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Abstract	

The	quantitative	relationship	between	the	magnitude	of	variation	in	minor	histocompatibility	antigens	

(mHA)	and	graft	versus	host	disease	(GVHD)	pathophysiology	in	stem	cell	transplant	(SCT)	donor-

recipient	pairs	(DRP)	is	not	established.		In	order	to	elucidate	this	relationship,	whole	exome	sequencing	

(WES)	was	performed	on	27	HLA	matched	related	(MRD),	&	50	unrelated	donors	(URD),	to	identify	

nonsynonymous	single	nucleotide	polymorphisms	(SNPs).	An	average	2,463	SNPs	were	identified	in	

MRD,	and	4,287	in	URD	DRP	(p<0.01);	resulting	peptide	antigens	that	may	be	presented	on	HLA	class	I	

molecules	in	each	DRP	were	derived	in	silico	(NetMHCpan	ver2.0)	and	the	tissue	expression	of	proteins	

these	were	derived	from	determined	(GTex).	MRD	DRP	had	an	average	3,670	HLA-binding-alloreactive	

peptides,	putative	mHA	(pmHA)	with	an	IC50	of	<500	nM,	and	URD,	had	5,386	(p<0.01).	To	simulate	an	

alloreactive	donor	cytotoxic	T	cell	response,	the	array	of	pmHA	in	each	patient	was	considered	as	an	

operator	matrix	modifying	a	hypothetical	cytotoxic	T	cell	clonal	vector	matrix;	each	responding	T	cell	

clone’s	proliferation	was	determined	by	the	logistic	equation	of	growth,	accounting	for	HLA	binding	

affinity	and	tissue	expression	of	each	alloreactive	peptide.	The	resulting	simulated	organ-specific	

alloreactive	T	cell	clonal	growth	revealed	marked	variability,	with	the	T	cell	count	differences	spanning	

orders	of	magnitude	between	different	DRP.	Despite	an	estimated,	uniform	set	of	constants	used	in	the	

model	for	all	DRP,	and	a	heterogeneously	treated	group	of	patients	higher	total	and	organ-specific	T	cell	

counts	were	associated	with	cumulative	incidence	of	GVHD	in	recipients	in	Cox	proportional	hazard	

models.	In	conclusion,	exome	wide	sequence	differences	and	the	variable	alloreactive	peptide	binding	

to	HLA	in	each	DRP	yields	a	large	range	of	possible	alloreactive	donor	T	cell	responses.	Our	findings	also	

help	understand	the	apparent	randomness	observed	in	the	development	of	alloimmune	responses.		
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Introduction	

Over	the	last	four	decades	there	have	been	substantial	strides	made	in	improving	the	clinical	outcomes	

following	allogeneic	stem	cell	transplantation	(SCT).	Nevertheless,	poor	outcomes	such	as	relapse	and	

graft	versus	host	disease	(GVHD)	remain	difficult	to	predict	in	individuals	because	of	the	variability	

observed	in	the	incidence	of	alloreactivity	following	both	HLA-matched	and	HLA-mismatched	SCT	[1,	2,	

3,	4,	5,	6,	7,	8,	9].	Considering	that	disease	responses	in	allogeneic	SCT	are	often	linked	to	the	

development	of	GVHD,	it	is	important	to	understand	the	biological	basis	for	the	incidence	of	

alloreactivity	in	unique	SCT	donor-recipient	pairs	(DRP)	[10].	It	is	well	known	that	relapse	and	GVHD	

occurrence	are	a	function	of	the	magnitude	of	donor-derived	immune	reconstitution;	however,	in	

contrast	to	the	occurrence	of	alloreactivity	in	cohorts	of	SCT	recipients,	immune	reconstitution	in	

individual	DRP	shows	many	characteristics	of	a	dynamical	system,	such	as	logistic	growth	kinetics	and	

power	law	distribution	of	clonal	frequencies	[11,	12,	13,	14,	15].	This	implies	that	if	clinical	outcomes	can	

be	modeled	as	a	function	of	donor	derived	immune	reconstitution	in	unique	transplant	DRP,	it	will	

become	possible	to	modify	the	system	to	optimize	clinical	outcomes.	When	fully	developed	such	a	

model	may	allow	a	priori	simulation	of	SCT	with	different	donors,	potentially	leading	to	personalized	

immunosuppressive	therapy.			

To	develop	a	simple	model	to	simulate	different	donor	T	cell	responses	to	unique	recipient	antigens,	the	

array	of	antigens	presented	in	each	DRP	would	have	to	be	considered.	In	HLA	Matched	SCT,	recipient	

minor	histocompatibility	antigens	(mHA)	are	presented	on	the	HLA	molecules	to	donor	T	cells.	The	

response	of	these	donor	T	cells	to	recipient	antigens	may	be	modeled	as	a	dynamical	system,	using	

quantitative	rules	that	govern	repertoire	evolution.	To	accomplish	this	the	antigenic	background	in	a	

DRP	may	be	similarly	described	mathematically	as	a	component	of	this	dynamical	system.		These	

antigenic	differences	in	a	given	transplant	DRP	may	be	partially	determined	using	whole	exome	

sequencing	(WES)	of	SCT	donor	and	recipient	DNA.	In	previous	work	WES	has	demonstrated	that	there	is	

a	large	library	of	non-synonymous	single	nucleotide	polymorphisms	(nsSNP)	present	in	the	recipient	but	

absent	in	the	donor,	from	which	an	equally	large	array	of	recipient-nsSNP-derived-peptides	may	be	

determined.	These	peptides	have	different	amino	acid	sequences	in	each	DRP	[16,	17].	These	

immunogenic	mHA	bound	to	the	‘matched’	HLA	molecules,	may	trigger	donor	T	cell	activation	and	

proliferation.	In	aggregate	these	polymorphisms	constitute	an	alloreactivity	potential	between	the	

specific	donors	and	recipients.	Prior	studies	using	dynamical	system	modeling	of	the	T	cell	response	to	

this	mHA	array	shows	marked	variation	in	the	simulated	T	cell	response,	which	suggests	that	the	
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alloreactivity	potential	varies	considerably	in	different	DRP	[18].	Similar	observations	reporting	

association	of	polymorphisms	in	the	peptide	regions	of	HLA	class	I	molecules	support	the	premise	

outlined	above	[19].		

Nevertheless,	alloreactivity	is	a	complex	clinical	state,	where	patients	may	have	variable	manifestations	

of	GVHD	impacting	different	organ	systems	to	varying	extent.	In	this	paper	the	impact	of	tissue-specific-

expression	of	the	proteins	from	which	the	putative	mHA	are	derived	in	different	individuals	is	examined	

to	measure	its	variability	between	unique	transplant	DRP.	This	is	done	using	a	T	cell	vector-mHA	

operator	system	previously	developed	[18]	with	a	uniform	set	of	conditions	employed	to	simulate	a	

hypothetical	CD8+	T	cell	response	to	the	in	silico	derived	mHA-HLA	class	I	array	in	77	HLA	matched	SCT	

DRP.				
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Methods.		

Patients	

Whole	exome	sequencing	(WES)	was	performed	on	previously	cryopreserved	DNA	obtained	from	donors	

and	recipients	of	allogeneic	SCT.	Permission	for	this	retrospective	study	was	obtained	from	the	Virginia	

Commonwealth	University’s	institutional	review	board,	and	patients	who	underwent	transplantation	

between	2010	and	2014	were	retrospectively	selected	for	this	analysis.	Patients	had	undergone	either	

8/8	(n=67)	or	7/8	(n=10)	HLA-A,	B,	C	and	DRB1	matched	related	(MRD;	n=27)	or	unrelated	(MUD;	n=50)	

or	haploidentical	(n=1)	SCT	according	to	institutional	standards	at	Virginia	Commonwealth	University	

(VCU)	(Supplementary	Table	1).	HLA	matching	had	been	performed	using	high	resolution	typing	for	the	

unrelated	donor	SCT	recipients;	and	intermediate	resolution	typing	for	class	I,	and	high	resolution	typing	

for	class	II	antigens	for	related	donor	recipients.	A	variety	of	different	conditioning	and	GVHD	

prophylaxis	regimens	were	used	in	the	patients.		

Whole	Exome	Sequencing		

Nextera	Rapid	Capture	Expanded	Exome	Kit	was	used	to	extract	exomic	regions	from	the	deidentified	

DNA	samples,	which	were	then	multiplexed	and	sequenced	on	an	Illumina	HiSeq	2500	to	achieve	an	

average	coverage	of	~90X	per	sample.	2X100	bp	sequencing	reads	were	then	aligned	to	the	human	

reference	genome	using	BWA	aligner.	Duplicate	read	alignments	were	detected	and	removed	using	

Picard	tools.	Single	nucleotide	polymorphisms	(SNPs)	in	both	the	donor	and	recipients’	exomes	were	

determined	using	GATK	HaplotypeCaller	walker.	GATK	best	practices	were	then	implemented	to	filter	

and	recalibrate	the	SNPs;	and	store	them	in	variant	call	file	(VCF)	format.	To	identify	SNPs	unique	to	the	

recipient	and	absent	in	the	donor	the	results	from	the	GATK	pipeline	in	VCF	format	were	then	parsed	

through	the	in-house	TraCS	(Transplant	pair	Comparison	System)	set	of	perl	scripts.	TraCS	traverses	

through	the	genotypes	of	the	called	SNPs,	systematically	excluding	identical	SNPs	or	editing	them	to	

align	with	the	graft-versus-host	(GVH)	direction	thereby	generating	a	new	VCF	with	SNPs	for	a	particular	

DRP	in	the	GVH	direction	(SNP	present	in	the	recipient,	absent	in	the	donor;	R+/D-).		

The	SNPs	in	this	VCF	are	then	annotated	either	as	synonymous	or	non-synonymous	using	Annovar.	The	

corresponding	amino	acid	polymorphisms	along	with	flanking	regions	of	each	protein	are	then	extracted	

using	Annovar	to	build	peptide	libraries	of	17-mers	for	each	DRP,	with	the	SNP	encoded	AA	occupying	

the	central	position.	This	library	is	further	expanded	by	sliding	a	9-mer	window	over	each	17-mer	such	
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that	the	polymorphic	amino-acid	position	changes	in	each	9-mer.	The	HLA	class	I	binding	affinity	and	

IC50	values,	which	quantify	the	interactions	between	all	these	9-mers	for	each	DRP	and	all	six	HLA	class	I	

donor	molecules	(HLA-A,	B	and	C),	NetHMCpan	version	2.8	was	run	iteratively	in	parallel	mode	on	a	

linux	cluster	using	custom	python	scripts.	Parsing	the	NetMHCPan	output,	unique	peptide-HLA	

combinations	present	in	the	recipient	but	not	in	the	donor,	i.e.,	possessing	a	GVHD	vector,	were	

identified	and	organized	in	order	of	declining	mHA-HLA	affinity.	IC50	(nM)	indicated	the	amount	of	

peptide	required	to	displace	50%	of	intended	or	standard	peptides	specific	to	a	given	HLA.	Binding	

affinity	is	inversely	related	to	IC50,	such	that,	smaller	the	IC50	value,	the	stronger	is	the	affinity.	The	

variant	alloreactive	peptides	with	a	cutoff	value	of	IC50	≤500	are	included	in	the	analyses	presented	

here.		

The	Genotype-Tissue	Expression	(GTEx)	portal	V6	has	publicly	available	expression	level	information	

(Reads/kilobase	of	transcripts/million	mapped	reads,	RPKM	values;	http://www.gtexportal.org/home/)	

for	a	variety	of	human	tissues	over	a	large	number	of	genes.	Since	the	gene-ids	for	the	proteins	that	

generate	the	peptides	in	our	DRP	peptide	library	are	known,	the	RPKM	values	from	the	GTEx	portal	for	

the	specific	gene	across	the	whole	array	of	tissues	of	interest	can	be	parsed	in,	namely,	skin,	lung,	

salivary	gland,	esophagus,	small	intestine,	stomach,	colon	and	liver.	In	the	DRP	where	a	male	recipient	

had	been	transplanted	from	a	female	donor	(n=17),	full	length	available	sequences	of	all	proteins	

encoded	by	the	Y	chromosome	were	curated	from	NCBI.	These	sequences	were	then	computationally	

split	into	9-mer	peptides	and	their	respective	binding	affinities	and	IC50	values	for	the	relevant	donor	

HLA	antigens	were	determined	in	silico	using	the	NetMHCpan	software	as	described	earlier.	These	

peptides	were	then	appended	to	the	corresponding	DRPs	peptide	library	for	all	subsequent	analyses.			

Computational	Methods:	Dynamical	System	Modeling	Of	T	Cell	Response	To	Putative	mHA	

To	simulate	the	cytotoxic	T	cell	response	to	HLA	class	I	bound	antigens,	it	was	postulated	that	the	

immune	effectors	and	their	antigenic	targets	constitute	a	dynamical	system.	This	was	modeled	as	an	

iterating	physical	system	which	evolves	over	time,	such	that	the	state	of	the	system	at	any	given	time	(t),	

depends	on	the	preceding	state	of	the	systems.	The	system	in	this	instance	was	comprised	of	all	the	

known	peptide	HLA	complexes	and	the	hypothetical	donor	T	cell	response	to	the	same.	In	this	system,	

each	T	cell	clone	responding	to	its	target	antigen	will	proliferate,	conforming	to	the	iterating	logistic	

equation	of	the	general	form		
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𝑁!=
!∗!!

(!!!!!!)(!!!")!!
																											[1]	

In	this	equation:	N0,	is	the	T	cell	count	at	the	outset	(for	the	calculations	presented	in	this	paper N0=1 at 

t=1);	Nt,	is	the	T	cell	count	at	time	t	following	transplant	(t	modeled	as	iterations);	Nt-1 represents	the	T	

cell	count	at	the	previous	iteration;	K	is	the	T	cell	count	at	the	asymptote	(steady	state	conditions	after	

infinite	iterations),	and	represents	the	maximum	T	cell	count	the	system	would	support	(carrying	

capacity);	r	is	the	growth	rate.	The	T	cell	population,	at	time	t,	Nt,	depends	on	the	preceding	T	cell	

populations,	such	that		

	 	 			N0 [r] Nt-1 [r] Nt 
[r] K 

Expanded	to	the	entire	set	of	T	cells	responding	to	all	recipient	antigens,	the	final	steady	state	

population	of	all	the	T	cell	clones	(n)	( 𝐾!! ),	and	its	clonal	repertoire	may	be	studied	for	associations	

with	clinical	outcomes.	In	such	a	model,	the	parameter	r	can	have	either	positive	or	negative	values	

depending	on	whether	the	ambient	cytokine	milieu,	either	stimulates	(-r)	or	suppresses	(+r)	growth.	

Simulating	this	logistic	dynamical	system	consists	of	repeated	calculations,	where	the	result	for	each	

iteration	gives	the	population	Nt,	as	a	function	of	time	and	becomes	the	input	variable	for	the	next	

calculation	Nt+1.	This	system	behaves	in	a	non-linear	fashion,	demonstrating	sigmoid	population	growth	

constrained	by	feedback	[18,	20,	21].	

Matrices	To	Model	The	T	Cell	Clonal	Repertoire:	Vector	Spaces	And	Operators	

A	system	of	matrices	is	utilized	to	apply	the	logistic	equation	to	describe	the	evolution	of	all	the	unique	T	

cell	clones	present	in	an	individual	at	a	given	time,	in	other	words,	to	simulate	the	evolution	of	the	

entire	T	cell	clonal	repertoire	responding	to	the	WES	derived	mHA-HLA	library	for	a	transplant	DRP.	For	

this	simulation,	T	cell	clones	present	in	an	individual	are	considered	as	a	set	of	individual	vectors	in	the	

immune	phase	space	of	that	individual.	The	descriptor,	vector,	in	this	instance	is	used	to	describe	the	

entire	set	of	T	cells,	with	the	individual	T	cell	clones	representing	components	of	this	vector	[22].	In	this	

vector,	T	cell	clonality	represents	direction	(since	it	determines	antigen	specificity)	and	T	cell	clonal	

frequency,	the	magnitude	of	individual	vector	components.	The	sum	of	the	elements	of	these	vectors	

will	represent	the	overall	T	cell	vector	and	its	direction;	in	this	simulation,	recipient-directed	

alloreactivity.	The	T	cell	vectors	may	take	many	different	configurations	in	an	individual,	and	the	entire	

range	of	possible	vector	configurations	constitutes	the	immune	phase	space	for	that	individual.	The	T	
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cell	vector	may	be	represented	mathematically	as	a	single	row	matrix,	with	T	cell	clonal	frequencies	TC1, 

TC2, TC3 …. TCn.	This	T	cell	clonal	matrix	is	represented	by	the	term,	𝜈!"#.		The	frequency	of	each	TC	is	

a	natural	number,	and	the	direction,	its	reactivity,	represented	by	the	clonality.	Phase	space	will	then	

describe	all	the	potential	T	cell	clonal	frequency	combinations	possible,	within	a	specific	antigenic	

background,	with	all	the	potential	directions	of	the	T	cell	reactivity.	In	the	case	reported	here,	the	

vectors	are	all	in	the	direction	of	graft	vs.	host	alloreactivity,	since	they	proliferate	after	encountering	

mHA-HLA.	In	contrast,	the	infused	T	cell	clonal	repertoire	will	represent	a	steady	state	T	cell	clonal	

frequency	distribution	in	the	normal	donor,	presumably	made	up	of	mostly	self-tolerant,	pathogen	

specific	T	cells,	and	without	any	auto-reactive	T	cells.	For	the	computations	reported	here,	each	T	cell	

clone	has	a	N0	value	of	1,	and	is	alloreactive.	

The	T	cells	infused	with	the	transplant	encounter	a	new	set	of	antigens	(both	recipient	and	pathogen).	

These	antigens	presented	by	the	recipient	(or	donor-derived)	antigen	presenting	cells	constitute	an	

operator,	a	matrix	of	targets	in	response	to	which	the	donor	T	cells	proliferate	[23].	This	operator	

changes	the	magnitude	and	direction	(clonal	dominance)	of	the	infused	donor	T	cell	repertoire,	as	

individual	T	cell	clones	in	the	donor	product	grow	or	shrink	in	the	new	HLA-antigen	milieu,	transforming	

the	T	cell	vector.	The	putative	mHA	making	up	the	alloreactivity	potential	constitute	a	matrix,	termed	an	

alloreactivity	potential	operator,	𝕄!"#.	This	operator	incorporates	the	binding	affinity	of	the	variant	

peptide-HLA	complexes	encountered	by	donor	T	cells	in	the	recipient.	Following	SCT,	the	donor	T	cell	

clonal	frequency	changes	depending	on	the	specificity	of	the	TCR	and	the	abundance	and	reactivity	of	

the	corresponding	antigen.	This	corresponds	to	the	operator	modifying	the	original	donor	T	cell	vector,	

𝜈!"#	as	the	system	goes	through	successive	iterations	to	a	recipient	T	cell	vector,	𝜈!"#,	according	to	the	

following	relationship	

𝜈!"#  ⋅  𝕄!"# =  𝑣!"#  																				 	 				[2]	

Applying	the	Logistic	Growth	Equation	to	Vector-Operator	Systems	

A	central	assumption	in	this	model	is	that	the	steady	state	TC	clonal	frequency	(K)	of	specific	TCR	

bearing	clones,	and	their	growth	rates	(r),	are	proportional	to	the	binding	affinity	of	their	target	mHA-

HLA	complexes.	This	is	because	the	strength	of	the	binding	affinity	will	increase	the	likelihood	of	T	cell-

APC	interactions	occurring,	thus	influencing	the	driving	rate	of	this	interaction.	This	is	approximately	

represented	by	the	reciprocal	of	the	IC50	for	that	specific	complex.	While	each	TCR	may	recognize	
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another	mHA-HLA	complex	with	equal	or	lesser	affinity,	for	the	sake	of	simplicity,	an	assumption	of	non-

recognition	of	other	mHA-HLA	complexes	was	made	for	this	model.	This	makes	it	possible	to	specify	an	

identity	matrix,	Matrix	A,	with	unique	mHA-HLA	complexes	for	a	SCT-DRP	and	the	corresponding	TCR,	

where	TCRx	binds	mHAx-HLA	(relative	binding	affinity,	1)	and	not	others	(relative	binding	affinity,	0).	In	

addition	to	the	assumption	that	there	is	a	first	signal	of	TCR	recognition,	a	second	signal	for	immune	

responsiveness	is	assumed	in	this	matrix.		

Matrix	I.	Effect	of	alloreactivity	operator	𝕄!"#	on	T	cell	vector	𝜈!"#.	Successive	iterations	(t,	t+1	etc.)	

modify	the	vector	to	𝜈!"#.	In	this	simplified	model,	mHAx-HLA	only	binds	TCx	and	so	on.	Matrix	below	

represents	a	single	iteration	t.		

SCT	 𝕄!"#	

𝜈!"#	
↓ t	

𝜈!"# 	

	 mHA1	HLA	 mHA2	HLA	 mHA3	HLA	 mHAn	HLA	

TC1	 1	 0	 0	 0	

TC2	 0	 1	 0	 0	

TC3	 0	 0	 1	 0	

TCn	 0	 0	 0	 1	

The	alloreactivity	matrix	modifies	the	donor	T	cell	clonal	vector	infused	with	an	allotransplant,	mapping	

it	to	the	recipient	T	cell	vector,	as	the	T	cell	clones	with	unique	TCR	encounter	the	corresponding	mHA-

HLA	complexes	they	proliferate	conforming	to	the	logistic	equation	[Equation	1].	In	the	logistic	equation	

K	for	each	T	cell	clone	will	be	proportional	to	the	approximate	binding	affinity	(𝑎𝑓 =  1 𝐼𝐶50)	of	the	

corresponding	mHA-HLA	complex	(𝐾!").	In	this	model,	the	parameter	r	is	also	a	function	of	the	binding	

affinity,	and	reflects	the	effect	of	the	cytokines	driving	T	cell	proliferation.		Equation	1	must	therefore	be	

modified	for	unique	TC clone	TCx,	responding	to	mHAx-HLA,	as	follows:	

𝑁! !"#=
!!"#$%&∗!!

(!!"#$%&!!!!! !"#)(!!!" !"#$%& )!!
																	[3]	

In	this	equation	the	parameter	afmHAx	represents	the	binding	affinity	of	the	mHA-HLA	complex,	x,	given	

by	the	expression	1/IC50x.	This	equation	gives	instantaneous	T	cell	counts	in	response	to	antigens	

presented	when	N0	equals	1,	regardless	of	tissue	distribution.	In	the	alloreactivity,	vector-operator	

identity	matrix,	the	values	1	or	0	in	each	cell	are	multiplied	by	the	product	of	Equation	3	for	each	T	cell	

clone.	This	is	depicted	in	Matrix	II.	
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Matrix	II.	Matrix	illustrating	a	single	iteration	of	the	alloreactivity	operator	𝕄!"#	on	T	cell	vector	𝜈!"#.	

Each	cell	in	the	matrix	calculates	the	value	of	TCx	in	response	to	mHAx-HLA,	final	repertoire	size	(or	

magnitude	of	T	cell	response	to	antigen	array)	is	determined	by	solving	the	matrix.		

SCT	 𝕄!"#	

𝜈!"!	

↓ t	

𝜈!"#	

	 mHA1	HLA	 mHA2	HLA	 mHA3	HLA	 mHAx	HLA	

TC1	 𝑁! !"!=
𝐾!"#$% !

(𝐾!"#$% ! − 𝑁!!! !"!)(𝑒!!" !"#$% ! ) + 1
	 0	 0	 0	

TC2	 0	 NtTC2	 0	 0	

TC3	 0	 0	 NtTC3	 0	

TCx	 0	 0	 0	 NtTCx	

The	T	cell	response	to	each	mHA-HLA	complex	is	determined	over	time,	t,	by	iterating	the	system	of	

matrix-equations.	In	this	alloreactivity	matrix,	the	IC50	of	all	the	alloreactive	peptides	with	a	GVH	

direction	(present	in	recipient,	but	absent	in	donor)	constitutes	the	operator;	the	sum	of	n	T	cell	clones	

𝑇𝐶 !
! ,	at	each	time	point	will	represent	the	magnitude	of	the	vector	𝜈!"#  at	that	time	t.	In	this	system,	

when	considering	the	effect	on	infused	donor	T	cell	vector,	depending	on	antigen	affinity,	T	cell	clones	

present	in	abundance	may	be	down-regulated	if	antigen	is	not	encountered.	Conversely,	clones	present	

at	a	low	frequency	may	expand	upon	encountering	antigen,	transforming	the	vector	over	time	from	the	

original	infused	T	cell	vector.	In	summary,	the	alloreactivity	operator	determines	the	change	in	donor	T	

cell	vectors,	following	transplantation,	in	an	iterative	fashion	transforming	it	to	a	new	configuration,	

over	time	t,	based	on	the	mHA-HLA	complexes	encountered	in	the	recipient	and	their	affinity	

distribution	(and	antigen	abundance,	vide	infra).	Therefore	post-SCT	immune	reconstitution	may	be	

modeled	as	a	process	in	which	T	cell	clonal	frequency	vectors	are	iteratively	multiplied	by	the	minor	

histocompatibility	antigen	matrix	operator	and	this	results	in	transformation	of	the	vector	over	time	to	

either	a	GVHD-prone	alloreactive	or	to	a	tolerant,	pathogen-directed	vector.	This	may	be	visualized	as	

thousands	of	T	cell	clones	interacting	with	antigen	presenting	cells,	an	example	of	an	interacting	

dynamical	system	[11].		

Competition	between	T	Cell	Clonal	Populations		

Each	of	the	T	cell	clones	behaves	like	a	unique	population,	therefore	competition	with	other	T	cell	clones	

in	the	set	of	all	T	cell	clones	must	be	accounted	for	in	the	logistic	equation	to	determine	the	magnitude	

of	the	unique	clonal	frequencies	as	the	model	iterates	simulating	T	cell	clonal	growth	over	time.	This	

may	be	done	using	the	Lotka-Volterra	model	for	competing	populations,	which	accounts	for	the	impact	
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of	population	growth	of	multiple	coexisting	populations	[18,	24,	25].	In	the	model	presented	here,	this	is	

accomplished	by	modifying	the	expression	Nt-1	in	equation	3	for	each	clone,	by	taking	the	sum	of	Nt-1 for	

all	the	other	competing	T	cell	populations	when	calculating	Nt	for	each	clone.	Each	clone’s	Nt-1	is	

weighted	by	a	correction	factor	α, which	is	proportional	to	its	interaction	with	the	T	cell	clone	being	

examined.	Given	the	central	role	for	the	target	mHA-HLA	complex’s	IC50	in	determining	the	T	cell	

frequency	for	each	clone,	α	for	each	clone	is	calculated	by	dividing	the	IC50	of	the	competing	T	cell	

clone	with	the	test	clone	(note	the	use	of	IC50	instead	of	1/IC50).	This	implies	that	T	cell	clones	

recognizing	mHA-HLA	complexes	with	a	higher	binding	affinity	will	have	a	disproportionately	higher	

impact	on	the	growth	of	T	cell	clones	binding	less	avid	mHA-HLA	complexes	and	vice	versa.	The	resulting	

Matrix	III,	will	have	1	on	the	diagonal,	and	values	<1	above	the	diagonal,	and	>1	below	it.				

Matrix	III.	Matrix	illustrating	the	relative	effect	of	antigen	binding	affinity	on	the	T	cell	clonal	interaction	

between	different	clones.	Successive	cells	in	each	row	of	the	matrix	calculate	the	effect	of	TCi	on	T	cell	

being	studied,	TCx.	This	generates	a	weighting	factor,	α,	which	modulates	the	impact	of	population	of	TCi	

on	the	growth	of	TCx.			

	

	 TC1	 TC2	 TC3	 TCn	

TC1	 IC501/IC501	 IC501/IC502	 IC501/IC503	 IC501/IC50n	

TC2	 IC502/IC501	 IC502/IC502	 IC502/IC503	 IC502/IC50n	

TC3	 IC503/IC501	 IC502/IC503	 IC503/IC503	 IC503/IC50n	

TCn	 IC50n/IC501	 IC50n/IC503	 IC50n/IC503	 IC50n/IC50n	

To	account	for	n	competing	T	cell	populations,	equation	3	is	modified	as	follows	

𝑁! !"#=
!!"#$%&∗!!

!!"#$%&! !!!! !"#.!!!
! (!!!" !"#$%& )!!

	 	 [3.1]	

Where	for	the	T	cell	clone	x (TCx),	Nt	depends	on	the	sum	of	the	n	T	cell	clonal	frequencies	at	the	

previous	iteration.	The	α	for	each	competing	T	cell	clone	i,	with	respect	to	TCx,	modulates	the	effect	of	

the	magnitude	of	the	ith	T	cell	clone	on	TCx.		

Accounting	for	tissue	expression	of	proteins	
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The	peptides	discussed	in	the	aforementioned	derivation	are	generated	from	proteins	expressed	in	

target	tissues,	as	such	the	level	of	protein	expression	will	determine	the	magnitude	of	the	peptide	

specific	T	cell	response.	The	higher	the	protein	expression,	the	more	peptide	molecules	and	the	greater	

the	HLA	presentation	with	an	ability	to	stimulate	a	larger	T	cell	response	(clonal	frequency).	Therefore,	

the	parameter	K	in	the	above	equations	may	be	modeled	as	a	multiple	of	the	level	of	protein	

expression.	The	tissue	expression	of	proteins	(Pexp)	is	estimated	by	RNA	sequencing	techniques,	and	is	

measured	in	Reads	Per	Kilobase	of	transcript	per	Million	mapped	reads	(RPKM).	The	values	available	

from	the	public	data	base	GTEx,	range	from	0	to	>104	and	constitute	a	coefficient	in	the	definition	of	K.	

This	Modifies	Equation	3.1,	

𝑁! !"#=
(!!"#.!)!"#$%&∗!!

(!!"#.!)!"#$%&! !!!! !"#.!!!
! (!!!" !"#$%& )!!

 						 		[3.2]	

	

In	equation	3.2,	the	tissue	expression	of	the	protein	from	which	the	target	peptide, mHAx	is	derived	is	

incorporated	as	a	K	multiplier	when	calculating	a	tissue-specific	T	cell	response.	Thus	tissue-specific	

alloreactivity	potentials	may	be	simulated	for	each	of	the	relevant	GVHD	target	tissues,	by	substituting	

equation	3.2	into	Matrix	II.		Solving	the	matrix	yields	an	organ	specific	T	cell	response,	given	by	the	total	

T	cell	count,	 𝑇𝐶! !
! .	

In	applying	this	model	to	exome	sequence	derived,	alloreactive-peptide-HLA	binding	patient	data	an	

IC50	cutoff	value	of	≤500	nM,	and	an	RPKM	value	of	≥1	were	chosen	to	study	the	differences	between	

patients.	The	T	cell	repertoire	simulations	were	then	performed	in	MATLAB	(Mathworks	Inc.,	Natick,	

MA),	utilizing	the	above	model	(See	Supplementary	Mathematical	Methods	and	Program).		

The	sum	of	all	T	cell	clones	 𝑇𝐶 !
! for	each	specific	organ	of	interest	and	the	grand	total	of	the	organs	

studied	(termed	sum	of	all	clones)	were	used	to	represent	the	T	cell	vector	magnitude	of	the	alloreactive	

T	cells	following	500	iterations	of	the	system	for	each	patient.		

Statistical	Methods		

Estimated	T	cell	counts	are	summarized	per	organ	and	in	total,	with	means	and	standard	deviations,	

both	overall	and	by	GVHD	classification.	Acute	GVHD	was	graded	according	to	Glucksberg	criteria	and	

chronic	GVHD	by	NIH	consensus	criteria.	GVHD	developing	after	DLI	was	not	considered.	The	estimated	

T	cell	counts	are	compared	between	GVHD	and	Donor	Type	groups	using	the	Wilcoxon	rank	sum	test.	
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Cox	proportional	hazards	models	are	used	to	examine	the	association	between	the	estimated	T	cell	

counts	and	patient	outcomes	(GVHD,	survival,	relapse	and	relapse-free	survival),	with	and	without	

adjustment	for	age	and	patient	gender	and	using	robust	standard	error	estimates.	Cox	proportional	

hazards	analyses	were	performed	in	Stata	14	(StataCorp	LP.	College	Station,	TX).		The	MEANS,	

NPAR1WAY	and	PHREG	procedures	in	the	SAS	statistical	software	program	(version	9.4,	Cary,	NC,	USA)	

are	used	for	summaries	and	analyses.	All	estimated	T	cell	counts	are	divided	by	1000.		
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Results.		

Exome	sequencing	

Following	de-identification,	cryopreserved	DNA	samples	from	78	donors	and	recipients	of	allogeneic	SCT	

were	sequenced,	demographic	details	of	the	patients	are	given	in	Supplementary	Table	1.	Whole	exome	

sequencing	data	analyzed	using	the	TraCS	program	revealed	a	large	number	of	nsSNPs	with	a	GVH	

direction	in	each	DRP	(R+/D-).	Recipients	of	MUD	had	a	significantly	larger	number	of	SNPs	when	

compared	with	MRD	recipients	with	most	SNPs	being	non-conservative	(Table	1).	In	patients	who	either,	

did	or	did	not	develop	GVHD,	an	average	of	2,456	and	2,474	nsSNPs	were	identified	in	MRD	recipients,	

while	the	corresponding	numbers	for	MUD	recipients	were	4,536	and	3,845	nsSNPs	(P=not	significant	

(N.S.)	for	both).	In	the	single	haploidentical	transplant	recipient,	there	were	3,231	nsSNPs.	Notably,	the	

transition/transversion	ratio	in	the	WES	data	was	as	expected	between	2.1	and	2.5	for	the	entire	data	

set	(Supplementary	Fig	1).	

In	silico	derivation	of	mHA-HLA	complexes	from	exome	variation	

The	HLA	class	I	binding	peptides	incorporating	the	amino	acid	coded	by	the	nsSNPGVH	in	each	DRP	were	

interrogated	using	NetMHCPan	2.8.	These	analyses	yielded	a	large	array	of	unique	peptide-HLA	

complexes,	putative	or	potential	minor	histocompatibility	antigens	(pmHA)	for	each	pair.	Utilizing	all	the	

nsSNPGVH,	the	MRD	DRP	had	an	average	of	44,214	pmHA	and	the	MUD	DRP	77,	025	(P	<0.01).	A	

significantly	larger	number	of	HLA	binding	peptides	with	intermediate	or	high	affinity	were	observed	in	

MUD	recipients	when	compared	with	MRD	(Table	1).	A	similar	number	of	peptides	with	an	IC50	

<500nM,	3,826	and	3,406	mHA,	were	recorded	in	MRD	patients	either	with	or	without	GVHD	

respectively;	corresponding	numbers	of	pmHA	were	895	and	778	mHA	with	an	IC50	<50nM	for	those	

patient	groups	(P=N.S.).	For	the	MUD	SCT	pairs	(n=50),	there	were	5,672	and	4,876	pmHA	with	an	IC50	

<500	nM,	and	1,210	and	1,071	pmHA	with	an	IC50	<50	nM	in	patients	with	or	without	GVHD	(P=N.S.).	

Notably	these	data	do	not	include	the	Y	chromosome	derived	peptides	presented	by	the	class	1	HLA	

molecules	in	male	recipients	of	female	donors.	The	haploidentical	DRP	had	2,448	peptides	with	an	IC50	

of	<500	nM	out	of	a	total	57,957	peptides;	of	these	484	had	an	IC50	<50	nM,	when	using	the	recipient	

HLA	for	performing	the	calculation.	

Simulating	recipient	tissue	specific	donor	T	cell	responses	
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Following	determination	of	the	pmHA	with	various	binding	affinity	distributions,	the	T	cell	responses	to	

these	antigens	were	simulated	using	the	derived	binding	affinities	in	the	T	cell	vector-	alloreactivity	

operator	model	[Equations	2	&	3.2].	These	simulations	incorporated	the	tissue	expression	levels	(in	

RPKM)	from	the	GTEX	portal	for	the	proteins	that	generated	the	pmHA.	Y-chromosome	coded	HLA	

binding	peptides	were	also	included	in	the	DRP	where	a	female	donor	had	been	used	for	a	male	

recipient.	A	uniform	set	of	values	was	programmed	into	the	MATLAB	software	for	other	variables	in	

equation	3.2,	specifically,	for	each	pmHA	there	was	a	single	alloreactive	T	cell	at	the	first	iteration,	i.e.	N0	

=	1	at	t	=	1;	K	was	set	at	1,000,000	cells	(this	value	substitutes	for	organ	mass,	lympho-vascular	supply	

etc.	without	accounting	for	differences	between	organs),	and	r	was	set	at	1.5	for	all	the	simulations	(in	

vivo	this	may	vary	with	state	of	inflammation).	All	the	pmHA	were	included	in	the	simulations	with	

competition.	The	program	simulated	donor	T	cell	responses	to	skin,	salivary	gland,	esophagus,	stomach,	

small	intestine,	colon,	liver,	lung,	blood,	and	finally	T	cell	frequency	for	all	these	organs	was	summed.		

Individual	simulated	T	cell	clonal	growth	was	non-linear	&	variable	depending	on	the	HLA	binding	affinity	

of	the	peptide,	as	well	as	the	tissue	expression	of	protein	(Figure	2A).	As	expected	high	levels	of	protein	

expression	can	compensate	for	low	antigen	binding	affinity	of	the	derived	peptide,	and	vice	versa.	T	cell	

clones	responding	to	hi	expression/hi	binding	affinity	peptides,	rose	rapidly	and	dominated	the	

emerging	repertoire,	while	low	expression/low	binding	affinity	were	initially	suppressed,	but	recovered	

over	time	(iterations	of	the	system).	Accordingly,	the	overall	clonal	repertoire	(number	of	clones,	and	

cell	number	for	each	clone)	in	each	DRP	grew	over	time,	with	variable	and	unique	growth	kinetics	

(Figure	2B).	Clonal	repertoire	responding	to	each	organ	conformed	to	power	law	distribution	when	

sampled	in	four	patients	(patient	number	2,	3,	4	&	5)	(Supplementary	figure	2).	Individual	T	cell	clonal	

growth	for	each	organ’s	alloreactive	peptides	was	summed	to	give	the	total	simulated,	alloreactive	T	cell	

count	for	each	organ	in	each	DRP.	When	the	number	of	clones	constituting	the	overall	and	organ-

specific	T	cell	populations	was	determined	following	500	iterations	of	the	model,	a	high	degree	of	

variability	was	identified	between	both	MRD	and	MUD	DRP	(Figure	2C).		

The	average	T	cell	count	for	each	organ	after	500	iterations	(average	of	the	iteration	#	401-500)	was	

determined	(Figure	3A),	and	depicts	the	magnitude	of	organ-specific	alloreactive	T	cell	response	that	

may	be	seen	in	different	DRP,	accounting	for	their	HLA	types	and	exome	sequence	variation.	The	

differences	observed	in	the	organ-specific	and	overall	simulated	T	cell	responses	to	the	HLA	bound	

peptides	between	unique	DRP	spanned	orders	of	magnitude.	The	simulated	organ-specific	T	cell	counts	

responding	to	the	alloreactivity	operator	demonstrate	this	variability	in	both	HLA	matched	related	and	
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unrelated	donors,	both	between	different	DRP	(Figure	3B)	and	to	a	lesser	extent	within	each	DRP	(Figure	

3C).	This	is	true	for	individual	organ	simulations,	as	well	as	the	sum	of	these	simulations	(Figure	3D),	

which	reflects	the	variation	in	the	organ	specific	T	cell	responses.			

When	the	sum	of	all	organ	specific	T	cell	clones	(Σ	TC)	was	examined	in	different	donor	types,	no	

significant	differences	were	observed,	however,	while	the	differences	were	not	statistically	significant	

between	groups,	there	was	a	trend	supporting	quantitative	differences	between	different	donor	types.	

Simulated	T	cell	counts	are	summarized	by	donor	type	in	Supplementary	Table	2,	where	for	every	organ,	

and	overall,	the	mean	T	cell	counts	and	estimated	variabilities	are	larger	in	patients	with	unrelated	

donors	than	they	are	in	patients	with	matched	related	donors,	however	these	differences	were	not	

significant	in	this	cohort	(all	p-values	>	0.3).	No	statistically	significant	differences	were	observed	when	

biological	features	such	as	gender	mismatch	(F	to	M:	270,613	(n=17),	M	to	F:	135,064	(n=14)	vs.	gender	

match	(F	to	F:	180,574	(n=16),	M	to	M:	114,932	(n=26),	and	racial	difference	in	the	DRP	(AA	to	AA:	

113,245	(n=13),	vs.	C	to	C:	215,337	(n=47),	vs.	race	mm:	57,938	(n=6))	were	studied.		This	corroborates	

well	with	the	relatively	weak	effect	of	these	biological	differences	in	the	development	of	GVHD	in	the	

setting	of	HLA	matching.	[26,	27]		

Clinical	association	of	tissue-specific	alloreactivity	potential		

The	simulated	T	cell	counts	are	summarized	in	Supplementary	Table	3,	where	for	every	organ	(and	

overall)	the	mean	simulated	T	cell	counts	were	larger	in	patients	who	eventually	developed	any	form	of	

GVHD,	than	they	were	in	patients	who	did	not	develop	GVHD	(P=N.S.).	In	unadjusted	Cox	proportional	

hazard	models,	esophagus-,	stomach-,	and	lung-specific	simulated	T	cell	counts	were	significantly	

associated	with	cumulative	GVHD	incidence	(P-values	0.034,	0.049,	and	0.031	respectively;	Table	2).	

When	adjusted	for	recipient	age	and	gender,	the	associations	observed	were	also	found	to	be	significant	

for	total	and	all	organ-specific	T	cell	simulation	scores	except	for	skin	and	liver	(Table	2).	This	

observation	implies	that	within	age	and	gender	groups,	the	alloreactive	T	cell	simulations	may	

potentially	identify	donors	with	a	higher	likelihood	of	precipitating	alloreactivity.		

Separate	unadjusted	Cox	proportional	hazards	models	did	not	find	any	association	between	total	or	

organ-specific	T-cell	counts	and	acute	or	chronic	GVHD.	After	adjusting	for	age	and	sex	the	results	did	

not	change	except	for	the	association	between	small	intestine	and	chronic	GVHD	(Supplementary	Table	

4).	
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Discussion.	

Alloreactivity	following	SCT	is	a	complex	disorder	dependent	on	numerous	of	factors	such	as	degree	of	

HLA	matching,	[28,	29,	30]	intensity	of	immunosuppression	[31,	32,	33]	and	the	graft	source/T	cell	

composition	of	the	graft	[34,	35].	However,	even	within	uniformly	HLA	matched	and	immunosuppressed	

patients	with	similar	disease	biology,	outcomes	remain	variable	and	subject	to	laws	of	probability.	In	this	

paper	the	magnitude	of	difference	in	putative	alloantigen	burden	and	predicted	T	cell	response	in	SCT	

DRP	is	explored,	accounting	for	the	HLA	make	up	and	protein	coding	differences	between	individual	

donors	and	recipient.	Logically,	the	binding	affinity	and	tissue	expression	of	the	antigens	are	critical	

parameters	when	assessing	the	T	cell	response	to	these	antigens.	The	findings	of	an	earlier	model	are	

now	extended	to	simulate	T	cell	responses	to	an	array	of	alloantigens	that	the	donor	T	cells	may	

encounter	in	different	organ	systems	in	the	recipient	to	determine	tissue-specific	alloreactivity-

potential.	Similar	to	the	previous	study,	the	findings	reported	herein	demonstrate	a	very	large	degree	of	

variability	between	the	simulated	T	cell	responses	to	antigens	expressed	in	specific	organs	between	

unique	DRP.	Furthermore	while,	given	the	small	sample	size,	and	uniform	simulation	parameters	applied	

to	a	heterogeneously	treated	cohort	of	patients,	the	association	between	GVHD	in	specific	organs	and	

the	simulated	T	cell	responses	to	the	alloreactivity	operator	for	these	organs	is	not	established,	there	

are	intriguing	associations	observed.	Despite	the	use	of	anti-thymocyte	globulin	in	a	number	of	patients,	

cumulative	GVHD	was	weakly	associated	with	the	calculated	T	cell	responses	when	adjusting	for	

recipient	age	and	gender.	While	these	are	weak	associations,	it	is	remarkable	that	they	were	identified	

in	this	small	cohort.	This	method	of	T	cell	response	simulation	represents	a	new	potential	area	of	

investigation,	which	may	yield	interesting	results	in	the	future.	

The	inability	to	identify	stronger	clinical	association	between	the	magnitude	of	the	simulated	CD8+	T	cell	

response	to	mHA	array	in	a	DRP	and	organ-specific	GVHD,	may	be	explained	by,	(a)	uniform	simulation	

conditions	applied	in	the	model,	despite	a	heterogeneously	treated	patient	cohort,	with	limited	

numbers	in	each	group,	(b)	only	9-mer	oligo	peptides	bound	to	HLA	class	I	considered	in	the	simulations,	

and	those	too	without	any	post	translational	modification	(phosphorylation,	glycosylation)	and	protein	

cleavage	site	information	incorporated	and	(c)	our	input	data	being	derived	from	‘normal’	tissue	

expression	levels	from	GTEX,	as	opposed	to	patients	potentially	having	different	gene	expression	

profiles	in	the	post	transplant	state.	Beyond	these	obvious	considerations	there	are	other	important	

considerations	that	may	be	factored	in	mathematically	in	future	iterations	of	this	work,	these	are	

discussed	below.		
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Logic	would	dictate	that	when	proteins	are	cleaved,	there	will	be	a	host	of	peptides	generated	for	

antigen	presentation,	both	alloreactive,	such	as	the	ones	reported	here,	as	well	as	non-alloreactive	

peptides	which	will	also	bind	HLA	with	varying	levels	of	affinity,	as	the	alloreactive	peptides	do.	

Furthermore	these	peptides	will	likely	be	far	more	numerous	than	the	alloreactive	ones,	and	may	

constitute	a	significant	competitive	barrier	to	the	presentation	of	alloreactive	peptides.	This	competition	

may	be	modeled	numerically	using	the	notion	of	combinatorial	probability	[36,	37].	In	other	words,	if	

there	are	n	total	peptides	which	might	be	presented	on	k	HLA	molecule	there	are,	

	 !!!!!! = !!!!!!
!! !!! !

 		

possible	combinations	of	peptides	which	might	be	presented	by	these	HLA	molecules,	including	

duplication	of	peptides	and	without	regard	to	order	of	peptides	presented.	For	example,	if	10	peptides	

are	to	be	presented	by	4	HLA	molecules	the	total	number	of	possible	peptide-HLA	combinations	will	be,	
!"
! = 715.	Now,	of	these,	if	3	peptides	are	alloreactive	(mHA),	the	probability	of	a	favorable	outcome	

(no	GVHD)	will	be	enhanced	if	the	other	7	non-alloreactive	peptides	are	presented,	the	number	of	

possible	combinations	allowing	that	will	be	 !"! 	=	210.	Therefore	the	probability	of	having	a	peptide	

combination	presented	by	the	four	HLA	molecules,	which	will	not	include	an	alloreactive	peptide,	i.e.	a	

mHA	in	this	mix	of	non-alloreactive	and	alloreactive	peptides,	will	be	approximately	
!"
!
!"
!

=  0.293	

This	implies	that	the	remaining	~70%	of	the	peptide-HLA	combinations	will	contain	one	or	more	mHA,	if	

this	combination	of	alloreactive	and	non-alloreactive	peptide	combinations	were	to	be	presented.	Thus	

in	the	scenario	presented	above,	depending	on	the	HLA	binding	affinity	of	the	peptides	and	its	tissue	

expression,	and	the	presence	of	a	T	cell	clone	recognizing	that	specific	mHA,	alloreactivity	may	not	be	

triggered	in	nearly	a	third	of	the	instances.	In	reality,	however,	the	number	of	non-alloreactive	peptides	

is	likely	high	resulting	in	a	smaller	ratio	of	alloreactive	peptides	being	presented.	Supporting	this	line	of	

reasoning	is	the	observation	that	expression	levels	of	HLA	molecules	have	been	shown	to	impact	

alloreactivity	incidence	[38,	39].	This	quantitative	consideration	adds	an	important	variable	to	

determining	the	likelihood	of	alloreactivity	developing	not	accounted	for	in	the	analysis	presented	in	this	

paper;	i.e.,	the	variability	in	the	HLA	binding	affinity	of	the	many	non-alloreactive	peptides.	Further	

variability	in	this	system	is	introduced	by	the	relative	abundance	of	each	protein	from	which	the	

peptides	are	derived.	This	too	will	modify	the	likelihood	of	peptide	binding	to	HLA,	due	to	competition.	

This	discussion	demonstrates	that	while	dynamical	systems	modeling	may	reproduce	the	T	cell	
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frequency	distribution	patterns	seen	in	patients,	the	randomness	of	the	exome	mutations,	and	

subsequent	peptide-HLA	interactions	makes	the	development	of	alloreactivity	a	stochastic,	dynamical	

process.	Hence,	while	patterns	of	reactive	immune	responses	may	be	mathematically	described,	each	of	

these	patterns	is	associated	with	a	certain	probability	of	occurrence	and	of	causing	the	associated	

clinical	outcome.	In	other	words,	HLA	matched	patients	with	a	higher	simulated	T	cell	count	will	likely	be	

at	greater	risk	of	GVHD	under	certain	uniform	conditions	of	immunosuppression	and	vice	versa.			

Another	source	of	difference	between	an	idealized	simulation	and	the	‘real	world’	will	be	the	interaction	

between	APC	and	T	cells.	Both	cell	populations	proliferate	in	response	to	inflammatory	stimuli,	with	the	

APC	proliferation	driving	T	cell	growth.	This	interaction	too	may	be	modeled,	using	the	matrix	based	

vector	operator	model.	The	results	reported	above	are	based	on	the	notion	that	the	APC	matrix	

operator	(MAPO)	has	a	constant	effect	on	the	donor	T	cell	vector,	in	other	words	antigen	presentation	is	

a	constant	function	of	time,	however	in	reality	this	is	not	the	case.	APC	themselves	respond	to	

inflammatory	signals	and	as	previously	demonstrated,	follow	logistic	growth	after	stem	cell	

transplantation,	consequently	antigen	presentation	follows	a	crescendo-decrescendo	course	over	time	

(particularly	with	infections)	[40,	41].	This	model	may	be	built	into	this	system	of	vector	operator	

immune	response	modeling.	In	this	instance	consider	the	scenario;	tissue	injury	following	conditioning	

therapy	ensues,	following	which	there	is	uptake	of	recipient	antigens	by	the	transplanted	APC	

(presumably	of	donor	origin)	proliferating	in	response	to	the	cytokines	released	because	of	the	insult.	

The	proliferating	APC	take	up	antigen,	present	the	mHA	(and	non-mHA)	and	migrate	to	the	regional	

lymph	nodes.	As	these	monocyte	populations	arrive	in	the	regional	nodes,	the	T	cells	corresponding	to	

the	mHA	start	proliferating	and	migrate	out	of	the	lymph	node	and	home	in	on	the	target	tissue,	where	

they	now	induce	further	inflammatory	injury,	further	expanding	the	APC	proliferation,	until	the	APC	

population	reaches	a	steady	state.	Once	the	tissue	damage	is	complete	(or	infection	resolved),	the	APC	

will	decline	and	a	steady	state	memory	T	cell	complement	left	behind.	This	is	a	positive	feedback	loop	

which	‘self	regulates’	as	steady	state	values	are	reached	for	the	APC	population,	with	an	eventual	

decline	in	the	antigen	presentation	(as	pathogen	numbers	decline,	or	maximal	tissue	injury	runs	its	

course).	Similar	to	T	cell	clonal	proliferation,	APC	proliferation	may	be	described	by	equation	1.	This	

allows	the	waxing	and	waning	antigen	presentation	over	time	to	also	be	described	as	a	vector,	and	its	

impact	in	T	cell	population	be	recorded	by	taking	the	dot	product	of	this	APC	effect	vector	and	the	T	cell	

vector	as	it	transforms.	The	APC	effect	vector,	describing	the	impact	of	antigen	presentation,	as	

reflected	by	APC	growth	and	decline	on	T	cell	clonal	proliferation	is	given	by	the	expression,	
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𝜈!"#= 1 −
N! !"#
𝐾!"#

𝑡 + 1	

This	variable	is	at	its	highest	relative	value,	2,	in	the	beginning	of	the	reaction	(Nt	APC/KAPC	approaches	0)	

but	as	the	reaction	proceeds	over	time	t,	it	approaches	1,	as	Nt	APC	approaches	K	APC.	Here	1	represents	

the	homeostatic	ability	of	T	cell	clone	to	persist	in	the	absence	of	antigen	presentation.	Assuming	that	

an	independent	𝜈!"# 	exists	for	each	antigen	in	the	MAPO,	the	effect	of	APC	growth	and	subsequent	mHA	

presentation	may	be	obtained	by	the	dot	product	of	the	two	vectors,	𝜈!"# 	and	𝜈!"#.	In	other	words,	

multiplying	each	iteration	of	the	T	cell	vector	with	each	iteration	of	this	APC	effect	vector	(the	operation	

of	multiplying	2	column	matrices),	transforms	the	donor	T	cell	vector,	

𝜈!"#′	=	𝜈!"# 	.	𝜈!"# 	.	𝑐𝑜𝑠𝜃	

This	equation	implies	that	in	the	beginning	of	an	inflammatory	response	there	is	a	positive	feedback	

response	from	proliferating	APC,	which	amplifies	the	T	cell	response	𝜈!"#′;	eventually	both	decay	to	a	

steady	state	level.	The	angle	θ	between	the	two	vectors	is	0°	(cos	0	=	1)	because	they	have	the	same	

direction	(antigen	specificity),	in	other	words	the	TCR	recognizes	and	binds	to	the	mHA-HLA	complex	

being	presented	by	the	APC.	This	effect	of	𝜈!!" 	on	𝜈!"#  can	be	applied	to	the	either	a	single	T	cell	or	the	

entire	T	cell	repertoire	(Figure	4A	&	B).	As	can	be	seen	these	graphs	recapitulate	the	T	cell	response	

amplification	commonly	observed	in	response	to	antigen	stimulation,	[40,	41,	42]	and	can	be	depicted	in	

the	model	illustrated	in	Figure	4C.	In	practice	this	interaction	--	depending	on	the	presence	or	absence	

of	inflammation	in	the	tissues	being	studied	--	will	significantly	modify	the	alloreactivity	operator	and	

lead	to	variability	in	T	cell	proliferation	observed.	The	weak	associations	of	the	T	cell	simulations	with	

the	clinical	findings	reported	in	this	paper,	may	therefore	be	explained	by	absence	of	information	

regarding	the	overall	inflammatory	state	in	each	DRP.	This	mechanism	may	also	underlie	the	sensitivity	

of	transplant	outcomes	to	initial	conditions	and	the	seemingly	chaotic	outcomes	of	transplant	dynamical	

systems	[43].			

Another	source	of	clinical	variability	not	accounted	for	in	this	model	is	the	constitution	of	the	graft	both	

in	terms	of	effector	and	regulatory	T	cells	(Treg).	While	the	notion	of	absence	of	antigen	directed	clonal	

T	cells	impacting	the	predictive	power	of	any	such	model	is	straightforward,	the	effect	of	regulatory	

immune	cell	populations	such	as	Treg	requires	some	calculation	to	understand.	Treg	recognize	self-

antigens	and	secrete	anti-inflammatory	cytokines	(IL-4,	IL-10)	in	response,	diminishing	the	proliferation	

of	the	antigen	directed	CD8+	effector	T	cells	[44].	This	may	be	easily	accounted	for	in	this	model	by	
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considering	that	the	growth	parameter	r	(given	the	uniform	value	of	-1.5	in	this	analysis)	represents	the	

proliferative	effect	of	the	cytokine	milieu.	In	this	instance	the	more	negative	its	value	(induced	by	pro-

inflammatory	cytokines),	the	larger,	and	more	rapid	the	growth	promoting	effect;	and	for	less	negative	

or	alternatively	for	positive	values	(anti-inflammatory	cytokine	effect)	growth	will	be	impeded	or	

stopped,	as	can	be	seen	in	Figure	5,	where	a	change	in	the	magnitude	of	r	produces	dramatic	decline	in	

the	T	cell	growth	curves.	Once	again	these	effects	are	not	accounted	for	in	the	model	presented	here	

but	may	be	easily	included.	Nevertheless,	the	robustness	of	the	vector	operator	model	of	quantifying	T	

cell	response	and	its	eventual	clinical	utility	are	indicated	by	its	robustness	in	quantifying	a	variety	of	

immune	phenomenon	noted	above.			

Current	clinical	practice	is	to	identify	the	donors	based	on	the	degree	of	major	histocompatibility	locus	

matching.	Based	on	this,	immunosuppressive	regimens	are	chosen;	unrelated	donor	transplant	

recipients	frequently	receive	ATG	in	addition	to	the	standard	calcinuerin	inhibitor	+	methotrexate,	

whereas	haploidentical	transplant	recipients	receive	post-transplant	cyclophosphamide.	In	the	absence	

of	early	GVHD	onset,	immunosuppression	intensity	is	gradually	reduced	and	eventually	withdrawn	over	

a	predetermined	period	of	time,	usually	spanning	four	to	six	months,	depending	on	the	relapse	risk	of	

the	underlying	malignancy.	Dynamical	system	modeling	of	immune	reconstitution,	based	on	whole	

exome	sequencing	data	from	donors	and	recipients	may	enable	the	development	of	patient	specific	

immunosuppressive	regimens	post-transplant,	by	more	precisely	calibrating	the	GVHD	risk	that	unique	

donors	might	pose	to	that	patient.	Our	data	indicate	that	adjusting	for	recipient	biology	this	may	be	a	

powerful	tool	for	identifying	unique	DRP	that	are	at	higher	then	average	risk	of	GVHD	and	may	need	

more	measured	adjustment	of	immunosuppression	following	SCT	than	others.		

Given	the	advances	in	next	generation	sequencing,	as	well	as	computing	technology	it	is	conceivable	

that	in	time,	patients	and	their	prospective	donors	may	have	their	HLA	type	and	alloreactivity	potential	

determined	by	whole	exome	sequencing.	A	donor	with	optimal	alloreactivity	potential	will	be	identified	

and	a	GVHD	prophylaxis	regimen	of	optimal	intensity	utilized	to	achieve	maximal	likelihood	of	good	

clinical	outcome.	In	so	doing,	dynamical	systems	understanding	of	alloimmune	T	cell	responses	will	

attenuate	the	unpredictability	that	the	current	largely	probability-based	models	of	outcomes	prediction	

are	fraught	with.	Dynamical	systems	analysis	of	antigenic	variation	also	explains	the	randomness	at	hand	

in	human	immune	response	to	disease,	either	infectious	or	neoplastic.	This	understanding	has	the	

potential	to	impact	areas	of	investigation	beyond	transplant	alloreactivity,	potentially	influencing	cancer	

immunotherapy,	autoimmune	disease	and	infectious	disease.		Randomness	within	the	dynamical	system	
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framework	will	remain	always	have	to	be	accounted	for	because	of	the	several	mechanisms	outlined	

above,	but	a	model	such	as	this	is	a	step	towards	gaining	a	quantitative	understanding	of	complex	

immune	responses	and	their	simulation	to	aid	in	transplant	donor	selection.		

In	conclusion	this	model	partially	explains	why	immune	responses	are	seemingly	random	and	difficult	to	

accurately	predict,	akin	to	the	quantum	uncertainty	principle,	you	can	accurately	measure	either	a	

particle’s	position	or	its	velocity,	never	both.		Similarly,	given	the	complexity	at	hand	in	immune	

responses,	while	we	may	not	be	able	to	precisely	quantify	the	likelihood	of	alloreactivity,	we	hope	that	

simulations	of	alloreactive	T	cell	responses	will	aid	the	quantitative	understanding	of	immune	

reconstitution	and	more	closely	estimate	clinical	outcomes.		
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Figures.	
	
Figure	1.	TRaCS,	computational	algorithm	to	determine	tissue	specific	alloreactive	putative	peptide	
minor	histocompatibility	antigens	(pmHA).	Whole	exome	sequencing	of	cryopreserved	donor	and	
recipient	DNA	was	performed,	with	an	average	coverage	of	90x.	The	variable	n		refers	to	the	number	of	
nsSNPGVH	and	m	to	pmHA.	The	variable	m	along	with	protein	tissue	expression	level	was	then	analyzed	in	
MATLAB	to	determine	T	cell	responses.			
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Figure	2.	T	cell	clonal	growth	in	the	simulations.	A.	Individual	T	cell	clone	growth	simulations	accounting	
for	peptide-HLA	complex	binding	affinity	and	protein	of	origin	tissue	expression	(IC50/RPKM).	Increased	T	
cell	frequency	(Y-axis)	seen	if	the	protein	is	expressed	at	a	higher	level.	Different	pmHA	from	a	single	
patient/organ.		B.	Variable	growth	pattern	of	the	number	of	clones	in	the	simulations,	number	of	clones	
rising	over	‘time’	(iterations);	T	cell	clonal	growth	in	response	to	colonic	alloreactive	peptides	depicted	
here.	
A.	

																			 	
	
B	

	
	

	
	

	 	

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1	 10	 100	 1000	

Itera-ons	

2.6/63	

-400	
-200	

0	
200	
400	
600	
800	

1000	
1200	
1400	
1600	

1	 10	 100	 1000	

itera-ons	

2.5/1.9	

0	

2000	

4000	

6000	

8000	

10000	

1	 10	 100	 1000	

Itera-ons	

2.05/97	

-2000	

0	

2000	

4000	

6000	

8000	

10000	

1	 10	 100	 1000	

Itera-ons	

2.05/2.5	

1	

10	

100	

1000	

10000	

1	 10	 100	 1000	

N
um

be
r	o

f	T
	c
el
l	c
lo
ne

s	

Itera2ons	

T	cell	specific	clonal	growth		

3colon	

1	

10	

100	

1000	

10000	

1	 10	 100	 1000	

N
um

be
r	o

f	T
	c
el
l	c
lo
ne

s	

Itera2ons	

T	cell	specific	clonal	growth		

5	colon	

1	

10	

100	

1000	

10000	

1	 10	 100	 1000	

N
um

be
r	o

f	T
	c
el
l	c
lo
ne

s	

Itera2ons	

T	cell	specific	clonal	growth		

4colon	



Simulating	Tissue	Specific	Donor	T	Cell	Responses	in	SCT	 25	

Figure	2C.	Number	of	T	cell	clones	after	500	iterations,	reflecting	the	number	of	high	affinity	peptides	
expressed	in	the	tissues	studied	(GTEX).		A	non-significant	trend	towards	a	larger	number	of	clones	in	
MUD	recipients	is	observed	in	this	graph.		
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Figure	3A.		Tissue	specific	simulated	alloreactive	T	cell	counts	after	500	iterations	in	recipients	of	MRD	
(Black	line)	and	unrelated	donors	(Blue	line).	These	values	represent	the	sum	of	the	entire	T	cell	vector	
responding	to	the	alloreactivity	operator	matrix	of	mHA-HLA	complexes	for	a	specific	organ	( 𝑇𝐶! !

! ).	
Arrows	denote	individuals	with	T	cell	responses	differing	by	orders	of	magnitude.	Values	were	obtained	
by	calculating	the	average	for	iteration	number	401-500	due	to	variability	from	competition.	
					

	
	

	
	
	
Figure	3B	&	3C.		Variation	in	the	simulated	alloreactive	T	cell	counts	observed	for	each	organ	examined	
between	patients	(3B)	and	within	patients	(3C).	Note	Log	scale	used	in	Figure	3B,	but	not	in	3C		(Y	axis	
truncated	at	130000).	
	
3B.	
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3C.	
	

	
	
	
Figure	3D.		Total,	simulated	alloreactive	T	cell	counts	in	recipients	of	MRD	and	unrelated	donors	after	
500	iterations	(average	for	iteration	number	401-500	due	to	variability	from	competition).	P	value	for	
magnitude	difference,	>0.3			
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Figure	4:	Alloreactivity	model.	Dot	product	of	APC	and	T	cell	vectors	recapitulates	familiar	antigen-
challenge	driven	T	cell	proliferation	response	curve.	A.	Single	T	cell	clone,	B.	Entire	repertoire.	C.	Model	
illustrating	the	interaction	between	APC	and	T	cells.		
	
4A.	
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4C.		
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	 	

APC expansion

NtAPC=KAPC/(KAPC-Nt-1)+e-rt+1)


Clonal T cell expansion

lymph node


NtTC=KTC/(KTC-Nt-1)+e-rt+1)


Steady-state nodal

Clone-speci8ic T cell expansion


Condi&oning	related		
gut	injury	

APC	expansion	declines	following	injury	&	target	destruc&on	Severe	gut	injury	

vAPC . vTC=(1-(NtAPC/KAPC)t)+1) . KTC/(KTC-Nt-1)+e-rt+1)




Simulating	Tissue	Specific	Donor	T	Cell	Responses	in	SCT	 30	

Figure	5.		Modeling	the	effect	of	Treg	on	effector	T	cell	growth:	in	the	red	curve,	r	reduced	at	21st	
iteration	from	-1	to	-0.25;	T	cell	population	drops	but	then	recovers	slowly.	In	the	blue	curve	r	reduced	
at	25th	iteration	from	-1	to	+0.25	with	direction	reversal	(from	–	to	+),	signifying	anti-inflammatory	
cytokine	effect	supersedes	pro-inflammatory	cytokine	effect.	
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Tables.		
	
Table	1.	Exome	sequencing	and	peptide	results	by	donor	type	(n=77)	
	
		 MRD	a		

						(n=27)	
MUD		
(n=50)	

P-value	b	

Exome	sequencing	SNP	differences	

		Synonymous	 2,716	±	703	 4,821	±	1358	 <0.01	
		Non-synonymous	 2,463	±	603	 4,287	±	1154	 <0.01	
		Conservative	 847	±	218	 1,476	±	402	 <0.01	

		Non-conservative	 1,616	±	388	 2,811	±	754	 <0.01	

HLA-Presented	Peptides	

		Presented	Peptides	(IC50	<500	nM)	 3,670	±	1551	 5,386	±	2136	 <0.01	
		Strong	HLA	Binders	(IC50	<50	nM)	 852	±	373	 1,160	±	575	 <0.01	
a	Excludes	haploidentical	patient	
b	Mean	values	±	SD.	P	values	determined	using	t-test	for	Equality	of	Means	
	

Table	2.	Cox	Proportional	Hazards	Model	for	GVHD	association	with	simulated	organ	specific	T	cell	

counts,	with	and	without	adjustment	for	recipient	age	and	gender,	using	robust	S.E.	estimates.		

ORGAN													 	 	
Un-adjusted	HR	(95%	CI)	 P-value	 Adjusted	HR	(95%	CI)	 P-value	

Saliva												 1.012	(1.000	to	1.027)	 0.070	 1.013	(1.001	to	1.026)	 0.028	
Colon													 1.009	(1.000	to	1.017)	 0.059	 1.009	(1.001	to	1.017)	 0.033	
Esophagus									 1.001	(1.001	to	1.019)	 0.034	 1.010	(1.002	to	1.018)	 0.013	
Small	Intestine	 1.010	(1.000	to	1.021)	 0.054	 1.011	(1.001	to	1.020)	 0.027	
Liver													 1.012	(0.998	to	1.026)	 0.089	 1.013	(1.000	to	1.026)	 0.055	
Stomach											 1.000	(1.000	to	1.019)	 0.049	 1.010	(1.001	to	1.019)	 0.028	
Lung														 1.010	(1.000	to	1.020)	 0.031	 1.010	(1.002	to	1.019)	 0.016	
Skin														 1.009	(0.997	to	1.021)	 0.111	 1.010	(0.999	to	1.021)	 0.068	
Total	 1.001	(1.000	to	1.003)	 0.058	 1.001	(1.000	to	1.002)	 0.029	

Abbreviations:	HR	=	hazard	ratio;	CI	=	confidence	interval	 	
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Supplementary	Table	1.	Patient	characteristics,	excluding	haploidentical	DRP	

N	 77	

Male/Female	 43/34	

Age	-	median	(range)	 55.6	(21-73)	

Donor	(%)	 						MRD	 34	

		 						MUD	 53	

		 						MMRD	 1	

		 						MMUD	 12	

Stem	Cell	Source	(%)	 						Bone	Marrow	 9	

		 						Peripheral	Blood	 91	

Race	 					C/C	 50	

(Donor/Recipient)	 					AA/AA	 13	

		 					C/AA	 4	

		 					MR/C	 2	

		 					UK/C	 8	

Condtioning	Regimen	(%)	 						Reduced	Intensity	 46	(60)	

		 												ATG/TBI	 25	

		 												Busulfan/Fludarabine	 35	

		 												Fludarabine/Melphalan	 3	

		 							Myeloablative	 31	(40)	

		 												Busulfan/Cyclophosphamide	 22	

		 												Cyclophosphamide/TBI	 14	

		 												Etoposide/TBI	 1	

GVHD	prophylaxis	(%)	 						Cyclosporin	A/Methotrexate	 21	

		 						Cyclosporin	A/MMF	 5	

		 						Tacrolimus/Methotrexate	 44	

		 						Tacrolimus/MMF	 30	

		 						Anti-thymocyte	globulin	(ATG)	 81	

Gender	 						M/F	 17	

	Donor/Recipient	 						F/M	 16	

		 						M/M	 27	

		 						F/F	 17	
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Supplementary	Table	2:	Simulated	T	cell	counts	per	donor	type	by	organ	(presented	in	1,000s	of	cells)	

	 MRD	(N=27)	 MUD	(N=45)	
	 Mean	(SD)	 Mean	(SD)	
Salivary	Glands	 13.8	(14.9)	 14.0	(20.0)	
Colon	 18.4	(18.1)	 20.2	(30.1)	
Esophagus	 17.2	(17.8)	 18.6	(28.1)	
Small	Intestines	 19.1	(20.3)	 19.9	(25.7)	
Stomach	 19.6	(19.5)	 21.1	(27.3)	
Liver	 18.4	(17.8)	 22.6	(32.1)	
Lung	 12.9	(12.9)	 16.5	(25.6)	
Skin	 19.3	(19.6)	 20.9	(25.9)	
Total	 138.8	(139.3	 154.8	(210.5)	

Supplementary	Table	3.	Simulated	T	cell	counts	by	organ	in	patients	with	and	without	GVHD	(presented	
in	1,000s	of	cells)	

Table	3	
	 No	GVHD	(N=26)	 GVHD	(N=47)	
	 Mean	(SD)	 Mean	(SD)	
Salivary	Glands	 10.3	(11.9)	 15.6	(20.6)	
Colon	 15.3	(15.1)	 21.4	(30.3)	
Esophagus	 13.6	(14.4)	 20.2	(28.5)	
Small	Intestine*	 14.4	(14.9)	 22.1	(27.0)	
Stomach	 15.5	(15.9)	 22.9	(27.9)	
Liver	 16.5	(15.9)	 23.1	(32.1)	
Lung	 11.4	(12.7)	 16.9	(25.1)	
Skin	 16.1	(16.9)	 22.2	(26.5)	
Total*	 113.1	(114.9)	 165.7	(213.8)	
*Indicates	sample	sizes	of	72	for	overall	and	46	for	GVHD	group	due	to	a	missing	value	
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Supplementary	Table	4.	Estimated	hazards	ratios	(HR),	95%	confidence	intervals	(CI)	and	p-values	from	
Cox-proportional	hazards	models	of	simulated	T-cell	counts	and	acute	and	chronic	GVHD	classification	
after	adjustment	for	age	and	sex.	

	 Acute	GVHD	 Chronic	GVHD	
	 HR*	 95%	CI	 p-value	 HR*	 95%	CI	 p-value	
Salivary	Glands	 1.010	 0.993,	1.027	 0.250	 1.014	 0.998,	1.030	 0.086	
Colon	 1.006	 0.995,	1.018	 0.274	 1.007	 0.995,	1.019	 0.233	
Esophagus	 1.008	 0.996,	1.019	 0.177	 1.009	 0.997,	1.021	 0.146	
Small	
Intestines	

1.007	 0.993,	1.021	 0.300	 1.011	 1.000	1.023	 0.049	

Stomach	 1.006	 0.992,	1.020	 0.391	 1.010	 1.00,	1.021	 0.078	
Liver	 1.011	 0.994,	1.028	 0.206	 1.014	 0.997,	1.030	 0.103	
Lung	 1.008	 0.998,	1.019	 0.103	 1.009	 0.99,	1.023	 0.190	
Skin	 1.008	 0.994,	1.021	 0.278	 1.009	 0.99,	1.023	 0.162	
Total	 1.001	 0.999,	1.003	 0.244	 1.001	 1.000,	1.003	 0.119	
	

Supplementary	Figure	1:	Transition/transversion	ratio	for	the	WES	data	from	all	the	patients.		
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Supplementary	Figure	2:	Clonal	frequency	distribution	for	colon	responding	T	cells	in	patient	2.		
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Supplementary	Methods.	

If	equation	3	is	modified	to	balance	the	units,	

𝑁! !"#=
𝐾𝑎𝑓𝑚𝐻𝐴 x ∗ 𝑁!𝑒!!" 𝑎𝑓𝑚𝐻𝐴 x + 1

(𝐾𝑎𝑓𝑚𝐻𝐴 x − 𝑁!!! !"#)(𝑒!!" 𝑎𝑓𝑚𝐻𝐴 x ) + 1
	

When	solved	this	equation	demonstrates	near	identical	growth	kinetics	to	those	seen	with	Equation	3,	

however	for	the	clones	directed	at	low	affinity,	low	expression	pmHA,	in	other	words,	those	clones	with	

a	low	value	of	K,	demonstrate	erratic	behavior	not	likely	to	be	observed	in	reality.	This	suggests	that	in	

real	life,	thresholds	of	immune	activation	may	be	relevant	and	magnitude	of	T	cell	response	important	in	

immune	reconstitution	models	such	as	this.	For	the	calculations	reported	here	the	expression	

𝑒!!" 𝑎𝑓𝑚𝐻𝐴-x + 1	was	not	utilized	in	the	numerator	of	the	equation,	and	an	N0	value	of	1	was	used.		
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