]. The advantage of Eq. (2.7)
over Eq. (2.1) is that we now accept every neutral or beneficial mutation, hence the simulation
becomes much more efficient. However, this advantage comes at a cost. Even though the steady
state of the simulated Markov process remains unchanged, by construction, the order in which
states are visited has changed. Since we use a different rescaling constant along each mutational
path, the relative likelihood with which specific paths are chosen has changed between the
original and the accelerated process. In particular, in the accelerated process we have much more
rapid accumulation of neutral or nearly neutral mutations relative to the rate at which highly
beneficial mutations accumulate.

To evaluate the effect of this distortion we performed a set of simulations using a simple three-
state fitness landscape. The three states are denoted as A, B, and C, and states A and B are assigned
the same fitness (1.0) while state C has a higher fitness (1.25) (Fig 1A). The transition probabilities
between states are shown in Fig 1B for the regular acceptance criterion Eq. (2.1) and in Fig 1C for
the accelerated acceptance criterion Eq. (2.7). In both cases, we used a relatively small Ne = 10, to
ensure the process regularly moves from the higher-fitness state to one of the lower-fitness states.

We simulated origin–fixation models over the three-state landscape using both acceptance
criteria, and we found that the mean time spent in any state did not differ significantly between
the two algorithms (Fig 2A, Table S1), as expected due to the construction of the accelerated
algorithm. Interestingly, the variance in the amount of time spent in any state did differ (Table
S1). Fig 2B shows that the fraction of types of transitions that occurred (e.g. A to B or B to A)
differed between the two algorithms as well (Table S2). Combined, these results suggest that the
two algorithms produce distinct patterns in the order states are sampled and in the frequency of
transition types. We also inspected the distributions of selection coefficients produced by the two
algorithms (Fig S1). Although the distributions appear similar, a Kolmogorov-Smirnov (KS) test
revealed that they are not equivalent (p= 5.0× 10−7).

To assess whether the differences in results generated by the two algorithms were due to the
modified acceptance criterion and not some underlying feature of the particular fitness landscape
considered, we repeated this experiment on a different three-state fitness landscape. We found
that these additional simulations resulted in similar dynamics to those obtained on the initial
landscape (Figs S2, S3, and S4, Tables S1 and S2).

Application to protein evolution
To evaluate the performance of our accelerated algorithm in a more realistic context, we
constructed simulations of protein evolution using a computationally costly all-atom model of
protein structure. The simulation was initialized with a small protein as the resident genotype. At
each iteration a mutation to a non-resident amino acid was introduced to a random location and
the structure was locally repacked 10Å around the mutation. The stability (∆G) of the mutant was
evaluated with Rosetta’s all-atom score function [25,26]. To convert protein stability into fitness,
we used a soft-threshold model. This model assumes that the protein’s fitness is given by the
fraction of proteins in the ground state in thermodynamic equilibrium [27–29]. This assumption
results in a sigmoidal fitness function (specifically, the Fermi function), where very stable proteins
have a fitness of one and fitness declines as stability passes through a threshold value. We
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calculate the fitness of protein i as

fi =
1

eβ(∆Gi−∆Gthresh) + 1
, (2.8)

where β is the inverse temperature, ∆Gi is the stability of protein i, and ∆Gthresh is the stability
threshold at which the protein has lost 50% of its activity.

To simulate the accelerated algorithm, it is convenient to log-transform fitness,

xi = log(fi) =− log[eβ(∆Gi−∆Gthresh) + 1] , (2.9)

so that the fixation probability Eq. (2.7) can be expressed as (assuming Ne − 1≈Ne)

π′(i→ j)≈

{
1 for xj >xi
e−2Ne(xi−xj) otherwise

. (2.10)

As in Eq. (2.7), the transitions from a lower fitness to a higher fitness always happen, while
transitions from a higher fitness to a lower fitness are exponentially suppressed in Ne and in
the difference in log-fitness xi − xj .

The soft-threshold fitness model of protein evolution has been studied previously [28,30], and
the relationships it produces between protein stability, population size, and inverse temperature
β are well understood. As effective population size Ne increases, increasingly smaller fitness
differences become visible to selection, and this results in an increase in protein stability in the
steady state. The inverse temperature β determines how hard or soft the fitness threshold is.
For very large values of β, the fitness function turns into a hard cutoff, producing a fitness of
0 for ∆Gi >∆Gthresh and a fitness of 1 for ∆Gi <∆Gthresh. For smaller β, the fitness function
becomes increasingly shallow, and this more shallow fitness function allows for a larger range
of ∆G values to be explored at the point of mutation–selection balance. This effect ultimately
increases the amount of variance in stability sampled over the course of the simulation.

To compare the original and accelerated algorithm for this protein model, we initially
simulated evolutionary trajectories in triplicate under both algorithms and recorded the first 500
accumulated substitutions. In these simulations, we setNe = 100, β = 1, and∆Gthresh =∆Ginit/2,
where ∆Ginit is the initial stability of the protein. (For the protein used in these simulations,
∆Gthresh =−267, measured in arbitrary units). Comparing both algorithms, we saw that protein
stability ∆G equilibrated after about 200 substitutions, and subsequent fluctuations in stability
were comparable across algorithms (Fig 3A). The equilibrium stability ∆G was close to the
threshold value. Notably, the original algorithm exhibited a greater amount of variation in the
∆∆G of fixed mutations than did the accelerated algorithm (Fig 3B).

The average number of proposed mutations necessary for 500 substitutions was 141,035 using
the original algorithm and 1,299 using the accelerated algorithm. The mean run time of the
accelerated algorithm was 2.55 minutes and the original algorithm required, on average, 2.73
hours. Thus, we observed a speed-up of approximately 64 fold at a simulated population size of
Ne = 100.

We next compared the equilibrium behavior of the original and accelerated algorithms,
running simulations for 1,500 accumulated substitutions and discarding the first 1,000
substitutions as burn-in. To examine whether the original and accelerated algorithms produced
comparable patterns of divergence, we compared the distributions of the numbers of
substitutions at individual sites. We found that both distributions were highly similar (Fig S5A,
KS test; p= 1). We also compared the specific numbers of substitutions at individual sites. While
these numbers are noisy, due to limited sampling, substitution numbers at individual sites
were significantly correlated (Fig S5B, Pearson’s R= 0.603, p < 2.2× 10−16). Moreover, the site-
specific variation among algorithms was comparable to the site-specific variation exhibited across
replicate experiments using the same algorithm (Fig S6).

We also investigated whether the accelerated algorithm had an effect on how epistatic
mutations accumulate. A number of recent studies have focused on understanding the influence
of epistasis at the level of position-specific substitutions along a protein sequence [6,13,19,31]. A
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core concept in these works is that substitutions which were neutral or nearly neutral at the time of
fixation become entrenched over time, and the probability of reverting back to the substitution’s
predecessor diminishes as additional mutations accumulate [19]. We examined the probability
of reverting to an ancestral state to assess if our accelerated algorithm caused altered fixation
patterns of epistatic mutations during equilibrium behavior. For every substitution, we measured,
after each of the subsequent 15 substitutions, the ∆G of the protein with the initial mutation
reversed and then calculated the probability of fixation of the reversion mutation in the current
background. Since the original and accelerated algorithm produced acceptance probabilities
on different orders of magnitude, we normalized these probabilities to the sum over the 15
Markov steps, to allow for comparison. Under both algorithms, as substitutions accumulate the
probability of accepting a reversion mutation to the ancestral state declines (Fig S7), as expected
from the recent literature [6,19]. The rate of decline seems to be slightly faster in the accelerated
algorithm, but overall both algorithms show very similar behavior.

Analysis of selection coefficients and rescaling of Ne

We also compared the distribution of fixed selection coefficients during equilibrium behavior
(Fig 4). For both algorithms, these distributions have means close to zero, but the distributions
themselves are significantly different (KS test; p= 4.2× 10−3). Notably, the accelerated algorithm
is more conservative and fixes more mutations with smaller selection coefficients. The bulk of
mutations fixed by either algorithm are neutral or nearly neutral (defined as |s| ≤ 1/Ne [32]), 95%
under the original algorithm and 97% under the accelerated algorithm.

We found that the larger amount of variation in selection coefficients observed in the original
algorithm could be recaptured by decreasingNe in the accelerated algorithm (Fig S8). Specifically,
we could rescale Ne to N ′e =CNe, where we chose the constant C such that it maximized
the p-value in a KS test of the two distributions of selection coefficients. We then repeated the
accelerated simulations using the rescaled N ′e and then compared the distributions of selection
coefficients between the original and rescaled accelerated simulations. We found that now the KS
test indicated no difference between the two distributions (p= 0.72, Fig 5A).

To examine more systematically the effect of rescaling Ne in the accelerated algorithm, we
repeated several of the previously outlined analyses after rescaling. We found that rescaling
eliminated most of the previously observed differences between the original and the accelerated
algorithm (Fig 5B–D). The equilibrium protein stability decreased slightly, though by a barely
noticeable amount, when using the accelerated algorithm with rescaled Ne (Fig 5B). However,
the amount of variation observed in ∆∆G (Fig 5C) was more similar to the original algorithm.
The pattern of decay in the probability of accepting a reversion mutation was also now more
similar to the original algorithm (Fig 5D).

We determined the optimal scaling constant C at two additional values of Ne, and we found
a linear relationship between the rescaled Ne used in the accelerated algorithm and the Ne used
in the original algorithm (Fig 6). This linear relationship suggested that the accelerated algorithm
requires an approximately two-times smaller effective population size to generate comparable
genetic drift relative to the original algorithm.

3. Discussion
We have presented an accelerated algorithm to simulate origin-fixation models. Our algorithm
improves run-time efficiency of simulations by approximately an order of Ne. For example, in
simulations with Ne = 100 we found a 64-fold speed increase relative to the regular algorithm.
Our accelerated algorithm does not change the frequency with which states are sampled,
but it does alter some aspects of the evolutionary process. For the example case of proteins
evolving under a soft threshold model, we have found that our algorithm does not substantially
modify equilibrium protein stability, the distribution of accumulated substitutions, or epistatic
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interactions. However, we have observed that the variance in selection coefficients of fixed
mutations is reduced.

Notably, the reduction in variance is relatively minor, and we can recover the original variance
by using a slightly reduced population size when simulating with the accelerated algorithm. The
scaling between the original and reduced population size is approximately a factor of 2, on the
order of the differences between haploid and diploid models or between Wright-Fisher sampling
and the Moran process [33]. Of course, reducing Ne results in a slightly modified steady state,
and for the soft-threshold model most notably a very minor decrease in equilibrium stability, as
expected by the intrinsic relationship between population size and protein stability [30]. However,
otherwise we have observed little difference between the accelerated algorithm with rescaled
population size and the original algorithm with original population size.

While our algorithm demonstrates a considerable performance gain, it also exhibits several
shortcomings. First, as stated, our algorithm results in a reduction in the amount of variance
sampled along evolutionary trajectories, and thus implicitly simulates a larger effective
population size Ne than is used as parameter value in the simulation. However, the implicit
increase inNe is moderate, on the order of a factor of 2. Second, we have emphasized equilibrium
dynamics here. Considering that the paths sampled by the two algorithms differ, we expect that
the approach to equilibrium will differ between the algorithms. Hence, the two algorithms are
likely not going to perform similarly away from equilibrium. Third, we have only compared
the behavior of these algorithms in simulations with relatively small values of Ne (Ne ≤ 100).
While our algorithm is not expected to perform substantially differently at larger values of Ne,
we cannot test this hypothesis because of computational constraints associated with using large
Ne in the original algorithm. Despite the various shortcomings of our algorithm, for questions
that only deal with equilibrium behavior and whose answer doesn’t depend on sampling order or
variance in the selection coefficients, the performance gain from using the accelerated algorithm
is substantial.

It is well known in population genetics that effective population size, genetic drift, and
evolutionary time are closely interconnected. In fact, there are multiple ways to define effective
population size based on the aspects of genetic drift in question [34,35]. Considering that
our rescaling of the probability of transitions between genotypes is analogous to rescaling
time, downstream effects on how genetic drift and Ne operate within our model are to be
expected. Examining the reduction of variance in the distribution of selection coefficients and
the reduction of variance in states sampled on a simplified landscape, we infer that under our
accelerated algorithm drift is more limited than under regular sampling. Considering the inherent
relationship between population size and drift, it then follows that we are able to recapture
the breadth of drift by decreasing the Ne used in our accelerated algorithm. While the exact
linear relationship we found here between the Ne in the original simulation and the Ne in the
accelerated simulation may depend on aspects of the particular protein we studied, we expect
that similar rescalings will be possible for most fitness landscapes.

The accelerated algorithm we have presented here has been used previously in a few
studies [17,36], but without consideration of whether it actually represented an accurate
approximation to a realistic evolutionary model. We have shown here that this algorithm may
indeed be suitable in a variety of different modeling contexts. The enhanced performance of
our algorithm opens the door for a wealth of studies which could benefit from the use of more
sophisticated models of protein structure or of other aspects of the fitness landscape. Further
applications of our work include examining the role and source of entrenchment with a more
rigorous treatment of protein structure than is currently being employed [13,19,20,31]. Our
algorithm can also be applied to more detailed studies of the way in which proteins maintain
interacting partners over long evolutionary periods [36]. Finally, our algorithm is flexible enough
to allow for any fitness function to be used in place of the soft-threshold stability-based model we
used here. For example, efficient versions of evolutionary simulations of pathway flux [37] could
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be constructed and the probability of reversion to an ancestral state could be examined to study
the role of epistatic effects at the pathway level.

The field of molecular evolution has long sought to understand the relationship between
protein structure and sequence evolution. Here, we have introduced an accelerated simulation
algorithm that may serve as a useful tool in pursuing this goal. Our work demonstrates that
simplified or coarse-grained models of protein structure and function are not required for
simulation studies of protein evolution. Our algorithm is sufficiently fast that fitness landscapes
based on full-atom approximations using empirical potentials [38] or composite statistical and
physics based potentials [26] can easily be simulated on modern desktop computers. Even though
our algorithm does perturb some aspects of the evolutionary process, these perturbations are
minor and/or do not influence the main quantities of interest. Thus, our algorithm paves the
ground for future simulation studies that use fitness landscapes with much increased levels of
realism.

4. Methods

Simulations over a three-state fitness landscape
Simulations over the three-state fitness landscape were performed using custom Python scripts.
States A and B were assigned the same fitness (1.0), and state C was given a higher fitness (1.25).
Ne = 10 was chosen to allow for adequate sampling of transitions to lower fitness states. At each
step in the simulation a random state excluding the state currently occupied was proposed. The
proposed state was accepted or rejected based on either Eq. (2.1) (regular algorithm) or Eq. (2.7)
(accelerated algorithm). Fifty replicates of each experiment were performed. Each simulation was
run for 100,000 iterations, and the states visited and the types of transitions accepted were stored
over the last 2,500 iterations. The mean and variance exhibited by the two different acceptance
criteria was evaluated by comparing the results from these replicated experiments. The results of
these comparisons is given in Fig 2, Table S1, and Table S2.

A similar analysis was carried out on a different fitness landscape were the three states were
given fitness values 1.0 (state A), 1.15 (state B), and 1.25 (state C). Data were analyzed as before.
The results of these experiments are given in Fig S3, Table S1, and Table S2.

Simulations of protein evolution
We simulated protein evolution using the all-atom energy function implemented in the Rosetta
protein-design suite [25,26]. We implemented both the original and the accelerated algorithm in
Python, and we used PyRosetta [39] to mutate the protein structure and to evaluate its energy. We
used the Rosetta score as a substitute for∆G in Eq. (2.8). Throughout all calculations, we held the
protein backbone fixed.

The protein used for all simulations was a purple acid phosphatase (PDB identifier
1QHW [40]). We first cleaned the structure using the cleanAtom function in PyRosetta [39] to
remove extraneous information from the PDB file. Then, before each simulation, we minimized
the Rosetta score with the Davidon-Fletcher-Powell gradient minimization method provided
through PyRosetta [39] (function dfpmin_armijo_nonmonotone). Starting from the minimized
structure, either simulation algorithm then proceeded as follows. At each discrete time step,
we randomly chose a site in the structure and replaced the resident amino acid with one of 18
alternative amino acids, also chosen at random. The alteration of cysteine residues present in
the initial structure and the addition of cysteines through mutation was not allowed to avoid
modifying or adding disulfide bonds. We then locally repacked the structure 10 Ångstroms
around the mutation and calculated the Rosetta score. Finally, we used either Eq.(2.1) (for the
original algorithm) or Eq.(2.7) (for the accelerated algorithm) to determine whether to accept or
to reject the mutation.
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We set Ne = 100 to keep simulations computationally tractable when using the original
algorithm. The parameter β was set equal to 1, and ∆Gthresh was set to half of the Rosetta score
of the initial structure, which was -534, measured in arbitrary units. To assess the steady state
dynamics of the two algorithms we ran each trajectory in triplicate until we had accumulated
1,500 substitutions. To insure that steady state sampling behavior was being exhibited we
discarded the first 1,000 substitutions as burn-in before preforming analysis comparing steady
state behavior. For the remaining 500 substitutions, we recorded the number of substitutions
observed at each position in the protein, the probability of accepting a reversion mutation, and the
selection coefficients of fixed mutations. To examine if the two algorithms differed in their initial
evolutionary behavior as they approached equilibrium we carried out identical simulations to the
ones described above but recorded only the first 500 substitutions.

The probability of accepting a reversion mutation was calculated using data from simulations
run for 1,500 substitutions where the first 1,000 substitutions were discarded as burn-in. The
probability of accepting a reversion mutation was determined by calculating the fitness of the
ancestral state at each of the following 15 Markov steps after the acceptance of every new state,
and then evaluating the probability of acceptance of the reversion using either model. This data
was arranged in a matrix with 15 rows, one for each Markov step, and 1,500 columns, one
for each substitution (500 substitutions for each of the 3 replicates). Each column in the matrix
was normalized such that the probability of any specific substitution being accepted along the
following 15 Markov steps summed to 1. The row means were then computed from this column
normalized matrix to give the mean probability of accepting a reversion mutation at any specific
Markov step.

We carried out additional simulations to test the rescaling of the effective population size of
N ′e =CNe. First, we used the original sampling to simulate trajectories with 1,500 substitutions at
population sizes of Ne = 25, 50, 100, each performed in triplicate. We then simulated trajectories
with the same Ne using accelerated sampling. Next, for each population size, we chose an
appropriate scaling constant C that maximized the p-value in a KS test of the distributions of
selection coefficients obtained under original and accelerated sampling. Finally, we simulated
trajectories with the corresponding N ′e values, again performed in triplicate.

Statistical analysis and data availability
Statistical analysis was performed with R [41]. Data visualization and model fitting were
performed with ggplot [42]. All source code and processed data are available at https://
github.com/a-teufel/Accelerated_Sim.
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Figure 1. Comparison of original and accelerated sampling algorithm on a simple three-state fitness landscape. (A)

States A and B have equal fitness, set at 1.0, and state C has a 25% higher fitness of 1.25. (B) Directed graph

showing the transition probabilities between the three states, calculated using the original fixation probability Eq. (2.1)
and assumingNe = 10. (C) Directed graph showing the transition probabilities between the three states, calculated using

the accelerated fixation probability Eq. (2.7) and again assuming Ne = 10.
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Figure 2. Comparison of the frequencies with which states are visited and with which specific transitions occur in the

original and the accelerated sampling algorithm, using the three-state fitness landscape of Fig. 1 and Ne = 10. (A) The

mean number of times a state is visited does not differ significantly between the two algorithms (t tests, all p > 0.2, Table

S1). However, the variance in the number of times a state is visited does differ (Table S1). (B) The mean fractions of

specific transitions between states differ between the two algorithms (all p < 0.001, indicated by three stars, Table S2).
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Figure 3. Stability∆G (A) and change in stability∆∆G caused by fixed mutations (B) for the first 500 accepted mutations

when simulating the evolution of a small protein under a soft-threshold fitness model. Simulations parameters wereNe =

100, β = 1, and ∆Gthresh =−267. Points represent individual measurements of ∆G or ∆∆G, pooled over replicate

runs. Lines represent a local smoothing of the data, and shaded areas represent the standard error around the smoothed

estimate.
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Figure 4. Comparison of the distribution of fixed selection coefficients generated under the original or accelerated

sampling. Simulation parameters were as in Fig. 3, but measurements were taken over 500 accepted mutations after

an initial burn-in phase of 1000 accepted mutations. (A) Distributions of fixed selection coefficients. The two distributions

differ significantly (KS test; p= 4.2× 10−3). (B) Q-Q plot of the two distributions of fixed selection coefficients. The

x= y line is given in red. The Q-Q plot highlights systematic differences between the two distributions.
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Figure 5. Rescaling Ne in the accelerated algorithm minimizes differences between the two algorithms. Simulation

parameters were β = 1, ∆Gthresh =−267, and Ne = 50 or Ne = 37 for the original or the accelerated algorithm,

respectively. (A) Distribution of fixed selection coefficients using both algorithms. These distributions are equivalent (KS

test; p= 0.72). (B) ∆G of first 500 accepted mutations. (C) ∆∆G of first 500 accepted mutations. (D) Probability of

accepting a reversion substitution. Probabilities are normalized to one for each original substitution analyzed. Individual

points show the probability averaged over 1500 substitutions (500 substitutions in 3 replicate experiments), the solid line

represents a model of exponential decay (y= ce−ax + b) fitted to the data (see Table S3 for fitted parameter values),

and the shaded area represents the standard error on the fitted curve.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 14, 2016. ; https://doi.org/10.1101/087700doi: bioRxiv preprint 

https://doi.org/10.1101/087700
http://creativecommons.org/licenses/by-nc-nd/4.0/


18

.royalsocietypublishing.org
J.R

.S
oc.0000000

..................................................

0

25

50

75

100

0 25 50 75 100
Original Sampling Ne

A
cc

el
er

at
ed

 S
am

pl
in

g 
R

es
ca

le
d 

N
e
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algorithm to produce similar distributions of fixed selection coefficients. Simulation parameters were β = 1 and∆Gthresh =

−267. Simulations using the rescaled Ne in the accelerated algorithm were found to have equivalent distributions

of selection coefficients to their original sampling simulation counterparts (KS tests; p= 0.75, 0.72, 0.19 for Ne =

100, 50, 25, respectively). The red line represents a linear fit with slope m= 0.53 and intercept b= 11.25.
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